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Abstract: Consider the power series with complex coefficients h(z) = Y32 a,z* and its modified
version 1, (z) = L3 |ax|zF. In this article, we explore the application of certain Holder-type inequal-
ities for deriving various inequalities for operators acting on the aforementioned power series. We
establish these inequalities under the assumption of the convergence of /(z) on the open disk D(0, p),
where p denotes the radius of convergence. Additionally, we investigate the norm and numerical
radius inequalities associated with these concepts.

Keywords: Holder-type inequalities; power series; operators; operator norm; Hilbert spaces; numerical
radius

MSC: 30B10; 47A30; 47B65; 47A13; 47A12

1. Introduction and Preliminary

In mathematics, inequalities are fundamental tools for comparing and analyzing
mathematical objects. This article focuses on a specific type of inequality called Holder-
type inequalities, which are applied to power series of operators in Hilbert spaces. This
topic is important in the fields of operator theory and functional analysis. Our goal is to
enhance the theoretical foundations of mathematical inequalities and contribute to the
overall understanding of this subject within the mathematical community. Our research
represents a significant advancement in this area, providing new insights and tools for
mathematicians working in these fields. Inequalities are essential for establishing the
properties of operators and investigating the convergence and behavior of power series.
For further reading on mathematical inequalities, interested readers can consult recent
papers and the references therein [1-9].

Consider the power series h(z) = } ;2 1z, where aj represents complex numbers
and z denotes a complex variable. Let us assume that the convergence of h(z) occurs
within a specific region, known as the open disk D(0, p). This region comprises all complex
numbers z with a distance less than p from the origin. If p is infinite, it signifies the
convergence of the power series for all complex numbers.

Associated with the power series h(z) = Y7 a,z" is another series, denoted as
ha(z) = T2 |ax|zF. In this series, the coefficients are obtained by taking the absolute
values of the coefficients in the original series h(z). Both h(z) and h,(z) share the same
radius of convergence. One noteworthy case is when all coefficients a; are non-negative,
meaning a; > 0 for all k. In this situation, the series h,(z) is equal to h(z). Power series of
operators are fundamental in functional analysis and operator theory, offering a systematic
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way to express and investigate operators. By using power series, one can explore operator
properties and behavior in a structured manner. Readers interested in a deeper under-
standing of this topic can refer to references such as [10-13], which provide comprehensive
insights into the power series of operators and their applications.

To illustrate the concepts mentioned earlier, consider some natural examples of
power series:
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Other notable examples of functions expressed as power series with nonnegative
coefficients include:

> 1
exp(z) = Z—'z”, z € C;
= n!
1 1+z\ & 1 5,4
2ln<1_z>—’;2n_1z , ze€D(0,1).

Before delving into our exploration, it is crucial to revisit some fundamental definitions
and concepts. Consider B(H ), the C*-algebra comprising all bounded linear operators
on a complex Hilbert space H. Let T € B(H). The operator norm of T, denoted by
[IT|, is defined as the supremum of ||Tx|| over all unit vectors ||x|| = 1, expressed as
IT|| = sup ||Tx||. In this context, for x in #, the quantity | x|| is defined as the square root

[[x[[=1
of the inner product (x, x), where (-, -) symbolizes the inner product on . Alternatively,
the operator norm || - || can be defined as ||T|| = sup |(Tx,y)|. By setting y = x in this
llxlI=llyll=1
definition, a smaller quantity emerges known as the numerical radius, denoted by w(T).
Thus, for T € B(H), the numerical radius of T is the scalar value w(T) = sup [(Tx, x)]|.
[lx[|=1
Importantly, w(-) also defines a norm on B(#). Nevertheless, noteworthy distinctions
exist between the norm properties of w(-) and || - ||. Specifically, the numerical radius lacks
sub-multiplicativity and unitary invariance, in contrast with the operator norm.

Even though understanding w(-) might seem simpler than || - ||, determining the
numerical radius w(-) is actually more challenging. As a result, there has been significant
interest in the research community in estimating the values of w(-) in terms of the operator
norm || - ||. This is often achieved by establishing sharp upper and lower bounds. In this
context, an important relationship, as discussed in (Theorem 1.3-1 [14]), states that for every
T € B(H), we have

w(T) < |IT] < 2w(T) ©)
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This connection shows that the two norms, w(-) and || - ||, are related. However, it is
crucial to understand that there might be a significant difference between the values on the
left and right sides of (1). Consequently, researchers have dedicated considerable efforts
to finding better bounds for more accurate approximations and a deeper understanding
of these relationships. For more information on norm and numerical radius inequalities,
readers are encouraged to consult the following references [15-26] and the additional
references cited therein.

The paper is structured as follows. In Section 2, our main focus is on establishing
various vector inequalities for operators. We delve into the summation of the power series
of operators in Hilbert spaces and their modified versions. We also provide several general-
izations of a Kato-type inequality for Holder weighted sums of operators, as established
in [27]. Among other results, we demonstrate that if the power series with complex coef-
ficients h(A) := ¥, axA¥ is convergent on D(0,p) and X;, U;, V; € B(H) with || X;]| < p,
i € {1,...,n}, then, for non-negative weights p; > 0 with /' ; p; > 0 (meaning that not all
of them are zero), it holds that:

2

piVi Xih(X;)Uix, y)
1

(

1

2 o2 B 1 el
< 17 Iyl ¢ Y pth Xl 161, )7 3 i 16D |15 Vs
i=1 i=1

1

n

2g 1
vy

forallx,y € H,a € [0,1] and p,g > 1 such that % + % =1
If the power series h reduces to the constant 1, then we obtain the usual Holder’s-type
vector inequality for weighted sums

2

n
(Y piViXiUx,y)
i=1

2 2 1 . 2 1 n
< llell7llyll7 € 32 pil 1%l Ui |, )P () s
i=1 i=1

e |24 1
X7 )

When V; = U; = [ foralli € {1,...,n}, we obtain the one sequence vector inequality
for weighted sums

2

()

n
(Y piXix,y)
i=1

2 2 0 1 x w12(1—a 1
< Nl Tyl P (3 pal X 2P, ) (Y X [Py, )5
i=1 i=1

Moreover, for n = 2 and p; = pp = 1, we derive from (2) the following Holder type
vector inequality for the sum of two operators

[((A+B)x,y)[*
2 2 o e 1 * - * —
< el llyl7 (1P + 1B ), )7 (JA PO 4 B* P07y, y)

Y-

for A,B € B(H),x,y € H,a € [0,1] and p,q > 1 such that ; + ¢ = 1.
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In Section 3, we discuss a range of inequalities related to the norm and numerical
radius. As an example, we highlight the following result: if p,q > 1 such that % + % =1
and s > max{p,q} > 1, then

n
w? (Z ini*Xih(Xi)Ui>
i=1

1i|¢ P ay7.|2pP ¢ q wl-ay, | I
< S| ph XX U || e )11
i=1 i=1
1 “ q )1 1—a 29 I < p o 2p d
5w [ L pdx|1X v ) (X pnf (11X
i=1 i=1

provided that the power series with complex coefficients h(A) := Y3, apA* is convergent

on D(0,p), X;, U;, V; € B(H) with || X;|| < p,i € {1,..,n}, « € [0,1] and p; > 0 with
Yit1pi > 0.

Here, if i = 1, then the above result becomes the norm and numerical radius inequality
for weighted sums:

n
w* <2 Pz‘Vi*XiUi>

i
1| & 2 gl w124 7
<5 Yo pil X wl Y el XE )
i=1 -1
1 n B 2q qa(n ) %
tow ( pil |1 X IV ) (ZPiHXi|aui| p) ]
i1 =1

In particular, V; = U; = [ for alli € {1,...,n}, we obtain the one sequence numerical
radius inequality for weighted sums

w? <Xn: Pz‘Xi> 3)
i=1

n
2 21—
Yol Xl pil X (=)
= -1

: Pl ;
w[( pi|x;*|2“‘“>‘7) (Zpi\xﬂ““’) ]
i=1 i=1

Moreover, for n = 2 and p; = pp = 1,, we derive from (3) the following Holder-type
numerical radius inequality for the sum of two operators

y i
<1
-2

+

N —

1
wZS(A+B) < §H|A|2ap+‘3|2ap

2 H|A*‘2(17a)q + |B*|2(17“)qHﬁ (4)

1 F200-0)g g 200\ T (| o120 o 2P )7
+ 30| (174 5 PO (AP )

for A,B € B(H),« € [0,1] and p,g > 1 such that % +% =1lands > max{p,q} > 1.
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For p = g = 2, we obtain from (4) that
w*(A+B) < H\A|4"‘+|B|4"‘ 410 4 g s 2
+2w[(|A* (1- a)+|B |4(1 oc) (|A|4u+|B4a)§]
fora € [0,1] and s > 2, which for « = 1/2 provides
w®(A+B) < ‘
w30 (1R +18°) (148 + 1BR)°|
for s > 2. Finally, if we take s = 2, we also receive
wH(A+B) < 2H|A|2+|B|2HH|A*|2+|B*|2H ©)

o[ (144 1B E) (141 + 1BP)]

for A, B € B(H).

We observe that the above inequalities (3)-(5) provide some complementary results
for the numerical radius inequalities for the finite sums obtained recently in [28,29]. As far
as we can see, the upper bounds for the numerical radius obtained in this paper cannot be
compared with any bound from the papers [28,29].

To illustrate our theoretical results, we provide various examples of fundamental
operator functions such as the resolvent, the logarithm function, operator exponential,
and operator trigonometric and hyperbolic functions.

2. Vector Inequalities Involving Power Series of Operators

In order to establish our initial result in this section, it is necessary to invoke the
following vector inequality for positive operators A > 0, as derived by McCarthy in [30]:

<Ax,x>p < (APx,x), p>1,

where x € H and ||x|| = 1. Additionally, we utilize Buzano’s inequality [31]:

[(xe)ey)| <

which holds for any x,y,e € H with |le|| = 1.
Substituting x with ﬁ, where y # 0, into (6), we obtain

iyl + [y ], 6)

NI~

y y P< Ap y >1
A S YT Py

which can be expressed as

(Ay,y)" < |lyl?P~V(APy,y), p>1, %)

valid for ally € H.

In this section, we consider the power series with complex coefficients h(A) :=
Y2 o mAR with ap € C for k € N := {0,1,...}. We assume that this power series is
convergent on the open disk D(0,p) := {z € (C |z| < p}. If p = o0, then D(0,p) = C. We
define 1 (A) := Y52, |ax|AF, which has the same radius of convergence p.
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To prove our first result, we need to establish the following lemma concerning a
generalized version of Schwarz vector inequlity concerning the natural powers of an
operator T from B(H).

Lemmal. Let T, U,V € B(H) and a € [0,1]. Then, for n > 1 we have
* 2 - 2 11— 2
(VT y) [P < T2 2 TP ) TV ) (8)
forallx,y € H.
Proof. Firstly, observe that Kittaneh derived the following Schwarz-type inequality for
powers of operators in [32]. This inequality asserts that for every T € B(#), and for all
x,y € H,a € [0,1] and n > 1, the following holds:
2 - «12(1—
(T ) |” < TP 2T x) (T2 Yy, y). ©)
Now, let x,y € H. If we replace x by Ux and y by Vy in (9), then we get
* 2 — * * | ok —
(VAT U, y) [ < || T2 2(UF | TP Ux, x) (V| T vy, ). (10)

2
Observe that U*|T|*U = ||T|*U|* and V*|T*P1 ¥y = ‘|T*\1*“v , then by (10), we

get (8). O

Now, we are able to establish the following result.

Proposition 1. Assume that the power series with complex coefficients h(A) = Y5, mAX is
convergent on D(0,p) and T, U, V € B(H) with ||T|| < p, then

(v Tn(ryu ) < O ITIu P 2 1TV ) (1)
fora € [0,1] and x, y € H. In particular,

(v Th(r) U, )2 < ROTIIT1Eu[ 12V ) (12)
forx,y € H.
Proof. If we take n = k+ 1, k € N in (8) and take the square root, then we obtain

1 _ 2 1
(Ve rtux )| < ITEITFul (v i)

forallx,y € H.

Furthermore, if we multiply by |a;| > 0, where k € {0, 1, ...}, and sum over k from 0 to
m, then we obtain

m

m
(v'ry, akaUx,y>‘ =
k=0

ak<V*TTkllx,y>'
k=0

m
< Y lal (v TT Ux )|
k=0

i k wyr(2 P T T
< YlaITIN(IT U ) (1T vyt 3)
k=0

forallx,y € H.
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As ||T|| < p,, then series Y5 o ax TF and Y32 o|ax] | T||k are convergent and

Y axT* = h(T) and Y [a[|T|| = ha(|IT]))-
k=0 k=0

By taking the limit over m — oo in (13), we deduce the desired result (11). O
The following two remarks are crucial as they reveal significant consequences de-
rived from the preceding proposition. These remarks provide valuable insights into the

broader implications of the results obtained, further enhancing our understanding of the
theoretical framework.

Remark 1. (1) If we take h = 1, in (11) and (12), then we obtain the following Kato-type
inequality [32]
¥ 2 2 x(1-ay,|?
(Ve TUx,y) | < (T U )TV )
fora € [0,1] and x, y € H. In particular,
" 2 ok ek
(Ve Tus,y)|* < (|IT1Ruf x0T 2V [y,
(2) Ifwe take U =V = I in (11) and (12), then we obtain for a € [0, 1] that
(D)%) < BUTIDIT ) (T 0y, p) (14)
and

(Th(T)x,y)|* < R2OITI{ITIx, x) (| T* |y, v)

forx,y € H.

The case h = 1 provides the original Kato’s inequality [32]; therefore, (14) can be seen as
a functional extension of Kato’s celebrated result in the case when the function is provided by a
power series.

(3) If T is invertible and we take V =1, U = T~ Y in (11), then we obtain
2
[(r(T)xy) P < BATIITIT 5 2T POy, y)
fora € [0,1] and x, y € H. In particular,
2 2 ! 2 *
7 = Ity 7 7
(D) [F < BATDITIET 01T |y, v)

forx,y € H.
(HIfT > 0and we take U = TP,V = T~1*F, B € [0,1], then we derive

[(h(T)x,y)[* < B(|T])(T0 ), x) (THP )y, )
fora €[0,1) and x, y € H.

To further clarify the previous result, we provide helpful examples in the following
remarks. This will aid in understanding the concepts and implications presented earlier for
some fundamental operator functions.

Remark 2. If T, U, V € B(H) with ||T|| < 1, then for « € [0,1] we have the following

inequalities involving the resolvent functions (I £ T)7l

2 2
(v TaET) M uxy) [ < - ITD (TP Ty as)
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and inequalities involving the operator entropy functions TIn(I £ T)
2 _ 2
(V' TIn(1 £ T)Ux,y)[* < [In(1 = [THP(ITIUPx )TV wy)  (6)
forallx,y € H.

Remark 3. For o = % in (15) and (16), we obtain

- 2 - * * *
(VT T) " ) [ < (1= 1T (U | T, ) (VT V)

and
* 2 * * *
(V*TIn(1 £ T)Ux,y)[* < [In(1 — [ T|)P(U* T|Ux, x)(V*|T* [V, )

forallx,y € H.

Remark 4. IfT, U,V € B(H)and « € [0,1], then we have the following results connecting the
operator trigonometric and hyperbolic functions can be stated as well

(v Tsin(T)Ux,y) [* < fsinh (| TP TI"U P ) 1TV ) a7)

and
[(V*T cos(T)Ux, y)|* < [cosh(||T||)]2<||T|“u\2x,x><’\T*|1—“v]2y,y> (18)

forallx,y € H.

Remark 5. Fora = % in (17) and (18) we obtain
(V¥ Tsin(T)Ux, y) > < [sinh(|T|)12(U*| T|Ux, x) (V| T*[Vy, )

and
* 2 * * *
[(V*Tcos(T)Ux,y)|” < [cosh(||T|)]*(U*|T|Ux, x)(V*|T*|Vy,y)

forallx,y € H.

Remark 6. Also, if T, U,V € B(H) and a € [0,1], then we have the following results involving
the operator exponential and the hyperbolic functions

a2
[V Texp(T)Ux,y)[* < exp() TI){|ITI*U %, x)(|IT*V [y, p),

(V=T sinh(T)Ux,y) | < [sinh(|T )72 [T ) ([T [y, )

and
|(V*T cosh(T)Ux, y)|* < [cosh(||T||)]2<||T|“u|2x,x><]\T*|1*“v]2y,y>

forallx,y € H.

Remark 7. For o = % in the last three equations, we obtain some simpler inequalities. However,
we omit the details.

Our next result provides another important finding involving vector inequalities for a
power series of operators. It reads as follows:

Theorem 1. Let hi(z) := Y.3°, axz* be a convergent power series with complex coefficients on
D(0,p). Take X;, U;, V; € L(H) with | X;|| < p fori € {1,...,n}. Choose p,q > 1 such that
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1 i L — 1. Then, for non-negative p; (i = 1 to n) with Y p; > 0, the following inequalities
holdfor all x,y € Hand « € [0,1]:

n 2
(X piVi Xih(Xi)Uix, y) (19)

pil (Vi Xih (X)) Ui, )|

m:‘l

<

i=1

2 2 I 1z wil—ae, |24 1
< [l X pil UG 10 P )7 (3 a1 |15 Vi)
i=1 i=1

Proof. From (11) we have

[V X (XU, ) < (a0 11U P, ) o (10D 1

V) (20)

forallx,y € Handie€ {1,..,n}.
If we multiply (20) by p; > 0,i € {1, ..., n} and sum over i from 1 to 1, then we obtain

y)

n n a2
Y pi (Ve Xh (XU, )P < Y Pz‘<ha(|\X1‘H)\|Xi|“ui!2x,x><ha(||Xi||)‘|Xi*|1 Vi
i=1 i=1

forallx, y € H.
From the Cauchy-Buniakowsky-Schwarz weighted inequality we have

2 2

-

I
—

n
(Y piViEXih(X;)Uix, y) pi( Vi Xih(Xi)Uix, y) (21)
i=1

<Y pil(VEXih(Xi) Upx, )

-

I
—

forallx,y € H.
From weighted Holder’s inequality for p, g > 1 with % + % =1,

V) (22)

y>>;

1 _ 2
3 pila (Xl e, ) o (1600 1 X5V
i=1

< (£ noemmisrufsn ) (£ nemarsn]-

forallx,y € H.
From the McCarthy inequality (7) we have

(1D 131U P, )P < (|22 DRE (1) (1% Wi 7 x, x)

and

2 _ wil—ar, |2
(a1 |13 1V ) < PO DmE X ¢ 1X5 v,

vy)
forallx,y € H.
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Therefore, from (22) we obtain
< ayr (2 1-ay, |2
Y- piCha 113 11X 2, ) a1 )| 17 Vi ) 23)
i=1

1
n 14
< <||x||2<P1> zpihz’(nxinxl|xi|“ui|zr’x,x>>

i=1
1
2q q
i 1/>>
1
[

= 20 ) (2 pih5<|rxl-||><||Xi|“ui12”x,x>>

n
X <||y||2<“> Y piltd(
i=1

i=1
1
2(1-1) [ & wl—ar, |2
<yl ff)(zpth(nxianxi e, y,y>>
i=1
2y p ayr|2p Ly q wil—ay, |2 l
=l 17 € 3 p UKD 1 U P, )7 (3 pabd (10|15 Vi)
i=1 i=1

By making use of (21)—~(23), we obtain (19). O

Remark 8. By letting a = % in Theorem 1, we deduce that

2

M:

{

piViEXih(Xi)Uix, y)

i

pi| (Vi Xih(X )Ul-x,y>|2

IIM.: I

2.2 P 1|2 1, & g T
s||x||q||y||r’<Zpiha<||xi|\>\|xi|zui) %,y (3 P10 |15 12 Vi )
i=1

i=1
forallx,y € H.

Corollary 1. With the assumptions of Theorem 1, we have

4
n

(Y piViXih(X;)Uix, y)
i=1

. 2
< (Z pi’<Vi*Xih(Xi)uixry>|2>

i=1

n
< Py 25 p 1D e ) <zpzh2 (0|11 )

forall x,y € Hand a« € [0,1].

1
q
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In particular,

4

piVi Xih(X;)Uix, y)
1

{

1

2
n

S( pi|<Vi*Xih(Xi)uix/y>|2>
&

1

n

4
vY)

n 1 4 n ol
< Pyl X 20100 |16 2 U] ) (Y (10D |1 12V,
i=1 i=1

forallx,y € H

Remark 9. Since h,(-) is a increasing function on (0, p), then

PR =1,...,

then by (19) we derive for all « € [0,1], p, q > 1 with % + % =1, that

2

D= L0T=

(

piVi Xih(X;)Uix, y)

1

<, pil (Vi Xih (X)) Usx, )|

1

I
—

,,,,,

forall x,y € Hand « € [0,1].
In particular, we have

2

(

piVi Xih(X;)Uix, y)

= LD=

1
< Y pil(VEXih(X) Uik, y) |

1

I
—

1 1o 12 1
| Xi]2U; X712V Ty

2p 1M
x,x)" () pi
i=1

,,,,,

forallx,y € H.

Additional consequences arising from Theorem 1 are outlined in the following
two remarks.
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Remark 10. If we take V; = U; = I then for p; > 0,i € {1,...,n} with Y} | p; > 0, we obtain
from Theorem 1 that

< ZPi\(Xih(Xi)x,]/Hz
i=1

2 2 2 . w120(1—a 1
< x| 7yl 7 X2 i (11D 1% 1P, %) (Y pibld (X ) 1X; P70y, ) o
i=1 i=1
1

n
2 5 *2 (1-
< Jlx]7 HyII” max g (|| Xk|) ZPIXI P, x)r () pil X | i “yW
""" i=1 i=1

forall x,y € Hand a € [0,1]. In particular, we have

2

( ipixih(xi)xry>

<sz| (Xih(X)x, )|’

n

2.2 1 . 1
< |l Iyl ¢ Z pil (I XD 1XilPx, ) > (3 pih (1 X)X |7y, )7
i=1 i=1

1
< [lx|7 IIyII” max, h (11Xl ZPZIXI”xx )¢ ZPZIX*I"y,yV

forall x,y € H.

Remark 11. (1) If X; > 0 and we take U; = Xl._ﬁ, V, = Xi_1+ﬁ, B € [0,1], then we derive from
Theorem 1 that
2

pih(Xi)x,y)

M:

(

i

pil (h(X;)x, y)[*

<

'M: ln

I
—

1

2 2, I 5 1 2 N
< x|yl 7 (X pih (1] X3P p<2plhq (X)X By, Vi
i=1

forallx,y € Handa € [0,1].
(2) Now, if we take, for instance h(p) = (14 )~ with || < 1, then ho(p) = (1 — )" and by
(24) we get for all x, y € H and a € [0,1] that

2
(1 X)) e y)

(X;(1+ Xi)*lx,y>’2

< Z pi
i=1

2z 2, 2 _ 1, &2 . o 1
< Nl 1yl 7 ¢ p = 11X ) P 1K P, %) P (Y pa(1— (1G]] 77| P10y, ),
i=1

i=1

where || X;|| <1,p; >0,i€ {1,..,n}withy} ;p; =1
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(3) Also, if we take h(p) = exp(cp) with ¢,y € C, then ha(pu) = exp(|c|p) and by (24) we get
forallx,y € Hand a € [0,1] that
2

piXiexp(cX;)x,y)
1

{

1

< Zpi|<Xi exp(ch-)x,y>|2
i=1

n

n

1 —n
piexp(plel|| Xl 1Xi**Px, x) 7 (Y prexp(glel | XilD) | X 27y, y)
1 i=1

ey

2 2
< el

n
1=

where X; € B(H), pi >0,i € {1,..,n}with Y}, pi = 1.

3. Norm and Numerical Radius Inequalities

In this section, our objective is to establish norm and numerical radius inequalities
related to the power series h(-) and h,(-). We begin by presenting our first result in
this regard.

Theorem 2. Let 1i(z) := Y30, axz* be a convergent power series with complex coefficients on
D(0,p). Take X;, U;, Vi € B(H) with || X;|| < p fori € {1,...,n}. Choose p,q > 1, such that
% + % = 1. Then, for non-negative p; (i = 1 to n) with Y} | p; > 0, the following inequalities
hold for all « € [0,1]:

2
n
Y PV Xih (X)) U (25)
i=1
. e o
<12 pita (1111 |1 X Us | Zpihu(llxill)‘lxi*l Vi
i=1 i=1
1 1
2 3 o 2p Pl & w11—a 2|
< max kg (|| Xel)|| ) pil 1Xi]* U Yol IX T
k=1,..n i=1 =
Also, we have
n
W Y pi Vi Xih (X)) U; (26)
i=1
1 1 2 1 11— 2q
< | o (Gl iew P + | x-ul7) |
i-1 \P q
Proof. From (19) we obtain
" 2
Y piVi Xih(X) U
i=1
n 2
= sup |} piViXih(Xi)Uix,y)
Ixl=llyll=1] i=1
n 5 1 n e 2 1
gHSIHJp< pilh (1) 11 U] px,x>l’HslHlP CL P |15 V| )
=1 i=1 yll=1 =1

1
4 qu

2
piba (11 X)) |11 |7
1

7

1

n

n

11—
Y Pl (IX:lD)|1X1 -V,
i=1
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which proves (25).
From Young’s inequality

1 1
ab < =a? +=b7,a,b >0
p q
we have that

n 1 n 1
X P13 x) 3 p 1) 1 V| %)
i=1

1 n
s;<zpihz’(nxiu)\|xi|“uiyz"x,x>+§<zpihz<||xiu>\|

i= i=1

x,x>

—_

n

1 1
= (0 (O] S,
i=1

2q>x,x>

forx € H.
From (19) and (27) we have for y = x with ||x|| = 1 that

n
w2 (Z PZVI*XIh(Xz)LL)
i=1
n 2
< 2 pl-Vi*Xih(Xi)Uix, x>
i=1

= sup
[l x| =1

< sup[

=1L =

=P <E"l<ph"<”>fll 1" urz”+ 1G] 1% Vs

=1 it >x'x>
)

=[S (G aaplieu i+ Jutn|ix -

which proves (26).
O

n 1 el 2q 1
X P 1D XU 3 x) L p 10 11 )

|

(27)

In the following remark, we present a special case of Theorem 2 that is particularly

interesting.

Remark 12. If we take h = 1 in Theorem 2, then we obtain

2 1 1
n p n
2 _

Y piViXil; N1 WP |1 pil| X

= i=1
and

n n 1 2 1 _ 2q
w? (2 PiVi*XiUi) < ZPi<||Xz'|“Ui| p+*’|X?| i > -
i=1 iz1 \P q
The case for two operators outlined in more details in the introduction, is as follows:
1 1

||A + BH2 S H|A|20¢p + |B|21Xp P H|A*|2(1706)q + |B*‘2(lfﬂl)q q

and

2 1704 2ap 2ap) | 1 (| g 2(1-a)qg «2(1-a)g
w(A+B)§Hp<|A| +1B] )+q(|A| + B 0=e)

i
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for A,B € L(H), « € [0,1] and p,q > 1 such that % + % =1
As a direct consequence of Theorem 2, we obtain the following corollaries.
Corollary 2. Let h(z) := Y3 arz* be a convergent power series with complex coefficients on
D(0,p). Take X;, U;, V; € L(H) with || X;|| < pfori € {1,...,n}. Choose p,q > 1, such that
1 i L = 1. Then, for non-negative p; (i = 1ton) with Y, p; > 0, the following inequalities hold

2
1 q
»hzu\xiu)\mﬂ :

-hz’(nxz»n)(\xﬁ

n
Y piViXih(Xi)U,

i=1

7

q
'|X?%z

1k

.....

and

2p 1
[+ Zrax)|

)|

(G| x?

n
w2 <Z szI*th(Xz)uz> S

i=1

Corollary 3. With the assumptions of Theorem 2 we have

)

(AR (i

)

1
3 max (1) Hzm b+ Jix; H

Ly 2 apr |4 wl—ay, |
< 5| Lo (Ixu g+,

n
w? (2 PiVi*Xz‘h(Xi)Ui>

i=1

1’1’1

<1
=24

)|

In particular,

w? (Z ini*Xih(Xi)Ui>

i=1

IN

> pi (1) |1

The following remark shows significant consequences and examples from previ-
ous findings.

Remark 13. (1) If we take V; = U; = I, then for p; > 0,i € {1,..,n} with Y} ; p; > 0, we
obtain from Corollary 3

w? (é PiXih(Xz‘))

N\*—‘

Y- pa2(1%i) (It + ;0 H (28)
i=1

)| p(ie + IXE‘I“““"))H

1
<5 X i (11 Xk )
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forall w € [0,1]. In particular,

w? (é Pixih(xi)>

1| & %
<> Zpihﬁ<||xi||>(|xi\2+|xi )
2 i=1

<5 max (|X| +IXE)|

(2) Now, if we take, for instance the resolvent function h(y) = (14 u) ™" with |u| < 1, then we
obtain from (28) that

n 1 *
w2<2pixi<1ix ) Ezpl — 107 (1l + x5 “”)H
i=1
-2

1
<-(1- X
_2( max | k|)

N =

k

i (\X|4“+\X*\4(1 a))H
for | Xi|| <1,i=1,..n
We also have the following result concerning the powers of numerical radius:

Theorem 3. With the assumptions of Theorem 2 and ifr > 1, then

n
o (2 PiVi*Xz‘h(Xi)Ui>

i=1

1[¢ 14 7 12p ' 1 q x| 1—a
S P ) 2 | L pid 11X
i=1

i=1

2q> H (29)

Also, if s > max{p,q} > 1, then

n
- (2 PiVi*Xz‘h(Xi)Ui>
i

2 * —
(XD |11 i X171

i=1 i=1 l
n _ 2q % n p N 2p %
Y pikd (1% ()| 1XF Vs Y pikd (1 X)) 1% U] . (30)
i i

Proof. From (19) we obtain for y = x with ||x|| = 1 that

+1w
2

2

n
(Y piViXih(X;)Ujx, x)
i=1

(31)

n 1 n el Zq 1
< (X P XD XU, )53 130 17 i )7,
i=1

i=1
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If we take the power r > 1 and use McCarthy’s inequality, then we have

2r
(32)

n
(Y piViXih(X;)Ujx, x)
i=1

xx)"f

2 ' 1
f q) X, x)1

l 2q> rx’x>%
2q> rx,x>
<L17 (épihgﬂxiDHXH“Ui!Zp) (Xj: ) ]x,x>,

n
; pihh (1) |1 Ui 7 x, %) ””<2p1

(f 2IX) fX|u|2P>r >3’<<lﬁ1pi 1

forx e H, ||x|| = 1.
Using Young’s inequality we also have

<<ipih5<||xz-||>||xi|“uz-|2”) x,x>3’<(épihﬂnxin)\m;w -

i=1

p

1,(& ! 1,.(& e
< <<2pih5<||xz-|>\|xl-|“u42p) x,x>+q<<zpihz<||xz-||>\|xi %
i=1 j—

which, by (32) gives
" 2r
() piVi Xih(Xi)Ujx, x)
i=1
1y ay71|2 ' 1(¢ 1-ay, |2 '
</ P Y pitd (11D |11 Ui g ZpihZ(HXz‘H)“XH i X, x)
i=1 i=1

forx e H, ||x|| = 1.
If we take the supremum over ||x|| = 1, then we obtain the desired result (29).
From (31) and McCarthy’s inequality we have

2s

( i piVi Xih(Xi)Ujx, x) (33)

i=1

xx)g

n s
< (N il (XD 1 1 P, x) 7 sz
i=1

S

n }57 n il 29\ 1
g<(zpih5<|xi|>||xz~|“uifp> x,x><(zpihz<||xi||>]xi|1 "V ) x,%)
i=1 i=1

forx e H, ||x|| = 1.
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From Buzano’s inequality, we also have

S

n P n
<(2pih§<||xz-u>\|xi|“uiyz”> x,x)(x, (zpihz<||xi||>\|xz‘|l—“vi
i=1 i=1

2q> 2x>

<1
-2

(ipihz’(nm>||xl-|“ui|2”>px (ipihzuxiw

i=1

+3 <<i pih5<||xi|>||xl-|“ui¢2’7)px, (ipihﬂnxin)lXﬂ -

=1

(fpzh (013w ) (imh;’uw

i=1

N =

+3 ¢ (2;% il 1| ) (2 1311 1% U|2”> xx)| (34)

i=1

forx e H, ||x|| = 1.
By utilizing (33) and (34) and then taking the supremum over ||x| = 1, we obtain
G0). O

Theorem 3 provides us important insights and implications, leading to some interest-
ing remarks and consequences. By carefully studying the theorem, we can discover the
following remarks and corollary, which help us understand the topic even better.

Remark 14. It is worth noting that an interesting consequence can be observed by considering the
special case where h = 1 in Theorem 3. By doing so, we obtain the following result:

r

n

i=1

1 n 14 o Zp ' 1 L q ) 1—a
» Y pila (11X 1) |11 U] o Zpiha(l\xillmxil Vi
i=1

i=1

and, if s > max{p,q} > 1, then

n

i=1
n

Z | Ixil U

i=1
1 2q % n %
+ 5w [ f > (ZPi\|Xi|“Ui|2p> ]
i=1

Remark 15. By letting a = % in Theorem 3, we deduce that

n
o (Z Pz’Vi*Xih(Xi)Ui>

i=1

7

p

r
2q
1

r
2p 1(& w1
; )+q<zpihz<||xin>\|xi|
i=1

1(& 1
(Z piblf (11|14
i=1
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and

n
2 <2 pl-Vi*Xl-h(Xi)Ui>
i=1

w1l 12
X)X 12V,

i=1
z ) (Zpih5<||xi|>\|xi| : ”
i=1

Corollary 4. With the assumptions of Theorem 2, we have for r > 1 that

n
2r (Z prl*th(Xl) Ul>
i=1
1

.
n 4 n
> <2Pih§(||xi||)||xi|aui| ) + (ZPi al
= i
1 2r a o 4 ' & x1—a
< 5 max hg IIXelD{[{ Yo pal 13U | + ZPi’\Xﬂ Vi
=L i=1 i

1
(1D |1

1 U w1
Tow {(Z pihZ(”XiH)“Xi |
i—1

IN

)
)

A

In particular,
n
o (Z ini*Xih(Xi>ui>
i=1
T T
n 1 4 n 1 4
<2Pih§(||xi||)‘|xi| i ) +<2Pi al HEN ) H
i=1 i=1
1 ) " A\ " A\
5 max g ([ XD | X pi i\ ]+ p i
k=1,..,n i1 i=1

Remark 16. (1) If we take V; = U; = I then for p; > 0,i € {1,..,n} with }' | p; > 0, we get
from Corollary 4 that

al (2 m&»h(&-)) (35)
=1

1 r n . r

5 <Zplh2 1%:1)) |X|4“) +<2pih5<||xi||>|x;“r4“ >)

i=1

1 r o ' - * - '
< 5 max I (]| X H(meﬁ) +(zpi|xi * ”)
- i=1

-----

IN

1 ol
| Xil X7 :

IN

,,,,,
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(2) Now, if we take, for instance h(u) = (1« u) ™" with |u| < 1, then we obtain from (35) that
n
(Z (1£X;) )
=1
r n
(Z A= xil) - IXi|4“> + <Z pi(1+£ ||Xi|)_2|X§“4(l“)>
=1 i=1
n r n r
(2 pi|xi|4“) + <2pf|xz<|4““>>
i=1 i=1

{1+ max || X
5 (1 max 1% )
for | Xi|| <1,i=1,..n

Various similar results for other fundamental complex functions such as, the logarithm
function, the complex exponential, the complex trigonometric, and hyperbolic functions
can be stated as well. The details are omitted.

r

IN
N =
=

—2r

IN
—_

4. Conclusions

In summary, this paper explores power series in Hilbert spaces. We focused on series
like h(z) = Y22 o axz" and its modified version h,(z) = Y5 |ax|z¥, where a; are complex
numbers. By using Holder-type inequalities, we found different inequalities for operators
that work on these series. We made these discoveries assuming that /1(z) converges on the
open disk D(0, p), where p is the radius of convergence.

We also explored norm and numerical radius inequalities related to these power series.
Our main goal in this paper was to improve our understanding of mathematical inequalities
and help others learn more about them. Our work is an important step forward in theory,
offering new ideas and tools for mathematicians in this field.

The inequalities we found can be useful for analyzing various properties of power
series and how they are used in functional analysis and related areas. They provide a
good starting point for more research and help us understand how power series behave in
Hilbert spaces. By learning more about mathematical inequalities, we can help advance
mathematics and find new applications for these ideas in the future.
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