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ABSTRACT 

Advanced Evolutionary Computation For Dynamic And Multi-

Task Optimization Via Efficient Knowledge Transfer 

Kejing Du, Ph.D. 

Victoria University 2024 

Evolutionary computation (EC) is a kind of population-based search method, 

drawing inspiration from natural selection and gene inheritance. Although EC has 

shown advantages over traditionally mathmetic-based optimization methods, it often 

neglects a crucial aspect: knowledge gained from past and other problem-solving 

experiences. This thesis explores how EC can improve by learning from past 

experiences or experiences across different tasks. Inspired by knowledge transfer (KT) 

observed in human evolution through cultural genes, this thesis investigates the 

potential of EC to acquire and apply knowledge from past and other problem-solving 

experiences and focuses on dynamic optimization problems (DOP) and multi-task 

optimization problems (MTOP). Because these types of problems offer ideal 

opportunities for KT. DOP involves dynamic changes over time, while MTOP 

optimizes multiple tasks simultaneously, both scenarios benefiting from problem-

solving experiences. 

This thesis emphasizes the importance of KT, proposing novel EC algorithms for 

efficiently solving DOP and MTOP. In DOP, a challenge lies in effectively utilizing 

historical information to accelerate algorithm convergence. This requires solutions for 

selecting and updating historical data and ensuring its validity amidst environmental 

changes. Meanwhile, MTOP presents difficulties in balancing optimization objectives 

across multiple tasks and designing appropriate differential evolution strategies to 

accommodate different task properties and constraints. Real-world problems are often 

more complex than theoretical research, involving numerous variables and factors that 

leading to dynamic charactertics and multi-task charactertics. For example, in bike-
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sharing systems, fluctuations in the numbers of available bicycles and stations make 

the path planning a DOP. Another example is feature selection in deep learning for high-

dimensional data. Due to the curse of dimensionality, considering all features is 

challenging. Thus, integration of  KT and EC is essential for addressing practical 

problems. 

Main contents and contributions of this thesis are detailed as follows. 

1. To address DOP efficiently, a historical information-based differential evolution 

(HIDE) algorithm is proposed in Chapter 3. HIDE uses previous knowledge for faster 

convergence to new optimal regions and employs an archive-based strategy to retain 

the best-performing individuals from previous environment, facilitating effective KT.  

2. To tackle MTOP, a multi-criteria EC algorithm is proposed in Chapter 4. MTOP 

is conceptualized as a multi-criteria optimization problem (MCOP), where KT occurs 

across a consolidated population.  

3. Chapter 5 addresses dynamic user route planning problem (URPP) in bike-

sharing systems. The challenge of fluctuating station inventory turns URPP into DOP. 

To utilize experiential knowledge and guide the algorithm’s search process, knowledge 

learning and random pruning-based memetic algorithm (KLRP-MA) is introduced, 

enhancing KT integration and effectively tackling URPP dynamics. 

4. In Chapter 6, a practical application of integrating MTOP with the bi-directional 

feature fixation (BDFF) method in multi-tasking bi-directional particle swarm 

optimization (MBDPSO) is discussed. This integration allows for effective KT between 

tasks, improving capabilities in high-dimensional feature selection for deep learning. 

In summary, this thesis systematically investigates DOP and MTOP and their 

practical applications, proposing advanced EC algorithms to enhance the efficiency of 

KT.  

Keywords: evolutionary computation, knowledge transfer, dynamic optimization, 

multi-task optimization, differential evolution, particle swarm optimization, memetic 

algorithm, route planning, feature selection 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Evolutionary computation (EC) is an important branch of Artificial intelligence (AI)  

[1]. AI is one of the transformative technologies that have profoundly transformed our 

work and life, now and in the future. With the emergence of emerging technologies 

such as large-scale AI models, autonomous driving, and smart cities, it is widely 

recognized that AI has started to reshape almost all jobs, industries, and lives. As a 

developed country, AI has been widely deployed in various industries in Australia. The 

Australian government is a world leader in investment and research in AI and attaches 

great importance to the combination of government, scientific research institutions, and 

industry development. In various industries, optimization algorithms are widely utilized, 

including medical and health [2]-[3], privacy preservation [4]-[12], cybersecurity [13]-

[15], internet of things [16], smart cities [17], natural language processing [18]-[19], 

and many other fields. These findings are essential for maintaining Australia’s world 

leadership in AI and shaping new frontiers as they evolve. 

The advancement of AI has faced significant challenges, encountering bottlenecks 

in its development. In various industries, managing large enterprises may involve 

dealing with millions of variables, representing a high-dimensional optimization 

challenge. Many of these variables exhibit nonlinearity and non-convexity, presenting 

formidable mathematical challenges. As market dynamics evolve, enterprises are 

required to respond rapidly, intensifying the complexity of dynamic optimization 

problems (DOP). The modern enterprise market's supply chain is complex, spanning 

the globe with suppliers and factories. Beyond pursuing profits, enterprises must 

address a range of social responsibilities, including energy security, ecological 

considerations, and safeguarding employee rights. Enterprises frequently find 

themselves needing to reconcile multiple optimization tasks simultaneously, which are 
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multi-task optimization problems (MTOP).  

Human civilization has developed rapidly in the past 300 years. Therefore, many 

scholars began to explore approaches to solve the bottleneck problem of EC from the 

perspective of human evolution. The idea of Knowledge Transfer (KT) has generated 

the interest of leading scholars in the EC domain [21]-[23]. The difference between the 

human brain and computer problem solving is that the human brain can use past 

historical experience, while the computer solves optimization problems from zero every 

time [21], which is inefficient for difficult problems. In real-world optimization 

problems, DOP and MTOP will face a large number of similar problems [22], and the 

problems are either repeated or have domain-specific similarities. Therefore, this thesis 

aims to investigate a research direction that EC has not fully explored to date, 

evolutionary transfer optimization (ETO), exploring the combination of EC and KT to 

solve DOP and MTOP. 

1.2 Research Motivations 

1.2.1 Research Motivation of DOP 

In practical scenarios, optimization problems often exhibit dynamic attributes, 

where the optimal solution may change over time as a result of changing environmental 

conditions [24]. DOP present unique challenges compared to static optimization 

problems, as they require algorithms to adapt to changing environments, varying 

problem dimensions, and shifting search spaces [25]. Traditional optimization 

techniques may be difficult to cope with these dynamic changes effectively. 

EC algorithms offer promising solutions for addressing DOP due to their inherent 

qualities such as global search capability, adaptability, and parallelism [24]. Moreover, 

EC algorithms can use memory mechanisms to retain past experiences, enabling them 

to capture the relationship between previous and current environments in DOP [25]. KT 

techniques play a vital role in improving the performance of EC algorithms by 

facilitating the transfer of valuable information and insights gained from past 

optimization processes to guide the search in dynamic environments [27]. 

Despite the potential of EC algorithms in addressing DOP, there are significant 
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challenges to overcome. One key challenge is enabling populations to escape from 

previous optimal solutions when environmental changes occur, and rapidly identify 

new optimal solutions in the altered environment. Integrating KT with DOP within EC 

algorithms has emerged as a prominent research direction to address these challenges 

effectively. 

Based on the practical applications of DOP, existing research often relies on certain 

assumptions to support algorithmic development. For instance, it is commonly assumed 

that while DOPs are overall dynamic, there are specific time intervals where the 

problem nature remains relatively static, with minimal changes. Additionally, 

neighboring static time intervals often exhibit some degree of similarity in problem 

features, allowing for the partial reuse of information from previous environments to 

expedite optimization in subsequent intervals. 

By exploring and addressing these challenges, our research strives to enhance the 

comprehension and efficiency of EC algorithms in handling DOP, ultimately 

contributing to the development of more robust and efficient optimization techniques 

for real-world applications. 

1.2.2 Research Motivation of MTOP 

Despite the advancements in EC in recent years, it still faces two critical challenges: 

heavy computational burdens and limited generalization abilities [28]. To overcome 

these obstacles, researchers have turned to MTOP as a promising strategy [29]. MTOP 

involves addressing multiple distinct optimization problems concurrently within the 

same framework. These problems may interact at the task level, allowing for the sharing 

of knowledge and resources among them. This approach is analogous to how 

individuals apply learning techniques across different subjects, leveraging shared 

insights and methodologies. 

In contrast to traditional KT methods, which typically involve one-way transfers 

of knowledge, MTOP adopts a bidirectional KT approach [30]. This approach fosters 

mutual reinforcement between different tasks, enhancing overall optimization 

performance. Representative algorithms in this domain, such as the Multi-Objective 
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Evolutionary Algorithm (MFEA) [30], have demonstrated the efficacy of bidirectional 

KT in MTOP settings. Subsequent research has further refined and extended these 

approaches. 

By leveraging bidirectional KT, MTOP efficiently harnesses the parallel 

optimization capabilities of algorithms while integrating cross-disciplinary knowledge 

to enhance overall performance. Existing studies have primarily implemented KT 

through genetic operations, such as selection and crossover, shared among different 

tasks [31]-[32]. While these approaches effectively transfer knowledge between tasks, 

there is still room for more innovative strategies to address the complex challenges 

inherent in MTOP. 

In summary, our research aims to explore novel approaches for addressing the 

challenges of MTOP within EC algorithms. While existing studies have delved into 

both one-way and bidirectional KT methods, our focus lies in advancing the current 

edge through innovative strategies that efficiently leverage bidirectional KT for 

enhanced optimization performance. 

1.3 Research Content 
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Figure 1.1 Research Structure 

As illustrated in Figure 1, this thesis is dedicated to addressing the challenges 

encountered in DOP and MTOP using KT principles. The research content is divided 

into algorithmic research and application research. In algorithmic research, it includes 

studies on algorithms for solving DOP and algorithms for addressing MTOP. 

Correspondingly, in application research, there are chapters dedicated to the application 

research of DOP and MTOP, respectively. 

1.3.1 Research Content of DOP 

To enhance the performance of EC algorithms in DOP, early review papers 

categorized research methods into five types when changes occur: introducing variety 

during alterations, preserving diversity during exploration, techniques based on 

memory, methods based on prediction, and approaches involving multiple populations 

[24]. In a recent review, Zhan et al. consolidated these into three functions: reducing 

problem complexity, enhancing algorithm variety, and speeding up convergence [25]. 

Among these, multi-population methods are commonly employed, falling under the 

category of increasing algorithm diversity. Each sub-population can be considered as 

decomposing the problem, focusing on solving a specific portion. This decomposition 

aids in addressing the complexity of the problem space, enhancing scalability, and 

enabling the resolution of large-scale problems. Memory-based and prediction-based 

methods aim to expedite convergence speed. As per the two assumptions mentioned 

earlier, continuous dynamic environments often exhibit strong correlations, letting 

historical solutions for reuse has great potential to expedite convergence in novel 

environments. Consequently, our research on DOP primarily addresses two key issues: 

multi-population methods and the reuse of historical optimal solutions, aiming to 

effectively tackle DOP. The specific research problems are outlined below. 

1) Regarding multi-population methods, the issue involves the complexity and 

multimodality of the problem search space in DOP. How to generate multiple 

subpopulations in a balanced manner in a new environment to effectively address DOP 

with multiple peaks? 
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2) For methods utilizing historical optimal solutions, the problem focuses on 

effectively coping with changes in dynamic environments and leveraging historical 

information to enhance search efficiency. How to fully use peak information found from 

the preceding context to direct exploration in a new environment? 

To address these challenges, a region-based subpopulation initialization (RSI) 

strategy is first proposed to produce numerous subpopulations in a balanced way in the 

new environment. Through the initialization of multiple subpopulations across diverse 

regions within the search space, diversity is enhanced, thereby facilitating the resolution 

of DOP characterized by multiple peaks. Second, to effectively harness previously 

discovered peaks within the environment, an archive-based historical information reuse 

(AHIR) strategy is proposed. This strategy involves managing and reusing historical 

information to navigate the search process in novel environments. 

In practical applications, shared bicycle path optimization is chosen as an applied 

study of DOP. In this real-world application, the investigated problems are as follows: 

1) In a shared bicycle system, users have limited free riding time, but mid-to-long-

distance rides may exceed the free time threshold. Reasonable transfers can address this 

issue. How to design bike routes with transfers? 

2) Assuming bike station inventory changes over time, how to adjust user riding 

routes? 

To address these issues, a dynamic knowledge learning and random pruning-based 

memetic algorithm (DyKLRP-MA) is further proposed to adjust reasonable riding 

routes for users in dynamic scenarios. 

1.3.2 Research Content of MTOP 

In tackling this problem, a Multi-Criteria Optimization Problem (MCOP) was 

proposed to solve MTOP. This approach enables the knowledge inheritance from all the 

tasks within a single population, thus enhancing the effectiveness of MTOP's solution. 

Similar to students in a class studying multiple subjects, a testing method is adopted to 

improve academic performance, randomly selecting subjects for testing, and students 

learn based on the test results to find optimal solutions. The main focus of this study is 
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to address the following three issues: 

1) In the context of MTOP, existing methods often treat MTOP as separate tasks, 

posing challenges in designing effective KT strategies between tasks/populations. To 

what extent does this issue impact the effectiveness of solving MTOP? 

2) How can multiple relevant evaluation criteria aid in individual selection and 

evolution? 

3) How can the utilization of multiple relevant evaluation criteria contribute to the 

process of individual selection and evolution? 

In MCOP, each task's fitness evaluation function serves as a criterion, offering 

multiple pertinent criteria to aid in the selection and evolution of individuals across 

various stages. Moreover, a criterion selection strategy based on probabilities and a 

method for adaptive parameter learning is proposed to optimize the choice of fitness 

functions as criteria during different evolutionary phases. This enables the algorithm to 

effectively utilize suitable criteria from different tasks at different evolution stages, 

guiding individual selection and population evolution toward discovering Pareto-

efficient solutions for all tasks. Through the integration of these methods, a 

comprehensive MCOP framework tailored for addressing MTOP is presented. 

In the context of applying MTOP to high-dimensional feature selection problems, 

EC is used to mitigate the inefficiency associated with selecting features from datasets 

containing a large number of attributes. The goal is to enhance model performance or 

reduce computational costs by identifying the most relevant or important features. 

While the Bi-Directional Feature Fixation (BDFF) method for Particle Swarm 

Optimization (PSO) has shown promise in high-dimensional feature selection, it may 

suffer from directional biases and prolonged convergence times when searching for 

small feature subsets. This study primarily addresses two key issues: 

1) How to address the inefficiency in high-dimensional feature selection? 

2) What are the limitations of the Bi-Directional Feature Fixation (BDFF) 

framework? 

Prior knowledge of attribute selection is introduced into the Bi-Directional Feature 
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Fixation (BDFF) method while preserving its global search capability. Subsequently, 

by combining BDFF with the MTOP technique, Multi-Task Bi-Directional Particle 

Swarm Optimization (MBDPSO) is proposed, effectively transferring knowledge 

between two tasks. 

1.4 Research Contributions 

This thesis contributes significantly to theoretical research in three distinct aspects: 

The primary theoretical contribution focuses on the integration of KT concepts into 

EC for optimization problems by leveraging historical information to DOP and 

adopting multi-criteria strategies to MTOP. This approach, inspired by the efficiency of 

human KT, equips algorithms to adeptly address new tasks and future optimization 

challenges. The theoretical foundation laid in this aspect enhances the overall efficacy 

of EC. 

The introduction of the HIDE algorithm tackles a critical challenge in DOP by 

efficiently leveraging past information and knowledge to quickly identify and converge 

to new optimal regions. HIDE innovatively employs a strategy for reusing historical 

information stored in an archive, retaining the best individuals from previous 

environments. Additionally, it utilizes a strategy for initializing subpopulations based 

on regions to fully exploit peaks identified in the preceding environment. This balanced 

approach in generating multiple subpopulations aids in effectively localizing and 

tracking movements to reach the peak. 

In the realm of MTOP, the theoretical contribution is embodied in the MCOP 

algorithm. Existing methods in the multi-task optimization community often treat tasks 

in MTOP as distinct problems, overlooking their interconnected nature. Addressing this 

gap, MCDE advocates treating the entire MTOP as a MCOP. This shift in perspective 

aims to enhance the efficiency of MTOP solutions by considering tasks as constituent 

elements within the broader optimization framework. 

In summary, the thesis advances theoretical research by introducing innovative 

concepts such as KT in EC, the HIDE, and the paradigm shift in approaching MTOP 

through the MCOP. These contributions deepen our understanding and provide valuable 
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frameworks for addressing complex optimization challenges. 

This thesis makes dual contributions in the realm of application research: 

In the DOP application, the primary contribution lies in proposing a robust solution 

to the dynamic nature of URPP within shared bicycle systems. The innovation here is 

the introduction of a Memetic Algorithm based on KLRP-MA. The key contribution is 

twofold: first, the algorithm efficiently adapts to dynamic changes in bicycle station 

availability, ensuring swift re-optimization of planned routes. Second, the incorporation 

of a KT mechanism from the best-performing individual accelerates convergence, 

significantly improving the algorithm's efficiency. By addressing dynamic URPP 

through KLRP-MA, the thesis provides a tangible and effective solution for real-world 

applications. 

In MTOP application, the major contribution is the integration of MTOP with the 

BDFF framework within a MBDPSO algorithm. This integration significantly enhances 

the algorithm's effectiveness in selecting features within high-dimensional spaces for 

pattern recognition across multiple tasks. The real-world impact of this contribution is 

evident in the improved performance of the algorithm, demonstrating its efficacy in 

solving complex MTOP. This integration not only advances the theoretical 

understanding of MTOP but also provides a practical tool for researchers and 

practitioners working in the field of pattern recognition. 

In summary, the thesis contributes by presenting effective solutions to dynamic 

route planning challenges through KLRP-MA and by enhancing the capabilities of 

multi-task optimization through the integration of MTOP with the BDFF framework. 

These contributions address real-world challenges and provide valuable insights and 

tools for researchers and practitioners in related fields. 

1.5 Thesis Structure 

The thesis, titled “ Evolutionary Computation-based Dynamic and Multi-Task 

Optimization and the Application,” is structured as depicted in Figure 1.1. The research 

encompasses two main aspects: algorithm research and application research. 

Algorithmic research delves into two distinct challenges: DOP in Chapter 3 and MTOP 
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in Chapter 4. In parallel, application research explores the DOP related to shared 

bicycles in Chapter 5 and MTOP in Feature Selections in Chapter 6. 

This thesis comprises seven chapters in total.  

Chapter 1 is the Introduction, which includes Section 1.1 providing an overview of 

the research context, Section 1.2 exploring the research motivation and listing the 

research questions, Section 1.3 outlining the research content, Section 1.4 highlighting 

the research contributions, and Section 1.5 detailing the structure of the study and the 

content of each chapter. 

In Chapter 2, a comprehensive review of existing literature is conducted, including 

an overview of EC in Section 2.1 and KT in Section 2.2. Furthermore, it discusses DOP 

in Section 2.3 and MTOP in Section 2.4, along with KT ideas in these two complex 

problems. 

Chapter 3 proposed HIDE method for DOP. It starts with Section 3.1 of the 

introduction and Section 3.2 of related work. Section 3.3 elaborates on the Framework 

of HIDE. Section 3.4 details the Experiment, Section 3.5 explores the impact of the 

AHIR Strategy, while Section 3.6 concludes the chapter. 

Chapter 4 delves into Multi-Objective Multi-Task Optimization (MO-MTO). 

Section 4.1 is an introduction and Section 4.2 discusses related work. Section 4.3 

introduces the concept of treating multitask optimization as multi-criteria optimization. 

Section 4.4 adds the challenge of Multi-Objective to Multi-Task Optimization, 

comprising Introduction, Method of MO-MCEA, Experiment, and Conclusion and 

Future Work. Finally, Section 4.5 concludes the chapter. 

Chapter 5 covers the URPP Model and the KLRP-MA Approach. It begins with an 

Introduction in Section 5.1, providing an overview of the research focus. Section 5.2 

delves into the URPP Model, while Section 5.3 introduces the KLRP-MA Approach 

and Section 5.4 introduces DyKLRP-MA approach. Section 5.5 is for the experiment 

and Section 5.6 draw a conclusion.  

Chapter 6 presents the MBDPSO framework, starting with an Introduction in 

Section 6.1 and related work in Section 6.2. Section 6.3 outlines the Framework of 
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MBDPSO, including Two tasks of feature selection, Multi-Task KT, and the Complete 

MBDPSO algorithm. Experimental Results is in Section 6.4. Finally, the chapter 

concludes in Section 6.5, summarizing the findings and contributions of the MBDPSO 

framework. 

Chapter 7 summarizes the research undertaken in this thesis and anticipates feasible 

research directions and subsequent work in the future.  
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CHAPTER 2 

LITERATURE REVIEW 

In Chapter 2, the definitions of the key concepts associated with Evolutionary 

Computation (EC), Knowledge Transfer (KT), Dynamic Optimization Problem (DOP), 

and Multi-Task Optimization Problem (MTOP) are thoroughly explored. DOP and 

MTOP are categorized as types of problems, while EC is presented as the method 

employed to address these problems. Additionally, KT is discussed as a means of 

knowledge assistance throughout the exploration. The chapter includes a 

comprehensive review of prior research, establishes a theoretical framework, traces the 

evolution of research in the field, and identifies research gaps in the context of these 

concepts. 

2.1 Evolutionary Computation 

Over the centuries, a myriad of mathematical approaches, ranging from Linear 

Programming [33], Quadratic Programming [34], and Convex Optimization [35], have 

been harnessed to address optimization problems. Nevertheless, these methodologies 

frequently impose substantial constraints on the objective function, often mandating 

differentiability once or twice. Furthermore, the dependence on mathematical 

techniques in optimization endeavors often leads to the identification of local optimal 

solutions, especially in the face of multi-modal problems. Therefore, since the 1960s, 

an increasing number of scholars have delved into the realm of EC as a viable 

alternative method [36]. In the 1990s, EC has emerged as a promising global 

optimization technique for many optimization problems [37]. EC is typically classified 

into two main branches: Evolutionary Algorithms (EA) and Swarm Intelligence (EI). 

EA simulate the biological evolutionary process and principles of natural selection 

to optimize problems [38]. EA has achieved success and popularity due to its 

algorithmic characteristics of being assumption-free, flexible, robust, and capable of 

global optimization [39]. EA comprises Evolutionary Programming (EP), Genetic 
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Programming (GP), Genetic Algorithms (GA), and Evolution Strategies (ES). New 

techniques that emerged in the 1990s, such as Estimation of Distribution Algorithms 

(EDA) and Differential Evolution (DE) are also regarded as EA.  

Swarm intelligence (SI) is a computational model that simulates collective 

behaviors observed in nature, drawing inspiration from the collective wisdom exhibited 

by social organisms such as ants, bees, and bird flocks [40]. In SI, individuals 

collaborate through interactions and information exchange to achieve a common goal. 

This process initiates from a chaotic state and gradually unfolds by exploring valuable 

heuristic information. It systematically reveals patterns, regularities, and knowledge 

within the problem, ultimately leading to a solution. SI evolves through dynamic 

processes characterized by randomness, nonlinearity, traversal, self-organization, 

adaptability, diversity, stability, and high parallelism. This implies that through such a 

process, solutions to problems can be discovered in a diverse and highly parallel manner, 

adapting dynamically and incorporating elements of randomness. Its representative 

methods include Fire-fly algorithm (FA), Particle Swarm Optimization (PSO), Ant 

Colony Optimization (ACO), immune algorithm (IA), etc. 

The memetic algorithm (MA), a heuristic optimization technique, integrates the 

broad exploration features of evolutionary algorithms with the precise adjustments of 

local search methods [41]. The name “memetic” is derived from “meme”, signifying 

the propagation of beneficial information through learning and adaptation within a 

population [41]. The memetic algorithm typically comprises an evolutionary phase, 

where individuals evolve through operations such as crossover and mutation, and a 

local search phase, where individuals undergo more refined adjustments. The 

integration of these approaches seeks to achieve equilibrium between global and local 

exploration, thereby improving the efficiency in discovering high-quality solutions. The 

integration of memetic algorithms with KT has been applied in data-driven domains 

[42] and vehicle routing optimization [43] [29]. This synergy leverages learned 

information and adaptive techniques to enhance the algorithm's efficacy across diverse 

scenarios. 
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2.1.1 Differential Evolution Algorithm 

Differential Evolution (DE) belongs to the realm of EC, serving as an algorithm 

that leverages individual differences among groups to steer the evolutionary process. 

Storn and Price introduced the DE algorithm in 1995, originally designed to address 

Chebyshev polynomial problems [44]. Subsequently, it was discovered that DE proves 

to be a potent technique for tackling complex optimization problems. DE often exhibits 

superior global search capabilities and faster convergence speeds. 

Assume that there are NP individuals in the solution space (that is, the population 

size is NP), and each individual is a vector with D dimensions. The initial population is 

generated randomly: 

           
,1 ,2 ,[ , , , ]g g g g

i i i i DX x x x=              (2.1) 

where g is the evolutionary algebra and D is the dimensionality. And i represents 

the individual number. Each individual is a solution. During initialization, each 

dimension takes random values in the exploration domain. 

DE uses two different vectors in the population to interfere with an existing vector 

and perform differential operations to achieve mutation. 

           
1 1 1

1 2 3( )g g g g

i r r rV X F X X− − −= + −
        (2.2) 

Among them, r1, r2 and r3 are different individuals. The “scaling factor,” also 

referred to as the “differentiation” vector, is denoted as F. 

During the evolution process, in order to ensure the validity of the solution, it is 

necessary to determine whether each component of the mutant individual satisfies the 

boundary conditions. If the boundary conditions are not met, the mutant individuals are 

regenerated randomly. 

For each individual and the offspring mutation vector generated by it are crossed, 

specifically, for each component, the offspring mutation vector (otherwise it is the 

original vector) is selected with a certain probability to generate a test individual. 

              ,1 ,2 ,[ , , , ]g g g g

i i i i DU u u u=
           (2.3) 
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CR represents the “crossover probability” and rn(i) is a randomly selected integer 

from the range [1,D], with rn(i) being a random decimal within the interval [0, 1]. The 

use of rn(i) ensures that this crossover strategy can ensure that Ui has at least one 

component contributed by the corresponding component of Vi obtained by the mutation 

operator. 

The flowchart of DE is as follows [45]. 

Begin

Determine the number of 

evolutionary generations

Initialize the population randomly

Is termination criteria 

satisfied?

Output optimal 

solution

Yes

No

Differential mutation operation

Evaluate the initial population

Evaluate the function fitness value 

of each particle

Evaluate temporary populations 

composed of experimental 

individuals

Determine the next generation of 

new populations through selection 

operations POP(t+1)

t=t+1

 

Figure 2.1 The flowchart of DE 

DE algorithm finds applications across various domains, encompassing 
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optimization problem solving, machine learning, signal processing, image processing, 

engineering optimization, and economic modeling [45]. In the realm of optimization 

problem solving, the DE algorithm finds widespread application, addressing various 

optimization challenges such as function optimization and parameter tuning. Its 

remarkable global search capabilities and rapid convergence render it highly effective 

in navigating complex multidimensional spaces [46]. In the domain of machine learning, 

the DE is employed for tasks like feature selection and hyperparameter tuning. It is also 

used in training deep neural networks to search for suitable weights and parameters [47]. 

In signal processing, DE is applied to tasks such as filter design and signal denoising, 

showcasing advantages in handling complex signal scenarios [48]. The algorithm is 

harnessed for image processing tasks like segmentation and enhancement, allowing 

optimization of the image processing pipeline through parameter adjustments [49]. In 

engineering, DE is extensively used for process optimization and system design, aiding 

engineers in finding optimal solutions within complex systems [50].  

2.1.2 Particle Swarm Optimization 

In 1995, first introduced by Eberhart and Kennedy, PSO is a global search 

algorithm which belongs to SI [51]. The fundamental principle of the PSO algorithm 

involves individuals, referred to as particles, which can be analogized to birds or small 

fish. The evolution of each particle is guided by learning from both the historical best 

solution of itself and the collective global best solution of the group. This process 

mirrors a bird learning from its past best position and adapting based on the optimal 

position of the leading bird in the flock. In a way analogous to human decision-making, 

where individuals consider both personal experience and the experiences of others, PSO 

leverages two types of crucial information in its optimization process [51]-[52]. 

Unlike the genetic algorithm, PSO does not have the process of selection, crossover, 

and mutation operators, but solely progresses towards the global optimal solution by 

employing the speed update formula and position update formula continuously [51]. 

Hence, the operation of PSO is straightforward. The formula presented is as follows 

[51]. 
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i i ix x v= +                                (2.6) 

In the formula, ω is the inertia weight. It is commonly initialized to 0.9 and 

subsequently reduces to 0.4 as the evolution progresses. 1c  and 2c  is the acceleration 

coefficient, which generally takes the value 2.0. 1

drand   and 2

drand   are a pair of 

random numbers within the range [0,1]. 

The research on PSO includes theoretical research, algorithm parameter research, 

topology research, hybrid algorithm research, and algorithm application research [53]. 

The PSO algorithm has a lot of applications, and the existing research can be divided 

into two categories, optimization and design applications, and scheduling and planning 

applications, and have achieved results in many industries. Regarding the application 

of PSO in engineering and system design, it includes optimization of neural networks 

[54]-[55], wing optimization design, and power system stabilizers. As for the 

application of PSO in scheduling and planning, it encompasses the traveling salesman 

problem [56], flow shop scheduling [57], and business planning [58]. 

2.1.3 Memetic Algorithm 

When facing large-scale and complex optimization problems, traditional EC 

algorithms such as GA, PSO, and ACO often suffer from slow convergence speeds and 

difficulty in finding high-precision optimal solutions. Introducing local search methods 

can improve the solutions discovered by EC algorithms, enhancing both solution 

efficiency and accuracy. MA is a novel optimization technique that combines 

population-based EC algorithms with local search techniques [59]. The term “memetic” 

originates from the concept of “meme” mentioned by Oxford University scholar 

Dawkins in his book “The Selfish Gene” [60] published in 1976. In cultural evolution, 

similar to biological evolution, beneficial cultural genes, or memes, can be inherited 

and developed. 

The framework of MA was proposed by Krasnogor and Smith, and it comprises 

nine elements [61]. 



34 

 

   MA=(P0, δ0, of f springSize, popSize, l, F, G, U, L)     (2.6) 

P0 represents the initial population, δ0 denotes the initial parameter settings of the 

algorithm, of f springSize indicates the number of offspring generated through the 

production function G, popSize represents the population size, l denotes the length of 

the encoding, F represents the fitness function, G denotes the generation function, U 

denotes the update function, and L is a set of local search strategies. It can be observed 

that compared to traditional EC algorithms, MA only adds an operation for local search. 

Currently, significant progress has been made in the theoretical research of MA, 

including cooperative evolution-based MA [62]. In practical applications, MA has been 

employed in image processing [63], the traveling salesman problem [64] [65], business 

analytics, and data science [66]. Additionally, MA has been effectively utilized for real-

world optimization problems like protein structure prediction [67], cellular mobile 

networks [69], data privacy [71], and cancer chemotherapy design [70]. 

2.2 Knowledge Transfer 

2.2.1 Introduction of Knowledge Transfer 

In the field of EC, the process of gaining experience from previously solved 

problems and applying relevant knowledge to new tasks or situations is commonly 

referred to as KT. In practical applications, problems rarely exist in isolation. Ignoring 

the search experience gained from related problems in previous optimization processes 

may lead to redundant searches on similar problems, resulting in unnecessary 

computational costs. Therefore, KT becomes crucial. For DOP, the experience and 

knowledge accumulated during the solution of problems within a specific time period 

are transferable and can be effectively applied to solve problems in other time periods. 

Similarly, for MTOP, the experience and knowledge gained while addressing one task 

may be transferable to addressing other tasks. However, existing EC algorithm solvers 

often start the search process from scratch, without considering the similarity between 

new and previous problems. Considering these factors, the ability of KT to generalize 

learned knowledge to other problems is highly significant for complex optimization 

problems. The integration of EC with KT holds great promise. 
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The concept of KT, also known as transfer learning (TL), has garnered earlier 

attention in the field of machine learning [72] [67] [73]. TL leverages knowledge 

obtained from domains with abundant high-quality training data to enhance learning 

models in target domains lacking sufficient training data [72], thereby avoiding costly 

data labeling efforts. Early transfer learning is primarily applied to tasks in machine 

learning domains such as speech recognition [74], computer vision [75], [80], natural 

language processing [76], indoor localization, face recognition, and training of deep 

learning models [77]. These tasks belong to traditional machine learning domains, 

including classification, regression, reinforcement learning, and deep learning [78] [79]. 

Research in machine learning has shown that KT can use knowledge learned from one 

problem and apply it to another, reducing the workload required to model from scratch. 

These findings provide insights for the application of KT in EC. 

2.2.2 KT in EC 

The combination of KT and EC is theoretically grounded and has garnered 

increasing attention from renowned scholars in recent years. Integrating EC solvers 

with KT across diverse domains aims to enhance algorithm performance, accelerate 

convergence speed, and improve optimization efficiency [27]. The flowchart of EC is 

depicted in Figure 2.2. Initially, a population is created, where each individual 

represents a potential solution. Next, Evolutionary operations are conducted iteratively 

until a satisfactory solution is found or termination conditions are met [81]. Throughout 

this process, it is observed that the population in evolutionary search contains crucial 

information for problem-solving. Useful features can be learned from the iteration of 

the population, and if applicable, KT across problems can guide the search to enhance 

optimization performance [27]. 

From the perspective of algorithm design, one application of KT in EC is to 

improve algorithm initialization through transfer learning. Information about model 

parameters or fitness functions learned from previous tasks can be used to initialize 

optimization algorithms, thereby enhancing their performance on new tasks. In EC 

algorithms like genetic programming, population initialization significantly influences 
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optimization outcomes. KT can be employed to design more informative initial 

populations, facilitating better exploration of the search space. In existing research, 

Ardeh et al. used genetic programming to transfer knowledge acquired from addressed 

old problems to tackle new problems [82]. Guo et al. adopted the theory of a knowledge 

pool for constructing a hybrid transfer strategy for generating new initial populations 

[83].  

Begin

Initial Population

Evolutionary Operation

Is termination criteria 

satisfied?

End

Yes

No

 

Figure 2.2 The flowchart of EC 

In terms of integrating KT and EC algorithms, existing ETO methods can be 

classified into two types according to the search space of the problems being addressed: 

homogeneous ETO and heterogeneous ETO [27]. The former focuses on KT among 

problems with common search spaces, while the latter considers KT among problems 

with different search spaces, such as those with varying dimensions, decision variables, 

and objective functions [27]. 

According to the types of problems to be solved, KT and EC combined algorithms 

can be categorized into five classes: DOP, MTOP, multi-objective and many-objective 

optimization, expensive optimization, and algorithm applications [27]. This paper 

primarily focuses on DOP and MTOP, which belong to the first two categories among 

these five problems. DOP and MTOP problems are relatively complex and have been 

recent research hotspots. These two types of problems require algorithms to perform 
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well in the face of dynamic problem changes or when simultaneously handling multiple 

tasks. Solving such problems necessitates more advanced optimization algorithms and 

KT mechanisms. In practical terms, DOP involve changes in optimization problems 

over time, while MTOP involve optimizing multiple tasks simultaneously. Both of these 

problem types are relatively common in practical applications, hence researching these 

areas is practically significant for solving real-world problems. 

Regarding KT in EC algorithms, research focuses on two questions at the execution 

level: when to perform KT and how to perform KT [22]. Firstly, determining when to 

perform KT is a crucial issue. The timing of KT during the execution of optimization 

algorithms can affect the performance and effectiveness of the algorithms. Determining 

when to perform KT may involve factors such as the dynamic characteristics, the 

quality of the current search state, and changes in the environment. Therefore, focusing 

on when to perform KT can help identify the most effective timing for KT. Secondly, 

how to perform KT involves specific operations and mechanisms, including knowledge 

representation, methods of KT, and selection of individuals to receive knowledge. 

Researching this issue requires considering the specific implementation of the 

algorithm and the nature of the problem. Focusing on how to perform KT can help 

design more effective KT strategies. 

2.3 Dynamic Optimization Problems (DOP) 

2.3.1 Introduction of DOP 

Compared to static problems like finding function extrema, numerous optimization 

problems encountered in real-world scenarios exhibit dynamic characteristics and are 

subject to uncertainty [84]. These types of problems are commonly known as DOP. In 

DOP, objective functions, constraints, Pareto fronts, etc., may change over time. DOP 

is more challenging than static optimization because the same problem must be 

repeatedly optimized over time [85]. Compared with static problems such as solving 

function extreme values, many real-world optimization problems in uncertain 

environments are dynamically changing [84], and such problems are called DOP. In 

DOP, the objective function, constraints, Pareto front, etc. may all change over time. 
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DOP is more difficult than static optimization because the same problem has to be 

optimized repeatedly over time [85].  

Here is an example of a DOP. Picture a scenario in supply chain management where 

a company manufactures goods and distributes them to retailers. The primary objective 

of this system is to minimize overall transportation expenses. Initially (at time t=0), the 

routes and transportation costs are established. However, due to factors like fluctuating 

fuel prices and variable traffic conditions, these costs may change over time. At each 

time step, the system has the flexibility to adjust transportation routes to accommodate 

these evolving cost scenarios. The objective of the DOP is to choose the most cost-

efficient route at each time interval to minimize the total transportation expenses. This 

necessitates making real-time decisions in response to changing circumstances, 

ensuring adaptability to environmental shifts while consistently aiming to minimize 

costs. 

DOP is an optimization problem in which the fitness function, constraints, and 

environment parameters may all change over time. The objective function of DOP is 

expressed as: 

           1 2max ( , ) ( , ,..., , )Df X e f x x x e=
           (2.6) 

In this function, f represents the objective function, X denotes a decision vector 

with D dimensions, e signifies the evolving environment, the range of each dimension 

xj is defined within the interval. 

The challenge in DOP lies in the need to find the optimal solution (or an 

approximate one) within acceptable time and cost constraints. This requirement 

translates to the algorithm being able to quickly converge to the global optimum after 

each environmental change, without getting trapped by previous optimal solutions and 

falling into local optima [85]. 

EC is commonly employed for static problems, typically aiming to rapidly 

converge the population to the global optimum. However, this poses challenges in 

dynamic environments, where the peaks of the objective function constantly fluctuate, 

necessitating continuous tracking of the optimal values. When using traditional 
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evolutionary algorithms, once convergence is achieved, the diversity of the population 

diminishes, making it difficult to track new optimization targets. Conversely, excessive 

diversity may also hinder algorithm performance. Moreover, during reiteration, it is 

crucial to use KT to track new optimization targets. If the objective functions before 

and after the change are similar, it is advisable to retain some historical information. 

However, preserving too much information may lead to premature convergence. For 

DOP, scholars like Zhan classified existing EC research into three categories based on 

functionality: Decreasing the complexity of the problem, enhancing algorithmic variety, 

and speeding up convergence are essential objectives [25]. 

When simplifying problem difficulty, two approaches are commonly employed: 

decomposing dimensions into teams and segmenting the search area into sections. The 

concept of decomposing dimensions into teams originates from Cooperative 

Coevolution (CC), initially employed for solving evolutionary optimization problems 

of large scale [86]. For DOP, CC can partition the dimensionality of the search area, 

evolving various dimensions to locate and track the optimal solution [87]. Specifically, 

in cooperative coevolution, the solutions to a problem are divided into different parts 

or groups, with each part being independently optimized by a separate subpopulation. 

This cooperative evolution approach allows the algorithm to handle high-dimensional, 

complex problems more efficiently, as different parts can be optimized independently, 

thus enhancing the search efficiency. Additionally, some studies have employed 

competitive-cooperative CC algorithms, where each species subpopulation competes to 

represent specific subcomponents of the multi-objective problem, and the eventual 

winners cooperate to evolve better solutions [88]. Segmenting the search space into 

pieces involves the use of cellular automata methods. Cellular Automaton is a 

mathematical model composed of a set of identical automata (referred to as “cells”) that 

evolve at discrete time steps according to predefined rules. Each cell can be in one of a 

finite number of states, and the rules determine how the cell's state evolves based on its 

state and the states of its neighboring cells. Based on this model, Hashemi et al. 

proposed Cellular PSO [89]. Noroozi et al. introduced CellularDE, utilizing the same 
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cellular automaton framework to address DOP [90], while Sharifi and Noroozi 

proposed a two-stage Cellular PSO [92]. In summary, these methodologies offer 

effective strategies for addressing the complexities of optimization problems, 

particularly in dynamic environments. They provide insights into enhancing search 

efficiency and facilitating the exploration of high-dimensional solution spaces. 

Various methods have been introduced to enhance algorithm diversity, including 

the utilization of multi-populations, the creation of composite solutions, and the 

development of innovative solution update strategies [25]. Among these methods, 

research on multi-population approaches is the most extensive. In the evolutionary 

process, each subpopulation is responsible for an independent task, akin to students in 

a class forming groups to complete different assignments. Multi-population models can 

be divided into two categories: homogeneous and heterogeneous models. In 

homogeneous models, each population has the same task, while in heterogeneous 

models, multiple populations are situated at different levels or have different tasks. To 

continue with the classroom analogy, a homogeneous model is where every group of 

students has the same task, though they may adopt different approaches. In contrast, a 

heterogeneous model is where different groups of students may have different 

specializations or skills, and each group is responsible for solving an independent 

problem. In homogeneous algorithms, many existing studies employ clustering 

algorithms to create subpopulations, including hierarchical clustering [93], a 

combination of random immigration strategies and hierarchical clustering [94], 

competitive clustering [95], K-means clustering [96], adaptive multi-population 

approaches [97], distributed multi-populations [98], and clustering-based clone 

selection algorithms [99]. For heterogeneous models, the methods employed in existing 

research are more diverse. Branke et al. proposed the SOS algorithm, and Li et al. 

introduced FPSO, both of which include a parent population and multiple 

subpopulations, with the parent population conducting global search and the 

subpopulations performing local search [100][101]. In recent years, a heterogeneous 

model called distributed multiple populations (DMP) has been proposed. DMP employs 
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six strategies designed at three levels (i.e., population level, subpopulation level, and 

individual level) to address different types of DOP. Diversity preservation at the 

individual and population levels accelerates the entire population's response to new 

landscapes, while elite self-learning of individuals at the subpopulation level promotes 

the development of promising areas [102][103]. 

To expedite convergence speed, methods involving the direct reuse of historical 

solutions and the prediction of promising solutions can be applied [25]. Regarding the 

reuse of historical solutions, the difference lies in the methods of archiving historical 

information, which include direct reuse [104], fine-grained archiving and coarse-

grained archiving [105], and direct incorporation into the new initialized population 

[106]. However, historical optimal solutions may struggle to adjust to alternations in 

the new environment, making methods derived from predicting promising solutions in 

the new environment more advantageous. Existing research includes variable relocation 

strategy (VRS) [107], adaptive PSO with VRS [108], and orthogonal learning particle 

swarm optimization with VRS [109], combining population prediction strategies based 

on prediction centers and estimated manifolds [110], neural network-based change 

prediction methods [111], and neural network information transfer [112]. 

“The only absolute motion is the motion of change; the only constant is change 

itself. [113]” DOP find widespread applications in various fields owing to the time-

varying characteristics of real-world optimization problems. DOP research extensively 

conducted in domains such as logistics and transportation [114], power systems [115], 

financial markets [116], manufacturing [117], and unmanned systems including 

autonomous vehicles [118], ships [119], and drones [120]. With the development of 

economy and technology, the emergence of DOP research in more domains such as 

greenhouse control in agriculture is observed [121], electric vehicles [122], healthcare 

[124], environmental monitoring [125], and telecommunication networks [126]. 

2.3.2 KT in DOP 

In real-world problems, DOP typically exhibit two key characteristics. On one hand, 

while DOP is inherently dynamic, the nature of the problem remains relatively static 
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within a specific period without significant changes. During this time frame, DOP can 

be treated as a static problem. On the other hand, adjacent static time periods should 

exhibit some degree of similarity in the characteristics and features of the problem. This 

similarity allows for partial reuse of information from previous environments when 

addressing DOP across these time periods, without the need to start optimization from 

scratch [106]. Therefore, existing research on DOP aims to closely track changes in 

time by approximating Pareto optimal solutions as closely as possible when the 

environment changes [127]. This involves reusing historical information, which, as 

mentioned in the previous section, can be categorized into direct reuse of historical 

information and prediction of promising solutions based on historical solutions. The 

primary purpose of reusing historical information is to expedite convergence speed or 

reduce runtime by leveraging past experiences. Utilizing past experiences can help us 

solve new problems in dynamic environments more efficiently, which is the primary 

focus of most current research efforts. Additionally, leveraging KT can reduce problem 

complexity and increase algorithm diversity. 

Firstly, KT can contribute to reducing the difficulty of DOP by decomposing 

dimensions into teams and segmenting the search area into pieces. Currently, there is 

limited research from this perspective. For the first approach, decomposing the 

dimensions of the problem into groups involves grouping relevant decision variables 

together to form subproblems. This can be based on dependencies between variables, 

functional properties, or other correlations. If effective optimization strategies or search 

directions for specific variable combinations were learned from previous problem 

instances, this knowledge can be transferred and applied to similar variable 

combinations in the current problem. The research of Rakitianskaia did not explicitly 

mention KT, but it introduced the concept of context vectors, which can be viewed as a 

form of information transfer [87]. Liu et al. used probability distribution functions to 

adjust the relationships between variables and groups, making the understanding of 

variable dependencies more flexible [105]. For the second approach, segmenting the 

search space into pieces involves dividing the entire search space into non-overlapping 
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regions, each of which can be considered a local subproblem. This segmentation can be 

derived from the attributes of the problem, constraints, or other distinguishing 

properties. In this case, KT involves applying knowledge gained from previously solved 

problems, such as effective regions in the search space or information about related 

subproblems, to similar regions in the current problem. KT facilitates improved 

algorithm understanding of the problem space and enhances search efficiency by 

sharing information between similar regions. Noroozi's research did not explicitly 

mention KT either, but it involved utilizing local information from different regions 

[90]. Through these two approaches, KT can help algorithms better understand the 

structure and characteristics of the problem, reduce the complexity of the exploration 

domain, and thus decrease the difficulty of decision optimization problems. This 

decomposition and segmentation strategy aids in improving the local search 

effectiveness of algorithms, allowing them to focus more on smaller problem domains 

and thereby increasing the efficiency of problem-solving. Due to the limited research 

from this perspective, it represents a potential research direction for future exploration. 

Additionally, Jin et al. discussed three types of knowledge transfer methods in data-

driven evolutionary optimization, including semi-supervised learning, parameter 

sharing and domain adaptation, and transfer optimization [91]. These methods help in 

reducing the difficulty of data-driven optimization by effectively leveraging knowledge 

from various sources. 

Secondly, KT can enhance algorithm diversity in DOP through various methods. 

Firstly, the most common approach is the utilization of multi-population methods, 

which involves transferring knowledge between different subpopulations. Each 

subpopulation may focus on distinct regions of the search space or tackle different types 

of problems, and by sharing knowledge among them, the overall diversity of the 

algorithm can be increased [106]. The second method involves introducing 

heterogeneous knowledge sources. Leveraging knowledge from different problem 

instances, domains, or algorithms can enhance algorithm heterogeneity. Introducing 

heterogeneous knowledge may include rules or heuristic information from other 
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optimization algorithms or problem domains, thereby enriching the algorithm's search 

strategies. For instance, Zhou et al. attempted to learn structured knowledge obtained 

from early time slots and apply it to dynamic vehicle routing problems [128]. Wu et al., 

within a multi-population framework, introduced a certain degree of heterogeneity 

based on the different properties of each subpopulation to generate multiple 

subpopulations balanced in new environments [106]. Yan et al. generated new 

subpopulations by learning from the final populations of adjacent environments and 

extracting patterns of dynamic environmental changes from high-quality solutions in 

historical environments [129]. The third approach involves introducing randomness and 

perturbation. Introducing randomness and perturbation is a classical method for 

increasing algorithm diversity. By introducing a moderate amount of randomness or 

perturbation during the search process, algorithms can avoid local optima and explore 

the problem domain more comprehensively. Sun et al. used a random perturbation 

approach to solve missile trajectory optimization problems [130]. Additionally, 

introducing randomness when selecting individuals or subpopulations for reproduction 

or search can ensure that the algorithm does not overly focus on a specific region of the 

search domain, thus enhancing algorithm diversity. Lastly, dynamic parameter 

adjustment involves dynamically adjusting algorithm parameters using KT. Parameter 

settings learned from previous problem instances may not be applicable to new 

problems, so dynamically adjusting parameters through KT can better adapt the 

algorithm to the characteristics of the current problem. Zhan et al. employed adaptive 

parameter control in the APSO algorithm, meaning that the parameters of algorithm can 

be adjusted according to optimization progress or environmental changes [108]. 

Finally, KT accelerates the convergence rate and reduces the execution time of DOP. 

In existing research, enhancing algorithm variety and speeding up convergence rate 

often appear in the same study. For instance, Jiang et al. introduced the concept of the 

Knee point, which cleverly integrates a small number of high-quality individuals and 

imbalanced transfer learning techniques [131], thereby increasing algorithm diversity 

while also speeding up convergence. According to the two assumptions of DOP, 



45 

 

continuous dynamic environments often exhibit significant correlations with one 

another, and reusing historical solutions holds significant potential for expediting 

convergence in novel environments. For instance, Jiang et al. reused past experiences 

to generate an effective initial population pool [132]. There are two approaches to 

historical solution reuse: directly utilizing historical solutions and predicting the 

optimal solution's location, both of which are mentioned in early survey articles on DOP. 

In practical applications, the more commonly used method may rely on the specific 

nature of the problem, algorithm design, and researchers' preferences. Sometimes, 

directly reusing historical solutions is straightforward, while predicting the optimal 

solution's location may require more complex models and algorithms. For direct reuse 

of historical optimal solutions, in Cao et al.'s study, the best solution in each generation 

is stored, and when environmental changes are detected, historical solutions are 

retrieved to collaborate with newly generated solutions to adapt to the new environment 

[104]. Methods based on historical information for predicting the optimal solution have 

received more research attention, such as variable relocation strategies [107]-[108]. In 

specific operations, Rang et al. did not use a linear prediction model but employed Long 

Short-Term Memory networks for prediction [127]. Wu et al. proposed the Archive-

based Historical Information Reuse (AHIR) strategy [106]. Guo et al. introduced a 

subspace alignment method for KT [83]. Hatzakis et al. inferred the estimated value of 

the next position using a prediction model created from the sequence of previous 

optimal solution positions [133]. Jiang et al. used manifold transfer learning for 

prediction [136]. Additionally, Liu and Wang proposed an enhanced population 

prediction strategy for dynamic multi-objective optimization algorithms utilizing 

transfer learning, aiming to effectively track optimal solutions in dynamic environments 

by integrating historical information [134]. It is worth noting that if the prediction 

model is inaccurate, it may have a negative impact on the optimization process. Ruan 

et al. pointed out that prediction models based on incorrect assumptions may lead to 

inaccurate predictions of the optimal solution [87]. Ma et al. proposed a higher order 

knowledge transfer strategy for dynamic community detection, aiming to retain and 
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transfer advantages from previous snapshots to subsequent ones [135]. 

In DOP, another key challenge lies in determining when and how to conduct 

transfer learning effectively [137]. Similar issues are also present in MTOP [22]. 

Transfer learning proves to be effective in addressing fixed POS problems and scenarios 

with minor environmental changes [137]. However, some problems are not suitable for 

transfer learning. Therefore, when dealing with issues where transfer learning fails, it 

is advisable to avoid its usage. 

2.4 Multi-task Optimization Problems (MTOP) 

2.4.1 Introduction of MTOP 

A significant distinction between humans and machine learning lies in humans' 

capability for multitasking. During the learning process, humans can use knowledge 

acquired in one task to aid in learning another task [21]. For instance, for a high school 

student, improvement in mathematics performance may also contribute to learning 

physics. Many outstanding students excel in all subjects precisely because they can 

apply learning experiences from one subject to others. In complex optimization 

problems, EC has been used to address various optimization challenges, but it faces two 

key obstacles: heavy computational burden and poor generalization ability [21]. 

Inspired by human learning, a better strategy to address these challenges is MTOP. 

Compared to single-task learning, multi-task learning offers several advantages: 

multiple tasks share one model, reducing memory usage; enhanced convergence speed 

and reduced learning difficulty; performance improvement in associated tasks through 

shared information and KT [22]. Additionally, MTOP can also address scenarios with 

insufficient data sources [21]. In the real world, insufficient training data for individual 

tasks is common, making mutual learning between different tasks meaningful and 

valuable [138]. 

Primarily focusing on the integration of EC and MTOP because EC exhibits 

implicit parallelism, allowing for the simultaneous optimization of multiple tasks when 

solving MTOP. Evolutionary computing algorithms can perform selection, crossover, 

and mutation operations concurrently when handling multiple tasks. These operations 
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do not interfere with each other when dealing with different tasks, enabling parallel 

execution. By leveraging the parallelism between tasks, the optimization process can 

be accelerated, enhancing the efficiency of the algorithm. This parallelism is implicit, 

as multiple tasks can be processed simultaneously without the explicit use of parallel 

computing techniques. Therefore, the combination of MTOP and EC has become a 

research hotspot in recent years, with review papers by prominent scholars providing 

insights into research progress [27] [141]. 

Existing MTOP can be classified into single population and multiple population 

strategies. 

The most representative algorithm for single-population MTOP is the 

multifactorial evolutionary algorithm (MFEA) [30]. MFEA is a single-population 

MTOP algorithm that uses a single population to simultaneously optimize multiple 

problems. The core idea of MFEA is to apply a single population to solve multiple 

related tasks and promote information sharing and individual adaptability across tasks 

through controlling mating intensity and implementing skill inheritance. This makes 

MFEA an effective method for addressing MTOP. 

In multi-population MTOP algorithms, each population corresponds to an 

optimization task. Throughout the evolution process, populations can engage in two 

distinct operations: self-evolution and inter-task evolution. Self-evolution means that 

individuals in the population only use parents from the same population to generate 

offspring. In other words, individuals undergo genetic operations only within the 

current population. Inter-task evolution refers to the population using parents from the 

same population and randomly selected parents from other populations to generate 

offspring for the task. In inter-task evolution, operators and solutions generated by 

parents can represent the shared information between different populations. This means 

that individuals can leverage information from other tasks to generate offspring. The 

determination of whether to conduct self-evolution or inter-task evolution is based on 

a random parameter called the random mating probability (rmp), which is a control 

parameter utilized to determine the probability of each population selecting self-
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evolution or inter-task evolution. This multi-population framework aims to allow 

individuals to exchange information between different tasks and enhance the efficacy 

of multi-task optimization through inter-task evolution. Compared to single-population 

MTOP, there are more research achievements in multi-population optimization. Chen 

et al. adopted an adaptive archive mechanism to determine which task similar to the 

current task can provide the most useful assistance [142]. Huang et al. used surrogate-

assisted strategies to minimize the quantity of fitness evaluations [143]. They also 

developed a surrogate-assisted MA model using DE as the global search component 

and the Gaussian process as the surrogate model [144]. Wei et al. addressed the 

challenge of multi-class classification problems in multi-task optimization using gene 

expression programming GEP [145]. In traditional GEP methods, an M-class 

classification tasks is regarded as M independent binary classification tasks without 

considering the correlation between classes. This approach may lead to output conflicts 

because different binary classifiers may give inconsistent class labels. Therefore, 

traditional GEP methods may perform poorly in handling multi-class classification 

problems. By introducing the evolutionary multi-task optimization paradigm, this 

method allows interaction and KT between different binary classifiers to address the 

problem of output conflicts. Additionally, some scholars have combined multi-task 

optimization with multi-objective optimization [32] and dynamic optimization [146] as 

composite optimization problems. 

2.4.2 KT in MTOP 

The inspiration behind MTOP comes from the human ability to simultaneously 

perform multiple tasks and the mature concept of multi-task learning in predictive 

analytics. By applying this ability to optimization problems, MTOP can consider 

multiple tasks simultaneously in a single optimization process, thereby improving the 

efficiency and performance of the search. Therefore, a key concept in MTOP is inter-

task KT. During the evolutionary optimization process, useful knowledge transferred 

across tasks can lead to the automatic resolution of related problems. This means that 

solving one task may positively impact the optimization process of other tasks, 
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enhancing the search capability. Early applications of KT-inspired solutions to MTOP 

problems were unidirectional [28], [29]. Subsequently, Gupta et al. proposed MFEA, 

which was inspired by the biocultural model of multifactorial genetics, explaining how 

genetic and cultural factors interact to pass on complex developmental traits to 

offspring [30]. The cultural factor mentioned in the model refers to KT. 

Research on MTOP has proliferated in the years following MFEA, with studies 

emerging one after another [147]-[159]. These studies, originating from the perspective 

of KT, delve into how evolutionary algorithms can be used to address multiple 

independent tasks. Some papers propose new evolutionary algorithm paradigms, such 

as generalized multi-task optimization and multifactorial genetics, which enhance 

optimization by transferring knowledge across tasks [147],[151],[152]. Others focus on 

improving and applying evolutionary multi-task algorithms, with some methods 

employing online parameter estimation for KT [159]. Furthermore, some research 

explores the application of cross-domain optimization and resource allocation strategies 

in KT [148],[146],[153]. Collectively, these studies provide important theoretical and 

practical foundations for the development and application of evolutionary multi-task 

optimization. 

However, as research into Evolutionary Multi-Task Optimization (EMTO) deepens, 

the issue of negative transfer across tasks has become increasingly prominent, posing a 

common challenge in current studies. Studies have shown that KT between tasks with 

low relevance may even lead to a decrease in optimization performance [162], 

underscoring the critical importance of effective inter-task KT for EMTO. Therefore, 

addressing the problem of negative transfer across tasks is key to ensuring the success 

of EMTO. Mitigating the impact of the negative transfer on EMTO primarily requires 

consideration of two aspects: first, identifying the appropriate tasks for KT, and second, 

improving methods to elicit more useful knowledge during the transfer process. 

Regarding the identification of tasks suitable for KT, the MFEA-II algorithm 

proposed by Bali et al. uses online transfer parameter estimation to dynamically adjust 

the KT probability between tasks, increasing KT among highly correlated tasks and 



50 

 

mitigating the influence of negative transfer [159]. In the study by Yang et al. [163], a 

two-stage pairing method is employed, considering the similarity between tasks to 

ensure that KT only occurs between tasks with high relevance, thereby reducing the 

likelihood of negative transfer. Similarly, Liaw et al.'s eco-symbiotic-based 

evolutionary multi-task approach [151] adopts a similar strategy by modeling the 

correlation between tasks and selectively transferring knowledge to mitigate the 

influence of negative transfer. Regarding improving the KT process to extract more 

useful knowledge, the MFEA-II algorithm [159] introduces online transfer parameter 

estimation to dynamically optimize the KT process by adjusting the probability of KT 

to ensure more useful knowledge is transferred among highly correlated tasks. On the 

other hand, the studies by Yang et al. [163] and Liaw and Ting [151] leverage the 

similarity between tasks and task characteristics to optimize the selection and crossover 

methods of transferred individuals and construct task mappings, thereby extracting 

more useful knowledge and mitigating the influence of negative transfer. 

Existing research on MTOP has been summarized by scholars. Tan et al. provides 

a comprehensive introduction to evolutionary transfer optimization, reviewing various 

categories of optimization problems such as uncertain environments, multi-objective 

optimization, etc. [164]. Xu et al. reviews the research progress in MTOP over the past 

five years. The article examines various techniques, including chromosome encoding 

and decoding, intra-population reproduction, inter-population reproduction, as well as 

evaluation and selection methods. [141]. Osaba and Wei et al. provides a systematic 

analysis and summary of evolutionary multi-task optimization methods [165], [166]. 

Gupta et al. discusses six case studies of evolutionary multi-task processing in practical 

applications, emphasizing its practical applications and effects in various fields. The 

article showcases the potential and value of evolutionary multi-task processing through 

case analysis [167]. 

In these two years, there have been some novel research in KT within MTOP. Jiang 

et al. proposed a evolutionary algorithm based on knowledge structure preservation, 

which extracts useful structure-preserved knowledge from similar source tasks [154]. 
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Wang et al. discovered that although many explicit transfer strategies have been 

developed to enhance positive transfer between optimization tasks, most of these 

methods achieve knowledge transfer by migrating the best solutions from the source 

task to the target task, neglecting the proper use of information from the target task in 

solution selection [155]. To address this issue, they proposed a lower confidence bound 

solution selection method based on evolutionary multitasking optimization [155]. 

Additionally, Lin et al. integrated various domain adaptation methods for knowledge 

transfer in EMT [156]. In terms of applications in evolutionary multitasking 

optimization, Zhou et al. proposed an evolutionary multitask convolutional neural 

architecture search framework [157]. Feng et al. used multitasking approaches to solve 

multi-objective high-dimensional feature selection problems [158]. 

These studies indicate significant progress in methods for knowledge transfer 

between optimization tasks and demonstrate their potential applications in various 

fields.  
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CHAPTER 3 

HISTORICAL INFORMATION-BASED DIFFERENTIAL 

EVOLUTION FOR DYNAMIC OPTIMIZATION PROBLEM 

3.1 Introduction 

In the fast-paced and ever-changing world, DOP play a crucial role. DOP refer to 

optimization problems where the objective function, constraints, and environmental 

parameters change over time. Such problems are widely encountered in various 

domains, including intelligent traffic management [168], Internet of Things [170], 

operations management [171], logistics [114], power systems [115], financial markets 

[116], manufacturing [117], and unmanned systems such as autonomous cars [118], 

ships [119], and drones [120]. Research in these areas has been extensive. With 

economic and technological developments, the emergence of DOP studies in more 

fields, such as greenhouse control in agriculture, is being witnessed [121], electric 

vehicles [122] [123], healthcare [124], environmental monitoring [125], and 

telecommunications networks [126]. 

Unlike static optimization problems, the uncertainty and variability of dynamic 

environments pose challenges to traditional optimization methods. Static optimization 

algorithms often assume that problem parameters and constraints remain static, making 

them unsuitable for direct application in dynamic environments. However, in practical 

applications, changes in environmental parameters can render static optimization 

solutions ineffective, thereby affecting system performance and efficiency. For instance, 

in intelligent traffic management systems, parameters such as traffic flow, road 

conditions, and vehicle destinations frequently change. Failure to promptly adapt traffic 

signal optimization schemes to these changes can result in traffic congestion, energy 

wastage, and reduced travel efficiency [168]. 

DOP faces various challenges due to the dynamic nature of the objective function, 

constraints, and environmental parameters over time, leading to the dynamicity of the 
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search space, the failure of existing solutions, and the increased complexity of the 

problem. For example, optimizing traffic signal lights involves fluctuations in traffic 

and pedestrian flow [168]. DOP is inherently complex and multimodal because it 

exhibits shifting peaks, where local optima at different times can lead to the problem 

easily getting trapped in local optima [165] [169]. Furthermore, DOP demands 

algorithms with high requirements, necessitating strong robustness to cope with 

environmental changes, noise interference, and uncertainty. Lastly, DOP also faces 

challenges similar to expensive optimization problems because it often requires 

frequent updates and adjustments to solutions, which can result in higher computational 

costs. 

Evolutionary computation (EC) was initially developed for solving static 

optimization problems, with traditional EC algorithms such as Genetic Algorithm (GA) 

[181], Differential Evolution (DE) [44], and Particle Swarm Optimization (PSO) [45] 

originally designed for such static optimization problems. However, as attention to 

optimization problems in dynamic environments has increased, researchers have begun 

applying EC algorithms to solve DOP. EC has certain advantages in addressing DOP, 

primarily in adaptability and robustness [25], parallel computing [44], distributed 

computing [102], diversity and exploratory behavior [168], parameter adaptability 

[172], and reuse of historical information [106]. 

This thesis primarily focuses on addressing the challenges posed by the constantly 

changing problem distributions in DOP using EC, aiming to alleviate the difficulties 

associated with such problems. While DOP present significant challenges for 

optimization, careful observation of real-world instances reveals three key 

characteristics. Firstly, despite the dynamic nature of the problems, they often exhibit 

stability periods, allowing them to be temporarily treated as static problems within 

certain time intervals. For example, stability around specific values can be observed 

within a time range. Another example is the relative stability of variations within 

specific time periods. The second characteristic is that DOP can be decomposed into 

multiple static optimization problems, as changes between two static environments are 
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not excessively drastic. These two characteristics provide an opportunity to enhance 

search efficiency by utilizing historical information. For instance, traffic signal control 

problems under different traffic volumes remain similar [168], enabling the utilization 

of historical data. Given these characteristics, the focus of the research is on effectively 

leveraging historical information from past environments in the context of new 

environments [169]. To address this issue, the Historical Information-based DE (HIDE) 

is proposed. This chapter introduces a Region-based Subpopulation Initialization (RSI) 

method to create balanced subpopulations in new environments by initializing 

subpopulations in various areas of the exploration space to enhance population variety. 

Additionally, an Archive-based Historical Information Reuse (AHIR) method is 

proposed to use previously discovered peaks as historical information to aid in tracking 

and discovering new peaks. 

The chapter follows this structure. Section 3.2 provides an overview of relevant 

research on DOP. Next, Section 3.3 introduces the methodology and research 

framework of the HIDE algorithm. Section 3.4 presents comparative experiments and 

experimental data, and Section 3.5 offers conclusions and prospects. 

3.2 Related Work 

3.2.1 Dynamic Optimization Problem 

DOP distributions are inherently complex and multimodal, with the dynamic nature 

and multimodality of DOP often being correlated. This correlation arises because 

changes in dynamic environments may increase the diversity of the objective function, 

leading to the existence of multiple local optima in the solution space. Consequently, 

most EC methods still face the challenge of falling into local optima, even global 

optimization algorithms like GA, ACO, PSO, and DE algorithms. When addressing 

DOP, several approaches are worth considering: modeling dynamic environments [24], 

adaptive parameter tuning [96], [108], employing multi-population strategies [173], 

[96], [97], reusing historical information [171], [176], [108], and parallel and 

distributed computing [102]. Zhan et al. mentioned in their review of complex 

optimization problems that reducing problem complexity, increasing algorithm 
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diversity, and accelerating convergence speed are effective strategies, which are also 

applicable to DOP. However, categorizing existing research based on these strategies 

poses difficulties because many novel algorithms simultaneously increase algorithm 

diversity and convergence speed. In an earlier review, Thanh et al. mentioned common 

methods for solving DOP, including introducing diversity at the onset of change, 

maintaining diversity during the search process, memory-based methods, prediction-

based methods, adaptive methods, and multi-population methods [24]. This 

classification is based on methods mentioned in existing research but does not consider 

the interrelationships between these six methods, such as introducing diversity at the 

onset of change and maintaining diversity during the search process, both of which 

increase diversity, nor does it consider further subdivisions of methods. Therefore, 

integrating these two reviews to classify existing EC methods for solving DOP. 

Subsequently, elaborating on multi-population methods in detail. 

The first method involves introducing diversity, including static and dynamic 

diversity introduction. Static diversity introduction entails randomly initializing 

populations, while dynamic diversity introduction maintains diversity during the search 

process, such as through random perturbation, crossover swapping, and other diversity 

maintenance strategies [179]. The second method involves reusing historical 

information, also known as memory-based methods, such as archiving strategies [171], 

[96], and knowledge pools [178], to store the historical best solutions. Additionally, 

memory can be explicit or implicit. Explicit memory involves explicitly storing past 

information through a mechanism for direct access and utilization in the future. Implicit 

memory refers to the algorithm's ability to adapt to environmental changes through its 

evolutionary process or behavior without the need for explicit storage of past 

information. The third method involves predicting environmental changes using models 

such as neural networks [176]. The fourth method involves adaptive parameter tuning. 

The fifth method involves using multi-population strategies, including homogeneous 

and heterogeneous populations [103]. Chapter 2 has provided detailed explanations of 

multi-population methods. In this chapter, the second and fifth methods are primarily 
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adopted to address the problems. 

3.2.2 Differential Evolution 

DE is an algorithm in EC that uses differences among individuals to guide 

evolution. It integrates the concepts of crossover and mutation from GA while also 

drawing inspiration from the learning aspects of PSO [44]. Compared to other 

evolutionary algorithms, DE maintains a population-based global search strategy, 

employing a simple mutation operation based on differences in real-number coding [44]. 

Additionally, DE adopts a one-to-one competitive survival strategy, simplifying the 

complexity of genetic operations. DE possesses unique memory capabilities, 

dynamically tracking the current search status and adjusting search strategies as needed. 

Due to its strong global convergence ability and robustness, DE is suitable for 

addressing various kinds of conventional optimization problems, including DOP [90], 

without relying on specific problem features. A detailed introduction to DE is provided 

in Section 2.1.1. 

3.2.3 Multi-population Methods 

In the field of EC, multi-population methods are common strategies used to 

enhance algorithm performance and efficiency. These methods decompose the entire 

optimization process into the evolution of multiple subpopulations, akin to dividing a 

class of students into smaller groups. Each subpopulation can evolve independently and 

periodically share information or migrate individuals to facilitate global search and 

avoid local optima [177]. This approach offers two advantages. Firstly, multi-

population methods divide the entire population into several subpopulations, each with 

potentially different characteristics, parameter settings, or evolution strategies. These 

subpopulations can evolve independently or periodically exchange information or 

individuals to promote global search and prevent premature convergence. Secondly, in 

multi-population methods, information or individuals are often exchanged regularly 

between subpopulations to enhance diversity and global search. Forms of information 

sharing may include individual migration, solution exchange, and parameter adjustment, 

aimed at accelerating global search and improving algorithm robustness. In practice, 
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multi-population methods also involve considerations of population homogeneity and 

heterogeneity, as detailed in Chapter 2. Additionally, some multi-population methods 

are adaptive, dynamically adjusting the number, size, or parameter settings of 

subpopulations based on problem characteristics or search progress. This adaptive 

capability enables better adaptation to different problem domains and search 

environments, enhancing algorithm robustness and adaptability [171], [96]. 

As a popular algorithm in the field of Evolutionary Computation (EC) in recent 

years, some researchers have explored the application of the Differential Evolution (DE) 

algorithm and employed the multi-population approach to address Dynamic 

Optimization Problems (DOP) [174]. The CEC 2009 benchmark set has been used as a 

dynamic testing problem set to evaluate the performance of evolutionary computation 

in dynamic environments, with Li et al. introducing a General Dynamic Benchmark 

Generator (GDBG) to construct dynamic environments across three solution spaces 

[174]. Thus, many existing studies use the CEC 2009 benchmark set as the test problem 

set. Existing research on DOP solutions can be roughly categorized into several 

approaches: adaptive parameters [172], [173], history-based [175], prediction-based 

[176], and parallel and distributed methods [102]. In terms of adaptive parameters, 

Brest et al. proposed an adaptive control parameter setting method to dynamically 

adjust control parameters related to differential evolution [172]. Based on this method, 

three years later, Brest et al. applied an adaptive control parameter multi-population 

differential evolution algorithm to solve DOP [173]. The algorithm demonstrated strong 

performance on CEC 2009 dynamic optimization benchmark functions. Mendes et al. 

proposed a multi-population DE algorithm, DynDE, tailored for DOP without requiring 

F or CR parameters [175]. Experimental evidence supports the effectiveness of this 

algorithm in solving dynamic peak benchmark functions. In history-based methods, 

Halder et al. employed a multi-population approach and proposed a Cluster-based 

Dynamic DE with an External Archive algorithm [96]. This method divides the entire 

population into clusters based on the spatial location of the experimental solution, 

allowing for the sharing of local information during the optimization process. In 
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prediction-based methods, Liu et al. suggested that when a new environment is closely 

related to the previous one, transferring information can accelerate the acquisition of 

high-quality solutions in the new environment. Thus, they proposed a neural network-

based information transfer method [176]. In parallel and distributed approaches, Zhan 

et al. introduced a two-layer heterogeneous differential evolution algorithm in a cloud 

computing distributed environment [102]. This method, called Cloudde, facilitates 

simultaneous operation and adaptive migration of parameters or operators in different 

populations. It utilizes Message Passing Interface MPI technology to achieve 

distributed computing by sending different populations to different slave processes. 

Each slave process performs mutation and crossover operations with different evolution 

strategies independently during the evolutionary process. Subsequently, these slave 

processes return the results to the master process, which performs migration operations 

based on adaptive probability to facilitate information exchange and population 

evolution. It can be seen that Cloudde also adopts an adaptive approach. Furthermore, 

Li and Zhan et al. used Cloudde to solve cloud-based DOP [103]. 

The multi-population approach can be viewed in part as diversity maintenance. At 

the same time, the multi-population approach also involves memory and adaptability. 

The multi-population method is to divide a large population into several small sub-

populations, and each sub-population performs its duties and evolves independently. 

There are mainly two types of multi-population methods. In the first type, 

subpopulations are assigned different tasks, some subpopulations are responsible for 

finding the global optimal solution, and some subpopulations focus on tracking changes 

in the environment. These two subpopulations can share information and cooperate to 

guide the population to evolve better. A co-evolutionary algorithm based on the PSO 

algorithm and DE algorithm (CESO) is proposed by Lung et al. in [180]. In the CESO 

algorithm, crowding DE, a variant of the DE algorithm, is used to maintain the diversity 

of the population and avoid premature convergence. The PSO algorithm is used as a 

local search operator for fast convergence. The CESO algorithm balances exploration 

and exploitation and achieves good results. The second type, which is the focus of this 
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chapter, uses multiple homogeneous populations to locate and track distinct peaks. In 

this multi-population approach, the entire search space is divided into different regions. 

Each region may contain one or more peaks, and each subpopulation is responsible for 

searching a given region to find the optimal solution to achieve a global search. In [93], 

Yang et al. A clustering-based method of clustering particle swarm optimization CPSO 

to divide a large population into multiple subpopulations is proposed. However, 

partitioning leads to uneven distribution of subpopulations. When insufficient 

computing resources are allocated, some regions may not be fully utilized. Therefore, 

a more balanced approach to population division is needed. 

3.3 Framework of HIDE Method 

3.3.1 RSI Strategy (region-based subpopulation initialization) 

In the context of multi-population methods, the quality of population partitioning 

is crucial as it directly impacts the performance and efficiency of the algorithm. A good 

partitioning scheme possesses the following characteristics: balance, diversity, 

adaptability, and coverage of the entire search space. Addressing this issue, the Region-

based Subpopulation Initialization (RSI) strategy is proposed for initializing and 

generating subpopulations in new environments. As mentioned earlier, the problem 

arises when subpopulation partitioning is uneven, leading to certain regions being 

underused due to insufficient computational resources. However, existing partitioning 

methods often result in imbalanced population sizes. For instance, clustering-based 

partitioning depends on the distribution of individuals in the search space, leading to 

some subpopulations being disproportionately large while others are too small. This 

issue becomes more severe when the partitioned population sizes are too small, as some 

promising regions may not be thoroughly explored and evaluated for their fitness. 

To address the initialization of subpopulations, the RSI strategy is introduced. In 

the RSI approach, clustering is no longer simply used to partition subpopulations; 

instead, subpopulations are generated with predefined cluster centers. This process is 

akin to sowing seeds. Firstly, the number of subpopulations is specified, denoted as N, 

and the subpopulation size, denoted as M. Next, an archive is used to guide the 



60 

 

initialization process of subpopulations. Each seed is considered as the center of a 

cluster to generate new subpopulations. The set of seeds, contained within the archive, 

comprises all seeds used to generate subpopulations. Initially, this archive is empty. The 

algorithm checks if the seed set is empty. If it is empty, N seed individuals are generated 

by DE according to Equation (3.1), and these generated seeds are placed into the seed 

set. If the archive is not empty, the existing seeds in the archive are used. If the number 

of seeds in the archive is less than N, randomly generated seeds are added to the seed 

set until N is reached. Subsequently, individuals are generated in each subpopulation 

according to Equation (3.1) until the subpopulation size M is reached. It is important to 

note that each individual added to a subpopulation should satisfy the condition that its 

distance from the seed individual of the subpopulation is smaller than that from other 

seeds. Once all populations are generated, the algorithm evaluates all individuals and 

clears the archive. This concludes the initialization process of subpopulations.                                         

Algorithm 1 RSI Strategy 

input: Archive, N, M 

output: N subpopulations of size M 

1 Begin 

2 Seeds={}; 

3 If Archive is empty 

4    Generate N individuals according to Eq. (3.1) and add them into Seeds; 

5 Else 

6    Add individual in Archive into Seeds; 

7    Generate (N-size(Archive)) individuals and add into Seeds; 

8 End If 

9 For seedi in Seeds 

10 
   Generate M individuals around the seedi, which satisfy that the distance  

to seedi is less than the distance to seedj (j≠i); 

11 End For 

12 If all subpopulations’ sizes are enough (M) 

13    Evaluate the individuals in the population; 

14    Archive={}; 

15 End If 

16 End 

As shown in Algorithm 1, this algorithm is used to initialize N subpopulations, 
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each containing M individuals. The algorithm first checks if the archive is empty. If it 

is, then N individuals are generated as seeds according to a specific equation, and M 

individuals are generated around each seed. Otherwise, individuals are selected from 

the archive as seeds, and additional individuals are generated to fill the required number 

of seeds. Next, for each seed individual, M individuals are generated, ensuring that their 

distance to the seed is less than to any other seed, and all generated individuals are 

evaluated. Finally, the archive is cleared for the next evolutionary iteration. 

3.3.2 DE Optimization Process 

After generating the subpopulations, each subpopulation is optimized using the DE 

algorithm. Since diversity is already maintained by multiple subpopulations, it is 

necessary to enhance the local search capability to achieve a balance between 

exploration and exploitation. Therefore, the DE/best algorithm, which has a strong local 

search capability, is adopted. In the DE/best algorithm, the mutation operation is not 

based on the differences between the current individual and other individuals, but on 

the differences between the best individual (i.e., the best individual) in the population 

and other individuals. This strategy aims to guide the algorithm to converge faster to 

the proximity of the optimal solution, as it directly uses the best information in the 

population. 
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The scaling factor F for the mutation operation is set to 0.5, which is a common 

setting in DE. According to Equation (3.2), the crossover probability Cr is set to 0.9, 

and the mutated individuals are mixed with the original individuals to construct tests 

separately. 

3.3.3 Subpopulation Merge 

The purpose of merging subpopulations is to focus the energy of subpopulations 

on the best solutions in the current region, enabling the sharing of information among 

subpopulations to accelerate the convergence of the current local region and promote 
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the global search process. Firstly, population merging can enhance search diversity, 

accelerate the convergence of the current local region, and promote the global search 

process. Secondly, it speeds up the convergence of the local region. By merging 

subpopulations with similar best individuals, their individual information can be 

effectively used to speed up the convergence rate of the current local region. This helps 

to adapt to changes in dynamic environments faster, improving the responsiveness of 

the algorithm. Finally, it promotes the global search process. Population merging helps 

to share the best individual information of each subpopulation in the global search 

process, thereby providing more global search capabilities for the entire optimization 

process and increasing the chances to find the global optimal solution. Therefore, 

population merging is a strategy aimed at improving the search efficiency and 

performance of optimization algorithms in dynamic environments, enabling them to 

better adapt to environmental changes and quickly find the optimal solution. 

In practical operation, after all subpopulations have run for one generation, 

merging may converge to the same peak subpopulation. The specific operation process 

is as follows. 

Step 1: Predefine the parameters “max_subsize” and the threshold point “thmerge” 

for the merging process. Represent the set including all subpopulations as S = 

{subpop1,…, subpopn}, where n≤N. This set comprises the best individuals from each 

subpopulation, denoted as G = {xbest,1,...,xbest,n}. 

Step 2: Calculate the distance between each pair of best individuals in G and find 

the minimum distance “distmin” along with its corresponding subpopulations i and j (i 

≠ j). If distmin is below the threshold “thmerge” and the sum of the sizes of subpopulations 

i and j is less than “max_subsize,” it is considered that the distance between these two 

subpopulations is sufficiently small, and their merging will not cause the population 

size to exceed the limit. Consequently, the subpopulation with inferior xbest is merged 

with the one having superior xbest. Through this merging operation, subpopulations with 

poorer search histories are combined with those having better search histories, thereby 

enhancing the search capability and convergence speed of the entire population. 
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Subsequently, the subpopulation with inferior xbest is removed from the subpopulation 

set S to ensure that they no longer affect subsequent operations. Repeat this process 

until no valid subpopulation mergers occur. This process effectively uses the individual 

information among subpopulations, promotes collaborative cooperation among 

populations, speeds up the convergence rate of the entire population, and enhances the 

search efficiency and performance in dynamic environments. 

The parameter “max_subsize” is set to limit the size of subpopulations, thereby 

requiring an appropriate upper limit to control the scale of subpopulations. If the 

subpopulations are too large, they will consume too many limited resources on local 

optimal solutions, which is inconsistent with the original intention of the multi-

population method. If “max_subsize” is too small, the subpopulations converging to the 

same peak will not be able to communicate and share individual information in a timely 

manner. Regarding the conditions for subpopulation merging, when the distance 

between the best individuals in two subpopulations is less than the threshold “thmerge,” 

and the sum of their population sizes is less than the upper limit of “max_subsize,” 

merging them can fully use the information of their subpopulations and accelerate the 

convergence of the current local region. This condition ensures that the merging does 

not exceed the population size limit and ensures that the distance between the two 

subpopulations is close enough to perform the merging operation. However, when the 

distance between the best individuals in two subpopulations is greater than the threshold 

“thmerge,” it is considered that the subpopulations are seeking different peaks or moving 

towards different local regions, and it is not appropriate to perform the operation at this 

time. 

3.3.4 Archive-based historical information reuse (AHIR) 

To fully make use of the historical information to guide the search, the AHIR 

strategy is proposed. Suppose that the set denoted as Sprev_env= {subpop1, ..., subpopn} 

contains n subpopulations from the previous environment. Two parameters is defined: 

the threshold for duplicate removal and the convergence radius, which are denoted as 

thdr and rconv, respectively. First, the searching radius for every subpopulation is 



64 

 

calculated in the Sprev_env according to: 
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In this formula, the function d (·,·) calculates the Euclidean distance between two 

vectors, while the function size ( ) returns the size of the subpopulation. Xcenter represents 

the arithmetic mean of all individuals in the subpopulation. 

Specifically, the AHIR strategy comprises several key steps: 

Algorithm 2 AHIR Strategy 

input: Sprev_env={subpop1, ..., subpopn}, thdr, rconv 

output: Archive 

1 Begin 

2 Archive={}; 

3 For subpopi in Sprev_env 

4     If radiusi < rconv 

5         Archive += xbest,i; 

6     End If 

7 End For 

8 While True 

9     If there exists i, j (i≠j) that d(Archive[i], Archive[j])<thdr 

10         Remove the worse individual from the Archive; 

11     Else 

12         Break; 

13     End If 

14 End While 

15 End 

Step 1, Archive Construction: In the previous environment, the best individual from 

each subpopulation is added to the archive to record the excellent solutions from the 

previous environment. Step 2, Search Radius Computation: For each subpopulation in 

the archive, its search radius is computed. The search radius represents the average 

distance between individuals in the subpopulation and the centroid of that 

subpopulation, used to determine if the subpopulation is in a convergent state. If the 

search radius of a subpopulation is less than the threshold rconv, it is considered to be in 

a convergent state, and the best individual from the subpopulation is added to the 
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archive. Step 3, Duplicate Removal Operation: The duplicate removal operation is 

proposed to remove similar individuals from the archive. If there exist two individuals 

in the archive with a distance between them less than the threshold thdr, the inferior 

individual is removed from the archive. This removal operation is repeated until there 

are no similar individuals based on thdr in the archive. Finally, Extraction of Local 

Optima: When the search radius of a subpopulation is less than the convergence radius, 

the best individual from that subpopulation is added to the archive to record the local 

optimum of that subpopulation in the current environment. Detailed information of the 

AHIR strategy is presented in Algorithm 2. 

3.3.5 The Whole HIDE Algorithm 

In this section, the overall procedure of the proposed HIDE algorithm is presented. 

The following are the steps of the Algorithm 3. 

Algorithm 3 HIDE 

input: max_FEs, N, M, thmerge, thdr, rconv 

output: best individual 

1 Begin 

2 Archive={}; 

3 S=RSI strategy(N, M, Archive); 

4 While FEs < max_FEs 

5     For subpopi in S 

6         DE(subpopi); 

7     End For 

8     S=Subpopulation merge(S, thmerge); 

9     If the environment has changed 

10         Archive=AHIR strategy(S, thdr, rconv); 

11         S=RSI strategy(N, M, Archive); 

12         Update FEs; 

13     End If 

14 End While 

15 End 

The population is initialized using the RSI strategy, creating initial subpopulations 

for evolution. Throughout the evolution process, each subpopulation undergoes 

independent updates using the DE process, striving for improved solutions. The 
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algorithm iterates until it reaches the preset maximum number of function evaluations 

(max_FEs). To enhance global search capabilities and reduce overlap between 

populations, a subpopulation merging process is employed, facilitating efficient 

exploration of the solution space. While environment detection techniques can be 

applied to check for changes in each generation, this study does not focus on such 

detection, assuming environmental changes occur after a fixed number of function 

evaluations. In case of an environment change, the AHIR strategy is activated. This 

strategy preserves historical information by storing the best individuals from the 

previous environment in an archive, which is then used to generate subpopulations in 

the new environment, facilitating the location and tracking of moving peaks. The 

detailed implementation of these steps, including the entire procedure of the HIDE 

algorithm, can be found in Algorithm 3. 

3.4 Experiment 

3.4.1 Experiment Setting 

In the experimental section of this chapter, the Moving Peaks Benchmark (MPB) 

was used to evaluate the performance of the optimization algorithms. MPB serves as a 

standardized test suite for evaluating the performance of optimization algorithms on 

DOP. It was proposed by Branke et al. [25] and has been widely adopted in academic 

research due to its high configurability and ease of implementation, enabling fair 

comparisons and evaluations of different algorithms. MPB allows for easy 

parameterization, and after parameter setting, the fitness landscape of MPB's objective 

function changes over time (after a certain number of function evaluations), reflecting 

variations in the number, positions, heights, and widths of peaks. The characteristic 

feature of MPB is the dynamically changing peaks over time, which can simulate the 

characteristics of many real-world DOP, such as dynamic resource allocation and 

mobile target tracking. The mathematical expression of MPB's fitness function is as 

follows: 
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where P is the number of peaks in the environment, that is, the number of local 

optimal regions; x(t) = [x1,..., xD] represents a vector of D-dimensional search space in 

the t-th environment, also known as a candidate solution or individual; Hi(t), Wi(t), Xi(t) 

= [Xi1,..., XiD] represent the height, weight, and position of the i-th peak in the t 

environment, respectively. The height and weight obey the random Gaussian 

distribution σ ~ N (0,1) and are affected by the parameter height disturbance degree SH 

and the weight disturbance degree SW respectively, 

      
( ) ( 1)i i HH t H t S = − + 

           (3.5) 

( ) ( 1)i i WW t W t S = − + 
      (3.6) 

The expressions for height and width imply that both the height and width of the 

peaks are randomly sampled from a standard normal distribution with a mean of 0 and 

a standard deviation of 1. This means that the height and width of the peaks are random 

and exhibit characteristics of a normal distribution. Parameters SH and SW control the 

extent to which these random values affect the peak height and width, determining the 

range of fluctuation for both height and width. Here, t-1 denotes the state of the previous 

environment, indicating that the state of the previous environment influences the peak 

height and width in the current environment. 

The position is changed by a velocity vector: 
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The purpose of this vector is to predict and adjust the position of peak i in the next 

environment based on the state of the previous environment, Xi(t-1). r is a random 

vector; λ is a correlation coefficient, which controls the correlation between the old 

environment and the new environment. The moving vector vi(t-1) is normalized and 

then multiplied by the moving length SX to get the moving vector vi(t) of the next 

environmental change; SX controls the intensity of the environmental change. A series 

of parameter settings for MPB are listed in Table 1. 



68 

 

In this chapter, the parameters of the proposed HIDE algorithm include the number 

of initial seeds N, the size of subpopulation M, the size of the largest subpopulation  

max_subsize, subpopulation merging threshold thmerge, duplication removal 

threshold thdr, and the convergence radius rconv. Their corresponding settings are: N = 

10, M = 25, max_subsize = 50, thmerge = thdr = 5.0, and rconv = 1.0.  

Table 3.1 Parameter Setting for MPB 

Parameter Value 

Max FEs, max_FEs 5e5 

Number of peaks, P 10 

Environmental change 

frequency 

5000 

Number of changes, C 100 

Height severity, SH 7.0 

Width severity, SW 1.5 

Peak shape Cone 

Correlation coefficient, 

λ 

0.0 

Shift length, SX 5.0 

Dimension, D 5 

Search range [0, 100] 

Height range [30.0, 70.0] 

Width range [1.0, 12.0] 

The algorithms are run on the MPB test suite, and different combinations of MPB 

parameters form 12 DOPs with different environmental changing characteristics. Each 

problem is composed of 100 continuously changing environments. After every 5000 

FEs, the environment changes. Therefore, the complete execution of the algorithm 

contains 5e5 FEs. To reduce the error caused by randomness, each algorithm is run 20 

times on each corresponding MPB problem instance. Each MPB instance will be 

reinitialized according to the given parameter settings. The average value and standard 

deviation of the error obtained are taken as the final output. The comparing algorithms 

include standard DE algorithms with different mutation strategies and different Cr 

parameter settings, which are DE/best/0.1, DE/best/0.9, DE/rand/0.1, and DE/rand/0.9, 

and some competitive multipopulation approaches and DE variants in global 

optimization, which are jDE [20], Cloudde [27], CESO [31], and CPSO [32]. To ensure 
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fairness of the comparison, the parameters of the comparing algorithms are consistent 

with the settings in the literature. 

3.4.2 Performance Measure 

In this chapter, two widely used indicators are used to evaluate the performance of 

the algorithm, which are offline error (Eo) and the best before change error (Eb). The 

calculation formula of Eo is shown as 
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where C is the number of environmental changes, N is the FEs spent in each 

environment, Eij is the error of the j-th FE under the i-th environment, and the error is 

defined as the difference between the fitness value of the best solution found by the 

algorithm and the real optimal solution under the current environment. Eo reflects the 

ability of the algorithm to react to environmental changes. The Eb calculation formula 

is shown in 
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where Ei,best is the best error obtained in the i-th environment. Eb reflects the global 

search ability of the algorithm in dynamic environments. The combination of these two 

indicators can make a comprehensive evaluation and measurement of the performance 

of the DOP algorithms. 

3.4.3 Results and Discussions 

The experimental results are presented in Table 3.2, Table 3.3, and Table 3.5, 

considering cases where P=5, 10, and 20. The parameter λ is divided into 0 and 1, while 

SX is considered as 1 and 5. Each row corresponds to the offline error Eo and the best 

error before environmental change Eb. Standard deviations over 20 runs are indicated 

in parentheses. The best results for this set of test cases are shown in bold font in the 

table. Additionally, a Wilcoxon rank-sum test at the 0.05 significance level is conducted 

to assess whether there are significant differences in the comparison results. The 

symbols “+”, “=”, and “-” indicate whether the performance of the HIDE algorithm is 
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significantly better than, equal to, or worse than the compared algorithms. 

Table 3.2 Experimental Results on the MPB with P=5 

P λ S
X
 Error DE/best/0.1 DE/best/0.9 DE/rand/0.1 DE/rand/0.9 jDE Cloudde CESO CPSO HIDE 

5 

0 

1 

E
o
 17.61(3.36)+ 13.19(2.44)+ 23.50(5.29)+ 18.19(3.65)+ 37.48(7.97)+ 29.44(5.49)+ 8.47(3.02)+ 3.86(0.85)+ 2.48(0.52) 

E
b
 10.44(2.38)+ 11.34(2.27)+ 11.08(2.43)+ 9.29(2.40)+ 9.34(2.58)+ 8.35(2.22)+ 6.33(3.22)+ 1.38(0.41)+ 0.33(0.38) 

5 

E
o
 17.28(3.41)+ 13.09(2.37)+ 23.36(5.38)+ 18.05(3.74)+ 37.42(8.04)+ 29.48(5.60)+ 15.72(4.72)+ 9.16(1.94)+ 5.63(0.97) 

E
b
 10.21(2.14)+ 11.25(2.25)+ 10.85(2.50)+ 9.11(2.40)+ 9.26(2.62)+ 8.33(2.32)+ 8.83(3.54)+ 2.04(0.79)+ 0.50(0.42) 

1 

1 

E
o
 17.54(3.69)+ 12.99(2.41)+ 23.44(5.17)+ 18.07(3.67)+ 37.14(7.37)+ 29.33(5.82)+ 8.47(2.94)+ 3.93(0.90)+ 2.48(0.65) 

E
b
 10.41(2.61)+ 11.14(2.27)+ 11.13(2.64)+ 9.14(2.48)+ 9.34(2.50)+ 8.24(2.36)+ 6.13(3.13)+ 1.38(0.58)+ 0.34(0.69) 

5 

E
o
 17.74(3.54)+ 13.18(2.52)+ 23.64(5.37)+ 18.01(3.80)+ 37.26(7.55)+ 29.57(6.36)+ 16.35(4.25)+ 9.28(2.12)+ 5.68(1.05) 

E
b
 10.63(2.50)+ 11.31(2.34)+ 11.23(2.75)+ 8.95(2.74)+ 9.28(2.50)+ 8.32(2.65)+ 8.91(3.13)+ 2.32(1.07)+ 0.56(0.67) 

Table 3.3 Experimental Results on the MPB with P=10 

P λ S
X
 Error DE/best/0.1 DE/best/0.9 DE/rand/0.1 DE/rand/0.9 jDE Cloudde CESO CPSO HIDE 

10 

0 

1 

E
o
 16.42(3.24)+ 13.96(2.82)+ 20.52(3.53)+ 16.43(3.07)+ 34.30(6.42)+ 29.23(5.65)+ 7.97(2.53)+ 4.17(0.67)+ 2.68(0.38) 

E
b
 11.53(2.79)+ 12.72(2.74)+ 12.14(2.66)+ 10.42(2.66)+ 10.86(2.81)+ 9.74(2.41)+ 5.92(2.39)+ 1.90(0.38)+ 0.74(0.50) 

5 

E
o
 16.53(3.14)+ 14.08(2.68)+ 20.54(3.66)+ 16.49(3.11)+ 34.16(6.32)+ 29.12(5.44)+ 14.89(3.42)+ 8.37(1.30)+ 5.69(0.83) 

E
b
 11.61(2.54)+ 12.82(2.57)+ 12.04(2.64)+ 10.47(2.69)+ 10.73(2.58)+ 9.75(2.38)+ 9.79(2.81)+ 2.61(0.68)+ 1.39(0.68) 

1 

1 

E
o
 16.76(2.84)+ 14.22(2.42)+ 20.56(3.56)+ 16.60(3.06)+ 34.36(6.34)+ 28.92(5.08)+ 8.83(2.82)+ 4.19(0.73)+ 2.81(0.69) 

E
b
 11.89(2.23)+ 12.95(2.33)+ 12.12(2.50)+ 10.59(2.49)+ 10.83(2.64)+ 9.66(2.17)+ 6.75(2.73)+ 1.96(0.61)+ 0.87(0.80) 

5 

E
o
 17.08(3.04)+ 14.35(2.22)+ 20.84(3.37)+ 16.84(2.91)+ 34.79(6.21)+ 29.70(5.53)+ 15.31(3.86)+ 8.58(1.54)+ 5.66(0.95) 

E
b
 12.23(2.58)+ 13.08(2.16)+ 12.43(2.52)+ 10.84(2.50)+ 11.13(2.56)+ 9.99(2.45)+ 9.89(3.31)+ 2.72(0.75)+ 1.37(0.90) 

Table 3.4 Experimental Results on the MPB with P=20 

P λ S
X
 Error DE/best/0.1 DE/best/0.9 DE/rand/0.1 DE/rand/0.9 jDE Cloudde CESO CPSO HIDE 

20 

0 

1 

E
o
 15.76(1.63)+ 14.53(1.86)+ 19.25(1.63)+ 15.37(1.53)+ 31.75(2.95)+ 27.57(2.84)+ 9.32(2.92)+ 4.19(0.54)= 3.89(1.01) 

E
b
 11.42(1.49)+ 13.50(1.83)+ 11.74(1.32)+ 10.14(1.35)+ 10.31(1.35)+ 9.41(1.27)+ 7.52(2.91)+ 2.17(0.41)= 2.07(0.92) 

5 

E
o
 15.81(1.57)+ 14.19(1.57)+ 19.26(1.63)+ 15.27(1.74)+ 31.63(3.13)+ 28.06(2.65)+ 14.07(2.20)+ 7.91(0.85)+ 5.93(0.70) 

E
b
 11.53(1.52)+ 13.17(1.53)+ 11.82(1.38)+ 10.04(1.69)+ 10.33(1.45)+ 9.59(1.35)+ 9.87(2.04)+ 2.90(0.62)+ 2.05(0.55) 

1 

1 

E
o
 15.88(1.63)+ 14.14(1.52)+ 19.51(1.59)+ 15.52(1.66)+ 31.85(2.80)+ 27.84(2.81)+ 9.83(1.75)+ 4.27(0.54)+ 3.81(0.77) 

E
b
 11.53(1.60)+ 13.10(1.52)+ 11.93(1.30)+ 10.38(1.59)+ 10.36(1.24)+ 9.43(1.30)+ 7.84(1.85)+ 2.23(0.46)= 1.92(0.74) 

5 

E
o
 15.98(1.42)+ 14.32(1.39)+ 19.66(1.70)+ 15.54(1.54)+ 32.10(2.99)+ 28.45(2.97)+ 15.58(3.01)+ 7.96(0.90)+ 5.84(0.73) 

E
b
 11.68(1.28)+ 13.28(1.41)+ 12.15(1.33)+ 10.38(1.42)+ 10.55(1.31)+ 9.67(1.41)+ 11.04(2.75)+ 2.88(0.65)+ 2.00(0.63) 

It can be observed that in all 12 MPB test cases, the HIDE algorithm outperforms 

all other algorithms, with the minimum values of Eo and Eb obtained for each instance 

indicating the strong performance of the HIDE algorithm in handling environmental 

changes and conducting global searches. Furthermore, our proposed HIDE algorithm 

adopts a strategy of generating subpopulations based on predefined or stored cluster 

centers (seeds), which outperforms CPSO, which partitions the population into 

subpopulations. These results suggest that the strategy of forming subpopulations 
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proposed in this study is effective and competitive among multi-population methods 

for DOP. 

3.5 Effect of the AHIR Strategy 

This section investigates the impact of the AHIR strategy on the performance of 

the HIDE algorithm. When the AHIR strategy is removed, all seeds initialized after 

each environment change are randomly generated. Table V shows the results of the 

proposed algorithm with or without AHIR, which are denoted as HIDE and HIDE-w/o-

AHIR respectively, on MPB with different parameter settings.  

Table 3.5 Experimental Results of the Effect of the AHIR Strategy on the MPB Test Suite 

 HIDE HIDE-w/o-AHIR 

P=5 λ=0 S
X
=1 2.48(0.52) 

0.33(0.38) 

18.77(3.37) 
5.01(1.65) 

P=5 λ=0 S
X
=5 5.63(0.97) 

0.50(0.42) 

18.69(3.40) 
4.92(1.90) 

P=5 λ=1 S
X
=1 2.48(0.65) 

0.34(0.69) 

18.56(3.60) 
4.85(1.82) 

P=5 λ=1 S
X
=5 5.68(1.05) 

0.56(0.67) 

18.68(3.48) 
5.03(1.77) 

P=10 λ=0 S
X
=1 2.68(0.38) 

0.74(0.50) 

15.59(2.45) 
5.94(1.42) 

P=10 λ=0 S
X
=5 5.69(0.83) 

1.39(0.68) 

15.66(2.24) 
5.99(1.38) 

P=10 λ=1 S
X
=1 2.81(0.69) 

0.87(0.80) 

15.71(2.23) 
6.01(1.27) 

P=10 λ=1 S
X
=5 5.66(0.95) 

1.37(0.90) 

15.70(2.27) 
5.92(1.70) 

P=20 λ=0 S
X
=1 3.89(1.01) 

2.07(0.92) 

13.90(1.33) 
5.78(1.14) 

P=20 λ=0 S
X
=5 5.93(0.70) 

2.05(0.55) 

13.99(1.41) 
5.89(1.17) 

P=20 λ=1 S
X
=1 3.81(0.77) 

1.92(0.74) 

13.92(1.43) 
5.83(1.17) 

P=20 λ=1 S
X
=5 5.84(0.73) 

2.00(0.63) 

14.23(1.54)  
6.05(1.39) 

The upper row of each cell in the table is Eo, the lower row is Eb, and the result in 

brackets is the standard deviation. By comparison, the better results are expressed in 

bold font. It can be seen that the HIDE algorithm with AHIR is much better than the 

HIDE algorithm without AHIR, in terms of the Eo or Eb. This shows that the HIDE 

algorithm with AHIR has brought great benefit to the HIDE algorithm, and the AHIR 

strategy is the core of the algorithm because it realizes the utilization of historical 

information. 
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3.6 Conclusion 

In this study, three strategies, namely RSI, AHIR, and HIDE, were investigated for 

DOP. RSI demonstrated effective resource allocation among subpopulations during the 

initial search phase, promoting a balanced exploration of the search space. AHIR 

leveraged past information to accelerate search processes in new environmental 

conditions, enhancing the efficiency of the algorithm. HIDE exhibited rapid adaptation 

to environmental changes while maintaining robust global search capabilities. 

Looking ahead, there are avenues for further improvement and exploration in 

dynamic optimization research. Firstly, parameters such as N and M in the HIDE 

algorithm may require fine-tuning to optimize performance. Developing an adaptive 

mechanism to adjust these parameters dynamically could enhance the algorithm's 

adaptability and efficiency. Secondly, while the subpopulations in HIDE operate 

collaboratively, there is potential to explore the independent exploitation of partial 

search spaces within each subpopulation. Implementing constraints to guide 

subpopulations in exploring specific subspaces could lead to more targeted and efficient 

search processes. These future directions hold promise for advancing the effectiveness 

and applicability of DOP algorithms. Additionally, integrating solutions for DOP with 

addressing challenges such as scalability, multi-objectivity, and high computational 

costs could provide comprehensive approaches for tackling complex optimization tasks. 

This work, entitled “Historical information-based differential evolution for 

dynamic optimization problem,” was published in the Proceedings of the IEEE 

Congress on Evolutionary Computation (CEC) in August 2021. 
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CHAPTER 4 

MULTI-CRITERIA EVOLUTIONARY ALGORITHM FOR 

MULTI-TASK OPTIMIZATION 

4.1 Introduction 

MTOP [27]-[150] is a promising research area. The core assumption of MTOP is 

that knowledge gained from optimizing one task could be applied to improve the 

performance of other tasks [30]-[185]. This is because, in certain dimensions, if the 

optimal solutions of two different tasks exhibit similarity, the knowledge of optimal 

solutions from one task can guide the evolutionary search for another. Many real-world 

optimization problems [186]-[190], such as vehicle routing problems [186]-[187], 

support this assumption. For example, in daily life, experienced drivers are preferred 

for facing new tasks each time. They are preferred because they can use past 

experiences to solve new problems more quickly and effectively. Therefore, dealing 

with multi-task problems is more efficient than focusing on optimizing a single task. In 

recent years, MTOP have attracted increasing attention and related research from more 

scholars. A search using the keyword “multitasking” in the two most prestigious 

journals in the IEEE Xplore and EC domains, IEEE Transactions on Cybernetics 

(TCYB) and IEEE Transactions on Evolutionary Computation (TEVC), reveals that the 

research interest in MTOP has been steadily increasing over the past decade, with a 

particularly significant rise in the last five years on IEEE Xplore, and an unprecedented 

increase in attention to this issue in the top EC journals in the last five years as well, as 

Table 4.1 and Figure 4.1 shows. 

In dealing with MTOP, EC emerges as a promising approach [164]. Due to its 

robust search capabilities and straightforward implementation, EC has been effectively 

utilized to address numerous complex optimization challenges. Widely used EC 

algorithms include GA [2] [4] [41] [59], PSO [51] [53] [55] [56], ACO [114], DE [32] 

[44]-[50], ES [128], and EDA [139]-[166] [195]. However, it is important to highlight 
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that traditional EC solvers typically initiate the search without any prior knowledge of 

the tasks they are tackling. Nevertheless, given that problems rarely occur 

independently, addressing one problem can provide insights beneficial for solving other 

correlated problems. In recent years, there has been growing interest in ETO: An 

approach that merges EC solvers with knowledge acquisition and transfer from 

pertinent domains to improve optimization efficiency and effectiveness. [27]. 

Table 4.1 Number of papers of MTOP in the last ten years 

Year IEEE Xplore TCYB TEVC 

2014 105 8 0 

2015 116 15 0 

2016 139 13 1 

2017 173 16 2 

2018 207 14 1 

2019 295 27 8 

2020 300 29 8 

2021 610 45 8 

2022 1060 84 29 

2023 1329 77 72 

In existing approaches, multi-task problems are often treated as separate problems 

rather than components or subproblems of the entire MTOP. Whether using single-

population or multi-population algorithms, solving MTOP typically involves designing 

KT strategies. However, designing effective KT strategies is a challenging task. In this 

chapter, a novel idea that considers multi-tasks as multi-criteria optimization problems 

is proposed. The populations are evolved to address multiple related criteria 

simultaneously, enabling a single search run to obtain optimal solutions for different 

tasks. Inspired by this concept, the attempt is made to address MTOP using the MCOP 

approach. For example, consider a classroom composed of high school students who 

need to study subjects such as Mathematics, English, Physics, and Chemistry. 

Traditional multi-population methods divide students into several groups, each 

equivalent to a subpopulation, focusing on studying a specific subject. These groups 

then exchange learning experiences, representing KT. In contrast, our multi-criteria 

approach can be likened to evaluating students' learning performance using exam scores. 

Exam scores not only serve as indicators of students' learning performance but also 
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reflect their mastery and proficiency levels in different subject areas. Consequently, 

teachers can assess students' learning status in various subjects based on exam scores 

and provide targeted guidance and assistance as needed. This problem-solving approach 

is relatively novel, as there was no relevant literature in the EC field before embarking 

on this work. 
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Figure 4.1 Number of papers of MTOP in the last ten years 

This problem-solving approach is relatively novel, as there was no relevant 

literature in the EC field before embarking on this work. The utilization of different 

criteria was alternated, and despite this simplicity, experimental results demonstrated 

promising performance compared to other algorithms. Subsequently, through 

discussions and insights gained during conference exchanges, our idea received 

academic recognition. Encouraged by the acknowledgment received at the GECCO 

conference, we endeavored to increase the complexity of the problem. We combined 

multi-objective optimization with MTOP, forming multi-objective MTOP (MO-MTOP). 

To address MO-MTOP, a multi-objective multi-criteria optimization problem (MO-

MCOP) approach was employed, and a criterion selection strategy was proposed to 

enrich the algorithm and enhance its efficiency. This achievement was published in a 

journal after the conference. 

4.2 Related Work 

Some EC algorithms have been used to address MTOP, and existing research can 
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be broadly categorized into two categories. One category is based on single-population 

multi-factorial methods [150], [191]-[195], while the other category is based on multi-

population algorithms [194]-[195]. 

The first category of methods is exemplified by the multi-factorial evolutionary 

algorithm (MFEA) [150], which has provided a research paradigm for subsequent 

studies. MFEA is an approach that uses a single population with multiple 

subpopulations to solve MTOP. The MFEA framework divides a population into 

multiple subpopulations, each focusing on optimizing a different task. These 

subpopulations may share information during the evolution process to facilitate 

collaborative learning and KT among tasks. Building upon this framework, some 

enhanced variants of MFEA have been developed for further research and solving 

MTOP. For instance, the cognizant MTOP, referred to as MFEA-II, leverages data 

generated during the processing of multiple tasks to learn relationships among these 

tasks [191]. 

The second category primarily addresses multi-task problems by maintaining 

multiple populations [142]-[145]. In this approach, multiple populations are typically 

used, with each population responsible for solving a specific task. Each population 

independently executes the optimization process, attempting to find the optimal 

solution to meet the requirements of its corresponding task. Chen et al. [142] introduced 

an adaptive archive-based evolutionary method specifically designed for multi-task 

optimization scenarios, demonstrating its effectiveness in enhancing multi-task 

optimization performance. Building upon this, Huang et al. [143] introduced an 

auxiliary agent-based evolutionary framework that combines adaptive KT mechanisms, 

thereby improving optimization efficiency across different tasks. Liu et al. [144] made 

contributions in this field by proposing an auxiliary agent-based multi-task evolutionary 

algorithm that leverages agent models to enhance multi-task optimization performance. 

Similarly, Chen et al. [32] introduced KT crossover to transfer knowledge among 

subpopulations during the evolution process. Gong et al. [146] explored evolutionary 

multi-task strategies with a focus on dynamic resource allocation, providing insights 
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into optimizing multiple tasks under dynamically allocated resources. Finally, Wei and 

Zhong [145] conducted preliminary research on KT mechanisms in multi-classification 

tasks using gene expression programming, offering potential avenues for KT in 

complex optimization scenarios. These studies collectively advance our understanding 

and capabilities in utilizing EC techniques to address the challenges of multi-task 

optimization. 

Regarding MTOP, recent research findings have been summarized in several 

representative reviews [196]-[167]. However, existing MTOP algorithms, whether 

employing a single population of multiple groups or utilizing multiple populations, still 

face limitations in treating the multiple tasks of multi-task problems as separate issues. 

Therefore, existing MTOP algorithms must be used in conjunction with carefully 

designed KT strategies between tasks. However, designing an effective KT strategy is 

a challenging problem and may even lead to negative transfer across tasks [162]. To 

address this limitation, populations can be evolved correspondingly using multiple 

relevant criteria, thus searching for optimal solutions for all different tasks in a single 

run. MTOP is viewed as MCOP [196], allowing for more efficient resolution of MTOP 

by fully using knowledge across different tasks using multiple criteria in MCOP for 

environmental selection and population evolution. Through this approach, addressing 

the complex challenge in MTOP of identifying valuable knowledge and transferring it 

across various related multi-objective tasks transforms into a more manageable task: 

employing multiple assessment criteria to direct environmental selection and 

population evolution, thus generating optimal solutions that satisfy all tasks' different 

criteria. Furthermore, this approach has been applied to address the MO-MTOP. 

Therefore, this research direction holds tremendous potential, providing important 

methodologies for handling MTOP and making substantial contributions to the 

advancement of related research domains. 

4.3 Treating Multi-task Optimization as Multi-Criteria Optimization 

4.3.1 Introduction 

MTOP is regarded as MCOP to effectively address MTOP. Specifically, we 
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approach MTOP, which encompasses multiple tasks, as MCOP with multiple evaluation 

criteria (i.e., fitness functions) for individual selection and population evolution. This 

reframing of MTOP addresses a significant challenge: how to acquire and transfer 

valuable knowledge among diverse tasks. It simplifies the issue into one of utilizing 

multiple evaluation criteria to guide selection operations and population evolution, 

facilitating the discovery of optimal solutions for various tasks. 

For example, consider a class composed of high school students who need to study 

various subjects such as mathematics, English, physics, and chemistry, each subject 

representing a task. Past multi-population methods have divided students into several 

groups, with each group acting as a subpopulation focusing on studying a specific 

subject. These groups exchange learning experiences, which is akin to KT. The multi-

criteria approach can be likened to evaluating students' learning performance using 

exam scores. Exam scores not only serve as indicators of students' learning performance 

but also reflect their proficiency and competence levels in different knowledge domains. 

The overarching goal is to optimize the performance of all tasks, similar to students 

achieving excellent scores in multiple subjects. 

The work in this chapter represents the first attempt to address MTOP by viewing 

it as MCOP, which was presented at the GECCO 2021 conference. To avoid ambiguity, 

it is explicitly stated that in this chapter, MCOP refers to a problem with multiple 

evaluation criteria, rather than a problem where the criteria themselves need to be 

optimized. The chapter adopts a cyclic multi-criteria approach, where the selection of 

which criterion to use is typically done in a predefined rotating order, rather than being 

randomly selected. In subsequent work, more efficient methods for criterion selection 

are explored. 

For experimental investigation, a multi-criteria differential evolution (MCDE) 

algorithm was developed, employing multi-criteria strategies and utilizing the 

differential evolution algorithm as the optimizer. To assess the proposed algorithm's 

efficacy, thorough experiments were conducted using widely adopted benchmark 

datasets for MTOP and compared with some of the latest EMTO algorithms. 
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4.3.2 Method 

Multiple tasks correspond to multiple fitness functions, which can serve as 

evaluation criteria for environmental selection and individual evolution. More 

importantly, the optimal solutions of fitness functions in different tasks may exhibit 

similarities in certain dimensions. For example, consider two tasks: one aims to 

minimize costs, while the other aims to maximize profits. Although the optimization 

objectives of these two tasks differ, in practice, there may exist a trade-off between 

minimizing costs and maximizing profits. For instance, reducing costs typically leads 

to an increase in profits, and vice versa. Therefore, in such cases, although the 

optimization objectives of the two tasks are different, their optimal solutions may 

exhibit similarities in certain dimensions, such as a balance point between costs and 

profits. Hence, in such scenarios, using a single fitness function as the guiding criterion 

for evolution not only aids in optimizing the corresponding task but also facilitates the 

optimization of other related tasks. Consequently, MTOP can be viewed as MCOP, and 

appropriate criteria can be selected at different stages to guide optimization. 

To efficiently use multiple criteria, a multi-criteria strategy employing a round-

robin approach is proposed. Specifically, the multiple criteria are sequentially activated 

in a round-robin manner to guide evolution. To achieve this, a parameter G is introduced 

to control the number of generations each criterion remains active. Each criterion is 

activated in turn and serves as the current fitness function to guide evolution for G 

generations, and every K×G generations constitute a complete cycle where all K criteria 

are activated once. Furthermore, to enhance the diversity in criterion usage, whenever 

all K criteria have been used once, the order of these K criteria is randomly shuffled. 

By doing so, the next K×G generations will select the K criteria in a different order. It 

is important to note that the population should be re-evaluated using the new criterion 

each time a criterion is switched 

4.3.3 Experiment 

In this experiment, the DE algorithm is adopted due to its simplicity, gradient-free 

nature, robustness, minimal parameter settings, and good parallelism, as detailed in 
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Section 2.1.1 regarding the introduction of the DE algorithm. 

Six complex MTOP (i.e., P1-P6) from commonly used benchmark tests [162] are 

used to evaluate the proposed algorithm. Regarding the parameters of MCDE, the 

population size is configured as 50, the scaling factor F is specified as 0.5, and the 

crossover rate CR is defined as 0.6, following the recommendations in [160]. 

Additionally, G is set to 150. 

For comparisons, the Wilcoxon rank-sum test with a significance level of α=0.05 

[197] and performance metrics [162] are used. The symbols “+”, “≈”, and “-” denote 

that performance of MCDE is notably superior to, approximately equivalent to, and 

significantly inferior to other algorithms, respectively. In this section, MCDE was 

compared with the latest algorithms such as MFEA-I [30], MFEA-II [159], and EMT-

EGT [160]. To ensure a fair comparison, the total maximum available evaluation times 

for each algorithm in each run is set to 1×105 [160]. To minimize statistical errors, each 

algorithm is executed independently 20 times, and the average results are then 

compared. 

The comparison results presented in Table 4.2 demonstrate the effectiveness of 

MCDE. As shown in Table 4.2, MCDE achieves the best score in 4 out of 6 problems, 

while MFEA-I, MFEA-II, and EMT-EGT achieve the best score in 0, 1, and 1 problem, 

respectively. 

Table 4.2 Comparison with State-of-the-Art Algorithms 

Statistical term MCDE MFEA-I MFEA-II EMT-EGT 

+/≈/-/ NA 7/0/5 7/0/5 9/0/3 

# Number of best scores 4 0 1 1 

According to the results of the Wilcoxon rank-sum test, the MCDE algorithm 

significantly outperformed MFEA-I, MFEA-II, and EMT-EGT on 7, 7, and 9 tasks, 

respectively. However, it produced inferior results on 5, 5, and 3 tasks, respectively. 

Therefore, the experimental results validate the efficiency of MCDE, indicating its 

potential to address MTOP as MCOP. 

4.3.4 Conclusion 

In this Section, the study aimed to treat MTOP as MCOP and efficiently solve them. 
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Experimental results suggest that this approach might be a promising direction for 

addressing MTOP. Regarding the limitations of the study, a cyclic multi-criteria strategy 

was employed, where the algorithm sequentially selects each evaluation criterion, akin 

to students taking exams in different subjects in a classroom. However, since the 

difficulty level varies across subjects, better selection of evaluation criteria, such as 

using different evaluation standards to guide environmental selection and population 

evolution in different generations or stages, could be a future research direction. In 

Section 4.4, methods for selecting criteria were explored. Furthermore, dynamic MTOP 

is also a potential research direction. For instance, in the early stages of optimization, 

more emphasis might be placed on coarse exploration and seeking global solutions, 

while in the later stages, finer tuning and convergence to local optima might be 

prioritized. Therefore, different sequences of evaluation criteria could be chosen. 

4.4 MCOP for Multi-Objective Multi-Task Optimization 

4.4.1 Introduction  

MO-MTOP is a complex and challenging task that involves considering multiple 

optimization objectives and tasks, which may be interrelated or mutually influential. 

The complexity of MO-MTOP is mainly manifested in several aspects. Firstly, there 

may be objective conflicts, where improving one objective may result in the 

deterioration of another. Secondly, as mentioned earlier, there are task correlations, 

where different tasks may be interrelated or share some resources or information, 

posing challenges related to KT. Additionally, the scale of MO-MTOP problems can be 

significant, often involving large search spaces and complex problem structures. 

Therefore, efficient optimization algorithms need to be designed to address such 

complexity and scale. For example, consider a classroom of students, each of whom 

needs to study multiple subjects and achieve good grades. Each subject represents a 

task with its objectives and requirements. In this example, each student faces the 

challenge of multiple tasks and objectives. They need to study different subjects and 

strive to meet the objectives and requirements of each subject. Employing multi-

objective optimization methods can assist students in balancing their learning and 
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performance across various subjects, thereby maximizing their learning outcomes. 

However, simultaneously handling multiple tasks during the evolutionary process in 

MO-MTOP offers distinct advantages over traditional multi-objective optimization 

problems. This is because tasks often exhibit correlations, allowing different tasks to 

share information and thereby enhancing optimization efficiency. 

Below are listed the main innovative points and contributions of this chapter. 

“Multi-objective” refers to each subject having its objectives and requirements. For 

example, English learning may involve expanding vocabulary, improving listening, 

speaking, reading, and writing abilities, and achieving high scores in exams. In this 

example, each student faces the challenge of multiple tasks and objectives. They need 

to study different subjects and strive to meet the objectives and requirements of each 

subject. In such scenarios, multi-objective optimization methods can be utilized to help 

students balance their learning and performance across different subjects, maximizing 

their learning objectives. However, even in this case, handling MO-MTOP, which 

simultaneously deals with multiple tasks during the evolutionary process, has some 

advantages over traditional multi-objective optimization problems because tasks are 

correlated, and different tasks can share information, thereby enhancing optimization 

efficiency. 

Existing research on MO-MTOP, whether adopting a single population with 

multiple groups like MFEA or utilizing multi-population methods, aims to reduce 

problem complexity by grouping tasks. In particular, multi-population methods can be 

likened to dividing students into different groups in a classroom to tackle various tasks, 

with each group having its objectives and tasks. Each group can be viewed as a 

subpopulation, focusing on solving specific learning tasks or problems. Meanwhile, 

multi-criteria evaluation can be analogous to using exam scores to assess students' 

learning performance. Exam scores not only serve as indicators of students' learning 

performance but also reflect their mastery and proficiency across different knowledge 

domains. Consequently, teachers can evaluate students' learning status in various 

subjects based on exam scores and provide targeted guidance and tutoring as needed. 
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Compared to the MCOP approach for addressing MTOP problems discussed in 

Section 4.3, the research problem in this chapter combines multiple objectives with 

MTOP, thereby increasing the complexity of the problem. In terms of methodology, in 

addition to continuing the idea of MCOP, a probability-based criterion selection 

approach is introduced instead of the cyclic criterion selection. This change allows for 

more flexible adaptation to different optimization requirements by selecting more 

appropriate evaluation criteria. Similar to classroom exams, the selection process is no 

longer based on the sequence of subjects but rather on the improvement of learning 

abilities for each subject, where subjects with better performance are more likely to be 

chosen. 

Therefore, the contributions of this study are outlined below. 

Firstly, this work attempts to solve MO-MTOP as MO-MCOP, providing a novel 

and promising approach for handling MO-MTOPs. Additionally, this work is the first 

to attempt to solve MO-MTOP by treating it as MO-MCOP. 

Secondly, a Probability-based Criterion Selection Strategy (PCSS) is proposed, 

which selects and uses multiple evaluation criteria derived from corresponding 

probabilities. This strategy allows different criteria to have varying opportunities for 

selection, guiding individual selection and population evolution. 

Thirdly, an Adaptive Parameter Learning (APL) method is further introduced to 

adaptively learn the selection probabilities of each criterion in PCSS. By employing 

APL, the algorithm can acquire suitable probabilities to help determine which criterion 

to aid in determining the criterion applicable for the current generation. 

Fourthly, by integrating the above components, a Multi-objective Multi-criteria 

Evolutionary Algorithm (MO-MCEA) is established for addressing MO-MTOPs. 

4.4.2 Method of MO-MCEA 

4.4.2.1 Definition of MO-MTOP 

A Problem Definition 

MO-MTOP is a diagram for solving multiple multi-objective optimization tasks 

together. MO-MTOP can be defined as follows.  
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Given K multi-objective optimization tasks (assuming the objectives in every task 

are all minimization problems), denoted as T1, T2, …, TK, where the kth task has Mk (Mk > 

1) objective functions Fk (x) = [f1(x), f2(x), …, fMk (x)]. The search space and the 

objective space of the kth task are Ωk and ΨM
k , respectively, and they satisfy that Fk : 

Ωk →ΨM
k .The aim of a minimization MO-MTOP is to find the optimal solution set {xk} 

for each task Tk , such that {xk} satisfies  

{ xk } = argmin Fk (xk |xk ∈Ωk ) , k = 1, 2, 3, ...., K        (4.1) 

As each Fk has multiple objectives, the following important concepts for each task 

Tk are considered to determine whether a solution is optimal according to the related 

definitions in the literature of multi-objective optimization [213, 214]. 

Definition 1 Pareto domination Given any two objective fitness vectors u = [u1, 

u2, …, uM] and w = [w1, w2, …, wM] in the objective space Ψ M, u dominates w if um≤wm 

for all m = 1, 2, …, M and u≠w, denoted as u≤w.  

Definition 2 Pareto optimal A solution vector x ∈Ω is Pareto optimal if there is 

no x* ∈Ω, such that F(x*) dominates F(x).  

Definition 3 Pareto set The Pareto set (PS) is a set of the Pareto optimal solutions, 

which can be represented as  

     PS = {x ∈ Ω and x is Pareto optimal}.         (4.2) 

Definition 4 Pareto front The Pareto front (PF) is composed of the solutions in 

PS, as  

              PF = {F(x)|x ∈ PS}.               (4.3) 

Based on the above definitions, the optimal solution set {xk} for each task Tk is the 

PS of the Tk. 

B. Task Similarity and KT 

Studies have shown that KT between tasks with low correlation may even lead to 

a decrease in optimization performance [162]. Regarding the correlation between tasks, 

it can be categorized into three types. Firstly, if the Pareto sets of two tasks are highly 

similar, the population P can naturally maintain sufficient diversity, thus becoming the 

ideal Pareto optimal solution set for both tasks Ti and Tj. In this scenario, treating MO-
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MTOP as MO-MCOP can enable finding the Pareto sets of both tasks using a single 

population. Secondly, if there is some similarity between the Pareto sets of two tasks, 

the population P will become a partial Pareto optimal solution set for both tasks Ti and 

Tj. However, since real-world problems typically require an adequate number of Pareto 

optimal solutions rather than all optimal solutions, a population P with enough Pareto 

optimal solutions can still be considered an acceptable Pareto optimal solution set for 

both tasks Ti and Tj. Thirdly, if the Pareto sets of two tasks are significantly different, 

and they share limited knowledge, theoretically, it is not advisable to integrate them 

into a single MO-MTOP. 

When defining the similarity between two tasks, two indicators are used: 

intersection and similarity. The complete intersection (CI) and partial intersection (PI) 

indicate whether the Pareto frontiers of two internal tasks are similar in all dimensions 

and some dimensions, respectively. High similarity (HS), moderate similarity (MS), 

and low similarity (LS) represent high, moderate, and low similarity between two tasks 

determined by Pearson correlation measures of their function landscapes. 

4.4.2.2 Framework of MO-MCEA 

MO-MTOP involves multiple multi-objective functions. For example, assuming 

there are K tasks and M objectives, where Fi(x) and Fj(x) represent the fitness functions 

of tasks i and j, respectively, defined as Fi(x)= [f1(x), f2(x), …, fMi(x)] and Fj(x)= [f1(x), 

f2(x), …, fMj(x)]. These functions serve as evaluation criteria for individual selection and 

population evolution. Our assumption for MTOP is that the optimal solutions (or Pareto 

optimal solutions) of different tasks may exhibit similarity. As demonstrated in Section 

4.2, even with cyclic multi-criteria selection, rotating through each objective function 

corresponding to a task can outperform other multi-population algorithms. To further 

optimize the MCEA method, a more appropriate fitness function of a task is selected as 

the guiding criterion for evolution to refine the MCEA algorithm. 

The overall framework of MO-MCEA is illustrated in Figure 4.2, consisting of 

three main parts. The first part is the collection of available fitness evaluation functions 

(i.e., a set of different evaluation criteria). The second part involves criterion selection 
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based on PCSS and APL, i.e., selecting one evaluation function from the set as the 

evaluation criterion for different evolutionary generations to evolve the population. The 

third part encompasses population evolution and problem optimization based on the 

selected criterion. In the following sections, PCSS, APL, and the complete algorithm 

will be introduced step by step. 

 Criterion 

selection based 

on PCSS and 

APL 
Initialization 

Evaluation 

criterion

Selection 

Offsprings

Parents 

Output 

Solutions

Mutation 

Crossover

Loop 

Evolutionary 
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Evaluation 

function

Multiple evaluation 
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Figure 4.2 Framework of MO-MCEA 

4.4.2.3 Probability-based Criterion Selection Strategy 

The introduction of PCSS aims to select one evaluation function from multiple 

multi-objective evaluation functions as the current evaluation criterion for comparing 

individual fitness and population evolution. The concept behind PCSS is as follows: 

each multi-objective function has a criterion selection probability (denoted as csp). For 

instance, the criterion selection probability for multi-objective evaluation function Fi is 

represented as cspi, where multi-objective functions with larger csp values will have a 

higher chance of being selected as the evaluation criterion. Consequently, given K 

multi-objective functions F1, F2, ..., and FK, along with their respective selection 

probabilities csp1, csp2, ..., and cspK, the criterion selection process will be implemented 

using a roulette wheel method based on csp1, csp2, ..., and cspK. Mathematically, the 

criterion selection can be expressed as follows: 

              
( )cid roulette csp=

              (4.4) 

Where cid is the index number of the selected criterion corresponding to the multi-

objective function (i.e., the selected criterion represented as Fcid), and the roulette 
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function returns the index result based on the roulette wheel selection method. During 

initialization, the csp for different functions is set to 1/K, where K is the total number 

of functions, indicating that initially, each function has an equal probability of being 

selected. 

4.4.2.3 APL Adaptive Parameter Learning 

APL updates csp based on the improvement of each generation's population, 

allowing PCSS to select criteria more appropriately. Generally, if the population shows 

better improvement under the current criterion after one generation of evolution, then 

this criterion may be more suitable for the current evolutionary stage, and vice versa. 

Therefore, APL updates csp based on the population improvement of each generation. 

Specifically, if the g-th generation's population (denoted as Pg) uses the k-th multi-

objective function (denoted as Fcid) as the evaluation criterion, then APL updates cspcid 

using the following formula: 

 

   

1, if  is better than  

, otherwise

k g g

k

k

csp P P
csp

csp
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−        (4.5) 

Here, ∆ is a fixed update amount, and “better” can be determined by comparing 

various indicators of Pg+1 and Pg regarding the population performance over two 

generations. However, these indicators should not rely on the true Pareto front, such as 

hypervolume indicators. Traditional evaluation metrics like hypervolume often depend 

on the known Pareto front to assess the population's performance, which may not be 

accessible or determinable in MO-MTOP. Hence, MO-MCEA uses the C indicator to 

compare Pg+1 and Pg. In addition to cspk , other csp values (i.e., cspj where j≠cid) are 

updated accordingly: 
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K is the total number of available multi-objective functions. If a cspi is less than 

0.1, it will be set to 0.1, and then all csp values are normalized to ensure that the i-th 
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function still has a probability of being selected again as the evaluation criterion, and 

the sum of all csp values equals 1. 

4.4.2.4 The Complete MO-MCEA 

Combining PCSS and APL, the complete pseudocode of MO-MCEA is presented 

in Algorithm 1. The search space for all multi-objective tasks will be unified within the 

range [0, 1] D, where D is the maximum variable dimension among all tasks. That is, 

candidate solutions from different tasks will be mapped to [0, 1] D, a common practice 

in the literature. After initialization, Algorithm 1 mainly consists of three repetitive 

procedures. These procedures involve determining the selected criterion through PCSS, 

population evolution, and parameter learning through APL, as depicted in lines 10 to 

15, lines 16 to 18, and lines 19 to 20 of Algorithm 1, respectively. The population 

evolution procedure in Algorithm 1 can use various carefully designed operators, 

including efficient crossover, mutation, and selection operators, based on the user's 

preferences and needs. Thus, MO-MCEA can be extended with powerful state-of-the-

art methods and operators to develop more effective algorithms. In this chapter, the 

crossover and mutation operators used are those from the NSGA-II algorithm. 

Additionally, the criterion for evaluation is switched by PCSS every G generation. Each 

time the criterion is switched, the current population is re-evaluated using the new 

criterion for its fitness before entering evolution. Therefore, NP fitness evaluations are 

required after each switch, where NP is the population size, as shown in lines 13 and 

14 of Algorithm 1. Overall, the algorithm iteratively repeats PCSS, population 

evolution, and APL until the stopping criteria are met, such as the exhaustion of all 

available FEs. Furthermore, K sets (denoted as NDS1, NDS2, ..., and NDSK) are used 

here to respectively record the current nondominated solutions for K tasks. During 

evolution, after one generation of population evolution using Fcid (i.e., line 16 of 

Algorithm 1), the corresponding NDScid is updated. That is, all solutions in the current 

population are merged with those in NDScid, and only the nondominated solutions in the 

merged set are retained in NDScid. After the evolution process concludes, all solutions 

in the final population are evaluated by K multi-objective functions respectively and 
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merged with each NDS to update them (similar to line 18), as shown in lines 23 to 24 of 

Algorithm 1. Finally, the algorithm outputs the best-nondominated solution sets NDS1, 

NDS2, ..., and NDSK for all different tasks. 

Algorithm 1: The Complete MO-MCEA 

Input: T1, T2, …, TK - K optimization tasks; 

F1, F2, …, FK - the fitness function of the T1, T2, …, TK; 

NP - the number of individuals in the population; 

G - the number of generations for using each criterion. 

Output: NDS1, NDS2, …, NDSk - The current Pareto sets for K tasks. 

1 Begin 

2 Initialize NP individuals; 

3 Initialize NDS1, NDS2, …, NDSk as empty sets; 

4 For i = 1 to K 

5 cspi ← 1/K; // Initialize the criterion selection probability evenly 

6 End For 

7 FEs ← 0; 

8 gen ← 1; // index of generation 

9 While (FEs + NP×K < maximum number of available FEs) Do 

10 If mod(gen, G) = =1 

11 // Probability-based Criterion Selection Strategy 

12 cid ← roulette selection of [1, 2, …, K] with [csp1, csp2, …, cspK]; 

13 Re-evaluate individuals by the function Fcid; 

14 FEs ← FEs + NP; 

15 End If 

16 Evolve population for one generation with Fcid; 

17 FEs ← FEs + NP; 

18 Update and record the corresponding NDScid; 

19 // Adaptive Parameter Learning 

20 Update [csp1, csp2, …, cspK] according to Eq.(4.5) and Eq.(4.6); 

21 gen←gen+1; 

22 End While 

23 Evaluate individuals by the K multi-objective functions F1, F2, …, and FK; 

24 Update and record NDS1, NDS2, …, NDSk respectively; 

25 End 

4.4.3 Experiment 

To evaluate the effectiveness and efficiency of the proposed algorithm, experiments 

were conducted comparing it with several state-of-the-art and recently developed 
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algorithms known for their good performance on six different MO-MTOP problems. 

Based on the degree of intersection and task similarity, the six problems with different 

characteristics were classified into different categories, indicated by labels at the 

problem IDs, such as (CI+HS). The algorithms used in the experiments included MO-

MFEA, MO-MFEA-II, and MO-EMTA, along with MO-MCEA proposed in this study. 

For a fair comparison, all these algorithms used the same widely-used representative 

multi-objective optimization algorithm (i.e., NSGA-II) as the optimizer. Therefore, the 

difference between the proposed MO-MCEA and the three comparison algorithms lies 

only in their approaches to handling MO-MTOPs (e.g., MO-MCEA treats MO-MTOPs 

as MC-MTOPs, while MO-MFEA handles MO-MTOPs through a multi-factor method). 

Additionally, the original NSGA-II (i.e., solving each task independently) was also used 

as a benchmark algorithm, referred to as MO-STEA in the following content. All 

algorithm settings were consistent with their original papers. For NSGA-II operators, 

the settings were consistent with existing literature. Moreover, in MO-MCEA, G and ∆ 

were set to 25 and 0.01, respectively. Additionally, the population size for each task 

was set to 50. Thus, the total population size for MO-MCEA and MO-STEA was 50, 

while for MO-MFEA, MO-MFEA-II, and MO-EMTA, the total population size was 

100. Table 4.3 presents the comparative results of the experiments. 

In Table 1, “+”, “≈”, and “-” respectively indicate that the MO-MCEA algorithm 

significantly outperforms the comparison algorithms, there is no significant difference, 

and the MO-MCEA algorithm significantly underperforms compared to the comparison 

algorithms. From Table 4.3, it can be observed that the MO-MCEA algorithm has a 

significantly higher number of functions where it outperforms the comparison 

algorithms than the number of functions where it underperforms. Moreover, the MO-

MCEA achieves the highest number of problems with the optimal MSS indicator, 

indicating that the MO-MCEA algorithm exhibits the best overall performance. 

4.4.4 Conclusion and Future Work 

In this section, MO-MTOP is treated as MO-MCOP, and effectively solved using 

this approach. The effectiveness and advantages of treating MO-MTOPs as MO-
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MCOPs are then analyzed. 

Furthermore, research can be conducted to enhance the adaptability of PCSS and 

the efficiency of APL to further improve MO-MCEA. Additionally, MO-MCEA can be 

further extended to handle complex real-world applications. 

Table 4.3 Comparisons between the proposed MO-MCEA and state-of-the-art algorithms 

Problem MO-MCEA MO-MFEA MO-MFEAII MO-EMTA MO-STEA 

MO-MTOP1 

(CI+HS) 

Task1 (T1) 
Mean 1.68E-01 6.05E-01(+) 8.50E-01(+) 1.46E+00(+) 2.14E+00(+) 

Std. 9.46E-02 2.08E-01 3.29E-01 9.34E-01 1.13E+00 

Task2 (T2) 
Mean 9.35E-01 4.94E+00 (+) 2.09E+00 (+) 2.53E+00 (+) 2.43E+00(+) 

Std. 3.28E-01 1.24E+00 5.17E-01 7.92E-01 5.89E-01 

MSS -5.99E+01 3.31E+01 -1.59E+01 1.18E+01 3.09E+01 

MO-MTOP2 

(CI+MS) 

Task1 (T1) 
Mean 1.44E-02 3.56E-02(+) 3.14E-01(+) 3.18E-01(+) 2.70E-01(+) 

Std. 4.27E-03 1.39E-02 2.09E-01 1.47E-01 1.32E-01 

Task2 (T2) 
Mean 1.20E-01 1.82E-01(+) 1.78E-01(+) 1.84E-01(+) 1.80E-01(+) 

Std. -5.10E+01 4.33E-02 4.09E-02 4.60E-02 4.32E-02 

MSS -5.10E+01 -1.87E+01 2.40E+01 2.75E+01 1.82E+01 

MO-MTOP3 

(PI+HS) 

Task1 (T1) 
Mean 3.04E-01 4.53E-01(+) 2.35E+00(+) 4.07E+00(+) 5.25E+00(+) 

Std. 5.35E-01 4.23E-01 2.50E+00 2.39E+00 1.87E+00 

Task2 (T2) 
Mean 9.79E-01 9.70E-01(+) 9.17E-01(+) 9.16E-01(+) 9.16E-01(+) 

Std. 5.10E-01 3.02E-01 2.13E-02 2.16E-02 2.18E-02 

MSS -2.04E+01 -1.96E+01 -4.12E+00 1.54E+01 2.87E+01 

MO-MTOP4 

(PI+HS) 

Task1 (T1) 
Mean 3.74E+02 5.52E+00(-) 4.01E+00(-) 2.92E+00(-) 3.65E+00(-) 

Std. 5.55E+02 2.10E+00 1.69E+00 8.83E-01 1.12E+00 

Task2 (T2) 
Mean 9.75E+02 3.94E+01(-) 2.85E+01(-) 2.69E+01(-) 2.77E+01(-) 

Std. 6.44E+02 1.20E+01 8.26E+00 1.03E+01 7.34E+00 

MSS 7.84E+01 -1.89E+01 -1.97E+01 -2.00E+01 -1.98E+01 

MO-MTOP5 

(PI+MS) 

Task1 (T1) 
Mean 3.87E+02 3.95E+00(≈) 3.31E+00(≈) 2.83E+00(≈) 3.70E+00(≈) 

Std. 5.82E+02 1.56E+00 1.44E+00 1.09E+00 1.20E+00 

Task2 (T2) 
Mean 1.01E+03 3.63E+01(-) 2.65E+01(-) 2.88E+01(-) 2.84E+01(-) 

Std. 6.98E+02 9.43E+00 7.40E+00 9.27E+00 1.01E+01 

MSS 7.75E+01 -1.89E+01 -1.96E+01 -1.95E+01 -1.94E+01 

MO-MTOP6 

(PI+LS) 

Task1 (T1) 
Mean 3.18E-01 3.76E-01(+) 2.69E-01(+) 2.46E-01(+) 2.63E-01(+) 

Std. 3.29E-01 6.91E-02 6.20E-02 5.93E-02 5.47E-02 

Task2 (T2) 
Mean 1.75E+01 5.71E+00(-) 1.17E+01(-) 5.08E+00(-) 1.99E+01(+) 

Std. 3.22E+00 1.33E+00 6.11E+00 2.25E+00 2.39E+00 

MSS 2.80E+01 -1.23E+01 -5.69E+00 -3.86E+01 2.86E+01 

Number of +/≈/- NA 7/1/4 7/1/4 7/1/4 8/1/3 

Number of best MSS 3 0 1 2 0 
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4.5 Conclusion 

This chapter analyzes MTOP characteristics and current research. MCEA was 

proposed, treating MTOP as multi-criteria problems. Furthermore, the complexity was 

increased by optimizing the challenges of both multi-objective and MTOP together, 

leading to the proposition of solving MO-MTOP using the MO-MCEA method. 

Experimental results indicate that this could be a potential direction for addressing 

MTOPs. 

Regarding future research directions, dynamic multi-task optimization is also a 

promising area of study. Additionally, attention could be directed towards the practical 

application of multi-task optimization in engineering problems, such as logistics, 

supply chain, network optimization, sensor optimization, and traffic optimization, 

among others. 

The content of this chapter, covering the research in Sections 4.3 and 4.4, has been 

published respectively in the International Conference of Gecco 2021 and the journal 

Complex & Intelligent Systems. 
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CHAPTER 5 

A KNOWLEDGE LEARNING MEMETIC ALGORITHM FOR 

USER ROUTE PLANNING IN BIKE-SHARING SYSTEM 

5.1 Introduction 

Bike-sharing is a service that allows the public to rent bicycles for use, eliminating 

the need for users to carry their own bikes at all times. Due to its environmentally 

friendly nature, affordability, independence from fixed public transportation routes, and 

avoidance of congested road sections, bike-sharing systems are increasingly chosen by 

people as a means of transportation [199]-[213]. With the widespread use of mobile 

internet and smartphones, bike-sharing apps provide convenient services for locating, 

returning, route planning, maintenance, and bike fleet management. For ordinary 

citizens, bike-sharing has become an integral part of urban public transportation, 

alongside subways, buses, and ride-hailing services. The high popularity and systematic 

management of bike-sharing have brought about a series of optimization problems, 

such as bike redistribution [204]-[208], bike retrieval [209]-[211], and bike lane 

planning [212]-[214]. A more user-friendly and convenient bike-sharing system can 

attract more users, thereby increasing the profitability of bike-sharing companies, 

reducing energy consumption during travel, and contributing to carbon neutrality and 

smoother traffic flow in cities. Therefore, research on bike-sharing is of great 

significance for the development of smart cities [216]. 

However, as mentioned earlier, existing research has mostly focused on the bike-

sharing redistribution problem, with limited attention given to the User Route Planning 

Problem (URPP). Yet, appropriate route planning is crucial for bike-sharing users. In 

current bike-sharing systems, after paying a certain membership fee, users can enjoy 

free rides for a period of time. For short-distance trips, route planning needs to consider 

nearby pick-up and drop-off locations, while for medium to long-distance trips, users 

may encounter transfer issues if they wish to continue enjoying the free membership 
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service. Regarding this issue, Zhang et al. proposed to transform URPP into a network 

flow problem, eliminating all illegal routes through pruning techniques, and then 

optimizing the travel cost using 0-1 integer programming methods [217]. However, this 

chapter only considers static scenarios; that is, it assumes that bike station inventory is 

always sufficient [217]. In reality, some bike stations may lack bikes, making it 

impossible to arrange them as intermediate stations for cycling routes, while some bike 

stations without bikes may become available again due to other passengers returning 

bikes. In other words, the availability of bike stations is dynamic. This dynamic aspect 

of bike station availability constitutes the research gap in URPP. In real-life scenarios, 

URPP is a DOP, where the number of bikes at bike stations is subject to change. 

Ignoring the dynamic availability of bike stations makes it difficult for URPP to have 

practical significance. 

Regarding the route planning problem, vehicle routing optimization is a typical 

path planning problem, and there has been a large amount of research on similar issues, 

such as private car and ride-hailing route optimization. However, compared to typical 

vehicle routing optimization problems, there are significant differences in route 

optimization for bike-sharing. This is because, in the URPP as a DOP, the difficulty lies 

not only in the changing availability of bikes at stations but also in the variable number 

of stations users may visit during their journey. For example, during a 20-kilometer ride, 

a user may switch bikes 2 or 3 times, leading to variable-length encodings. These 

different encoding lengths pose challenges for the crossover and mutation operations in 

EC. Additionally, the URPP differs from classical Traveling Salesman Problems due to 

these variable-length encodings, presenting challenges in achieving optimal solutions. 

Therefore, this chapter models URPP as a discrete optimization problem with 

constraints that can be used in not only static situations but also dynamic situations. 

Specifically, in the proposed URPP model, discrete variables are used to encode each 

bike station, and the solution to the problem is composed of bike station indexes. This 

encoding method can intuitively and clearly show the intermediate stations and the 

complete riding route. 
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Based on the two research challenges mentioned above, our approach is as follows. 

First, addressing the encoding difficulty, the URPP is modeled as a constrained 

discrete optimization problem, applicable to both static and dynamic scenarios. 

Specifically, in the proposed URPP model, discrete variables are used to encode each 

bike station, and the solutions to the problem consist of indices of bike stations. This 

encoding method provides an intuitive and clear representation of intermediate stations 

and complete biking routes. Methods for handling variable encoding lengths are also 

provided. 

Secondly, for the route planning optimization algorithm, a novel and efficient MA 

within the EC framework is selected. As an efficient optimization algorithm in the EC 

field, the MA combines Genetic Algorithms with local search methods, continuously 

introducing new “memes” (knowledge fragments) to balance the global and local search 

for more effective exploration of solution space [218]. Existing MA algorithms have 

been effectively utilized to address various optimization challenges such as linear 

ordering problems [219], traveling salesman problems [220], and high-dimensional 

feature selection problems [221]. In MA, EC is typically employed for global search 

owing to its strong global search capability and diversity of parallelism [222]-[224]. 

Therefore, EC algorithms perform well on many complex optimization problems [225]-

[227], including single-objective optimization [228]-[229], multi-objective 

optimization [230]-[232], multi-task optimization [233]-[236], multimodal 

optimization [237]-[240], expensive optimization [241]-[243], and DOP [244]-[247]. 

Thus, EC algorithms are used as the global optimizer to compose the MA. Local search 

in MA is aimed at improving the solutions obtained by the global optimizer. However, 

as mentioned earlier, the challenge of the variable solution dimensionality in URPP 

means that the optimal solution dimensionality is uncertain, implying that different 

biking routes may have different numbers of stations (i.e., different solutions have 

different dimensions). This makes traditional EC operators such as crossover, mutation, 

and local search unsuitable for URPP. Therefore, knowledge learning-based crossover 

(KLC) is proposed, random pruning-based mutation (RPM), and two-phase local search 
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(TPLS) to develop knowledge learning and random pruning-based MA (KLRP-MA), 

making a contribution to developing more suitable operators for efficient MA to solve 

URPP. Specifically, KLC allows each individual to cross with the current best 

individual, thereby learning solution knowledge from the current best individual, 

including dimensionality scale knowledge (i.e., how many stations to choose) and 

station selection knowledge (i.e., which stations to choose). RPM shortens the 

individual length by randomly pruning redundant stations to perform mutation on each 

individual. Additionally, TPLS can use two types of local search in two phases to further 

improve individual quality. Therefore, KLRP-MA is a typical and efficient MA, and the 

first MA proposed for solving URPP. 

Finally, addressing the DOP, this chapter considers not only solving URPP in static 

scenarios but also in dynamic scenarios. This means that the inventory of bike stations 

may change, leading to changes in the availability status of bike stations (e.g., if there 

are no bikes available, the bike station will be unavailable). Therefore, dynamic 

inventory will result in the activation and deactivation of bike stations during user 

biking, and KLRP-MA may not work properly in dynamic scenarios. Consequently, this 

chapter further proposes a dynamic version of KLRP-MA (referred to as DyKLRP-MA) 

to solve URPP in dynamic scenarios. The proposed DyKLRP-MA uses the operators 

proposed in KLRP-MA (i.e., KLC, RPM, and TPLS) to efficiently find optimal 

solutions in changing environments, thus responding quickly to dynamic changes. 

Furthermore, depending on the type of dynamic change, the optimal solutions from 

previous environments will be reused to help obtain the best solutions in new dynamic 

environments more quickly, thereby further improving the algorithm's performance in 

dynamic scenarios, i.e., through KT, the reuse of historical information. Therefore, 

DyKLRP-MA is suitable for solving URPP in dynamic scenarios. 

The innovations and contributions of this chapter include the following aspects: 

1. A novel KLRP-MA algorithm is proposed, which efficiently solves URPP by 

utilizing KLC and RPM for global optimization and TPLS for local optimization. The 

proposed KLRP-MA is efficient and the first MA designed to solve URPP. 
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Experimental results demonstrate that the proposed KLRP-MA can find optimal 

solutions for URPP in a short time. 

2. Unlike existing URPP models designed for static scenarios, the URPP model 

proposed in this chapter is applicable not only to static scenarios but also to dynamic 

scenarios. Building upon KLRP-MA, DyKLRP-MA is introduced to address URPP in 

dynamic scenarios, enabling rapid response to dynamic changes and enhancing the 

algorithm's performance under dynamic conditions. 

The subsequent sections of this chapter are organized as follows. Section 5.2 

illustrates the proposed URPP model. Then, Section 5.3 provides a detailed description 

of the proposed KLRP-MA method. Section 5.4 describes DyKLRP-MA for dynamic 

scenarios. Section 5.5 presents and analyzes the experimental results. Finally, Section 

5.6 concludes the findings and delineates future prospects. 

5.2 URPP Model 

For membership users of the bike-sharing app, riding bicycles for a certain period 

(e.g., 30 minutes) incurs additional charges [217]. To avoid extra fees, users need to 

change bicycles during their ride, while also getting adequate rest and supplies. 

Minimizing the total riding time for membership users without incurring additional 

charges requires proper route planning. For instance, the biking route a→b→c→d→h 

depicted in Figure 5.1 may result in a longer time compared to a direct biking route 

a→h. Therefore, it is necessary to plan reasonable routes for users. Such a problem is 

referred to as User Route Planning Problem (URPP). 
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Figure 5.1 An example of riding route planning 

The objective of URPP is to minimize travel time without paying additional fees. 

Given the user’s starting point, ending point, and all available bike stations between the 

starting point and the ending point, the model for URPP is formulated as 

        
1( , )

min ( ) _ ( ) _ ( )

s.t. _  1,2,..., 1
i ix x

f x walk time x ride time x

ride time threshold i D
+

= +

  = −
      (5.1) 

where x=[x1, x2, …, xD] represents a planning riding route (i.e., a candidate 

solution). That is, the user starts from the available bike Station x1, rides to the available 

bike Station x2 to change the bike, …, and finally rides to the available station xD, where 

D represents the solution dimensions (i.e., the number of bike stations in this solution). 

f(x) represents the objective function, and the value of f is called the function fitness. 

walk_time represents the walking time from the starting point source to x1 and the 

walking time from xD to the ending point dest, ride_time represents the riding time from 

x1 to xD. The specific calculation formulas are shown as 
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where dist(m, n) represents the distance between location m and location n, and 

walk_speed and ride_speed represent the walking speed and riding speed, respectively. 

When calculating the riding time, the time for transferring the bike is also considered, 

which is the multiply of the number of transfers (denoted as num_transfer) and the time 

of each transfer (denoted as timeone_transfer). As a kind of routing problem, the URPP is 

similar with the vehicle routing problem, while the URPP is different in that it does not 

require to reach all bike stations in the planned route (the vehicle routing problem 

requires that all customers are served in the planned route) and therefore the optimal 

dimension of the solution is uncertain. Moreover, in the URPP, the availability of bike 

stations may change in a dynamic situation. 

5.3 KLRP-MA Approach 

5.3.1 Encoding Scheme 

The planned riding route x=[x1, x2, …, xD] is a D-dimensional vector, which shows 

that the user starts from the available bike Station x1, rides to the transfer bike Station 

xi (i=2, …, D–1), and finally arrives at the available bike station xD. Note that the first 

dimension of each solution in the population is the available bike station start_bs 

nearest to the starting point source, and the last dimension is the available bike station 

end_bs nearest to the ending point dest. It is worth noting that the dimensions of 

different solutions may be different (i.e., different riding routes may contain different 

numbers of bike stations). To avoid frequent transferring, the dimensions of all solutions 

cannot exceed the maximum dimension Dmax. The calculation formulas of Dmax are 

shown as Eq.(5.4) and Eq.(5.5). 

        
_

6
18

candi

num bs
D

 
=   

 
                 (5.4) 

        min( _ , )max candiD num bs D=              (5.5) 

where Dcandi represents the candidate value of the maximum dimension, and 

num_bs represents the number of available bike stations between the starting point and 

the ending point. To avoid the dimensions of the solution being larger than the number 
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of available bike stations, Dmax is set as the minimum between num_bs and Dcandi. 

5.3.2 Population Initialization 

First, the KLRP-MA initializes the first dimension of all individuals in the 

population as start_bs. Second, the KLRP-MA generates a candidate set csind for each 

individual ind in the population, where csind stores all the available bike stations (except 

for start_bs and end_bs). Then, for i=2, …, Dmax–1, the KLRP-MA generates a random 

number ri among (0, 1). If ri is smaller than the generation probability Pg, the KLRP-

MA randomly selects an available bike station in csind to add to the end of the solution 

vector (i.e., the end of the current riding route) and then removes the selected bike 

station from csind. Otherwise, no bike station will be added to the solution vector. Finally, 

the KLRP-MA adds end_bs to the end of the solution vector. Note that the individuals 

who violate constraints will be reinitialized. 

Figure 5.2 illustrates the individual initialization process in the situation of Figure 

5.1. As the available bike Station a is nearest to the starting point, the first dimension 

of x is set as a. Assume that the randomly generated numbers r3 and r5 are less than Pg; 

therefore, two available bike stations are randomly selected from cs (i.e., bike Station f 

and bike Station d) to assign to x. Finally, the available bike Station h is added to the 

end of the solution vector to generate an initial planning route a→f→d→h. 

 

Figure 5.2 Illustration of individual initialization. 

Due to the characteristics of encoding, different solutions may have different 

dimensions (i.e., a different number of used bike stations), making it impossible to 
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directly use the traditional crossover operator and mutation operator to generate 

offspring. Therefore, this chapter proposes the KLC and the RPM. Each individual 

(solution) in the population generates offspring through these two strategies. 

5.3.3 Knowledge Learning-based Crossover 

The KLC aims to help individuals learn the knowledge from the current-best 

individual to generate more promising individuals. In the literature, learning and 

transferring solution knowledge via evolutionary operators have attracted increasing 

attention and have been successful in various optimization problems [235], especially 

in problems with variable-sized dimensions [236][246][247]. As the URPP is also a 

problem with uncertainty dimensions, the KLC is proposed to help the individual learn 

and transfer the solution knowledge from the global best individual. 

Unlike EC algorithms in existing research that directly consider the knowledge of 

solution value, KLC involves dimension scale knowledge and station selection 

knowledge. For example, if the best-performing individual in the population has five 

dimensions, represented as x_best=[b, c, f, g, h], the remaining individuals in the 

population will learn the dimension scale (i.e., 5) from x_best, which is Dimension 

Adaptation, and the knowledge of station selection (i.e., b, c, f, g, and h), which is 

Station Transfer. Therefore, KLC generates new individuals using two steps: learning 

dimension scale knowledge for dimension adaptation and learning station selection 

knowledge for station transfer. If the size of the current individual is different, size 

adaptation adjusts the size of the current individual to approximate the size of the best 

individual, as described in the following three cases: when the individual's dimension 

is greater than, equal to, or less than the optimal individual's dimension. After 

dimension adaptation, bike station information is transferred from the route represented 

by x_best to the route represented by the current individual to achieve KT.  

To provide a better illustration, the KLC for an individual, denoted as xind, is given 

as an example in the following, with the pseudocode given as Algorithm 1. 
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Algorithm 1: KLC(xind, xbest) 
Input:  xind(the current individual), xbest(the current best individual) 

Output:  xnew(the new individual generated by crossover with xind and xbest) 

1  Begin 

1:2  di ← the dimension of xind; 

2:3  db ← the dimension of xbest; 

3:4  xnew ← xind; 

4:5  Flag ← True; // to indicate whether the xnew will be feasible 

5:6  If di ≠ db Then 

6:7    If di>db Then // the dimension of xind is larger than xbest 

7: 8      i← a random integer in [1, di-1]; // a random dimension of xind 

8: 9      j← a random integer in [1, db-1]; // a random dimension of xbest 

9: 10     For k=1 to db 

10: 11       If xbest,j or xbest, j+1 equal to an element in xind except xind,i and xind,i+1 Then 

11: 12          Flag ← False; // the crossover will make the generated xnew infeasible 

12: 13       End If 

13: 14       If Flag=True Then 

14: 15          break the For loop; 

15: 16       End If 

16: 17        j←((j+1)%db)+1; // select next random dimension of xbest 

17: 18     End For 

18: 19     If Flag=True Then // the generated xnew can be feasible 

19: 20        Compress xnew,i and xnew,i+1 to be one element as xbest,j; 

20: 21        Evaluate xnew and update its fitness; 

21: 22     End 

22: 23  Else // the dimension of is xind smaller than xbest 

23: 24       i← a random integer in [1, di-1]; // a random dimension of xind 

24: 25       j← a random integer in [1, db]; // a random dimension of xbest 

25: 26     For k=1 to db 

26: 27        If xbest,j equals to an element in xind Then 

27: 28           Flag ← False; // the crossover will make the generated xnew infeasible 

28: 29        End If 

29: 30        If  Flag=True Then // the generated xnew can be feasible 

30: 31            break the For loop; 

31: 32        End If 

32: 33            j←((j+1)%db)+1; // select next random dimension of xbest 

33: 34     End for 

34: 35        If Flag=True Then // the generated xnew can be feasible 

35: 36            Insert xbest,j between xnew,i and xnew,i+1; 

36: 37            Evaluate xnew and update its fitness; 

37: 38          End 

38: 39        End If 

39: 40  Else // the dimension of is xind equal to xbest  

40: 41       i← a random integer in [1, di-1]; // a random dimension of xind 

41: 42       j← a random integer in [1, db-1]; // a random dimension of xbest 

42: 43     For k=1 to db 

43: 44        If xbest,j or xbest, j+1 equal to an element in xind except xind,i and xind,i+1 Then 

44: 45           Flag ← False; // the crossover will make the generated xnew infeasible 

45: 46        End If 

46: 47        If Flag=True Then 

47: 48           break the For loop; 

48: 49        End If 

49: 50         j←((j+1)%(db-1))+1; // select next random dimension of xbest 

50: 51     End For 

51: 52     If  Flag=True Then // the generated xnew can be feasible 

52: 53        Replace xnew,i and xnew,i+1 with xbest,j and xbest,j; 

53: 54        Evaluate xnew and update its fitness; 

54: 55     End 

55: 56  End If 
57  End 
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1) If the dimension of xind (e.g., xind=[a, c, b, e, g, h]) is greater than the dimension 

of xbest (i.e., [b, c, f, g, h]), the dimension adaptation will randomly select two adjacent 

intermediate bike stations in xind and compress them into one new bike station, so as to 

reduce the dimension of xind to get close to the dimension of xbest. For example, as shown 

in Figure 5.3(a), b and e in xind are compassed to generate the new individual, which 

can be represented by xnew=[a, c, ?, g, h]. Then, to determine the station of “?”, a random 

intermediate bike station (which is also not in the compressed xind) will be transferred 

from xbest to “?” in xnew. For example, the “f” in xbest will be transferred to xnew, and the 

final xnew is finally [a, c, f, g, h]. 

2) If the dimension of xind (e.g., xind=[a, b, c, h]) is smaller than the dimension of 

xbest (i.e., [b, c, f, g, h]), then the dimension adaptation will extend with a random 

position between the begin and end station to become xnew, e.g., xnew=[a, b, c, ?, h]. Then, 

as shown in Figure 5.3, similar to the procedure in 1), a random intermediate bike 

station (which is also not in the xind) will be transferred from xbest to determine the “?” 

in xnew, e.g., transfer the “f” in xbest to xnew to obtain xnew =[a, b, c, f, h]. 

3) If the dimension of xind (e.g., xind=[a, b, f, d, h]) is equal to the dimension of xbest 

(i.e., [b, c, f, g, h]), then the dimension adaptation does not need to be conducted. In this 

case, two random two adjacent intermediate bike stations in xbest will be transferred to 

replace two random adjacent intermediate bike stations in xind to generate xnew. Note 

that, if the replacement makes the xnew infeasible, the replacement is not carried out. For 

example, as shown in Figure 5.3(c), b and f in xind=[a, b, f, d, h] are replaced by f and g 

transferred from xbest, and the final generated xnew is [a, c, f, d, h]. 

The generated offspring The current best solutionThe current individual

(a)

(b)

(c)

a f g hcb f g jca b e g hc

a c f hbb f g jca c hb

b f g jca f d hb a f d hc

 

Figure 5.3 Three examples of KLC. 

After the above, if no feasible xnew can be generated, the xnew is set as xind. Otherwise, 
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the newly generated feasible solution xnew is evaluated and replaced the xind if the fitness 

value of xnew is better. 

5.3.4 Random Pruning-based Mutation 

The purpose of RPM is to remove unnecessary station selections from the current 

individual to reduce the total travel time of the route. This operation involves randomly 

selecting an intermediate bike station from the current individual and deleting it to 

generate a new individual. Similar to KLC, if the newly generated individual is feasible 

and its fitness value improves, the original individual will be updated with the newly 

generated solution. It is important to note that RPM is only applied to solutions with 

dimensions greater than 3. 

5.3.5 Two-phase Local Search 

The KLRP-MA contains not only the global optimizer via KLC and RPM, but also 

the local optimizer named TPLS. The TPLS contains two local search phases to further 

enhance the current individuals, where each phase considers the local search in different 

search spaces. The first phase considers the local search within the selected bike stations 

in the individual. Specifically, given an individual, two intermediate bike stations in the 

individual (i.e., excluding the begin and end stations) are selected randomly and then 

their positions are exchanged to generate a new individual. The second phase considers 

all the bike stations that have not been selected by the individual, which randomly 

selects a bike station in the individual and then replaces it with the nearest available 

bike station. 

Each individual goes through the above two phases in turn. After each phase, if the 

newly generated individual is feasible and has a better fitness value, the newly 

generated individual will be used to update the original individual. Otherwise, the 

newly generated individual will be discarded. Note that the first phase is only performed 

on the solutions whose dimension is greater than three. 

5.3.6 The Completed Algorithm 
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Figure 5.4 The Flowchart of KLRP-MA. 

Figure 5.4 is the flowchart of the KLRP-MA. First, KLRP-MA initializes and 

evaluates the individuals. Then, the KLRP-MA enters the main loop of the algorithm, 

that is, iteratively performs the KLC, RPM, and TPLS one by one. The main loop will 

be repeated until the stop conditions are met. Finally, the solution with the best fitness 

value is output as the final planning route. 

5.4 DyKLRP-MA Approach 

In the practical situation, the bikes at available bike stations may be used by other 

users, making the available bike stations unavailable due to insufficient inventory. In 

addition, some unavailable bike stations may become available again because of the 

bikes newly parked by other users. Therefore, the number of available bike stations will 

be dynamically decreased and increased during user riding. If the unavailable bike 

stations belong to the adopted planning route, the planning route will become invalid. 

In addition, if some bike stations become available during the riding time, they may be 

used in the riding route to shorten the traveling time. In this case, the original best 

solution obtained by KLRP-MA cannot remain the best solution. To solve the above 

issues, this chapter proposes the DyKLRP-MA for solving the URPP in a dynamic 

situation. 
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The idea to solve this dynamic situation is as follows. First, the planning route is 

obtained under the initial situation by executing KLRP-MA. Then, if the availability of 

the bike stations changes, execute DyKLRP-MA to update the planning route; 

otherwise, ride according to the current planning route. 

DyKLRP-MA uses the set Sc to store the bike stations that are accessible in the 

current situation, which excludes those bike stations that have been visited. After every 

situation changes, all the newly disabled bike stations will be deleted from Sc, and all 

the newly enabled stations will be added to Sc, which results in the set Sn that stores the 

available bike stations in the new situation. If the current planning route is affected by 

the dynamic change (i.e., some unvisited bike stations of the current planning route are 

disabled or some candidate bike stations are enabled), the route re-planning process will 

be immediately triggered. 

b d e f g i jc b d e f g i j k l

the Sc for the current situation the Sn for the new situation 
 

Figure 5.5 Illustration of Sc and Sn for the current situation and new situation. 

Figure 5.5 gives an example to show how to update Sc to Sn. Given ten available 

bike stations (denoted as a ~ j), and the current planning route xbest_c=[a, h, j, g, c]. 

Assuming the user has reached the available bike Station h, and the availability of the 

bike stations does not change in the current static situation, then Sc is {b, c, d, e, f, g, i, 

j} as shown in Figure 5.5(a). When the user is riding from h to j, bike Stations a and c 

are disabled, while bike Stations k and l are enabled. As a does not exist in Sc, only c 

will be deleted from Sc. Moreover, k and l are added to Sc to form Sn, and then the final 

Sn is {b, d, e, f, g, i, j, k, l}, as shown in Figure 5.5(b).  

Algorithm 2 is the pseudocode of DyKLRP-MA. First, DyKLRP-MA initializes 

Dy_N individuals to be the population Q, and fixes the first n_index dimensions of all 

individuals to be the same as the first n_index dimensions of xbest_c (the n_index is the 

index of the currently arriving bike station in xbest_c), because the first n_index stations 

have already been visited and do not need to change. Moreover, the last dimension of 

all individuals is fixed as the available bike station nearest to the destination (i.e., 
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end_bs) in the updated available_bs. Then, the remaining dimensions of the individuals 

are reinitialized by the population initialization method mentioned in Section 5.3.2 with 

the candidate set cs as the available_bs without end_bs. Note that in the dynamic 

situation, the maximum dimensionality of the individual is still limited by Dmax as 

mentioned in Eq. (5.5). After the initialization, the fitness of each individual in the 

population Q is calculated (as shown in Line 2 of Algorithm 1), and then the KLC, RPM, 

and TPLS are performed one by one to evolve the population Q iteratively (as shown 

in Line 3 to Line 7 of Algorithm 1). When the number of iterations exceeds Dy_Tmax, 

the best solution xbest_n is obtained as the planning route in the new situation. Note that 

if Sc (the station set before change) is the subset of Sn (the station set after change), the 

best solution for the current situation (i.e., xbest_c) is still feasible for the new situation. 

Therefore, in this case, Algorithm 1 will replace xbest_n with xbest_c if xbest_c has a better 

fitness than xbest_n, as shown in Lines 10-16 of Algorithm 1. 

Algorithm 2: DyKLRP-MA(Sc, Sn, xbest_c, Dy_N, Dy_ Tmax) 

Input:  Sc (station set for current situation), Sn (station set for the new situation), 

xbest_c (the best planning route in the current situation), 

Dy_N (population size in the new situation), 

Dy_ Tmax (the maximum number of iterations) 

Output:  xbest_n (the best planning route in the new situation) 

1:1: Initialize Dy_N individuals as the population Q; 

2:2: Evaluate individuals in Q; 

3:3: For T=1 to Dy_Tmax 

4:4:     global_best ← the best individual in Q; 

5:5:     Perform KLC; 

6:6:     Perform RPM; 

7:7:     Perform TPLS; 

8:8: End For 

9:9: xbest_n ←the current best individual in Q; 

10:10: If Sc ⊆ Sn Then //the xbest_c is still feasible 

11:11:     If the fitness of xbest_n  is better than the fitness of xbest_c Then 

12:12:          xbest_n ← xbest_c; 

13:13:     End If 

14:14: End If 

15:15: Return xbest_n 
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5.5 Experimental Results 

5.5.1 Experimental Design 

Both medium-distance and long-distance instances are considered in the 

experiments. The distance between the starting point and the ending point (i.e., distance) 

is set to 12 km for the medium distance and 20 km for the long-distance. The starting 

point is set to (0, 0) and the ending point is set to (distance, 0). The bike stations are 

randomly distributed on the map with a size of [0, distance]×[-6, 6]. 

The experiments are divided into static situations and dynamic situations. In the 

static situation, experiments are tested on both the medium-distance and long-distance 

instances. In the dynamic situation, experiments are tested on the long-distance 

instances to better challenge the proposed algorithm. The test instances at different 

distances are divided into small-scale, medium-scale, and large-scale categories, where 

the number of available bike stations (i.e., num_bs) is set as 10, 20, and 50, respectively. 

The experiments at each scale contain 30 randomly generated test instances, that is, 30 

different bike station distributions. For clarity and simplicity, each instance is named in 

the format of A-B-C, where A represents the medium-distance (i.e., A=M) or long-

distance (i.e., A=L), B represents the small-scale (i.e., B=S), medium-scale (i.e., B=M), 

and large-scale (i.e., B=L) category, and C represents the index of the instance in the 

corresponding category. For example, M-S-1 represents the first test instance in the 

medium-distance and small-scale instance categories. 

For the fitness function of each instance problem (refer to Eq. (5.1) and Eq. (5.3)), 

the threshold is set to 30 min, walk_speed is set to 5 km/h, ride_speed is set to 18 km/h, 

and timeone_transfer is set to 1 min. Note that the unit of distance is the kilometer and the 

unit of time is the minute for calculating the function fitness. For KLRP-MA, Pg is set 

to 0.8, population size N is set to 20, and the maximum number of iterations Tmax is set 

to 50. For DyKLRP-MA, Dy_N is set to 20, Dy_Tmax is set to 20, and the remaining 

parameters are the same as those in KLRP-MA. All algorithms run 20 times 

independently on each test instance and the statistical results are used for analysis. 

Moreover, two parameters are used to generate the bike station change in dynamic 
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situations, including Pfirst_change=0.8 which indicates the probability of bike station 

changes, and Psecond_change=0.7, which indicates the probability of a second change after 

the first change. The process of the dynamic change is as follows: If a random number 

r1≥Pfirst_change, then no change will occur. Otherwise, if r1<Pfirst_change and another 

random number r2≥Psecond_change, o1 bike stations will be randomly enabled or disabled 

(but not both), while if r1<Pfirst_change and another random number r2<Psecond_change, o1 

bike stations will be enabled and o2 bike stations will be disabled, where both o1 and o2 

are random integers belonging to [1, omax], and omax represents the maximum number 

of changed bike stations and can be represented as 

       
_ _

10
max

num current bs
o

 
=  
 

          (5.6) 

where num_current_bs represents the number of available bike stations in the 

current situation. Note that each newly enabled bike station will be randomly distributed 

in the [0, distance]×[-2, 2]. 

5.5.2 Experimental Results under Static Situations 

As this Chapter is the first to propose the MA to solve the URPP, a greedy algorithm 

and an enumeration method are used for comparison. Moreover, as the dimension of 

the optimal solution is unknown, the implementations of the greedy method and the 

enumeration method are described as follows.  

First, in these competitor methods, the first dimension of the solution is set to the 

available bike station start_bs nearest to the starting point, and the last dimension is set 

to the available bike station end_bs nearest to the ending point. Second, in the greedy 

method, assume the dimensions of the solution are 3, 4, …, up to num_bs. In each 

assumed dimension, two solutions are obtained according to the following two greedy 

strategies. The first greedy strategy starts with the bike station in the first dimension 

and chooses the nearest unvisited bike station as the next dimension repeatedly until it 

reaches the assumed dimension. The second greedy strategy starts with the bike station 

in the first dimension and chooses the nearest unvisited bike station to end_bs that is 

accessible to the current bike station as the next dimension repeatedly until it reaches 
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the assumed dimension. In this way, a total of 2×(num_bs–2) solutions are built (as 

there are two greedy strategies), and the solution with the best fitness is selected as the 

solution obtained by the greedy method. In addition, in the enumeration method, all 

possible solutions will be generated, and the best solution among them is regarded as 

the final solution, which is actually the real global optimal solution of the problem. 

Table 5.1 The experimental results between KLRP-MA and competitor methods on the 

medium-distance and small-scale test instances 

Test instance 
Greedy 

method 

Enumeration 

method 
KLRP-MA 

Test 

instance 

Greedy 

method 

Enumeration 

method 
KLRP-MA 

M-S-1 52.6520 51.8913 51.8913 M-S-16 54.8386 54.8386 54.8386 

M-S-2 71.6806 68.5978 68.5978 M-S-17 74.9605 74.9605 76.3093 

M-S-3 94.0827 92.4959 92.4959 M-S-18 74.1424 67.8647 67.8647 

M-S-4 90.6652 80.2666 81.2166 M-S-19 92.1081 92.1081 93.3415 

M-S-5 68.5535 68.5535 68.9791 M-S-20 61.9282 61.7869 61.8152 

M-S-6 58.6853 58.6853 58.6853 M-S-21 107.828 106.946 107.2100 

M-S-7 80.3379 79.0350 79.0415 M-S-22 67.5303 67.5303 67.5303 

M-S-8 84.9594 80.8133 80.9834 M-S-23 85.2568 85.2568 85.2568 

M-S-9 90.1771 84.3752 84.3752 M-S-24 98.2756 98.2756 98.2756 

M-S-10 61.9360 61.1748 61.1748 M-S-25 95.4848 95.2801 95.2801 

M-S-11 57.0987 50.8631 51.3888 M-S-26 69.6845 68.6136 68.6671 

M-S-12 79.1271 79.0012 79.0012 M-S-27 61.2547 59.5600 59.8142 

M-S-13 80.1535 78.1813 78.1813 M-S-28 78.7486 78.2241 78.2241 

M-S-14 75.0700 75.0700 75.0700 M-S-29 90.7250 90.7250 91.1207 

M-S-15 87.0149 87.0149 87.0149 M-S-30 66.8113 65.1081 65.3607 

Table 5.2 The experimental results between KLRP-MA and competitor methods on the 

medium-distance and medium-scale test instances 

Test 

instance 

Greedy 

method 
KLRP-MA 

Test 

instance 

greedy 

method 
KLRP-MA 

Test 

instance 

greedy 

method 
KLRP-MA 

M-M-1 59.9528 60.2560 M-M-11 81.1852 79.1799 M-M-21 75.9139 72.8263 

M-M-2 97.5751 97.3354 M-M-12 77.2515 76.6066 M-M-22 86.4848 85.2704 

M-M-3 63.1605 63.1852 M-M-13 113.828 113.875 M-M-23 80.6237 79.6352 

M-M-4 85.2785 85.2267 M-M-14 78.0762 77.8335 M-M-24 84.8765 84.2151 

M-M-5 93.5649 92.0777 M-M-15 68.4442 67.3662 M-M-25 85.1789 82.4892 

M-M-6 75.7488 75.8091 M-M-16 74.2283 74.0354 M-M-26 101.692 101.718 

M-M-7 63.7517 64.2728 M-M-17 72.1250 68.4100 M-M-27 100.567 99.5029 

M-M-8 96.0293 90.5164 M-M-18 85.8888 85.4967 M-M-28 79.2305 79.6745 

M-M-9 78.2761 77.6066 M-M-19 93.1040 89.4831 M-M-29 71.8424 71.8424 

M-M-10 102.809 97.0502 M-M-20 78.8271 76.8394 M-M-30 65.6666 66.0240 
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Table 5.3 The experimental results between KLRP-MA and competitor methods on the 

medium-distance and large-scale test instances 

Test 

instance 

greedy 

method 

KLRP-

MA 

Test 

instance 

greedy 

method 

KLRP-

MA 

Test 

instance 

greedy 

method 
KLRP-MA 

M-L-1 66.2695 64.0927 M-L-11 58.4579 58.1563 M-L-21 74.5157 74.2784 

M-L-2 58.3499 55.1941 M-L-12 62.0149 58.1667 M-L-22 58.1792 57.3695 

M-L-3 74.8173 74.6563 M-L-13 66.2812 66.4338 M-L-23 58.3318 56.9933 

M-L-4 55.4424 55.2051 M-L-14 71.2747 71.2670 M-L-24 61.1710 61.3044 

M-L-5 61.8389 61.8007 M-L-15 59.8665 60.2019 M-L-25 54.0756 54.5772 

M-L-6 75.5564 73.9086 M-L-16 56.3731 55.9977 M-L-26 56.9090 56.6509 

M-L-7 80.1910 80.0624 M-L-17 60.4991 59.5487 M-L-27 54.6087 53.3714 

M-L-8 60.9766 60.5787 M-L-18 67.3189 66.9636 M-L-28 64.0283 63.0352 

M-L-9 57.8430 54.5254 M-L-19 59.5935 59.7938 M-L-29 81.7327 81.7752 

M-L-10 64.7589 63.8456 M-L-20 61.7252 61.5662 M-L-30 61.5761 62.1307 

Table 5.1, Table 5.2, and Table 5.3 show the experimental results between KLRP-

MA and the competitor methods on small-scale, medium-scale, and large-scale test 

instances when distance=12 (i.e., the medium distance). Table 5.1, Table 5.1, Table 5.2, 

and Table 5.3 show the experimental results between KLRP-MA and the competitor 

methods on small-scale, medium-scale, and large-scale test instances when distance=12 

(i.e., the medium distance), respectively.  5.2, and Table 5.3 show the experimental 

results between KLRP-MA and the competitor methods on small-scale, medium-scale, 

and large-scale test instances when distance=12 (i.e., the medium distance), 

respectively. 5.4, Table 5.5 and Table 5.1, Table 5.2, and Table 5.3 show the 

experimental results between KLRP-MA and the competitor methods on small-scale, 

medium-scale, and large-scale test instances when distance=12 (i.e., the medium 

distance), respectively. show the experimental results between KLRP-MA and the 

competitor methods on small-scale, medium-scale, and large-scale test instances when 

distance=20, respectively. Note that on the medium-scale and large-scale test instances, 

the enumeration method cannot finish in the acceptable time (i.e., 3 minutes). Therefore, 

the enumeration method is only compared on small-scale test instances. In addition, on 

each test instance, the KLRP-MA result in the table is the average of 20 independent 

runs. The best result on each test instance is marked in boldface. 
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Table 5.4 The experimental results between KLRP-MA and competitor methods on the 

long-distance and small-scale test instances 

Test 

instance 

greedy 

method 

enumeration 

method 
KLRP-MA 

Test 

instance 

greedy 

method 

enumeration 

method 
KLRP-MA 

L-S-1 146.368 145.607 145.683 L-S-16 144.611 144.611 144.611 

L-S-2 166.176 163.093 163.093 L-S-17 158.557 158.557 159.350 

L-S-3 185.805 184.218 184.218 L-S-18 166.416 158.889 159.265 

L-S-4 180.979 170.580 173.285 L-S-19 181.706 181.706 182.216 

L-S-5 155.339 155.339 155.943 L-S-20 152.143 152.001 152.015 

L-S-6 150.814 150.814 152.040 L-S-21 185.747 185.458 185.458 

L-S-7 177.749 177.749 177.786 L-S-22 156.661 156.661 156.661 

L-S-8 164.614 160.446 160.808 L-S-23 169.953 169.953 169.953 

L-S-9 169.857 168.431 168.431 L-S-24 191.069 191.069 191.069 

L-S-10 150.688 149.927 149.927 L-S-25 178.791 178.586 178.855 

L-S-11 151.377 145.141 145.667 L-S-26 165.013 163.942 163.996 

L-S-12 175.125 174.999 174.999 L-S-27 156.426 154.731 154.985 

L-S-13 164.258 162.286 162.286 L-S-28 158.705 158.181 158.218 

L-S-14 163.034 163.034 163.034 L-S-29 160.882 160.882 161.409 

L-S-15 193.222 193.222 193.222 L-S-30 158.307 156.604 156.730 

Table 5.5 The experimental results between KLRP-MA and competitor methods on the 

long-distance and medium-scale test instances 

Test 

instance 

greedy 

method 

KLRP-

MA 
Test instance 

greedy 

method 
KLRP-MA Test instance greedy method KLRP-MA 

L-M-1 182.172 151.745 L-M-11 164.650 157.954 L-M-21 167.028 158.704 

L-M-2 180.370 180.753 L-M-12 193.188 163.981 L-M-22 181.053 177.942 

L-M-3 157.675 158. 079 L-M-13 213.896 200.739 L-M-23 178.447 163.330 

L-M-4 192.355 174.624 L-M-14 170.510 167.331 L-M-24 192.296 171.036 

L-M-5 200.180 183.618 L-M-15 170.610 158.056 L-M-25 188.101 178.068 

L-M-6 180.857 149.732 L-M-16 174.404 166.159 L-M-26 206.555 195.827 

L-M-7 161.444 158.335 L-M-17 187.395 156.761 L-M-27 180.744 168.672 

L-M-8 175.794 170.853 L-M-18 165.116 163.053 L-M-28 161.676 162.120 

L-M-9 161.961 160.531 L-M-19 181.719 174.936 L-M-29 179.326 165.033 

L-M-10 177.456 175.119 L-M-20 166.130 165.622 L-M-30 182.275 153.519 

For the medium-distance test instances, when the number of available bike stations 

is 10 (i.e., small-scale), the greedy method, enumeration method, and KLRP-MA obtain 

the global optimal solution on 10, 30, and 17 test instances, respectively. Moreover, 

when the number of available bike stations is 20 (i.e., medium-scale), the greedy 

method and KLRP-MA obtain the best solution on 8 and 22 test instances, respectively. 
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In addition, when the number of available bike stations is 50 (i.e., large-scale), the 

greedy method and KLRP-MA obtain the best solution on 6 and 24 test instances, 

respectively. Although the enumeration method can find the global optimal solution in 

the acceptable time for small-scale test instances, the running time of the enumeration 

method is affected by the scale of the test instances and cannot work well on larger-

scale problems. At the same time, with the increase in the problem scale, the 

performance of KLRP-MA is obviously better than that of the greedy method, which 

indicates the efficiency of KLRP-MA in solving URPP. 

Table 5.6 The experimental results between KLRP-MA and competitor methods on the 

long-distance and large-scale test instances 

Test 

instance 

greedy 

method 

KLRP-

MA 

Test 

instance 

greedy 

method 
KLRP-MA 

Test 

instance 

greedy 

method 
KLRP-MA 

L-L-1 205.486 161.580 L-L-11 156.764 146.867 L-L-21 169.864 167.581 

L-L-2 155.254 151.140 L-L-12 174.803 147.628 L-L-22 156.597 152.587 

L-L-3 160.072 156.928 L-L-13 183.723 153.419 L-L-23 154.935 150.506 

L-L-4 157.532 148.430 L-L-14 172.212 154.239 L-L-24 168.420 145.153 

L-L-5 164.043 146.193 L-L-15 173.966 153.175 L-L-25 162.001 149.335 

L-L-6 168.737 162.315 L-L-16 152.307 142.097 L-L-26 160.858 147.455 

L-L-7 211.420 163.571 L-L-17 181.566 141.894 L-L-27 193.759 148.514 

L-L-8 231.163 159.418 L-L-18 159.789 151.141 L-L-28 174.118 162.989 

L-L-9 154.948 150.355 L-L-19 165.210 155.069 L-L-29 178.577 165.325 

L-L-10 168.075 147.628 L-L-20 183.143 147.992 L-L-30 201.066 152.043 

 

For the long-distance test instances, when the number of available bike stations is 

10 (i.e., small-scale), the greedy method, enumeration method, and KLRP-MA obtain 

the best results on 11, 30, and 16 test instances, respectively. Moreover, when the 

number of available bike stations is 20 (i.e., medium-scale), the greedy method and 

KLRP-MA obtain the best results on 8 and 22 test instances, respectively. In addition, 

when the number of available bike stations is 50 (i.e., large-scale), KLRP-MA performs 

best on all 30 test instances. Based on the above comparison with the greedy and 

enumeration methods, the effectiveness of the KLRP-MA has been verified. 
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Table 5.7 The running time of KLRP-MA and the enumeration method on the medium-

distance test instances (Unit: Second) 

Test 

instance 

num_bs =10(*=S) num_bs =20(*=M) num_bs =50(*=L) 

KLRP-MA 
enumeration 

method 
KLRP-MA 

enumeration 

method 
KLRP-MA 

enumeration 

method 

M-*-1 0.0104  1.3630 0.0195 NAN 0.0369 NAN 

M-*-2 0.0113 1.4270 0.0184 NAN 0.0385 NAN 

M-*-3 0.0115 1.4010 0.0234 NAN 0.0241 NAN 

M-*-4 0.0126 1.3830 0.0157 NAN 0.0221 NAN 

M-*-5 0.0108 1.3780 0.0172 NAN 0.0236 NAN 

M-*-6 0.0089 1.3180 0.0173 NAN 0.0227 NAN 

M-*-7 0.0103 1.4060 0.0144 NAN 0.0243 NAN 

M-*-8 0.0107 1.4590 0.0201 NAN 0.0237 NAN 

M-*-9 0.0089 1.3230 0.0151 NAN 0.0336 NAN 

M-*-10 0.0110 1.4010 0.0153 NAN 0.0261 NAN 

M-*-11 0.0102 1.3320 0.0187 NAN 0.0257 NAN 

M-*-12 0.0105 1.3780 0.0193 NAN 0.0226 NAN 

M-*-13 0.0113 1.3720 0.0243 NAN 0.0230 NAN 

M-*-14 0.0118 1.4210 0.0150 NAN 0.0256 NAN 

M-*-15 0.0113 1.3250 0.0154 NAN 0.0330 NAN 

M-*-16 0.0110 1.3690 0.0160 NAN 0.0256 NAN 

M-*-17 0.0111 1.3230 0.0176 NAN 0.0250 NAN 

M-*-18 0.0110 1.3250 0.0164 NAN 0.0281 NAN 

M-*-19 0.0106 1.3600 0.0154 NAN 0.0223 NAN 

M-*-20 0.0095 1.3580 0.0146 NAN 0.0260 NAN 

M-*-21 0.0111 1.3310 0.0155 NAN 0.0264 NAN 

M-*-22 0.0110 1.3520 0.0148 NAN 0.0239 NAN 

M-*-23 0.0105 1.4410 0.0175 NAN 0.0298 NAN 

M-*-24 0.0082 1.3150 0.0155 NAN 0.0266 NAN 

M-*-25 0.0109 1.4570 0.0156 NAN 0.0237 NAN 

M-*-26 0.0107 1.4140 0.0150 NAN 0.0266 NAN 

M-*-27 0.0083 1.3490 0.0158 NAN 0.0315  NAN 

M-*-28 0.0104 1.3970 0.0180 NAN 0.0245 NAN 

M-*-29 0.0108 1.3310 0.0155 NAN 0.0250 NAN 

M-*-30 0.0104 1.3510 0.0159 NAN 0.0352 NAN 

Besides the optimization results, Table 5.7 and Table 5.8 compare the running time 

of KLRP-MA and the enumeration method on medium-distance and long-distance test 

instances. Although the running time of the greedy method is short, the greedy method 

is not compared due to the poor quality of its solution. In addition, NAN in Table 5.7 
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and Table 5.8 indicates that the enumeration method cannot find the optimal solution 

within the acceptable time (i.e., 3 minutes). The enumeration method cannot find the 

optimal solution within even an hour on medium-scale test instances. 

 

Table 5.8 The running time of KLRP-MA and the enumeration method on the long-

distance test instances (Unit: Second) 

Test 

instance 

num_bs =10(*=S) num_bs =20(*=M) num_bs =50(*=L) 

KLRP-MA 
enumeration 

method 
KLRP-MA 

enumeration 

method 
KLRP-MA 

enumeration 

method 

L-*-1 0.0127 1.3460 0.0152 NAN 0.0332 NAN 

L-*-2 0.0120 1.3310 0.0158 NAN 0.0336 NAN 

L-*-3 0.0126 1.3720 0.0223 NAN 0.0245 NAN 

L-*-4 0.0125 1.3310 0.0170 NAN 0.0227 NAN 

L-*-5 0.0103 1.3360 0.0134 NAN 0.0236 NAN 

L-*-6 0.0091 1.3040 0.0199 NAN 0.0236 NAN 

L-*-7 0.0119 1.3130 0.0153 NAN 0.0239 NAN 

L-*-8 0.0112 1.3360 0.0150 NAN 0.0250 NAN 

L-*-9 0.0091 1.3100 0.0158 NAN 0.0337 NAN 

L-*-10 0.0109 1.3110 0.0218 NAN 0.0264 NAN 

L-*-11 0.0104 1.3080 0.0147 NAN 0.0273 NAN 

L-*-12 0.0105 1.3090 0.0142 NAN 0.0229 NAN 

L-*-13 0.0111 1.3070 0.0155 NAN 0.0240 NAN 

L-*-14 0.0110 1.3070 0.0169 NAN 0.0266 NAN 

L-*-15 0.0101 1.3040 0.0146 NAN 0.0313 NAN 

L-*-16 0.0118 1.3170 0.0151 NAN 0.0262 NAN 

L-*-17 0.0115 1.3050 0.0138 NAN 0.0251 NAN 

L-*-18 0.0287 1.3330 0.0150 NAN 0.0295 NAN 

L-*-19 0.0104 1.3080 0.0147 NAN 0.0225 NAN 

L-*-20 0.0096 1.3060 0.0176 NAN 0.0273 NAN 

L-*-21 0.0114 1.3160 0.0153 NAN 0.0283 NAN 

L-*-22 0.0122 1.3020 0.0155 NAN 0.0244 NAN 

L-*-23 0.0108 1.3060 0.0178 NAN 0.0314 NAN 

L-*-24 0.0080 1.3060 0.0153 NAN 0.0242 NAN 

L-*-25 0.0108 1.3440 0.0155 NAN 0.0240 NAN 

L-*-26 0.0109 1.3240 0.0178 NAN 0.0266 NAN 

L-*-27 0.0090 1.3050 0.0156 NAN 0.0325 NAN 

L-*-28 0.0113 1.3160 0.0176 NAN 0.0253 NAN 

L-*-29 0.0110 1.3050 0.0154 NAN 0.0278 NAN 

L-*-30 0.0108 1.3040 0.0154 NAN 0.0371 NAN 
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As shown in Table 5.7, the running time of KLRP-MA slightly increases with the 

increment of the number of available bike stations (i.e., the problem scale). On the 

medium-distance and large-scale test instances, the maximum running time is 0.0385 s, 

which is within the user’s acceptable time. In addition, when the number of available 

bike stations is 10, the running time of KLRP-MA is much less than that of the 

enumeration method, i.e., less than 0.8% of the time cost of the enumeration method on 

most test instances. For the long-distance test instances, as shown in Table 5.8, the 

running time of KLRP-MA is significantly better than that of the enumeration method 

on all test instances with different scales. In addition, as seen from Table 5.7 and Table 

5.8, the running time of KLRP-MA increases with the increment of the number of 

available bike stations on the test instances with different distances. Meanwhile, on the 

test instances with the same scale, the running time of the long-distance test instances 

is longer than that of the medium-distance test instances. Although the search space of 

these two experiments is the same, the distribution of the bike stations is relatively 

sparse on the long-distance test instances, which makes the solutions more likely to 

violate the constraints and need to be re-executed, thus taking more time. Based on the 

above, the efficiency of KLRP-MA has been verified. 

5.5.3 Experimental Results under Dynamic Situations 

Table 5.9 shows the results of DyKLRP-MA before and after dynamic change on 

small-scale, medium-scale, and large-scale test instances when distance=20 (i.e., the 

long distance). The distribution of available bike stations of the test instances is 

consistent with those in Section 5.4.3, and the results before the change are the best 

results obtained by KLRP-MA. 

As shown in Table 5.9, when compared with the results before the dynamic change, 

DyKLRP-MA can find solutions with better fitness or at least not worse fitness on 

almost all test instances, and only produces worse results on two instances, i.e., L-S-8 

and L-S-12. The reason for the worse results in these two instances may be that the 

small-scale instances only have ten bike stations to choose from, and impor stations are 

disabled during the dynamic change, while the rest of the existing and newly enabled 
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bike stations are not ideal for substituting the disabled bike stations to generate a good 

solution. However, in instances with more available bike stations (i.e., L-M-* and L-L-

* instances), DyKLRP-MA can always find a better solution after the dynamic change. 

Based on the above, the problem-solving ability of DyKLRP-MA for dynamic URPP 

instances has been verified. 

Table 5.9 The experimental results of DyKLRP-MA on the long-distance test instances 

Test 

instance 

Results 

before change 

Results after 

change 

Test 

instance 

Results 

before change 

Results after 

change 

Test 

instance 

Results 

before change 

Results after 

change 

L-S-1 145.607 145.607 L-M-1 151.743 90.087 L-L-1 161.154 92.647 

L-S-2 163.093 113.065 L-M-2 179.905 179.905 L-L-2 150.712 150.712 

L-S-3 184.218 184.218 L-M-3 157.427 91.130 L-L-3 156.850 119.994 

L-S-4 170.580 143.295 L-M-4 174.442 143.130 L-L-4 147.997 78.141 

L-S-5 155.339 155.339 L-M-5 182.403 128.431 L-L-5 146.176 98.676 

L-S-6 150.814 139.424 L-M-6 149.695 104.259 L-L-6 162.164 156.805 

L-S-7 177.749 98.536 L-M-7 158.099 158.099 L-L-7 163.546 104.075 

L-S-8 160.446 167.643 L-M-8 170.813 170.813 L-L-8 159.201 105.527 

L-S-9 168.431 119.146 L-M-9 160.531 160.531 L-L-9 150.264 96.877 

L-S-10 149.927 145.141 L-M-10 175.097 175.097 L-L-10 146.940 85.569 

L-S-11 174.999 174.999 L-M-11 157.326 139.932 L-L-11 146.860 86.021 

L-S-12 162.286 162.707 L-M-12 193.927 193.927 L-L-12 147.524 78.374 

L-S-13 163.034 163.034 L-M-13 200.739 190.423 L-L-13 153.235 153.235 

L-S-14 117.893 117.893 L-M-14 167.231 167.231 L-L-14 152.630 88.311 

L-S-15 193.222 193.222 L-M-15 157.647 149.588 L-L-15 152.152 114.135 

L-S-16 144.611 103.299 L-M-16 166.108 123.331 L-L-16 142.091 142.091 

L-S-17 158.557 158.557 L-M-17 156.761 103.625 L-L-17 141.584 101.127 

L-S-18 158.889 158.889 L-M-18 162.977 151.339 L-L-18 151.066 93.044 

L-S-19 181.706 137.015 L-M-19 174.790 174.790 L-L-19 154.912 154.912 

L-S-20 152.001 133.623 L-M-20 165.325 165.325 L-L-20 147.969 89.547 

L-S-21 185.458 185.458 L-M-21 158.665 95.079 L-L-21 167.541 115.816 

L-S-22 156.661 156.661 L-M-22 177.805 105.825 L-L-22 152.543 107.593 

L-S-23 169.953 121.699 L-M-23 162.068 157.430 L-L-23 150.396 105.275 

L-S-24 191.069 191.069 L-M-24 171.022 137.088 L-L-24 144.422 95.477 

L-S-25 178.586 178.586 L-M-25 177.897 177.897 L-L-25 148.512 103.226 

L-S-26 163.942 163.942 L-M-26 195.452 195.452 L-L-26 147.125 141.623 

L-S-27 154.731 154.731 L-M-27 168.469 168.469 L-L-27 148.382 108.920 

L-S-28 158.181 158.181 L-M-28 161.676 119.153 L-L-28 162.799 149.843 

L-S-29 160.882 131.783 L-M-29 164.910 126.064 L-L-29 165.263 152.802 

L-S-30 156.604 142.026 L-M-30 153.270 95.370 L-L-30 150.842 98.973 
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5.5.4 Experiments on Real-world Bike-sharing Instances 

 

Figure 5.6 Visualization of bike location data in real-world test instances. 

To further investigate the proposed DyKLRP-MA, this part compares the 

DyKLRP-MA with state-of-the-art approaches on some real-world test instances. The 

real-world instances are based on bike-sharing data from Shenzhen, China [248]. 

Specifically, Figure 5.6 hows all the bike location data used in this chapter. The test 

instances are construed as follows. To begin with, all the bike locations are clustered by 

K-means into 50 groups, where the center of each group represents a bike station. Then, 

10 user records (including the source and destination of the same user) are used to 

generate 10 test instances for route planning based on the 50 bike stations. For 

simplicity, the 10 instances are denoted as R-1, R-2, …, and R-10, respectively. In 

addition, as re-initialization and using archive are two state-of-the-art and popular 

dynamic optimization approaches [244]-[245], the proposed DyKLRP-MA is compared 

with the KLRP-MA variants using re-initialization and archive. The compared two 

variants are denoted as MA-R and MA-A for short, respectively. The MA-R re-

initializes the population when the problem is dynamically changed, while the MA-A 

stores all the best solutions found in every previous dynamic environment in an archive 

and re-evaluates the solutions in the archive when the problem is changed again. For 

better comparisons, the best-before-change error metric (denoted as EB) is used herein, 

which is a widely-used indicator designed for dynamic optimization [176]. The 

calculation of EB is as follows: 
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where Eb,i is the fitness of the best solution found before the ith dynamic change, 

and C is the total number of changes during the optimization. Each algorithm runs 20 

runs to obtain the results for comparison. During each run, each algorithm will evolve 

for 400 generations. Every 20 generations, all the bike stations will have a probability 

of 0.1 to become unavailable. That is, there will be 20 dynamic changes in each run. 

The experimental results on the real-world test instances are given in Table 5.10. As can 

be seen, the DyKLRP-MA obtains the best results on 8 of the 10 problems, while the 

MA-R and MA-A can only obtain the best results on 0 and 1 problems, respectively. 

This suggests that the proposed DyKLRP-MA is very suitable for solving the URPP in 

dynamic situations. 

Table 5.10 The experimental results of DyKLRP-MA, ma-r, and ma-a on the real-world 

test instances 

Test instance DyKLRP-MA MA-R MA-A 

R-1 86.0332 86.2664 86.5661 

R-2 137.678 140.664 138.027 

R-3 52.2539 54.9427 56.1207 

R-4 157.785 157.851 157.929 

R-5 89.1900 91.6647 91.1149 

R-6 77.9556 80.3473 75.7700 

R-7 184.270 189.564 185.992 

R-8 23.4204 27.9302 26.5034 

R-9 137.310 137.536 138.627 

R-10 70.5298 70.2346 70.2020 

5.5.5 Component Analysis 

To further study the influence of the KLC, RPM, and TPLS, three variants of the 

KLRP-MA are designed, namely the KLRP-MA without KLC, the KLRP-MA without 

RPM, and the KLRP-MA without TPLS. For simplicity, these three algorithms are 

denoted as KLRP-MA-w/o-KLC, KLRP-MA-w/o-RPM, and KLRP-MA-w/o-TPLS, 

respectively. The experiment is conducted on small-scale, medium-scale, and large-

scale test instances with distance=20. 
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Table 5.11 The experimental results among KLRP-MA variants on the long-distance and 

small-scale test instances. 

Test 

instance 

KLRP-

MA 

KLRP-

MA-w/o-

KLC 

KLRP-

MA-w/o-

RPM 

KLRP-

MA-w/o-

TPLS 

Test 

instance 

KLRP-

MA 

KLRP-

MA-w/o-

KLC 

KLRP-

MA-w/o-

RPM 

KLRP-

MA-w/o-

TPLS 

L-S-1 145.683 145.645 146.683 145.607 L-S-16 144.611 145.141 145.290 144.611 

L-S-2 163.093 163.401 165.615 163.555 L-S-17 159.350 159.906 166.281 159.876 

L-S-3 184.218 184.358 185.295 184.338 L-S-18 159.265 159.830 160.040 159.202 

L-S-4 173.285 172.018 178.571 171.734 L-S-19 182.216 182.467 185.685 182.556 

L-S-5 155.943 155.339 160.137 155.424 L-S-20 152.015 152.022 155.461 152.223 

L-S-6 152.040 153.499 162.624 152.272 L-S-21 185.458 185.459 186.066 185.459 

L-S-7 177.749 177.779 178.732 177.785 L-S-22 156.661 157.245 163.980 157.036 

L-S-8 160.808 160.660 162.227 160.472 L-S-23 169.953 170.255 171.846 170.075 

L-S-9 168.431 168.574 170.076 168.431 L-S-24 191.069 191.069 193.886 191.148 

L-S-10 149.927 150.041 151.184 150.117 L-S-25 178.855 179.020 180.372 178.731 

L-S-11 145.667 147.605 151.534 145.930 L-S-26 163.996 167.144 166.060 164.305 

L-S-12 174.999 175.131 175.595 175.045 L-S-27 154.985 156.147 159.127 154.985 

L-S-13 162.286 162.483 164.341 162.286 L-S-28 158.218 158.360 160.004 158.270 

L-S-14 163.034 163.251 165.543 163.359 L-S-29 161.409 161.445 164.072 161.445 

L-S-15 193.222 193.222 197.569 193.222 L-S-30 156.730 156.985 158.574 156.730 

Table 5.12 The experimental results among KLRP-MA variants on the long-distance and 

medium-scale test instances. 

Test 

instance 

KLRP-

MA 

KLRP-

MA-w/o-

KLC 

KLRP-

MA-w/o-

RPM 

KLRP-

MA-w/o-

TPLS 

Test 

instance 

KLRP-

MA 

KLRP-

MA-w/o-

KLC 

KLRP-

MA-w/o-

RPM 

KLRP-

MA-w/o-

TPLS 

L-M-1 151.745 151.755 160.652 151.759 L-M-16 166.159 166.359 181.164 166.284 

L-M-2 180.753 180.596 204.168 181.265 L-M-17 156.761 158.077 172.800 157.729 

L-M-3 158. 079 157.801 178.955 157.944 L-M-18 163.053 163.032 175.342 163.070 

L-M-4 174.624 174.723 191.755 174.806 L-M-19 174.936 174.922 181.165 174.893 

L-M-5 183.618 183.627 201.651 182.943 L-M-20 165.622 165.914 188.786 166.497 

L-M-6 149.732 149.752 162.619 149.734 L-M-21 158.704 158.704 168.389 158.697 

L-M-7 158.335 158.570 176.063 158.634 L-M-22 177.942 178.281 189.962 178.574 

L-M-8 170.853 171.059 183.684 171.175 L-M-23 163.330 163.006 181.266 162.678 

L-M-9 160.531 161.502 179.280 160.546 L-M-24 171.036 171.290 183.729 171.357 

L-M-10 175.119 175.223 189.831 175.388 L-M-25 178.068 178.366 191.277 178.256 

L-M-11 157.954 157.883 173.137 158.287 L-M-26 195.827 195.536 205.150 195.500 

L-M-12 163.981 164.044 170.893 163.991 L-M-27 168.672 168.961 183.239 168.849 

L-M-13 200.739 201.266 216.789 201.355 L-M-28 162.120 161.948 182.096 162.564 

L-M-14 167.331 167.706 183.756 167.437 L-M-29 165.033 165.008 179.273 165.108 

L-M-15 158.056 158.151 172.444 158.498 L-M-30 153.519 153.907 167.854 153.511 
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Table 5.13 The experimental results among KLRP-MA variants on the long-distance and 

large-scale test instances. 

Test 

instance 

KLRP-

MA 

KLRP-

MA-w/o-

KLC 

KLRP-

MA-w/o-

RPM 

KLRP-

MA-w/o- 

TPLS 

Test 

instance 

KLRP-

MA 

KLRP-

MA-w/o-

KLC 

KLRP-

MA-w/o-

RPM 

KLRP-

MA-w/o- 

TPLS 

L-L-1 161.580 161.733 221.976 161.614 L-L-16 142.097 142.195 195.381 142.192 

L-L-2 151.140 150.857 212.062 150.944 L-L-17 141.894 141.728 191.577 141.797 

L-L-3 156.928 156.978 220.983 157.237 L-L-18 151.141 151.237 208.436 151.272 

L-L-4 148.430 148.938 203.483 149.153 L-L-19 155.069 155.116 219.126 155.791 

L-L-5 146.193 146.222 197.404 146.194 L-L-20 147.992 148.106 203.097 148.115 

L-L-6 162.315 162.343 210.326 162.216 L-L-21 167.581 167.618 226.688 167.601 

L-L-7 163.571 163.602 217.838 163.677 L-L-22 152.587 152.969 206.170 153.123 

L-L-8 159.418 159.530 214.666 159.431 L-L-23 150.506 150.587 195.281 150.721 

L-L-9 150.355 150.663 212.608 150.527 L-L-24 145.153 144.884 195.139 145.100 

L-L-10 147.628 147.084 202.815 147.255 L-L-25 149.335 148.951 199.760 148.701 

L-L-11 146.867 146.919 199.303 146.920 L-L-26 147.455 147.467 200.671 147.574 

L-L-12 147.628 147.623 198.857 147.671 L-L-27 148.514 148.805 206.939 148.722 

L-L-13 153.419 153.569 213.253 153.523 L-L-28 162.989 162.980 209.753 162.957 

L-L-14 154.239 154.378 209.416 154.273 L-L-29 165.325 165.343 217.156 165.405 

L-L-15 153.175 153.124 203.778 153.425 L-L-30 152.043 152.389 208.967 151.596 

Table 5.14 The optimization results and running time of different KLRP-MA variants 

with different maximum dimensions on the long-distance and medium-scale test instances. 

Optimization results Running time 

Test 

instance 

KLRP-

MA 

KLRP-

MA-1 

KLRP-

MA-2 

KLRP-

MA-3 

Test 

instance 

KLRP-

MA 

KLRP-

MA-1 

KLRP-

MA-2 

KLRP-

MA-3 

L-M-1 151.745 151.752 151.836 151.839 L-M-1 0.01455 0.02305 0.01330 0.01095 

L-M-2 180.753 181.601 180.847 180.807 L-M-2 0.01510 0.02415 0.01330 0.01135 

L-M-3 158. 079 158.411 158.759 158.784 L-M-3 0.02090 0.27080 0.01525 0.01100 

L-M-4 174.624 174.929 174.624 174.644 L-M-4 0.01705 0.03550 0.01345 0.01105 

L-M-5 183.618 184.023 184.158 184.213 L-M-5 0.01690 0.05035 0.01555 0.01175 

L-M-6 149.732 150.121 149.740 149.738 L-M-6 0.01750 0.10340 0.01385 0.01200 

L-M-7 158.335 158.365 158.680 158.570 L-M-7 0.01310 0.02105 0.01215 0.01025 

L-M-8 170.853 171.004 170.934 170.907 L-M-8 0.01850 0.12720 0.01535 0.01100 

L-M-9 160.531 161.127 160.806 161.001 L-M-9 0.01460 0.02245 0.01230 0.01060 

L-M-10 175.119 175.223 175.119 175.206 L-M-10 0.01455 0.02595 0.01270 0.01060 

L-M-11 157.954 158.189 158.640 158.170 L-M-11 0.01535 0.03680 0.01365 0.01125 

L-M-12 163.981 164.256 164.256 163.981 L-M-12 0.02115 0.18830 0.01615 0.01160 

L-M-13 200.739 200.739 200.739 200.752 L-M-13 0.02840 0.19975 0.02120 0.01280 

L-M-14 167.331 167.431 167.431 167.331 L-M-14 0.01430 0.02505 0.01285 0.01075 

L-M-15 158.056 158.610 158.140 158.152 L-M-15 0.01420 0.02440 0.01260 0.01080 
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Table 5.15 The optimization results and running time of different KLRP-MA variants 

with different generation probabilities on the long-distance and medium-scale test instances. 

Test instance Pg=0.8 Pg=0 Pg=0.2 Pg=0.4 Pg=0.6 Pg=1.0 

L-M-1 151.745 151.745 151.744 151.751 151.750 151.745 

L-M-2 180.753 181.905 181.130 181.958 182.928 180.782 

L-M-3 158. 079 158.427 158.427 158.759 158.128 158.452 

L-M-4 174.624 174.929 175.442 174.688 174.868 174.624 

L-M-5 183.618 184.673 184.078 184.483 184.745 184.158 

L-M-6 149.732 150.703 149.799 149.703 149.734 149.751 

L-M-7 158.335 158.388 159.190 158.455 158.833 158.425 

L-M-8 170.853 170.853 170.894 170.910 170.937 170.924 

L-M-9 160.531 160.532 160.534 161.133 161.138 160.945 

L-M-10 175.119 175.197 175.203 175.211 175.106 175.100 

L-M-11 157.954 158.545 158.864 157.983 157.983 157.814 

L-M-12 163.981 164.927 163.927 163.981 163.981 163.981 

L-M-13 200.739 200.739 200.739 200.739 200.739 200.739 

L-M-14 167.331 167.431 167.431 167.331 167.331 167.431 

L-M-15 158.056 158.658 158.766 158.145 158.461 158.183 

Table 5.11, Table 5.12, and Table 5.13 show the experimental results of KLRP-MA 

and its variants on small-scale, medium-scale, and large-scale test instances with 

distance=20, respectively, where the best result is marked in boldface. Specifically, on 

the small-scale, medium-scale, and large-scale test instances, the original KLRP-MA 

performs the best on 24, 19, and 19 test instances, respectively, which is significantly 

better than the compared variants without KLC, RPM, or TPLS. In addition, Figure 5.7 

plots the convergence curve of different KLRP-MA variants on a medium-scale test 

instance. As seen in Figure 5.7, the proposed KLRP-MA has better convergence than 

the remaining three variants. Therefore, the experimental results show that the KLC, 

RPM, and TPLS can improve the performance of the KLRP-MA, and removing any of 

them will decrease the algorithm’s performance. 

5.5.6 Influence of Parameter 

This part studies the parameters Dmax and Pg. Dmax controls the maximum 

dimension of the candidate solution. As the original Dmax is set according to Eq.(5.4) 

and Eq.(5.5), which will belong to [num_bs/2, num_bs/3] when num_bs is larger than 



123 

 

6, the KLRP-MA is compared with its variants that use Dmax=num_bs, Dmax= num_bs/2, 

and Dmax= num_bs/3. For simplicity, the three variants are denoted as KLRP-MA-1, 

KLRP-MA-2, and KLRP-MA-3, respectively. The experimental results are given in 

Table 5.14. As can be seen, the KLRP-MA obtains the best optimization results on all 

the test instances. For the running time, KLRP-MA-3 has less running time, and the 

time costs of KLRP-MA are between those of KLRP-MA-1 and KLRP-MA-2. This 

shows that the larger Dmax is, the lower the running time will be. As the setting of Dmax 

in the original KLRP-MA can obtain the best optimization results, the slight additional 

time costs of the KLRP-MA over the variants KLRP-MA-2 and KLRP-MA-3 are 

acceptable. Based on the above, the original setting of Dmax in KLRP-MA (according to 

Eq.(5.4) and Eq.(5.5)) is recommended in this chapter. 
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Figure 5.7 The convergence curve of different KLRP-MA variants on the L-M-1 test instance. 

Moreover, the generation probability Pg is set as Pg=0.8 in the original KLRP-MA. 

Therefore, the original KLRP-MA is compared with its variants with Pg=0, Pg=0.2, 

Pg=0.4, Pg=0.6, and Pg=1.0. For simplicity, the original KLRP-MA is directly denoted 

as Pg=0.8, and the five variants are denoted as Pg=0, Pg=0.2, Pg=0.4, Pg=0.6, and 

Pg=1.0, respectively. The experimental results are given in  

Table 5.15. As can be seen in  

Table 5.15, variants with different Pg obtain similar results, which indicates that 

the KLRP-MA is not that sensitive to the setting of Pg. As Pg=0.8 obtains the best 
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results on most problems, Pg=0.8 is recommended by this chapter. 

5.6 Conclusion 

In this chapter, a new URPP model is proposed for route planning for the user in 

not only static situations but also dynamic situations, and the KLRP-MA is proposed to 

solve the URPP. As the traditional crossover operator and mutation operator are not 

suitable for solving the URPP with uncertain dimensions, this chapter proposes and 

integrates the KLC, RPM, and TPLS into KLRP-MA to generate better individuals. In 

addition, the KLRP-MA is extended as a dynamic optimization algorithm, and the novel 

DyKLRP-MA is proposed to handle the dynamic changes of the bike stations in 

dynamic URPP. Experimental results show that when compared with the greedy method 

and enumeration method, KLRP-MA can quickly search for the best solution. 

Specifically, KLRP-MA has more advantages in solving ability than the greedy method 

and more advantages in running time than the enumeration method. In addition, when 

the bike stations change dynamically, the DyKLRP-MA can produce promising 

solutions efficiently. 

In future work, the tradeoff between riding cost and riding time is an important 

direction to extend the URPP model. For example, modelling URPP as a constraint 

optimization problem where the objective is traveling time and the user-specified cost 

is set as a constraint. In addition, the cost and time can be also modeled as a multi-

objective optimization problem and a new multi-objective algorithm based on the 

proposed algorithm can be studied. In addition, expanding the scale size of the problem 

and conducting experiments with more bike stations will be considered. In these 

scenarios, the techniques for data-driven optimization [249]-[197], multi-objective 

optimization [195]-[252], and large-scale optimization can be applied [253]-[256]. 

This work was published on the journal of Memetic Computing. 
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CHAPTER 6 

EVOLUTIONARY MULTITASKING BI-DIRECTIONAL 

PARTICLE SWARM OPTIMIZATION FOR HIGH-

DIMENSIONAL FEATURE SELECTION 

6.1 Introduction 

In the era of big data, with the advancement of information retrieval technologies, 

the number of features in data has increased dramatically. Hence, in the industrial field, 

there is a popular saying that “feature engineering determines the upper limit of 

generalization ability, while models and algorithms merely approximate this limit” 

[225]. Feature selection is a common preprocessing method in data analysis [225]. It 

aims to select a subset of features most relevant to the problem and eliminate redundant 

or noisy features from the entire feature set. By performing feature selection, accuracy 

and efficiency in data processing can be enhanced by removing irrelevant and redundant 

features. Furthermore, in practical applications, feature selection can reduce 

dimensionality to improve model efficiency, mitigate the risk of overfitting, address 

noise issues, and enhance model interpretability [225]. Therefore, feature selection 

plays an increasingly important role in many fields today [257]. Even in deep learning, 

where features are learned automatically from raw data, effective feature selection 

remains crucial. Deep learning models can automatically learn higher-level abstract 

feature representations from raw data, expanding the scope of feature selection beyond 

the data preprocessing stage [257]. 

In the context of feature selection, let's use the process of admitting graduate 

students to a university as an example. Suppose a university is preparing to admit new 

graduate students. During the admission process, the university needs to select the most 

outstanding and promising students from a large pool of applicants. This process is akin 

to the task of feature selection, where various background information of students (such 

as grades, research experience, recommendation letters, etc.) corresponds to the 



126 

 

features in a dataset. When admitting graduate students, the university may encounter 

challenges and employ strategies similar to feature selection: selecting important 

features, eliminating redundant features, balancing feature weights, and handling high-

dimensional data. Just like in feature selection, when the dataset's feature dimension is 

very high, algorithms may face difficulties in training, and high computational 

complexity, making it challenging to effectively handle and utilize all the feature 

information. 

Most existing feature selection algorithms fall into three categories: filter methods, 

wrapper methods, and embedded methods [258]. Filter methods evaluate and rank 

features using statistical tests or correlation analysis before training the model, selecting 

the most relevant features for the problem. While filter methods have the advantage of 

lower model iteration overhead, they require features to be mutually independent, 

overlooking relationships between features. Embedded methods integrate the feature 

selection process into other machine learning algorithms without separate 

implementation. However, this approach requires careful model design and entails large 

computational costs due to the extensive input data. Wrapper methods determine 

whether a candidate feature subset is optimal by evaluating it within the corresponding 

problem. Compared to filter methods, wrapper methods may perform better as they 

consider the impact of feature combinations through classifier evaluation. Additionally, 

wrapper methods can be used independently without the need for specialized algorithm 

design as with embedded methods. However, wrapper methods still face challenges 

such as overfitting and high computational costs [259]. In practical applications, 

wrapper methods are commonly used for relatively small feature sets. For large-scale 

datasets, the computational overhead poses a research gap that has attracted the interest 

of scholars in recent years, leading to attempts to use different algorithms to address 

this issue. 

As one type of wrapper method, swarm intelligence-based algorithms have 

demonstrated strong capabilities in feature selection problems in recent years [260]. 

Particle Swarm Optimization (PSO) is one of the most well-known swarm intelligence 
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algorithms, known for its ease of implementation and fast convergence [25]–[261]. 

However, PSO is often plagued by the “curse of dimensionality,” exhibiting weak 

search capabilities when dealing with high-dimensional data [262]. Many PSO-based 

algorithms have been proposed to enhance its performance in high-dimensional feature 

selection problems, which can be roughly divided into two categories. The first 

category of PSO-based algorithms focuses on designing efficient particle evolution 

strategies to help them fully explore the solution space and escape local optima [263]–

[265]. The second category of PSO-based algorithms calculates the importance of 

features using similarity or correlation measures and then focuses on those features with 

high importance to improve search efficiency [266]–[268]. Overall, the second category 

of PSO-based algorithms performs better because they can determine which features 

are worth further exploration to narrow down the search space. However, these 

algorithms often rely on correlation analysis, which is time-consuming and complex to 

implement on high-dimensional data. Due to the large number of features in high-

dimensional data, conducting correlation analysis requires significant computational 

resources and time, and may lead to performance degradation or failure to converge. 

These two categories can also be exemplified using the university admissions 

process. In the first category of PSO algorithms, the admissions committee adopts a 

comprehensive search approach, considering all features of every applicant, including 

academic records, personal statements, recommendation letters, etc., as equally 

important. While this method ensures that no potentially promising student is 

overlooked, it may result in a significant amount of time and effort being spent 

considering all features, rather than focusing on the most relevant and valuable ones. In 

the second category of PSO algorithms, the admissions committee may employ a more 

targeted approach to more effectively select the most promising group of students. The 

committee might first use correlation analysis methods, such as correlation measures 

based on academic records, recommendation letters, community service, etc., to 

determine which features are most highly correlated with successful admissions. 

Although this method can help the committee identify promising students more quickly, 
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inaccurate or incomplete correlation measures may lead to some potentially promising 

students being overlooked. Additionally, computing correlation measures may require 

a significant amount of time and resources. Overall, the first category of PSO 

algorithms is similar to a comprehensive search approach considering all features, while 

the second category of PSO algorithms resembles a targeted approach utilizing 

correlation information to select specific features. 

Recently, Yang et al. proposed a novel framework called bidirectional feature fixing 

(BDFF) for high-dimensional feature selection [269]. In BDFF, each particle has two 

different search directions. One direction guides the particle to find a large feature 

subset with more selected features, while the other direction guides the particle to find 

a small feature subset with fewer selected features. Based on their search directions, 

particles can dynamically fix the selection status of features, which also helps narrow 

down the search space without overly relying on correlation analysis. Therefore, BDFF 

holds great potential for addressing high-dimensional feature selection problems. 

However, BDFF still faces some challenges. Firstly, particles may be misled by the 

search directions, resulting in missing the optimal solution. Since in BDFF, search 

directions are only inferred and adjusted based on the performance of the current 

population, some particles' search directions may be incorrect. Secondly, BDFF 

sometimes struggles to obtain a feature subset with few selected features because the 

initial number of features always remains around half of the total number of features, 

which is quite large in high-dimensional data. Therefore, addressing this issue becomes 

a research challenge. 

In recent years, KT has garnered considerable attention in the field of EC due to its 

ability to accelerate the optimization process, enhance search capabilities, adapt to 

dynamic environments, and improve algorithm robustness. Taking cues from the 

concept of KT, the presence of crucial prior knowledge in the field of feature selection 

is recognized. Firstly, the objective of feature selection is to obtain a feature subset with 

as few selected features as possible. Secondly, reducing the number of features 

considered during the search for the optimal feature subset helps mitigate interference 
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between features and speeds up the feature selection process. However, existing 

methods for feature selection still inadequately leverage this prior knowledge. This 

chapter aims to integrate this prior knowledge into the BDFF framework while 

preserving its original capability for global knowledge discovery by designing different 

optimization tasks for feature selection. MTOP technology has emerged as a promising 

approach in high-dimensional feature selection, facilitating KT between different 

optimization tasks. In multi-task optimization, there may exist certain correlations or 

similarities between tasks. KT methods facilitate the transfer of valuable expertise and 

insights among various tasks, ensuring the efficiency and adaptability of the system. 

Therefore, this chapter introduces, for the first time, the combination of the BDFF 

framework with MTOP technology, proposing an algorithm called multi-task 

bidirectional particle swarm optimization (MBDPSO) for high-dimensional feature 

selection. In comparison with other existing EMTO-based feature selection algorithms, 

MBDPSO emphasizes the integration of MTOP and BDFF, particularly in leveraging 

the prior knowledge introduced by MTOP while retaining the global search capability 

of BDFF. The main contributions of this chapter can be summarized as follows. 

Firstly, designing two related tasks, incorporating prior knowledge of feature 

selection into MBDPSO. Both tasks are aimed at feature selection. However, one task 

focuses solely on promising features, while the other considers all features to retain 

global search capability. Therefore, MBDPSO can quickly identify small feature 

subsets while still retaining the ability to search for feature subsets with different 

selected feature counts. 

Secondly, proposing a novel KT approach to assist particles in searching in a multi-

task environment. The KT process combines the advantages of feature fixation and a 

widely used PSO variant called Bare-Bones Particle Swarm Optimization (BBPSO). 

Additionally, using a linearly increasing function dynamically adjusts the probability 

of KT, helping particles strike a balance between mining knowledge within their task 

and learning from other tasks. 

The remaining sections of this chapter are organized as follows. Section 6.2 briefly 
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introduces related work, while section 6.3 describes the detailed implementation of the 

proposed MBDPSO. In section 6.4, experimental results and analysis of MBDPSO on 

public feature selection datasets and real research cases are presented. Finally, section 

five concludes the chapter. 

6.2 Related Work 

6.2.1 Feature Selection 

Feature selection is the process of selecting a subset of features from the entire 

feature set to optimize an evaluation function relevant to a specific problem. For 

instance, in classification problems, the evaluation function could be classification 

accuracy. Suppose there are D features in the entire feature set, then the feature selection 

problem for classification can be represented as: 

               

1 2

max  f(x)

  s. t. ( , ,..., )

        {0,1},  1,2,...,

D

d

x x x x

x d D

=

 =            (6.1) 

Where f(⋅) represents the classification accuracy, x is the solution to the feature 

selection problem, and xd takes a value of 1 to select the dth feature or 0 to not select it. 

Choosing a sufficiently small feature subset with high classification accuracy is 

extremely challenging when D is large. 

6.2.2 Bidirectional Feature Fixing Framework 

The BDFF framework [269] was proposed for PSO to effectively address high-

dimensional feature selection problems. It helps particles reduce the search space as 

they update their positions and can be combined with most PSO variants into a unified 

framework. In BDFF, each particle is defined with two search directions. One direction, 

diru, guides the particle to find a large feature subset, while the other direction, dirl, 

guides the particle to find a small feature subset. Additionally, BDFF divides all features 

into different feature neighborhoods. Then, if the features meet the feature fixing 

conditions based on the particle's current search direction, features within the same 

feature neighborhood will be fixed, maintaining their selection status. Corresponding 

to the two search directions, there are also two feature fixing conditions. If the direction 
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is diru and all features in the same neighborhood in the particle's historical best position 

are selected, feature fixing will be executed. Similarly, if the direction is dirl and no 

features in the same neighborhood are selected, feature fixing will also be executed. In 

BDFF, the feature fixing technique reduces the features considered in optimization, 

narrowing down the search space for each particle and thus improving search efficiency. 

Although BDFF shows promising potential in high-dimensional feature selection, 

it still faces some challenges. The first challenge is the difficulty in adjusting search 

directions, which may lead to being trapped in the wrong direction. Initially, half of the 

particles use diru as the search direction, and the other half use dirl, as shown below: 

Where dir(pi) returns the search direction of the ith particle pi, and P is the total 

number of particles in the swarm. Only one direction is correct because the optimal 

solution can only be in one direction. Then, BDFF uses an adaptive direction change 

strategy to change the direction of particles to fully utilize particles in the wrong 

direction. However, ensuring the correct direction adjustment is extremely difficult. In 

some accidental cases, particles may all end up in the wrong direction, resulting in poor 

optimization results. The second challenge is that BDFF requires a significant amount 

of resources to search for small feature subsets. According to BDFF's initialization 

strategy, the number of features selected by each particle is approximately half of the 

total number of features. If the optimal solution contains a small feature subset, BDFF 

can only gradually reduce the size of the selected feature subset starting from half of 

the total features to find the optimal solution, which wastes a considerable amount of 

computational resources, especially when dealing with high-dimensional data. 

6.2.3 Evolutionary Multi-Task Optimization 

EMTO has seen significant advancements in recent years, with Multi-Factorial 

Evolutionary Algorithm (MFEA) being one of the most prominent approaches [30]. It 

introduces four fundamental concepts—Factorial Cost, Factorial Rank, Scalar Fitness, 

and Skill Factor—to assess individuals' performance in multi-task environments. 

MFEA incorporates techniques like assortative mating and vertical cultural 

transmission to facilitate information exchange among different tasks. By utilizing a 
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unified search space, MFEA enables the simultaneous optimization of multiple tasks 

within a single population, offering an efficient framework for EMTO. Various variants 

based on MFEA have been proposed, such as Multi-Factor Differential Evolution and 

Multi-Factor Particle Swarm Optimization by Feng et al. [31]. Additionally, efforts 

have been made to apply MFEA to expensive optimization problems, aiming to extract 

useful knowledge from cheaper problems and reduce computational costs, as 

demonstrated by Ding et al. [147]. Further enhancements include KT and resource 

allocation to improve the efficiency of MFEA [273][274][146][275]. 

6.3 Framework of MBDPSO 

In this section, the detailed implementation of the proposed MBDPSO algorithm is 

presented. Firstly, two related tasks designed for high-dimensional feature selection 

problems and the overall framework of MBDPSO are provided. Then, the initialization 

of the three main components of particles in the population is discussed. To coordinate 

particles in the two tasks and transfer knowledge between different tasks, the multi-task 

evolutionary paradigm of MBDPSO is described. Finally, the complete MBDPSO is 

presented. 

6.3.1 Two tasks of feature selection 

The design of MBDPSO aims to leverage prior knowledge in the field of feature 

selection by combining BDFF with EMTO to help particles efficiently find optimal 

solutions [33]. In feature selection problems, the preference is to obtain feature subsets 

containing as few features as possible. Additionally, priority is given to features that are 

more likely to appear in the optimal solution rather than considering all features, which 

can provide useful information to expedite the optimization process. Based on the 

aforementioned prior knowledge, two related tasks specifically for feature selection are 

proposed. The objectives of these two tasks are the same, i.e., to select an optimal 

feature subset from the same dataset to maximize the function described in Equation 

(6.1) [33]. However, the feature scope to be considered differs between these two tasks. 

The first task only considers promising features that constitute a small portion of 

the total features. Correlation analysis based on similarity or information entropy is an 
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effective method for assessing the importance of features for classification problems 

[276] [277]. Generally, features highly correlated with the classification labels have a 

higher probability of appearing in the optimal feature subset because they have a greater 

impact on the classification results. Therefore, these features can be prioritized and 

considered as promising features. Here, Symmetrical Uncertainty (SU) [278] was 

adopted to identify promising features, where the SU value between feature F and class 

label C can be calculated as follows: 

       
H( ) H( | )

SU( , )=2
H( ) H( )

F F C
F C

F C

−

+
               (6.2) 

Here, H(F|C) represents the conditional entropy of F given C, while H(F) and H(C) 

are the entropies of F and C, respectively. After ranking the features based on their SU 

values with the class labels in descending order, the top K promising features are 

considered. Then, the first task selects features only from these promising ones to form 

a candidate feature subset. It's worth noting that the computation of SU results, used for 

locating promising features, is also required in BDFF as part of the preparation work 

for partitioning feature neighborhoods. Therefore, identifying promising features does 

not require additional computational resources. 

 

Figure 6.1 The framework of two tasks in feature selection 

The second task considers the entire feature set range, which is necessary because 

the optimal feature subset is often not entirely composed of promising features used in 

the first task. The correlation analysis in the first task only considers the relationship 

between individual features and labels, making the collection of promising features 
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somewhat biased. Therefore, the second task retains the ability to comprehensively 

consider all features to help PSO reveal the implicit associations among features in the 

entire feature set. 

Based on these two related tasks, the overall framework of MBDPSO is illustrated 

in Figure 6.1. The first task focuses on promising features with high SU values to 

incorporate prior knowledge of feature selection, while the second task considers the 

entire feature set to gain a comprehensive perspective on feature selection. Then, 

particles in the population are assigned different tasks for optimization. Each particle 

also possesses a search direction for feature fixing. In Figure 6.1, particles with upward 

and downward arrows search for solutions with more and fewer features, respectively, 

similar to BDFF. During evolution, knowledge can be transferred from one task to 

another, aiding in the search process for both tasks. 

Given that both tasks perform feature selection on the same problem, they share a 

lot of similar knowledge. For example, features selected in one task are likely to be 

selected in the other task as well. Therefore, KT between these two tasks can be more 

reasonable and effective. 

6.3.2 Multi-Task Knowledge Transfer 

The multi-task KT in MBDPSO is based on the MFEA paradigm. In MFEA, the 

skill factor τi denotes the index of the task solved by particle pi. MBDPSO adopts this 

definition. If the value of τi is 1, it indicates that pi is assigned to the first task. Otherwise, 

if the value of τi is 2, it indicates that pi solves the second task. Then, the assortative 

mating process in MBDPSO is designed as follows: 
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In equation 6.3, rmp represents the random mating probability, lbestτ is the local 

best position found by the task τ, with τi∈{1,2}. If the random value r is greater than 

rmp, pi will generate a new xi,d using the lbest of its task. Otherwise, pi will use the lbest 

of the other task, facilitating KT from one task to the current one. Additionally, to 
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control the frequency of KT the value of rmp is adjusted during the evolution process 

of MBDPSO using a linearly increasing strategy. 

        
min max min( )

g
rmp rmp rmp rmp

G
= +  −

           (6.4) 

Where rmpmin and rmpmax represent the minimum and maximum values of rmp, 

respectively, g is the current iteration number, and G is the total number of iterations in 

the entire evolution process. Gradually increasing the value of rmp helps particles focus 

more on learning from their tasks at the beginning and then facilitates KT later on. 

Algorithm 1 Particle Position Update for MBDPSO 

Input: The ith particle to be updated pi, the total number of features  

D, the current position xi of pi, the personal best position pbesti  

found by pi so far 

Output: The updated particle pi 

Begin  

1 For j = 1 to D Do 

2 If xi,j meets the conditions of feature fixation Then 

2      xi,j ← pbesti,j; 

4 Else 

5      Update xi,j with Eq. (6.4); 

6    End If 

7 End For 

8 Return pi; 

End  

The strategy for MBDPSO to update particle positions is described in Algorithm 1. 

For each dimension xi,j of xi, if xi,j meets the conditions of feature selection mentioned 

in Section 6.2.2, its selection state will be fixed and directly use the value of pbesti,j. If 

xi,j is not fixed, then it will be updated adopting the assortative mating in Eq. (6.4). 

6.3.3 Complete MBDPSO 

The complete implementation of MBDPSO is described in Algorithm 2. It begins 

with sorting all features based on their SU values with the class labels. Then, it 

initializes the search directions, assigns tasks, and initializes the positions of each 

particle. In each iteration, particles search for the optimal solution based on their 

respective task directions. Through vertical cultural transmission, particles can change 

their tasks by utilizing knowledge from other tasks when generating new positions. The 
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evaluation of particles depends on their tasks, with particles in the first task focusing 

on promising features, and those in the second task considering the entire feature set. 

After each iteration, the local best (lbest) and global best (gbest) for each task are 

updated. Finally, when the maximum evaluation count is reached, MBDPSO returns 

gbest and terminates the algorithm. 

Algorithm 2 MBDPSO 

Input: The total number of features D, the number of promising features K, the 

maximum number of generations G, the size of the swarm P, the maximum 

number of fitness evaluations MAX_FE 

Output: The global optimal solution gbest found by the swarm 

Begin  

1 Rank features with SU and generate two tasks; 

2 Initialize search direction with Eq. (6.2); 

3 Randomly assign a task for each particle; 

4 Randomly initialize the position x of each particle; 

5 Set the number of fitness evaluations FEs ← 0; 

6 g ← 1; 

7 While FEs < MAX_FE Do 

8 For i = 1 to P Do 

9     Update xi of particle pi with Algorithm 1; 

10 Employ vertical cultural transmission to pi; 

11 Evaluate xi according to τi and then update pbesti; 

12 End For 

13   Update lbest1, lbest2, and gbest; 

14   g ← g + 1; 

15 End while 

16 Return gbest; 

End  

 

The time complexity of MBDPSO is O(G×P×(Tu+Te)), where G is the maximum 

number of iterations, P is the population size, Tu is the time complexity for updating 

each particle's new position, and Te is the time complexity for evaluating each particle. 

With the feature fixation technique, Tu is less than O(D) since not all features need to 

be updated. Additionally, using the k-nearest neighbors (k-NN) method for evaluating 

candidate solutions in classification problems [297], with S samples in the dataset, the 

time complexity of k-NN is O(S2K) in the first task where only K (K<D) promising 
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features are considered. Overall, the time complexity is greater than O(S2K) but less 

than O(S2D). 

6.4 Experiment Results and Discussion 

In this section, experiments are conducted to evaluate the performance of the 

proposed MBDPSO algorithm. Ten commonly used feature selection datasets are 

employed to compare MBDPSO with other Particle Swarm Optimization (PSO)-based 

feature selection algorithms. 

6.4.1 Datasets 

Basic information for the ten public datasets is listed here, with “#” representing 

the number of respective items, as detailed in Table I. All datasets used are for 

classification problems and are sourced from [271] and [276]. These datasets include 

face image data and biological data, characterized by small sample sizes and large 

numbers of features. Therefore, the classification on these datasets poses a challenging 

task. Additionally, the datasets used contain both discrete and continuous data, allowing 

for comprehensive testing of MBDPSO's performance across different data types 

without the need for a specific design for each data type. 

6.4.2 Experimental Setup 

Six Particle Swarm Optimization (PSO)-based feature selection algorithms were 

selected for comparison to test the performance of the proposed MBDPSO algorithm. 

BPSO [279] serves as the baseline method, being the first PSO algorithm applicable to 

feature selection problems. BBPSO [272] is a widely used PSO variant that, after simple 

discretization, can be employed for feature selection. MIBBPSO [266], ISBPSO [267], 

and HFS-C-P [268] are recently proposed PSO-based algorithms that have shown good 

performance on high-dimensional feature selection problems. BBPSO-ACJ-BDFF 

[269] is a specific implementation version of the BDFF framework, demonstrating good 

search performance on high-dimensional feature sets. The parameter settings for the 

algorithms used for comparison are consistent with those in their original papers. 

However, for fair comparison, the maximum fitness evaluation times (MAX_FE) was 

limited for each algorithm to 5000, as the values of the population size P differ across 
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algorithms. For MBDPSO, P was set to 20, the value of rmp ranges from 0 to 0.6, and 

K is set to 0.2D. 

Table 6.1 Basic information of 10 data sets 

Dateset #Samples #Features #Classes Data Type 

Colon 62 2000 2 discrete 

WarpAR10P 130 2400 10 continuous 

GLIOMA 50 4434 4 continuous 

Leukemia_1 72 5327 3 discrete 

9_Tumor 60 5726 9 continuous 

TOX_171 171 5748 4 continuous 

Brain_Tumor_1 90 5920 5 continuous 

Nci9 60 9712 9 discrete 

Arcene 200 10000 2 continuous 

Orlraws10P 100 10304 10 continuous 

K-NN was chosen as the classifier for the classification problem, with the 

parameter k set to 5. In the experiment, 70% of the samples from each dataset were used 

as the training dataset, while the remaining 30% were used as the testing dataset. A 5-

fold cross-validation method was employed, using k-NN to evaluate the classification 

accuracy of all algorithms on the training dataset during the training process. Then, 

during the testing process, the best feature subset found by each algorithm was tested 

on the testing dataset to obtain the classification accuracy for comparison using k-NN. 

To reduce experimental errors, each algorithm was independently run 20 times with 

different random seeds. Wilcoxon rank-sum test was employed 错误!未找到引用源。 

to analyze significant differences between MBDPSO and other algorithms, with a 

significance level set to 0.05. Additionally, Feature Selection Toolbox 3 [281], an open-

source library based on C++, which implemented all algorithms on a platform with an 

Intel Core i7-10700F CPU @2.90GHz and a total memory of 8GB was used. 

6.4.3 Compare the results and discussion 

In Table II, the average classification accuracy of the best feature subset found by 

MBDPSO and other comparison algorithms in 20 runs on 10 public datasets is recorded. 

The numbers in parentheses indicate the ranking of the algorithms. Symbols “+” , “≈”, 

and “-” indicate whether MBDPSO achieved significantly higher, similar, or 

significantly lower classification accuracy compared to the comparison algorithms, 
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respectively. Among all algorithms, MBDPSO exhibited the best classification 

accuracy performance. On 9 out of 10 datasets, MBDPSO demonstrated higher or 

similar classification accuracy compared to BPSO, BBPSO, MIBBPSO, and HFS-C-P. 

Compared to ISBPSO, MBDPSO performed significantly better on 4 datasets and 

similarly on 4 datasets. Additionally, MBDPSO outperformed BBPSO-ACJ-BDFF on 

6 datasets, achieving lower results on only 2 datasets. Moreover, bold numbers indicate 

the best classification accuracy among all algorithms in Table II. MBDPSO found 5 out 

of the 10 best results among all algorithms, the highest among all algorithms. The rank 

sum of algorithms on the 10 datasets was also calculated to demonstrate their overall 

performance. Across all datasets, MBDPSO had a rank sum of 24, significantly lower 

than other algorithms. 

Table 6.2. Classification accuracy of MBDPSO and other comparative algorithms on 10 

datasets (bold numbers indicate the best results). 

Dataset MDBPSO BPSO BBPSO MIBBPSO ISBPSO HFS-C-P 
BBPSO-

ACJ-BDFF 

Colon 0.737 (1) 0.695 (5, +) 0.689 (6, +) 0.674 (7, +) 0.705 (2, ≈) 0.700 (3, +) 0.697 (4, +) 

WarpAR10P 0.540 (2) 0.401 (7, +) 0.416 (6, +) 0.458 (5, +) 0.510 (4, +) 0.515 (3, +) 0.630 (1, –) 

GLIOMA 0.753 (1) 0.717 (3, +) 0.714 (4, +) 0.714 (4, +) 0.703 (7, +) 0.728 (2, ≈) 0.706 (6, +) 

Leukemia_1 0.954 (3) 0.939 (5, ≈) 0.965 (1, ≈) 0.946 (4, ≈) 0.930 (6, ≈) 0.861 (7, +) 0.959 (2, ≈) 

9_Tumor 0.391 (7) 0.430 (6, –) 0.445 (4, –) 0.448 (3, –) 0.452 (2, –) 0.439 (5, –) 0.489 (1, –) 

TOX_171 0.711 (1) 0.627 (7, +) 0.698 (5, ≈) 0.707 (2, ≈) 0.705 (3, ≈) 0.705 (4, ≈) 0.674 (6, +) 

Brain_Tumor_1 0.791 (1) 0.766 (6, +) 0.761 (7, +) 0.780 (3, ≈) 0.773 (4, +) 0.786 (2, ≈) 0.768 (5, +) 

Nci9 0.486 (1) 0.370 (7, +) 0.380 (6, +) 0.389 (4, +) 0.420 (2, +) 0.418 (3, +) 0.384 (5, +) 

Arcene 0.817 (2) 0.807 (3, ≈) 0.803 (4, ≈) 0.801 (5, ≈) 0.829 (1, ≈) 0.754 (7, +) 0.788 (6, +) 

Orlraws10P 0.875 (5) 0.873 (6, ≈) 0.870 (7, ≈) 0.880 (3, ≈) 0.897 (1, –) 0.888 (2, ≈) 0.875 (4, ≈) 

+/≈/- NA 6/3/1 5/4/1 4/5/1 4/4/2 5/4/1 6/2/2 

Rank Sum 24 55 50 40 32 38 40 

In addition to classification accuracy, the number of selected features is also a 

crucial indicator in feature selection. Table III presents the average number of selected 

features in the best feature subset found by each algorithm, where symbols “+”, “≈”, 

and “-” indicate whether MBDPSO significantly reduced, was similar to, or 

significantly increased the number of selected features compared to the comparison 

algorithms, respectively. MBDPSO found feature subsets much smaller than BPSO, 

BBPSO, MIBBPSO, and ISBPSO on all datasets. Compared to HFS-C-P, MBDPSO 
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required fewer features on 7 datasets and a similar number on the Arcene dataset. On 9 

out of 10 datasets, MBDPSO found feature subsets much smaller than BBPSO-ACJ-

BDFF. While MBDPSO selected more features than BBPSO-ACJ-BDFF on the 

WarpAR10P dataset, it still selected significantly fewer features compared to other 

comparison algorithms. Overall, MBDPSO found the smallest feature subset on 6 out 

of 10 datasets and achieved a rank sum of 14, indicating its superior performance. 

Table 6.3 Average number of selected features by algorithms on 10 datasets. 

Dataset MDBPSO BPSO BBPSO MIBBPSO ISBPSO HFS-C-P 
BBPSO-

ACJ-BDFF 

Colon 152.7 (1) 1206.9 (7, +) 996.2 (6, +) 624.7 (4, +) 292.5 (3, +) 243.3 (2, +) 671.3 (5, +) 

WarpAR10P 96.7 (2) 1488.6 (7, +) 1191.7 (6, +) 506.4 (5, +) 343.8 (3, +) 374.2 (4, +) 21.9 (1, –) 

GLIOMA 538.4 (1) 2700.8 (7, +) 2199.8 (6, +) 1943.4 (5, +) 1694.0 (4, +) 666.4 (2, +) 1321.7 (3, +) 

Leukemia_1 590.4 (2) 3290.2 (7, +) 2651.8 (5, +) 2918.0 (6, +) 2143.2 (4, +) 218.0 (1, –) 1124.0 (3, +) 

9_Tumor 610.4 (1) 3532.1 (6, +) 2859.3 (5, +) 2798.6 (4, +) 1142.9 (2, +) 4326.0 (7, +) 1198.7 (3, +) 

TOX_171 448.0 (2) 3582.2 (7, +) 2872.0 (6, +) 1280.6 (4, +) 653.8 (3, +) 204.1 (1, –) 1375.4 (5, +) 

Brain_Tumor_1 454.6 (1) 3638.7 (7, +) 2967.2 (6, +) 1500.9 (4, +) 1365.9 (3, +) 1242.2 (2, +) 1977.4 (5, +) 

Nci9 500.6 (1) 5789.1 (7, +) 4857.4 (6, +) 3263.5 (4, +) 1412.5 (2, +) 2524.1 (3, +) 3705.9 (5, +) 

Arcene 661.7 (2) 6176.4 (7, +) 4991.2 (6, +) 4276.7 (5, +) 2836.1 (4, +) 616.5 (1, ≈) 1301.4 (3, +) 

Orlraws10P 867.6 (1) 5905.7 (7, +) 5133.7 (6, +) 3454.4 (3, +) 1613.8 (2, +) 3522.8 (4, +) 4125.7 (5, +) 

+/≈/- NA 10/0/0 10/0/0 10/0/0 10/0/0 7/1/2 9/0/1 

Rank Sum 14 69 58 44 30 27 38 

 

Table 6.4 Comparison of running time 

Dataset MDBPSO BPSO BBPSO MIBBPSO ISBPSO HFS-C-P 
BBPSO-

ACJ-BDFF 

Colon 0.26 (3) 0.45 (6, +) 0.36 (5, +) 0.46 (7, +) 0.15 (1, –) 0.15 (2, –) 0.29 (4, +) 

WarpAR10P 0.91 (4) 1.57 (6, +) 1.26 (5, +) 14.84 (7, +) 0.72 (2, –) 0.74 (3, –) 0.66 (1, –) 

GLIOMA 0.76 (1) 1.54 (6, +) 1.22 (5, +) 7.92 (7, +) 0.98 (4, +) 0.77 (2, ≈) 0.94 (3, +) 

Leukemia_1 1.47 (3) 2.46 (6, +) 1.91 (5, +) 7.97 (7, +) 1.60 (4, +) 0.81 (1, –) 1.18 (2, –) 

9_Tumor 1.68 (3) 2.65 (5, +) 2.05 (4, +) 19.07 (7, +) 0.91 (1, –) 3.75 (6, +) 1.46 (2, –) 

TOX_171 3.25 (3) 6.07 (6, +) 4.61 (5, +) 148.27 (7, +) 1.58 (2, –) 0.69 (1, –) 3.32 (4, ≈) 

Brain_Tumor_1 1.82 (3) 3.43 (6, +) 2.66 (5, +) 43.76 (7, +) 1.39 (1, –) 1.74 (2, ≈) 2.12 (4, +) 

Nci9 3.15 (2) 6.98 (6, +) 5.43 (5, +) 8.97 (7, +) 1.79 (1, –) 4.34 (3, +) 4.41 (4, +) 

Arcene 7.96 (3) 14.83 (6, +) 11.95 (5, +) 451.34 (7, +) 9.27 (4, +) 7.87 (2, ≈) 7.04 (1, ≈) 

Orlraws10P 4.95 (2) 8.50 (6, +) 6.88 (4, +) 170.88 (7, +) 2.86 (1, –) 8.39 (5, +) 5.89 (3, +) 

+/≈/- NA 10/0/0 10/0/0 10/0/0 3/0/7 3/3/4 5/2/3 

Rank Sum 27 59 48 70 21 27 28 
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The average running time of 20 runs was also recorded and the results are presented 

in Table IV. Symbols “+” and “_” denote significantly more or less time spent by 

MBDPSO compared to the respective algorithms, while “≈” indicates no significant 

difference between MBDPSO and the compared algorithms. MBDPSO required less 

time to complete the search on these 10 datasets compared to BPSO, BBPSO, and 

MIBBPSO. Compared to BBPSO-ACJ-BDFF, MBDPSO had shorter running times on 

5 datasets and similar times on the other 2 datasets. Additionally, MBDPSO exhibited 

similar running times to HFS-C-P, with a rank sum of 27. Compared to ISBPSO, 

MBDPSO required less time to search for solutions. However, in most cases, MBDPSO 

achieved higher classification accuracy and fewer selected features. 

6.4.4 Composition Analysis of MBDPSO 

In this subsection, the two components of MBDPSO are further analyzed: the 

BDFF framework and the EMTO technique. Firstly, the MBDPSO-w/o-EMTO variant 

was designed, retaining only the second task of MBDPSO while eliminating KT 

between different tasks. Then, the BDFF component was removed from the particle 

update process, resulting in the MBDPSO-w/o-BDFF variant. The experimental results 

are presented in Table V. 

Compared to MBDPSO-w/o-EMTO, MBDPSO exhibited an 8.22% improvement 

in classification accuracy and, on average, reduced the number of selected features by 

76.66%. In 7 out of 10 datasets, MBDPSO significantly enhanced its classification 

accuracy through the integration of the EMTO technique. Across all datasets, MBDPSO 

consistently reduced the number of selected features relative to MBDPSO-w/o-EMTO. 

Hence, the EMTO component in MBDPSO generally aids particles in discovering 

smaller feature subsets and enhancing classification performance. Compared to 

MBDPSO-w/o-BDFF, MBDPSO required significantly fewer selected features in 8 

datasets. Overall, MBDPSO achieved an average improvement of 1.30% in 

classification accuracy and reduced the number of selected features by an average of 

26.14% across 10 datasets. Thus, the BDFF component used in MBDPSO can reduce 

the number of selected features while slightly improving classification performance. 
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Table 6.5. Experimental results of component analysis. 

Dataset 
MBDPSO MBDPSP-w/o-EMTO MBDPSP-w/o-BDFF 

Accuracy Features Accuracy Features Accuracy Features 

Colon 0.737 152.7 0.666 (+) 797.7 (+) 0.726 (=) 197.4 (+) 

WarpAR10P 0.540 96.7 0.411 (+) 431.4 (+) 0.525 (=) 232.6 (+) 

GLIOMA 0.753 538.4 0.711 (+) 1919.1 (+) 0.733 (=) 702.5 (+) 

Leukemia_1 0.954 590.4 0.935 (=) 1586.4 (+) 0.959 (=) 535.6 (=) 

9_Tumor 0.391 610.4 0.450 (–) 2577.8 (+) 0.386 (=) 580.5 (=) 

TOX_171 0.711 448.0 0.673 (+) 1815.9 (+) 0.700 (=) 913.3 (+) 

Brain_Tumor_1 0.791 454.6 0.761 (+) 2303.5 (+) 0.789 (=) 592.7 (+) 

Nci9 0.486 500.6 0.366 (+) 4351.9 (+) 0.468 (=) 964.5 (+) 

Arcene 0.817 661.7 0.797 (+) 2376.5 (+) 0.824 (=) 996.7 (+) 

Orlraws10P 0.875 867.6 0.873 (=) 4531.4 (+) 0.872 (=) 1037.1 (+) 

+/≈/- 7/2/1 10/0/0 0/10/0 8/2/0 

6.4.5 Impact of Parameter K 

Table 6.6. Experimental results of different variants of MBDPSO with various K values 

Dataset 
Accuracy Features 

K = 0.1D K = 0.2D K = 0.3D K = 0.4D K = 0.5D K = 0.1D K = 0.2D K = 0.3D K = 0.4D K = 0.5D 

Colon 0.661 (5) 0.737 (1) 0.732 (2) 0.729 (3) 0.713 (4) 683.8 (5) 152.7 (1) 253.7 (2) 339.5 (3) 497.9 (4) 

WarpAR10P 0.594 (1) 0.540 (3) 0.575 (2) 0.516 (5) 0.521 (4) 36.4 (1) 96.7 (3) 84.6 (2) 313.6 (5) 254.0 (4) 

GLIOMA 0.753 (2) 0.753 (1) 0.708 (5) 0.708 (3) 0.708 (4) 104.8 (1) 538.4 (2) 1407.5 (4) 987.9 (3) 1497.9 (5) 

Leukemia_1 0.946 (5) 0.954 (2) 0.965 (1) 0.952 (3) 0.948 (4) 688.9 (2) 590.4 (1) 889.6 (3) 1276.6 (4) 1350.9 (5) 

9_Tumor 0.373 (5) 0.391 (4) 0.480 (2) 0.500 (1) 0.457 (3) 291.3 (1) 610.4 (2) 921.1 (3) 965.4 (4) 1328.2 (5) 

TOX_171 0.708 (2) 0.711 (1) 0.670 (4) 0.638 (5) 0.678 (3) 164.1 (1) 448.0 (2) 878.2 (3) 1052.4 (4) 1268.9 (5) 

Brain_Tumor_1 0.796 (1) 0.791 (2) 0.779 (4) 0.775 (5) 0.780 (3) 223.9 (1) 454.6 (2) 726.7 (3) 1087.6 (4) 1245.5 (5) 

Nci9 0.520 (1) 0.486 (2) 0.441 (3) 0.395 (5) 0.395 (4) 348.6 (1) 500.6 (2) 991.8 (3) 1750.7 (5) 1577.3 (4) 

Arcene 0.847 (1) 0.817 (2) 0.801 (4) 0.796 (5) 0.802 (3) 403.1 (1) 661.7 (2) 2163.1 (3) 2848.6 (5) 2199.1 (4) 

Orlraws10P 0.877 (4) 0.875 (5) 0.885 (3) 0.900 (1) 0.900 (1) 1126.6 (2) 867.6 (1) 1145.7 (3) 1374.5 (4) 2407.8 (5) 

Rank Sum 27 23 30 36 33 16 18 29 41 46 

The number of hopeful features, K, is a crucial parameter in MBDPSO, 

determining the size of the hopeful feature subset in the first task of MBDPSO. On one 

hand, larger values of K consistently slow down the search for hopeful features. On the 

other hand, smaller values of K may weaken the diversity of the population. To 

investigate the impact of K, different variants of MBDPSO was compared with varying 

K values, and the experimental results are listed in Table VI. Overall, MBDPSO 

performs best in terms of classification accuracy and ranks when K=0.2D, with a 

ranking sum of 23. As the value of K decreases, the number of selected features also 
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decreases in most cases. Therefore, smaller values of K can effectively reduce the 

number of selected features discovered by MBDPSO. Taking into account both 

classification accuracy and the number of selected features, the value of K is suggested 

to be set to 0.2D. 

6.5 Conclusion 

The chapter introduces MBDPSO, which combines EMTO technology and the 

BDFF framework for high-dimensional feature selection. Initially, MBDPSO devises 

two correlated tasks to leverage prior knowledge from the BDFF framework for feature 

selection. Subsequently, MBDPSO proposes a KT strategy, effectively exchanging 

knowledge between the tasks, thereby enhancing its performance. Experimental results 

on 10 public classification datasets demonstrate that MBDPSO can find smaller feature 

subsets with higher classification accuracy compared to other algorithms [265]. 

However, despite the effectiveness of the KT strategy in MBDPSO, each task can 

only learn from the local optimum of the other task, limiting the scope of KT. For future 

work, advanced KT techniques such as orthogonal KT [236], meta-knowledge transfer 

[234], and bi-objective KT [235] could be considered to further enhance the 

performance of MBDPSO on complex feature selection problems. Additionally, 

comparing MBDPSO with more recent algorithms, especially non-PSO algorithms, 

could provide a more comprehensive validation of its performance. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1 Conclusions 

In conclusion, this thesis has done research in both theoretical research and 

application research in the field of optimization.  

The theoretical contributions focus on integrating KT into EC for efficiently 

solving optimization problems, addressing challenges in DOP with the HIDE algorithm, 

and shifting the perspective in MTOP with the MCOP algorithm. These theoretical 

researches provide valuable frameworks for tackling complex optimization challenges. 

On the application aspect, this thesis has presented effective solutions to real-world 

problems. In DOP applications, the KLRP-MA algorithm offers a robust solution to the 

dynamic nature of urban bike-sharing systems, ensuring swift re-optimization of 

planned routes and accelerating convergence through KT mechanisms. In MTOP 

applications, the integration of MTOP with the BDFF framework within the MBDPSO 

algorithm significantly enhances feature selection capabilities across multiple tasks, 

demonstrating improved performance in solving complex optimization problems. 

7.2 Future Work 

In the research area of DOP, future research endeavors can explore both theoretical 

and application directions. On the theoretical front, investigating strategies for 

subpopulations to independently explore partial search spaces within collaborative 

environments holds promise for enhancing algorithm efficiency. Furthermore, 

addressing challenges related to multi-modal, multi-objective, and expensive 

characterics could encourage more comprehensive solutions in dynamic optimization. 

Application-wise, integrating data-driven optimization techniques and multi-objective 

optimization strategies into DOP algorithms could facilitate their deployment in real-

world scenarios, such as urban logistics and resource management. 

Future research directions of MTOP also encompass theoretical advancements and 
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practical applications. Theoretical investigations may delve into advancing KT 

techniques within MTOP algorithms to enable more effective learning across multiple 

tasks. Moreover, exploring the integration of MTOP with engineering applications like 

logistics, supply chain management, and traffic optimization holds promise for 

addressing complex real-world challenges. Additionally, further research efforts could 

focus on extending the scope of MTOP algorithms to accommodate diverse 

optimization objectives and constraints in practical configurations. 

In future research, techniques from dynamic optimization and multi-task 

optimization can be mutually beneficial to improve the efficiency and effectiveness of 

solving complex optimization problems. Although current searches in IEEE Xplore do 

not reveal papers combining dynamic and multi-task, this is undoubtedly a promising 

direction. From the problem perspective, dynamic optimization can be seen as a multi-

task optimization problem that changes over time, while multi-task optimization can be 

viewed as dynamic optimization in the spatial dimension. Real-time decision-making 

methods, adaptability techniques, and the use of historical data in dynamic optimization 

can enhance the real-time response and adaptability of multi-task optimization systems. 

Conversely, multi-task optimization techniques such as multi-objective optimization 

algorithms, knowledge transfer, and co-evolution mechanisms can provide valuable 

solutions and insights for dynamic optimization. Additionally, common techniques like 

metaheuristic algorithms, reinforcement learning, and machine learning methods are 

crucial in handling complex data relationships and feature selection in dynamic and 

multi-task environments. For example, in intelligent transportation systems, the 

combination of these two approaches can improve real-time traffic signal adjustments 

and overall traffic flow balance. Therefore, further exploring and integrating these 

optimization techniques will provide strong support for addressing increasingly 

complex and dynamic optimization challenges in the real world.  
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