
1

ADVANCED EVOLUTIONARY COMPUTATION FOR

DYNAMIC AND MULTI-TASK OPTIMIZATION VIA

EFFICIENT KNOWLEDGE TRANSFER

By Kejing Du

Thesis submitted in total fulfillment of the requirement for the degree of

Doctor of Philosophy

Victoria University, Australia

Institute for Sustainable Industries and Livable Cities

May 2024

2

ABSTRACT

Advanced Evolutionary Computation For Dynamic And Multi-

Task Optimization Via Efficient Knowledge Transfer

Kejing Du, Ph.D.

Victoria University 2024

Evolutionary computation (EC) is a kind of population-based search method,

drawing inspiration from natural selection and gene inheritance. Although EC has

shown advantages over traditionally mathmetic-based optimization methods, it often

neglects a crucial aspect: knowledge gained from past and other problem-solving

experiences. This thesis explores how EC can improve by learning from past

experiences or experiences across different tasks. Inspired by knowledge transfer (KT)

observed in human evolution through cultural genes, this thesis investigates the

potential of EC to acquire and apply knowledge from past and other problem-solving

experiences and focuses on dynamic optimization problems (DOP) and multi-task

optimization problems (MTOP). Because these types of problems offer ideal

opportunities for KT. DOP involves dynamic changes over time, while MTOP

optimizes multiple tasks simultaneously, both scenarios benefiting from problem-

solving experiences.

This thesis emphasizes the importance of KT, proposing novel EC algorithms for

efficiently solving DOP and MTOP. In DOP, a challenge lies in effectively utilizing

historical information to accelerate algorithm convergence. This requires solutions for

selecting and updating historical data and ensuring its validity amidst environmental

changes. Meanwhile, MTOP presents difficulties in balancing optimization objectives

across multiple tasks and designing appropriate differential evolution strategies to

accommodate different task properties and constraints. Real-world problems are often

more complex than theoretical research, involving numerous variables and factors that

leading to dynamic charactertics and multi-task charactertics. For example, in bike-

3

sharing systems, fluctuations in the numbers of available bicycles and stations make

the path planning a DOP. Another example is feature selection in deep learning for high-

dimensional data. Due to the curse of dimensionality, considering all features is

challenging. Thus, integration of KT and EC is essential for addressing practical

problems.

Main contents and contributions of this thesis are detailed as follows.

1. To address DOP efficiently, a historical information-based differential evolution

(HIDE) algorithm is proposed in Chapter 3. HIDE uses previous knowledge for faster

convergence to new optimal regions and employs an archive-based strategy to retain

the best-performing individuals from previous environment, facilitating effective KT.

2. To tackle MTOP, a multi-criteria EC algorithm is proposed in Chapter 4. MTOP

is conceptualized as a multi-criteria optimization problem (MCOP), where KT occurs

across a consolidated population.

3. Chapter 5 addresses dynamic user route planning problem (URPP) in bike-

sharing systems. The challenge of fluctuating station inventory turns URPP into DOP.

To utilize experiential knowledge and guide the algorithm’s search process, knowledge

learning and random pruning-based memetic algorithm (KLRP-MA) is introduced,

enhancing KT integration and effectively tackling URPP dynamics.

4. In Chapter 6, a practical application of integrating MTOP with the bi-directional

feature fixation (BDFF) method in multi-tasking bi-directional particle swarm

optimization (MBDPSO) is discussed. This integration allows for effective KT between

tasks, improving capabilities in high-dimensional feature selection for deep learning.

In summary, this thesis systematically investigates DOP and MTOP and their

practical applications, proposing advanced EC algorithms to enhance the efficiency of

KT.

Keywords: evolutionary computation, knowledge transfer, dynamic optimization,

multi-task optimization, differential evolution, particle swarm optimization, memetic

algorithm, route planning, feature selection

4

DOCTOR OF PHILOSOPHY DECLARATION

I, Kejing Du, declare that the Ph.D. thesis entitled Advanced Evolutionary Computation

For Dynamic And Multi-Task Optimization Via Efficient Knowledge Transfer is no

more than 80, 000 words in length including quotes and exclusive of tables, figures,

appendices, bibliography, references and footnotes. This thesis contains no material that

has been submitted previously, in whole or in part, for the award of any other academic

degree or diploma. Except where otherwise indicated, this thesis is my own work. I

have conducted my research in alignment with the Australian Code for the Responsible

Conduct of Research and Victoria University’s Higher Degree by Research Policy and

Procedures.

Signature Date 02/05/2024

5

ACKNOWLEDGEMENT

Foremost, I express my deepest appreciation to Professor Hua Wang, my primary

supervisor, and Professor Zhi-Hui Zhan, my co-supervisor, for their unwavering

professional guidance, continuous encouragement, and constructive advice spanning

over three years. They generously invested their time in cultivating my skills in

academic research and critical thinking. Without the invaluable help and support of

these mentors, my thesis would not have seen the light of success. I am equally

appreciative of Prof. Yanchun Zhang, Prof. Jinli Cao, and Dr. Lili Sun for their advice

and support. Special thanks are also due to Prof. Sam Kwong and Prof. Weineng Chen

for writing recommendation letters for my Ph.D. application.

I extend my gratitude to the esteemed panel members who contributed to my

towards submission milestone reviews—Prof Stephen Gray, Dr. Siuly Siuly, and Dr.

Kate Wang. Additionally, I appreciate the valuable insights provided by Dr. Khandakar

Ahmed, Dr. Kate Wang, and Dr. Yongfeng Ge during my Mid-Candidature review, as

well as Dr. Elmira Jamei, Dr. Siuly Siuly, and Dr. Sudha Subramani, who served on the

panel for my milestone of Confirmation of Candidature. Thank you all for generously

dedicating your time to engage with my reports at each milestone, offering invaluable

suggestions, and providing guidance.

I extend my heartfelt gratitude to two invaluable Research Fellows in my laboratory,

Dr. Jiao Yin and Dr. Yongfeng Ge. I also want to express my appreciation to my

colleagues—Samesad Jahan, Taslima Khanam, Phavithra, Tawhid, Dr. Ashik Mostafa

Alvi, Mingshan You, Wei Hong, Puti Xu, Xiyu Qiao, and David Ning. A special

mention goes to Dr. Jiao Yin and Ph.D. Student Mingshan You for your continuous

support in both my personal and scientific endeavors. I extend my warmest wishes to

their daughter, Anna, for a life filled with health and happiness. I would like to convey

my sincere appreciation to Xiyu Qiao, Wei Hong, and Samesad Jahan, who have been

a constant presence with me in the lab every day. Their kindness and efforts have

touched me deeply. A warm thank you to visiting scholar Xingping Zhang; it was truly

6

a pleasure collaborating with you. Thanks to Prof. Yuan Miao for his encouragement,

and we used to meet in the tea room every day at lunchtime. I would like to thank Trish

Dwyer, Jo Xuereb who worked in VU for helping with administrative affairs.

I express my gratitude to the China Scholarship Council for generously supporting

my living expenses. I convey my thanks to the Chinese Consulate General in Melbourne

for their dedicated services and arrangements for international students. I am indebted

to Victoria University for the waiver of my tuition fees and for providing essential

research equipment, a conducive laboratory environment, and access to sports venues.

I extend my heartfelt gratitude to Prof. Zhi-Hui Zhan, Dr. Jian-Yu Li, and Dr.

Sheng-Hao Wu, Master Jiaquan Yang, Master Min Gao, who are currently in China.

Due to the challenges posed by Covid-19, my arrival at Victoria University was delayed.

Fortunately, I seized the opportunity to initiate research work at the South China

University of Technology, collaborating with exceptional scientists in their lab,

resulting in significant scientific research outcomes. I eagerly anticipate future

opportunities for collaboration.

Finally, I convey my heartfelt appreciation to my family in Guangzhou. My mother

remained in Guangzhou to care for my two young children. I extend my deepest

appreciation to my understanding and supportive husband, who has been a pillar of

encouragement throughout my academic journey. I also want to thank my father,

grandpa, and grandma for their unwavering support. Special thanks go to my neighbors,

Xiaohong Yu and Prof. Bing Hu, who frequently assist with picking up and dropping

off my children from our apartment to school. I am grateful to my children’s teachers

and the parents of their classmates, who have occasionally lent a helping hand in

looking after my children during my absence. A profound sense of gratitude is reserved

for my two sons, Wenyu Zhan, and Wenbo Zhan. Despite being primary students, they

demonstrated remarkable dedication to their studies and a commendable ability to live

independently during my doctoral studies.

7

PUBLICATIONS

1. Ke-Jing Du, Jian-Yu Li, Hua Wang, and Jun Zhang, “Multi-objective multi-criteria

evolutionary algorithm for multi-objective multi-task optimization,” Complex &

Intelligent Systems, vol. 9, pp. 1211-1228, 2023. [IF=5.8, JCR Q1]

2. Ke-Jing Du, Jian-Yu Li, Hua Wang, and Jun Zhang, “A knowledge learning and

random pruning-based memetic algorithm for user route planning in bike-sharing

system,” Memetic Computing, vol. 15, no. 2, pp. 259-279, Jun. 2023. [IF=4.7, JCR

Q1]

3. Ke-Jing Du, Jia-Quan Yang, Limin Wang, Xuming Han, Hua Wang, and Zhi-Hui

Zhan, “Multi-objective demand responsive transit scheduling in smart city: a

multiple populations ant colony system approach,” in Proceedings of 16th

International Conference on Advanced Computational Intelligence (ICACI 2024),

Zhangjiajie, China, May 2024, pp. 197-205.

4. Jian-Yu Li, Ke-Jing Du, Zhi-Hui Zhan, Hua Wang, and Jun Zhang, “Distributed

differential evolution with adaptive resource allocation,” IEEE Transactions on

Cybernetics, vol. 53, no. 5, pp. 2791-2804, May. 2023. [IF=11.8, JCR Q1]

5. Jia-Quan Yang, Qi-Te Yang, Ke-Jing Du, Chun-Hua Chen, Hua Wang, Sang-Woon

Jeon, Jun Zhang, and Zhi-Hui Zhan, “Bi-Directional feature fixation-based particle

swarm optimization for large-scale feature selection,” IEEE Transactions on Big

Data, vol. 9, no. 3, pp. 1004-1017, May./Jun. 2023. [IF=7.2, JCR Q1]

6. Chuan Wang, Bing Sun, Ke-Jing Du, Jian-Yu Li, Zhi-Hui Zhan, Sang-Woon Jeon,

Hua Wang, and Jun Zhang, “A novel evolutionary algorithm with column and sub-

block local search for sudoku puzzles,” IEEE Transactions on Games, vol. 16, no.

1, pp. 162-172, Mar. 2024. [IF=2.3, JCR Q2]

7. Yong Zhang, Ke-Jing Du (Corresponding Author), Yi Jiang, Li-Min Wang, Hua

Wang, and Zhi-Hui Zhan, “Adaptive aggregative multitask competitive particle

swarm optimization with bi-directional asymmetric flip strategy for high-

dimensional feature selection,” in Proceedings of the ACM Genetic and

8

Evolutionary Computation Conference (GECCO 2024), Melbourne, Australia, Jul.

2024. (Accepted)

8. Min Gao, Ke-Jing Du (Co-First Author), Pei-Yao Zhu, Jian-Yu Li, Hua Wang,

and Zhi-Hui Zhan, “A robust two-part modeling strategy for knowledge graph

enhanced recommender systems,” in Proceedings of 15th International Conference

on Advanced Computational Intelligence (ICACI 2023), Seoul, Korea, May. 2023,

pp. 1-7.

9. Jia-Quan Yang, Ke-Jing Du (Co-First Author), Chun-Hua Chen, Hua Wang, Jun

Zhang, and Zhi-Hui Zhan, “Evolutionary multitasking bi-directional particle

swarm optimization for high-dimensional feature selection,” in Proceedings of

IEEE Congress on Evolutionary Computation (CEC 2023), Jul. 2023, pp. 1-8.

10. Pei-Yao Zhu, Sheng-Hao Wu, Ke-Jing Du, Hua Wang, Jun Zhang, and Zhi-Hui

Zhan, “Diversity-driven multi-population particle swarm optimization for dynamic

optimization problem,” in Proceedings of the ACM Genetic and Evolutionary

Computation Conference (GECCO 2023), Jul. 2023, pp. 107–110.

11. Jun Hong, Lin Shi, Ke-Jing Du, Chun-Hua Chen, Hua Wang, Jun Zhang, Zhi-hui

Zhan, “A Multi-population genetic algorithm for multiobjective recommendation

system,” in Proceedings of IEEE Symposium Series on Computational Intelligence

(SSCI 2023), Mexico City, Mexico, Dec. 2023, pp. 998-1003.

12. Sheng-Hao Wu, Ke-Jing Du, Zhi-Hui Zhan, Hua Wang, and Jun Zhang,

“Historical information-based differential evolution for dynamic optimization

problem,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC

2021), Jun. 2021 pp. 119-126.

13. Jian-Yu Li, Ke-Jing Du, Zhi-Hui Zhan, Hua Wang, and Jun Zhang, “Multi-criteria

differential evolution: treating multitask optimization as multi-criteria

optimization,” in Proceedings of the ACM Genetic and Evolutionary Computation

Conference (GECCO 2021), Jul. 2021, pp. 183–184.

9

LIST OF ABBREVIATION

Abbreviation Full form

ACO ant colony optimization

AHIR archive-based historical information reuse

AI Artificial Intelligence

APL adaptive parameter learning

BDFF bi-directional feature fixation

CC cooperative coevolution

DE differential evolution

DMP distributed multiple populations

DOP dynamic optimization problems

DyKLRP-MA
dynamic knowledge learning and random pruning-based memetic

algorithm

EC evolutionary computation

EDA estimation of distribution algorithms

EMTO evolutionary multi-task optimization

EP evolutionary programming

ES evolution strategies

ETO evolutionary transfer optimization

FA fire-fly algorithm

GA genetic algorithms

GP genetic programming

HIDE historical information-based differential evolution

IA immune algorithm

KLC knowledge learning-based crossover

KLRP-MA
knowledge learning and random pruning-based memetic

algorithm

10

KT knowledge transfer

MA memetic algorithm

MBDPSO multi-task bi-directional particle swarm optimization

MCDE multi-criteria differential evolution

MCOP multi-criteria optimization problem

MFEA multi-objective evolutionary algorithm

MO-MCEA multi-objective multi-criteria evolutionary algorithm

MO-MCOP multi-objective multi-criteria optimization problem

MO-MTOP multi-objective MTOP

MPB moving peaks benchmark

PSO particle swarm optimization

RPM random pruning-based mutation

RSI region-based subpopulation initialization

TPLS two-phase local search

URPP user route planning problem

VRS variable relocation strategy

11

TABLE OF CONTENTS

ABSTRACT ... 2

DOCTOR OF PHILOSOPHY DECLARATION ... 4

ACKNOWLEDGEMENT .. 5

PUBLICATIONS ... 7

LIST OF ABBREVIATION .. 9

TABLE OF CONTENTS ... 11

LIST OF TABLES ... 13

LIST OF FIGURES ... 16

CHAPTER 1 .. 16

1.1 Research Background ... 17

1.2 Research Motivations .. 18

1.2.1 Research Motivation of DOP ... 18

1.2.2 Research Motivation of MTOP .. 19

1.3 Research Content .. 20

1.3.1 Research Content of DOP .. 21

1.3.2 Research Content of MTOP ... 22

1.4 Research Contributions ... 24

1.5 Thesis Structure ... 25

CHAPTER 2 .. 28

2.1 Evolutionary Computation .. 28

2.1.1 Differential Evolution Algorithm ... 30

2.1.2 Particle Swarm Optimization ... 32

2.1.3 Memetic Algorithm .. 33

2.2 Knowledge Transfer .. 34

2.2.1 Introduction of Knowledge Transfer .. 34

2.2.2 KT in EC .. 35

2.3 Dynamic Optimization Problems (DOP) .. 37

2.3.1 Introduction of DOP .. 37

2.3.2 KT in DOP ... 41

2.4 Multi-task Optimization Problems (MTOP) ... 46

2.4.1 Introduction of MTOP ... 46

2.4.2 KT in MTOP .. 48

CHAPTER 3 .. 52

3.1 Introduction ... 52

12

3.2 Related Work ... 54

3.2.1 Dynamic Optimization Problem .. 54

3.2.2 Differential Evolution .. 56

3.2.3 Multi-population Methods ... 56

3.3 Framework of HIDE Method .. 59

3.3.1 RSI Strategy (region-based subpopulation initialization) 59

3.3.2 DE Optimization Process ... 61

3.3.3 Subpopulation Merge ... 61

3.3.4 Archive-based historical information reuse (AHIR) .. 63

3.3.5 The Whole HIDE Algorithm .. 65

3.4 Experiment .. 66

3.4.1 Experiment Setting .. 66

3.4.2 Performance Measure .. 69

3.4.3 Results and Discussions ... 69

3.5 Effect of the AHIR Strategy .. 71

3.6 Conclusion .. 71

CHAPTER 4 .. 73

4.1 Introduction ... 73

4.2 Related Work ... 75

4.3 Treating Multi-Task Optimization as Multi-Criteria Optimization 77

4.3.1 Introduction .. 77

4.3.2 Method ... 79

4.3.3 Experiment ... 79

4.3.4 Conclusion ... 80

4.4 MCOP for Multi-Objective Multi-Task Optimization .. 81

4.4.1 Introduction .. 81

4.4.2 Method of MO-MCEA .. 83

4.4.3 Experiment ... 89

4.4.4 Conclusion and Future Work ... 90

4.5 Conclusion .. 92

CHAPTER 5 .. 93

5.1 Introduction ... 93

5.2 URPP Model ... 97

5.3 KLRP-MA Approach .. 99

5.3.1 Encoding Scheme .. 99

5.3.2 Population Initialization ... 100

13

5.3.3 Knowledge Learning-based Crossover .. 101

5.3.4 Random Pruning-based Mutation .. 104

5.3.5 Two-phase Local Search .. 104

5.3.6 The Completed Algorithm ... 104

5.4 DyKLRP-MA Approach ... 105

5.5 Experimental Results .. 108

5.5.1 Experimental Design ... 108

5.5.2 Experimental Results under Static Situations .. 109

5.5.3 Experimental Results under Dynamic Situations ... 116

5.5.4 Experiments on Real-world Bike-sharing Instances ... 118

5.5.5 Component Analysis ... 119

5.5.6 Influence of Parameter ... 121

5.6 Conclusion .. 124

CHAPTER 6 .. 125

6.1 Introduction ... 125

6.2 Related Work ... 130

6.2.1 Feature Selection ... 130

6.2.2 Bidirectional Feature Fixing Framework ... 130

6.2.3 Evolutionary Multi-Task Optimization .. 131

6.3 Framework of MBDPSO... 132

6.3.1 Two tasks of feature selection .. 132

6.3.2 Multi-Task Knowledge Transfer .. 134

6.3.3 Complete MBDPSO .. 135

6.4 Experiment Results and Discussion .. 137

6.4.1 Datasets .. 137

6.4.2 Experimental Setup .. 137

6.4.3 Compare the results and discussion ... 138

6.4.4 Composition Analysis of MBDPSO .. 141

6.4.5 Impact of Parameter K ... 142

6.5 Conclusion .. 143

CHAPTER 7 .. 144

7.1 Conclusions ... 144

7.2 Future Work... 144

BIBLIOGRAPHY ... 146

14

LIST OF TABLES

Table 3.1 Parameter Setting for MPB ... 68

Table 3.2 Experimental Results on the MPB with P=5 ... 70

Table 3.3 Experimental Results on the MPB with P=10 ... 70

Table 3.4 Experimental Results on the MPB with P=20 ... 70

Table 3.5 Experimental Results of the Effect of the AHIR Strategy on the MPB Test Suite 71

Table 4.1 Number of papers of MTOP in the last ten years .. 74

Table 4.2 Comparison with State-of-the-Art Algorithms .. 80

Table 4.3 Comparisons between the proposed MO-MCEA and state-of-the-art algorithms 91

Table 5.1 The experimental results between KLRP-MA and competitor methods on the medium-

distance and small-scale test instances .. 110

Table 5.2 The experimental results between KLRP-MA and competitor methods on the medium-

distance and medium-scale test instances ... 110

Table 5.3 The experimental results between KLRP-MA and competitor methods on the medium-

distance and large-scale test instances .. 111

Table 5.4 The experimental results between KLRP-MA and competitor methods on the long-

distance and small-scale test instances .. 112

Table 5.5 The experimental results between KLRP-MA and competitor methods on the long-

distance and medium-scale test instances ... 112

Table 5.6 The experimental results between KLRP-MA and competitor methods on the long-

distance and large-scale test instances .. 113

Table 5.7 The running time of KLRP-MA and the enumeration method on the medium-distance test

instances (Unit: Second) ... 114

Table 5.8 The running time of KLRP-MA and the enumeration method on the long-distance test

instances (Unit: Second) ... 115

Table 5.9 The experimental results of DyKLRP-MA on the long-distance test instances 117

Table 5.10 The experimental results of DyKLRP-MA, ma-r, and ma-a on the real-world test

instances .. 119

Table 5.11 The experimental results among KLRP-MA variants on the long-distance and small-scale

15

test instances. .. 120

Table 5.12 The experimental results among KLRP-MA variants on the long-distance and medium-

scale test instances. ... 120

Table 5.13 The experimental results among KLRP-MA variants on the long-distance and large-scale

test instances. .. 121

Table 5.14 The optimization results and running time of different KLRP-MA variants with different

maximum dimensions on the long-distance and medium-scale test instances. 124

Table 5.15 The optimization results and running time of different KLRP-MA variants with different

generation probabilities on the long-distance and medium-scale test instances. 122

Table 6.1 Basic information of 10 data sets .. 138

Table 6.2. Classification accuracy of MBDPSO and other comparative algorithms on 10 datasets

(bold numbers indicate the best results). ... 139

Table 6.3 Average number of selected features by algorithms on 10 datasets. 140

Table 6.4 Comparison of running time ... 140

Table 6.5. Experimental results of component analysis. ... 142

Table 6.6. Experimental results of different variants of MBDPSO with various K values 142

16

LIST OF FIGURES

Figure 1.1 Research Structure ... 21

Figure 2.1 The flowchart of DE .. 31

Figure 2.2 The flowchart of EC ... 36

Figure 4.1 Number of papers of MTOP in the last ten years ... 75

Figure 4.2 Framework of MO-MCEA... 86

Figure 5.5 Illustration of Sc and Sn for the current situation and new situation. 106

Figure 5.6 Visualization of bike location data in real-world test instances. 118

Figure 5.7 The convergence curve of different KLRP-MA variants on the L-M-1 test instance.

 .. 123

17

CHAPTER 1

INTRODUCTION

1.1 Research Background

Evolutionary computation (EC) is an important branch of Artificial intelligence (AI)

[1]. AI is one of the transformative technologies that have profoundly transformed our

work and life, now and in the future. With the emergence of emerging technologies

such as large-scale AI models, autonomous driving, and smart cities, it is widely

recognized that AI has started to reshape almost all jobs, industries, and lives. As a

developed country, AI has been widely deployed in various industries in Australia. The

Australian government is a world leader in investment and research in AI and attaches

great importance to the combination of government, scientific research institutions, and

industry development. In various industries, optimization algorithms are widely utilized,

including medical and health [2]-[3], privacy preservation [4]-[12], cybersecurity [13]-

[15], internet of things [16], smart cities [17], natural language processing [18]-[19],

and many other fields. These findings are essential for maintaining Australia’s world

leadership in AI and shaping new frontiers as they evolve.

The advancement of AI has faced significant challenges, encountering bottlenecks

in its development. In various industries, managing large enterprises may involve

dealing with millions of variables, representing a high-dimensional optimization

challenge. Many of these variables exhibit nonlinearity and non-convexity, presenting

formidable mathematical challenges. As market dynamics evolve, enterprises are

required to respond rapidly, intensifying the complexity of dynamic optimization

problems (DOP). The modern enterprise market's supply chain is complex, spanning

the globe with suppliers and factories. Beyond pursuing profits, enterprises must

address a range of social responsibilities, including energy security, ecological

considerations, and safeguarding employee rights. Enterprises frequently find

themselves needing to reconcile multiple optimization tasks simultaneously, which are

18

multi-task optimization problems (MTOP).

Human civilization has developed rapidly in the past 300 years. Therefore, many

scholars began to explore approaches to solve the bottleneck problem of EC from the

perspective of human evolution. The idea of Knowledge Transfer (KT) has generated

the interest of leading scholars in the EC domain [21]-[23]. The difference between the

human brain and computer problem solving is that the human brain can use past

historical experience, while the computer solves optimization problems from zero every

time [21], which is inefficient for difficult problems. In real-world optimization

problems, DOP and MTOP will face a large number of similar problems [22], and the

problems are either repeated or have domain-specific similarities. Therefore, this thesis

aims to investigate a research direction that EC has not fully explored to date,

evolutionary transfer optimization (ETO), exploring the combination of EC and KT to

solve DOP and MTOP.

1.2 Research Motivations

1.2.1 Research Motivation of DOP

In practical scenarios, optimization problems often exhibit dynamic attributes,

where the optimal solution may change over time as a result of changing environmental

conditions [24]. DOP present unique challenges compared to static optimization

problems, as they require algorithms to adapt to changing environments, varying

problem dimensions, and shifting search spaces [25]. Traditional optimization

techniques may be difficult to cope with these dynamic changes effectively.

EC algorithms offer promising solutions for addressing DOP due to their inherent

qualities such as global search capability, adaptability, and parallelism [24]. Moreover,

EC algorithms can use memory mechanisms to retain past experiences, enabling them

to capture the relationship between previous and current environments in DOP [25]. KT

techniques play a vital role in improving the performance of EC algorithms by

facilitating the transfer of valuable information and insights gained from past

optimization processes to guide the search in dynamic environments [27].

Despite the potential of EC algorithms in addressing DOP, there are significant

19

challenges to overcome. One key challenge is enabling populations to escape from

previous optimal solutions when environmental changes occur, and rapidly identify

new optimal solutions in the altered environment. Integrating KT with DOP within EC

algorithms has emerged as a prominent research direction to address these challenges

effectively.

Based on the practical applications of DOP, existing research often relies on certain

assumptions to support algorithmic development. For instance, it is commonly assumed

that while DOPs are overall dynamic, there are specific time intervals where the

problem nature remains relatively static, with minimal changes. Additionally,

neighboring static time intervals often exhibit some degree of similarity in problem

features, allowing for the partial reuse of information from previous environments to

expedite optimization in subsequent intervals.

By exploring and addressing these challenges, our research strives to enhance the

comprehension and efficiency of EC algorithms in handling DOP, ultimately

contributing to the development of more robust and efficient optimization techniques

for real-world applications.

1.2.2 Research Motivation of MTOP

Despite the advancements in EC in recent years, it still faces two critical challenges:

heavy computational burdens and limited generalization abilities [28]. To overcome

these obstacles, researchers have turned to MTOP as a promising strategy [29]. MTOP

involves addressing multiple distinct optimization problems concurrently within the

same framework. These problems may interact at the task level, allowing for the sharing

of knowledge and resources among them. This approach is analogous to how

individuals apply learning techniques across different subjects, leveraging shared

insights and methodologies.

In contrast to traditional KT methods, which typically involve one-way transfers

of knowledge, MTOP adopts a bidirectional KT approach [30]. This approach fosters

mutual reinforcement between different tasks, enhancing overall optimization

performance. Representative algorithms in this domain, such as the Multi-Objective

20

Evolutionary Algorithm (MFEA) [30], have demonstrated the efficacy of bidirectional

KT in MTOP settings. Subsequent research has further refined and extended these

approaches.

By leveraging bidirectional KT, MTOP efficiently harnesses the parallel

optimization capabilities of algorithms while integrating cross-disciplinary knowledge

to enhance overall performance. Existing studies have primarily implemented KT

through genetic operations, such as selection and crossover, shared among different

tasks [31]-[32]. While these approaches effectively transfer knowledge between tasks,

there is still room for more innovative strategies to address the complex challenges

inherent in MTOP.

In summary, our research aims to explore novel approaches for addressing the

challenges of MTOP within EC algorithms. While existing studies have delved into

both one-way and bidirectional KT methods, our focus lies in advancing the current

edge through innovative strategies that efficiently leverage bidirectional KT for

enhanced optimization performance.

1.3 Research Content

21

Figure 1.1 Research Structure

As illustrated in Figure 1, this thesis is dedicated to addressing the challenges

encountered in DOP and MTOP using KT principles. The research content is divided

into algorithmic research and application research. In algorithmic research, it includes

studies on algorithms for solving DOP and algorithms for addressing MTOP.

Correspondingly, in application research, there are chapters dedicated to the application

research of DOP and MTOP, respectively.

1.3.1 Research Content of DOP

To enhance the performance of EC algorithms in DOP, early review papers

categorized research methods into five types when changes occur: introducing variety

during alterations, preserving diversity during exploration, techniques based on

memory, methods based on prediction, and approaches involving multiple populations

[24]. In a recent review, Zhan et al. consolidated these into three functions: reducing

problem complexity, enhancing algorithm variety, and speeding up convergence [25].

Among these, multi-population methods are commonly employed, falling under the

category of increasing algorithm diversity. Each sub-population can be considered as

decomposing the problem, focusing on solving a specific portion. This decomposition

aids in addressing the complexity of the problem space, enhancing scalability, and

enabling the resolution of large-scale problems. Memory-based and prediction-based

methods aim to expedite convergence speed. As per the two assumptions mentioned

earlier, continuous dynamic environments often exhibit strong correlations, letting

historical solutions for reuse has great potential to expedite convergence in novel

environments. Consequently, our research on DOP primarily addresses two key issues:

multi-population methods and the reuse of historical optimal solutions, aiming to

effectively tackle DOP. The specific research problems are outlined below.

1) Regarding multi-population methods, the issue involves the complexity and

multimodality of the problem search space in DOP. How to generate multiple

subpopulations in a balanced manner in a new environment to effectively address DOP

with multiple peaks?

22

2) For methods utilizing historical optimal solutions, the problem focuses on

effectively coping with changes in dynamic environments and leveraging historical

information to enhance search efficiency. How to fully use peak information found from

the preceding context to direct exploration in a new environment?

To address these challenges, a region-based subpopulation initialization (RSI)

strategy is first proposed to produce numerous subpopulations in a balanced way in the

new environment. Through the initialization of multiple subpopulations across diverse

regions within the search space, diversity is enhanced, thereby facilitating the resolution

of DOP characterized by multiple peaks. Second, to effectively harness previously

discovered peaks within the environment, an archive-based historical information reuse

(AHIR) strategy is proposed. This strategy involves managing and reusing historical

information to navigate the search process in novel environments.

In practical applications, shared bicycle path optimization is chosen as an applied

study of DOP. In this real-world application, the investigated problems are as follows:

1) In a shared bicycle system, users have limited free riding time, but mid-to-long-

distance rides may exceed the free time threshold. Reasonable transfers can address this

issue. How to design bike routes with transfers?

2) Assuming bike station inventory changes over time, how to adjust user riding

routes?

To address these issues, a dynamic knowledge learning and random pruning-based

memetic algorithm (DyKLRP-MA) is further proposed to adjust reasonable riding

routes for users in dynamic scenarios.

1.3.2 Research Content of MTOP

In tackling this problem, a Multi-Criteria Optimization Problem (MCOP) was

proposed to solve MTOP. This approach enables the knowledge inheritance from all the

tasks within a single population, thus enhancing the effectiveness of MTOP's solution.

Similar to students in a class studying multiple subjects, a testing method is adopted to

improve academic performance, randomly selecting subjects for testing, and students

learn based on the test results to find optimal solutions. The main focus of this study is

23

to address the following three issues:

1) In the context of MTOP, existing methods often treat MTOP as separate tasks,

posing challenges in designing effective KT strategies between tasks/populations. To

what extent does this issue impact the effectiveness of solving MTOP?

2) How can multiple relevant evaluation criteria aid in individual selection and

evolution?

3) How can the utilization of multiple relevant evaluation criteria contribute to the

process of individual selection and evolution?

In MCOP, each task's fitness evaluation function serves as a criterion, offering

multiple pertinent criteria to aid in the selection and evolution of individuals across

various stages. Moreover, a criterion selection strategy based on probabilities and a

method for adaptive parameter learning is proposed to optimize the choice of fitness

functions as criteria during different evolutionary phases. This enables the algorithm to

effectively utilize suitable criteria from different tasks at different evolution stages,

guiding individual selection and population evolution toward discovering Pareto-

efficient solutions for all tasks. Through the integration of these methods, a

comprehensive MCOP framework tailored for addressing MTOP is presented.

In the context of applying MTOP to high-dimensional feature selection problems,

EC is used to mitigate the inefficiency associated with selecting features from datasets

containing a large number of attributes. The goal is to enhance model performance or

reduce computational costs by identifying the most relevant or important features.

While the Bi-Directional Feature Fixation (BDFF) method for Particle Swarm

Optimization (PSO) has shown promise in high-dimensional feature selection, it may

suffer from directional biases and prolonged convergence times when searching for

small feature subsets. This study primarily addresses two key issues:

1) How to address the inefficiency in high-dimensional feature selection?

2) What are the limitations of the Bi-Directional Feature Fixation (BDFF)

framework?

Prior knowledge of attribute selection is introduced into the Bi-Directional Feature

24

Fixation (BDFF) method while preserving its global search capability. Subsequently,

by combining BDFF with the MTOP technique, Multi-Task Bi-Directional Particle

Swarm Optimization (MBDPSO) is proposed, effectively transferring knowledge

between two tasks.

1.4 Research Contributions

This thesis contributes significantly to theoretical research in three distinct aspects:

The primary theoretical contribution focuses on the integration of KT concepts into

EC for optimization problems by leveraging historical information to DOP and

adopting multi-criteria strategies to MTOP. This approach, inspired by the efficiency of

human KT, equips algorithms to adeptly address new tasks and future optimization

challenges. The theoretical foundation laid in this aspect enhances the overall efficacy

of EC.

The introduction of the HIDE algorithm tackles a critical challenge in DOP by

efficiently leveraging past information and knowledge to quickly identify and converge

to new optimal regions. HIDE innovatively employs a strategy for reusing historical

information stored in an archive, retaining the best individuals from previous

environments. Additionally, it utilizes a strategy for initializing subpopulations based

on regions to fully exploit peaks identified in the preceding environment. This balanced

approach in generating multiple subpopulations aids in effectively localizing and

tracking movements to reach the peak.

In the realm of MTOP, the theoretical contribution is embodied in the MCOP

algorithm. Existing methods in the multi-task optimization community often treat tasks

in MTOP as distinct problems, overlooking their interconnected nature. Addressing this

gap, MCDE advocates treating the entire MTOP as a MCOP. This shift in perspective

aims to enhance the efficiency of MTOP solutions by considering tasks as constituent

elements within the broader optimization framework.

In summary, the thesis advances theoretical research by introducing innovative

concepts such as KT in EC, the HIDE, and the paradigm shift in approaching MTOP

through the MCOP. These contributions deepen our understanding and provide valuable

25

frameworks for addressing complex optimization challenges.

This thesis makes dual contributions in the realm of application research:

In the DOP application, the primary contribution lies in proposing a robust solution

to the dynamic nature of URPP within shared bicycle systems. The innovation here is

the introduction of a Memetic Algorithm based on KLRP-MA. The key contribution is

twofold: first, the algorithm efficiently adapts to dynamic changes in bicycle station

availability, ensuring swift re-optimization of planned routes. Second, the incorporation

of a KT mechanism from the best-performing individual accelerates convergence,

significantly improving the algorithm's efficiency. By addressing dynamic URPP

through KLRP-MA, the thesis provides a tangible and effective solution for real-world

applications.

In MTOP application, the major contribution is the integration of MTOP with the

BDFF framework within a MBDPSO algorithm. This integration significantly enhances

the algorithm's effectiveness in selecting features within high-dimensional spaces for

pattern recognition across multiple tasks. The real-world impact of this contribution is

evident in the improved performance of the algorithm, demonstrating its efficacy in

solving complex MTOP. This integration not only advances the theoretical

understanding of MTOP but also provides a practical tool for researchers and

practitioners working in the field of pattern recognition.

In summary, the thesis contributes by presenting effective solutions to dynamic

route planning challenges through KLRP-MA and by enhancing the capabilities of

multi-task optimization through the integration of MTOP with the BDFF framework.

These contributions address real-world challenges and provide valuable insights and

tools for researchers and practitioners in related fields.

1.5 Thesis Structure

The thesis, titled “ Evolutionary Computation-based Dynamic and Multi-Task

Optimization and the Application,” is structured as depicted in Figure 1.1. The research

encompasses two main aspects: algorithm research and application research.

Algorithmic research delves into two distinct challenges: DOP in Chapter 3 and MTOP

26

in Chapter 4. In parallel, application research explores the DOP related to shared

bicycles in Chapter 5 and MTOP in Feature Selections in Chapter 6.

This thesis comprises seven chapters in total.

Chapter 1 is the Introduction, which includes Section 1.1 providing an overview of

the research context, Section 1.2 exploring the research motivation and listing the

research questions, Section 1.3 outlining the research content, Section 1.4 highlighting

the research contributions, and Section 1.5 detailing the structure of the study and the

content of each chapter.

In Chapter 2, a comprehensive review of existing literature is conducted, including

an overview of EC in Section 2.1 and KT in Section 2.2. Furthermore, it discusses DOP

in Section 2.3 and MTOP in Section 2.4, along with KT ideas in these two complex

problems.

Chapter 3 proposed HIDE method for DOP. It starts with Section 3.1 of the

introduction and Section 3.2 of related work. Section 3.3 elaborates on the Framework

of HIDE. Section 3.4 details the Experiment, Section 3.5 explores the impact of the

AHIR Strategy, while Section 3.6 concludes the chapter.

Chapter 4 delves into Multi-Objective Multi-Task Optimization (MO-MTO).

Section 4.1 is an introduction and Section 4.2 discusses related work. Section 4.3

introduces the concept of treating multitask optimization as multi-criteria optimization.

Section 4.4 adds the challenge of Multi-Objective to Multi-Task Optimization,

comprising Introduction, Method of MO-MCEA, Experiment, and Conclusion and

Future Work. Finally, Section 4.5 concludes the chapter.

Chapter 5 covers the URPP Model and the KLRP-MA Approach. It begins with an

Introduction in Section 5.1, providing an overview of the research focus. Section 5.2

delves into the URPP Model, while Section 5.3 introduces the KLRP-MA Approach

and Section 5.4 introduces DyKLRP-MA approach. Section 5.5 is for the experiment

and Section 5.6 draw a conclusion.

Chapter 6 presents the MBDPSO framework, starting with an Introduction in

Section 6.1 and related work in Section 6.2. Section 6.3 outlines the Framework of

27

MBDPSO, including Two tasks of feature selection, Multi-Task KT, and the Complete

MBDPSO algorithm. Experimental Results is in Section 6.4. Finally, the chapter

concludes in Section 6.5, summarizing the findings and contributions of the MBDPSO

framework.

Chapter 7 summarizes the research undertaken in this thesis and anticipates feasible

research directions and subsequent work in the future.

28

CHAPTER 2

LITERATURE REVIEW

In Chapter 2, the definitions of the key concepts associated with Evolutionary

Computation (EC), Knowledge Transfer (KT), Dynamic Optimization Problem (DOP),

and Multi-Task Optimization Problem (MTOP) are thoroughly explored. DOP and

MTOP are categorized as types of problems, while EC is presented as the method

employed to address these problems. Additionally, KT is discussed as a means of

knowledge assistance throughout the exploration. The chapter includes a

comprehensive review of prior research, establishes a theoretical framework, traces the

evolution of research in the field, and identifies research gaps in the context of these

concepts.

2.1 Evolutionary Computation

Over the centuries, a myriad of mathematical approaches, ranging from Linear

Programming [33], Quadratic Programming [34], and Convex Optimization [35], have

been harnessed to address optimization problems. Nevertheless, these methodologies

frequently impose substantial constraints on the objective function, often mandating

differentiability once or twice. Furthermore, the dependence on mathematical

techniques in optimization endeavors often leads to the identification of local optimal

solutions, especially in the face of multi-modal problems. Therefore, since the 1960s,

an increasing number of scholars have delved into the realm of EC as a viable

alternative method [36]. In the 1990s, EC has emerged as a promising global

optimization technique for many optimization problems [37]. EC is typically classified

into two main branches: Evolutionary Algorithms (EA) and Swarm Intelligence (EI).

EA simulate the biological evolutionary process and principles of natural selection

to optimize problems [38]. EA has achieved success and popularity due to its

algorithmic characteristics of being assumption-free, flexible, robust, and capable of

global optimization [39]. EA comprises Evolutionary Programming (EP), Genetic

29

Programming (GP), Genetic Algorithms (GA), and Evolution Strategies (ES). New

techniques that emerged in the 1990s, such as Estimation of Distribution Algorithms

(EDA) and Differential Evolution (DE) are also regarded as EA.

Swarm intelligence (SI) is a computational model that simulates collective

behaviors observed in nature, drawing inspiration from the collective wisdom exhibited

by social organisms such as ants, bees, and bird flocks [40]. In SI, individuals

collaborate through interactions and information exchange to achieve a common goal.

This process initiates from a chaotic state and gradually unfolds by exploring valuable

heuristic information. It systematically reveals patterns, regularities, and knowledge

within the problem, ultimately leading to a solution. SI evolves through dynamic

processes characterized by randomness, nonlinearity, traversal, self-organization,

adaptability, diversity, stability, and high parallelism. This implies that through such a

process, solutions to problems can be discovered in a diverse and highly parallel manner,

adapting dynamically and incorporating elements of randomness. Its representative

methods include Fire-fly algorithm (FA), Particle Swarm Optimization (PSO), Ant

Colony Optimization (ACO), immune algorithm (IA), etc.

The memetic algorithm (MA), a heuristic optimization technique, integrates the

broad exploration features of evolutionary algorithms with the precise adjustments of

local search methods [41]. The name “memetic” is derived from “meme”, signifying

the propagation of beneficial information through learning and adaptation within a

population [41]. The memetic algorithm typically comprises an evolutionary phase,

where individuals evolve through operations such as crossover and mutation, and a

local search phase, where individuals undergo more refined adjustments. The

integration of these approaches seeks to achieve equilibrium between global and local

exploration, thereby improving the efficiency in discovering high-quality solutions. The

integration of memetic algorithms with KT has been applied in data-driven domains

[42] and vehicle routing optimization [43] [29]. This synergy leverages learned

information and adaptive techniques to enhance the algorithm's efficacy across diverse

scenarios.

30

2.1.1 Differential Evolution Algorithm

Differential Evolution (DE) belongs to the realm of EC, serving as an algorithm

that leverages individual differences among groups to steer the evolutionary process.

Storn and Price introduced the DE algorithm in 1995, originally designed to address

Chebyshev polynomial problems [44]. Subsequently, it was discovered that DE proves

to be a potent technique for tackling complex optimization problems. DE often exhibits

superior global search capabilities and faster convergence speeds.

Assume that there are NP individuals in the solution space (that is, the population

size is NP), and each individual is a vector with D dimensions. The initial population is

generated randomly:

,1 ,2 ,[, , ,]g g g g

i i i i DX x x x= (2.1)

where g is the evolutionary algebra and D is the dimensionality. And i represents

the individual number. Each individual is a solution. During initialization, each

dimension takes random values in the exploration domain.

DE uses two different vectors in the population to interfere with an existing vector

and perform differential operations to achieve mutation.

1 1 1

1 2 3()g g g g

i r r rV X F X X− − −= + −
 (2.2)

Among them, r1, r2 and r3 are different individuals. The “scaling factor,” also

referred to as the “differentiation” vector, is denoted as F.

During the evolution process, in order to ensure the validity of the solution, it is

necessary to determine whether each component of the mutant individual satisfies the

boundary conditions. If the boundary conditions are not met, the mutant individuals are

regenerated randomly.

For each individual and the offspring mutation vector generated by it are crossed,

specifically, for each component, the offspring mutation vector (otherwise it is the

original vector) is selected with a certain probability to generate a test individual.

 ,1 ,2 ,[, , ,]g g g g

i i i i DU u u u=
 (2.3)

31

,

, 1

,

, if or ()

, if and ()

g

i d dg

i d g

i d d

v r CR d rn i
u

x r CR d rn i−

  =
= 

  (2.4)

CR represents the “crossover probability” and rn(i) is a randomly selected integer

from the range [1,D], with rn(i) being a random decimal within the interval [0, 1]. The

use of rn(i) ensures that this crossover strategy can ensure that Ui has at least one

component contributed by the corresponding component of Vi obtained by the mutation

operator.

The flowchart of DE is as follows [45].

Begin

Determine the number of

evolutionary generations

Initialize the population randomly

Is termination criteria

satisfied?

Output optimal

solution

Yes

No

Differential mutation operation

Evaluate the initial population

Evaluate the function fitness value

of each particle

Evaluate temporary populations

composed of experimental

individuals

Determine the next generation of

new populations through selection

operations POP(t+1)

t=t+1

Figure 2.1 The flowchart of DE

DE algorithm finds applications across various domains, encompassing

32

optimization problem solving, machine learning, signal processing, image processing,

engineering optimization, and economic modeling [45]. In the realm of optimization

problem solving, the DE algorithm finds widespread application, addressing various

optimization challenges such as function optimization and parameter tuning. Its

remarkable global search capabilities and rapid convergence render it highly effective

in navigating complex multidimensional spaces [46]. In the domain of machine learning,

the DE is employed for tasks like feature selection and hyperparameter tuning. It is also

used in training deep neural networks to search for suitable weights and parameters [47].

In signal processing, DE is applied to tasks such as filter design and signal denoising,

showcasing advantages in handling complex signal scenarios [48]. The algorithm is

harnessed for image processing tasks like segmentation and enhancement, allowing

optimization of the image processing pipeline through parameter adjustments [49]. In

engineering, DE is extensively used for process optimization and system design, aiding

engineers in finding optimal solutions within complex systems [50].

2.1.2 Particle Swarm Optimization

In 1995, first introduced by Eberhart and Kennedy, PSO is a global search

algorithm which belongs to SI [51]. The fundamental principle of the PSO algorithm

involves individuals, referred to as particles, which can be analogized to birds or small

fish. The evolution of each particle is guided by learning from both the historical best

solution of itself and the collective global best solution of the group. This process

mirrors a bird learning from its past best position and adapting based on the optimal

position of the leading bird in the flock. In a way analogous to human decision-making,

where individuals consider both personal experience and the experiences of others, PSO

leverages two types of crucial information in its optimization process [51]-[52].

Unlike the genetic algorithm, PSO does not have the process of selection, crossover,

and mutation operators, but solely progresses towards the global optimal solution by

employing the speed update formula and position update formula continuously [51].

Hence, the operation of PSO is straightforward. The formula presented is as follows

[51].

33

1 1 2 2() ()d d d d d d d d

i i i i iv v c rand pBest x c rand gBest x=  +   − +   −
 (2.5)

d d d

i i ix x v= + (2.6)

In the formula, ω is the inertia weight. It is commonly initialized to 0.9 and

subsequently reduces to 0.4 as the evolution progresses. 1c and 2c is the acceleration

coefficient, which generally takes the value 2.0. 1

drand and 2

drand are a pair of

random numbers within the range [0,1].

The research on PSO includes theoretical research, algorithm parameter research,

topology research, hybrid algorithm research, and algorithm application research [53].

The PSO algorithm has a lot of applications, and the existing research can be divided

into two categories, optimization and design applications, and scheduling and planning

applications, and have achieved results in many industries. Regarding the application

of PSO in engineering and system design, it includes optimization of neural networks

[54]-[55], wing optimization design, and power system stabilizers. As for the

application of PSO in scheduling and planning, it encompasses the traveling salesman

problem [56], flow shop scheduling [57], and business planning [58].

2.1.3 Memetic Algorithm

When facing large-scale and complex optimization problems, traditional EC

algorithms such as GA, PSO, and ACO often suffer from slow convergence speeds and

difficulty in finding high-precision optimal solutions. Introducing local search methods

can improve the solutions discovered by EC algorithms, enhancing both solution

efficiency and accuracy. MA is a novel optimization technique that combines

population-based EC algorithms with local search techniques [59]. The term “memetic”

originates from the concept of “meme” mentioned by Oxford University scholar

Dawkins in his book “The Selfish Gene” [60] published in 1976. In cultural evolution,

similar to biological evolution, beneficial cultural genes, or memes, can be inherited

and developed.

The framework of MA was proposed by Krasnogor and Smith, and it comprises

nine elements [61].

34

 MA=(P0, δ0, of f springSize, popSize, l, F, G, U, L) (2.6)

P0 represents the initial population, δ0 denotes the initial parameter settings of the

algorithm, of f springSize indicates the number of offspring generated through the

production function G, popSize represents the population size, l denotes the length of

the encoding, F represents the fitness function, G denotes the generation function, U

denotes the update function, and L is a set of local search strategies. It can be observed

that compared to traditional EC algorithms, MA only adds an operation for local search.

Currently, significant progress has been made in the theoretical research of MA,

including cooperative evolution-based MA [62]. In practical applications, MA has been

employed in image processing [63], the traveling salesman problem [64] [65], business

analytics, and data science [66]. Additionally, MA has been effectively utilized for real-

world optimization problems like protein structure prediction [67], cellular mobile

networks [69], data privacy [71], and cancer chemotherapy design [70].

2.2 Knowledge Transfer

2.2.1 Introduction of Knowledge Transfer

In the field of EC, the process of gaining experience from previously solved

problems and applying relevant knowledge to new tasks or situations is commonly

referred to as KT. In practical applications, problems rarely exist in isolation. Ignoring

the search experience gained from related problems in previous optimization processes

may lead to redundant searches on similar problems, resulting in unnecessary

computational costs. Therefore, KT becomes crucial. For DOP, the experience and

knowledge accumulated during the solution of problems within a specific time period

are transferable and can be effectively applied to solve problems in other time periods.

Similarly, for MTOP, the experience and knowledge gained while addressing one task

may be transferable to addressing other tasks. However, existing EC algorithm solvers

often start the search process from scratch, without considering the similarity between

new and previous problems. Considering these factors, the ability of KT to generalize

learned knowledge to other problems is highly significant for complex optimization

problems. The integration of EC with KT holds great promise.

35

The concept of KT, also known as transfer learning (TL), has garnered earlier

attention in the field of machine learning [72] [67] [73]. TL leverages knowledge

obtained from domains with abundant high-quality training data to enhance learning

models in target domains lacking sufficient training data [72], thereby avoiding costly

data labeling efforts. Early transfer learning is primarily applied to tasks in machine

learning domains such as speech recognition [74], computer vision [75], [80], natural

language processing [76], indoor localization, face recognition, and training of deep

learning models [77]. These tasks belong to traditional machine learning domains,

including classification, regression, reinforcement learning, and deep learning [78] [79].

Research in machine learning has shown that KT can use knowledge learned from one

problem and apply it to another, reducing the workload required to model from scratch.

These findings provide insights for the application of KT in EC.

2.2.2 KT in EC

The combination of KT and EC is theoretically grounded and has garnered

increasing attention from renowned scholars in recent years. Integrating EC solvers

with KT across diverse domains aims to enhance algorithm performance, accelerate

convergence speed, and improve optimization efficiency [27]. The flowchart of EC is

depicted in Figure 2.2. Initially, a population is created, where each individual

represents a potential solution. Next, Evolutionary operations are conducted iteratively

until a satisfactory solution is found or termination conditions are met [81]. Throughout

this process, it is observed that the population in evolutionary search contains crucial

information for problem-solving. Useful features can be learned from the iteration of

the population, and if applicable, KT across problems can guide the search to enhance

optimization performance [27].

From the perspective of algorithm design, one application of KT in EC is to

improve algorithm initialization through transfer learning. Information about model

parameters or fitness functions learned from previous tasks can be used to initialize

optimization algorithms, thereby enhancing their performance on new tasks. In EC

algorithms like genetic programming, population initialization significantly influences

36

optimization outcomes. KT can be employed to design more informative initial

populations, facilitating better exploration of the search space. In existing research,

Ardeh et al. used genetic programming to transfer knowledge acquired from addressed

old problems to tackle new problems [82]. Guo et al. adopted the theory of a knowledge

pool for constructing a hybrid transfer strategy for generating new initial populations

[83].

Begin

Initial Population

Evolutionary Operation

Is termination criteria

satisfied?

End

Yes

No

Figure 2.2 The flowchart of EC

In terms of integrating KT and EC algorithms, existing ETO methods can be

classified into two types according to the search space of the problems being addressed:

homogeneous ETO and heterogeneous ETO [27]. The former focuses on KT among

problems with common search spaces, while the latter considers KT among problems

with different search spaces, such as those with varying dimensions, decision variables,

and objective functions [27].

According to the types of problems to be solved, KT and EC combined algorithms

can be categorized into five classes: DOP, MTOP, multi-objective and many-objective

optimization, expensive optimization, and algorithm applications [27]. This paper

primarily focuses on DOP and MTOP, which belong to the first two categories among

these five problems. DOP and MTOP problems are relatively complex and have been

recent research hotspots. These two types of problems require algorithms to perform

37

well in the face of dynamic problem changes or when simultaneously handling multiple

tasks. Solving such problems necessitates more advanced optimization algorithms and

KT mechanisms. In practical terms, DOP involve changes in optimization problems

over time, while MTOP involve optimizing multiple tasks simultaneously. Both of these

problem types are relatively common in practical applications, hence researching these

areas is practically significant for solving real-world problems.

Regarding KT in EC algorithms, research focuses on two questions at the execution

level: when to perform KT and how to perform KT [22]. Firstly, determining when to

perform KT is a crucial issue. The timing of KT during the execution of optimization

algorithms can affect the performance and effectiveness of the algorithms. Determining

when to perform KT may involve factors such as the dynamic characteristics, the

quality of the current search state, and changes in the environment. Therefore, focusing

on when to perform KT can help identify the most effective timing for KT. Secondly,

how to perform KT involves specific operations and mechanisms, including knowledge

representation, methods of KT, and selection of individuals to receive knowledge.

Researching this issue requires considering the specific implementation of the

algorithm and the nature of the problem. Focusing on how to perform KT can help

design more effective KT strategies.

2.3 Dynamic Optimization Problems (DOP)

2.3.1 Introduction of DOP

Compared to static problems like finding function extrema, numerous optimization

problems encountered in real-world scenarios exhibit dynamic characteristics and are

subject to uncertainty [84]. These types of problems are commonly known as DOP. In

DOP, objective functions, constraints, Pareto fronts, etc., may change over time. DOP

is more challenging than static optimization because the same problem must be

repeatedly optimized over time [85]. Compared with static problems such as solving

function extreme values, many real-world optimization problems in uncertain

environments are dynamically changing [84], and such problems are called DOP. In

DOP, the objective function, constraints, Pareto front, etc. may all change over time.

38

DOP is more difficult than static optimization because the same problem has to be

optimized repeatedly over time [85].

Here is an example of a DOP. Picture a scenario in supply chain management where

a company manufactures goods and distributes them to retailers. The primary objective

of this system is to minimize overall transportation expenses. Initially (at time t=0), the

routes and transportation costs are established. However, due to factors like fluctuating

fuel prices and variable traffic conditions, these costs may change over time. At each

time step, the system has the flexibility to adjust transportation routes to accommodate

these evolving cost scenarios. The objective of the DOP is to choose the most cost-

efficient route at each time interval to minimize the total transportation expenses. This

necessitates making real-time decisions in response to changing circumstances,

ensuring adaptability to environmental shifts while consistently aiming to minimize

costs.

DOP is an optimization problem in which the fitness function, constraints, and

environment parameters may all change over time. The objective function of DOP is

expressed as:

 1 2max (,) (, ,..., ,)Df X e f x x x e=
 (2.6)

In this function, f represents the objective function, X denotes a decision vector

with D dimensions, e signifies the evolving environment, the range of each dimension

xj is defined within the interval.

The challenge in DOP lies in the need to find the optimal solution (or an

approximate one) within acceptable time and cost constraints. This requirement

translates to the algorithm being able to quickly converge to the global optimum after

each environmental change, without getting trapped by previous optimal solutions and

falling into local optima [85].

EC is commonly employed for static problems, typically aiming to rapidly

converge the population to the global optimum. However, this poses challenges in

dynamic environments, where the peaks of the objective function constantly fluctuate,

necessitating continuous tracking of the optimal values. When using traditional

39

evolutionary algorithms, once convergence is achieved, the diversity of the population

diminishes, making it difficult to track new optimization targets. Conversely, excessive

diversity may also hinder algorithm performance. Moreover, during reiteration, it is

crucial to use KT to track new optimization targets. If the objective functions before

and after the change are similar, it is advisable to retain some historical information.

However, preserving too much information may lead to premature convergence. For

DOP, scholars like Zhan classified existing EC research into three categories based on

functionality: Decreasing the complexity of the problem, enhancing algorithmic variety,

and speeding up convergence are essential objectives [25].

When simplifying problem difficulty, two approaches are commonly employed:

decomposing dimensions into teams and segmenting the search area into sections. The

concept of decomposing dimensions into teams originates from Cooperative

Coevolution (CC), initially employed for solving evolutionary optimization problems

of large scale [86]. For DOP, CC can partition the dimensionality of the search area,

evolving various dimensions to locate and track the optimal solution [87]. Specifically,

in cooperative coevolution, the solutions to a problem are divided into different parts

or groups, with each part being independently optimized by a separate subpopulation.

This cooperative evolution approach allows the algorithm to handle high-dimensional,

complex problems more efficiently, as different parts can be optimized independently,

thus enhancing the search efficiency. Additionally, some studies have employed

competitive-cooperative CC algorithms, where each species subpopulation competes to

represent specific subcomponents of the multi-objective problem, and the eventual

winners cooperate to evolve better solutions [88]. Segmenting the search space into

pieces involves the use of cellular automata methods. Cellular Automaton is a

mathematical model composed of a set of identical automata (referred to as “cells”) that

evolve at discrete time steps according to predefined rules. Each cell can be in one of a

finite number of states, and the rules determine how the cell's state evolves based on its

state and the states of its neighboring cells. Based on this model, Hashemi et al.

proposed Cellular PSO [89]. Noroozi et al. introduced CellularDE, utilizing the same

40

cellular automaton framework to address DOP [90], while Sharifi and Noroozi

proposed a two-stage Cellular PSO [92]. In summary, these methodologies offer

effective strategies for addressing the complexities of optimization problems,

particularly in dynamic environments. They provide insights into enhancing search

efficiency and facilitating the exploration of high-dimensional solution spaces.

Various methods have been introduced to enhance algorithm diversity, including

the utilization of multi-populations, the creation of composite solutions, and the

development of innovative solution update strategies [25]. Among these methods,

research on multi-population approaches is the most extensive. In the evolutionary

process, each subpopulation is responsible for an independent task, akin to students in

a class forming groups to complete different assignments. Multi-population models can

be divided into two categories: homogeneous and heterogeneous models. In

homogeneous models, each population has the same task, while in heterogeneous

models, multiple populations are situated at different levels or have different tasks. To

continue with the classroom analogy, a homogeneous model is where every group of

students has the same task, though they may adopt different approaches. In contrast, a

heterogeneous model is where different groups of students may have different

specializations or skills, and each group is responsible for solving an independent

problem. In homogeneous algorithms, many existing studies employ clustering

algorithms to create subpopulations, including hierarchical clustering [93], a

combination of random immigration strategies and hierarchical clustering [94],

competitive clustering [95], K-means clustering [96], adaptive multi-population

approaches [97], distributed multi-populations [98], and clustering-based clone

selection algorithms [99]. For heterogeneous models, the methods employed in existing

research are more diverse. Branke et al. proposed the SOS algorithm, and Li et al.

introduced FPSO, both of which include a parent population and multiple

subpopulations, with the parent population conducting global search and the

subpopulations performing local search [100][101]. In recent years, a heterogeneous

model called distributed multiple populations (DMP) has been proposed. DMP employs

41

six strategies designed at three levels (i.e., population level, subpopulation level, and

individual level) to address different types of DOP. Diversity preservation at the

individual and population levels accelerates the entire population's response to new

landscapes, while elite self-learning of individuals at the subpopulation level promotes

the development of promising areas [102][103].

To expedite convergence speed, methods involving the direct reuse of historical

solutions and the prediction of promising solutions can be applied [25]. Regarding the

reuse of historical solutions, the difference lies in the methods of archiving historical

information, which include direct reuse [104], fine-grained archiving and coarse-

grained archiving [105], and direct incorporation into the new initialized population

[106]. However, historical optimal solutions may struggle to adjust to alternations in

the new environment, making methods derived from predicting promising solutions in

the new environment more advantageous. Existing research includes variable relocation

strategy (VRS) [107], adaptive PSO with VRS [108], and orthogonal learning particle

swarm optimization with VRS [109], combining population prediction strategies based

on prediction centers and estimated manifolds [110], neural network-based change

prediction methods [111], and neural network information transfer [112].

“The only absolute motion is the motion of change; the only constant is change

itself. [113]” DOP find widespread applications in various fields owing to the time-

varying characteristics of real-world optimization problems. DOP research extensively

conducted in domains such as logistics and transportation [114], power systems [115],

financial markets [116], manufacturing [117], and unmanned systems including

autonomous vehicles [118], ships [119], and drones [120]. With the development of

economy and technology, the emergence of DOP research in more domains such as

greenhouse control in agriculture is observed [121], electric vehicles [122], healthcare

[124], environmental monitoring [125], and telecommunication networks [126].

2.3.2 KT in DOP

In real-world problems, DOP typically exhibit two key characteristics. On one hand,

while DOP is inherently dynamic, the nature of the problem remains relatively static

42

within a specific period without significant changes. During this time frame, DOP can

be treated as a static problem. On the other hand, adjacent static time periods should

exhibit some degree of similarity in the characteristics and features of the problem. This

similarity allows for partial reuse of information from previous environments when

addressing DOP across these time periods, without the need to start optimization from

scratch [106]. Therefore, existing research on DOP aims to closely track changes in

time by approximating Pareto optimal solutions as closely as possible when the

environment changes [127]. This involves reusing historical information, which, as

mentioned in the previous section, can be categorized into direct reuse of historical

information and prediction of promising solutions based on historical solutions. The

primary purpose of reusing historical information is to expedite convergence speed or

reduce runtime by leveraging past experiences. Utilizing past experiences can help us

solve new problems in dynamic environments more efficiently, which is the primary

focus of most current research efforts. Additionally, leveraging KT can reduce problem

complexity and increase algorithm diversity.

Firstly, KT can contribute to reducing the difficulty of DOP by decomposing

dimensions into teams and segmenting the search area into pieces. Currently, there is

limited research from this perspective. For the first approach, decomposing the

dimensions of the problem into groups involves grouping relevant decision variables

together to form subproblems. This can be based on dependencies between variables,

functional properties, or other correlations. If effective optimization strategies or search

directions for specific variable combinations were learned from previous problem

instances, this knowledge can be transferred and applied to similar variable

combinations in the current problem. The research of Rakitianskaia did not explicitly

mention KT, but it introduced the concept of context vectors, which can be viewed as a

form of information transfer [87]. Liu et al. used probability distribution functions to

adjust the relationships between variables and groups, making the understanding of

variable dependencies more flexible [105]. For the second approach, segmenting the

search space into pieces involves dividing the entire search space into non-overlapping

43

regions, each of which can be considered a local subproblem. This segmentation can be

derived from the attributes of the problem, constraints, or other distinguishing

properties. In this case, KT involves applying knowledge gained from previously solved

problems, such as effective regions in the search space or information about related

subproblems, to similar regions in the current problem. KT facilitates improved

algorithm understanding of the problem space and enhances search efficiency by

sharing information between similar regions. Noroozi's research did not explicitly

mention KT either, but it involved utilizing local information from different regions

[90]. Through these two approaches, KT can help algorithms better understand the

structure and characteristics of the problem, reduce the complexity of the exploration

domain, and thus decrease the difficulty of decision optimization problems. This

decomposition and segmentation strategy aids in improving the local search

effectiveness of algorithms, allowing them to focus more on smaller problem domains

and thereby increasing the efficiency of problem-solving. Due to the limited research

from this perspective, it represents a potential research direction for future exploration.

Additionally, Jin et al. discussed three types of knowledge transfer methods in data-

driven evolutionary optimization, including semi-supervised learning, parameter

sharing and domain adaptation, and transfer optimization [91]. These methods help in

reducing the difficulty of data-driven optimization by effectively leveraging knowledge

from various sources.

Secondly, KT can enhance algorithm diversity in DOP through various methods.

Firstly, the most common approach is the utilization of multi-population methods,

which involves transferring knowledge between different subpopulations. Each

subpopulation may focus on distinct regions of the search space or tackle different types

of problems, and by sharing knowledge among them, the overall diversity of the

algorithm can be increased [106]. The second method involves introducing

heterogeneous knowledge sources. Leveraging knowledge from different problem

instances, domains, or algorithms can enhance algorithm heterogeneity. Introducing

heterogeneous knowledge may include rules or heuristic information from other

44

optimization algorithms or problem domains, thereby enriching the algorithm's search

strategies. For instance, Zhou et al. attempted to learn structured knowledge obtained

from early time slots and apply it to dynamic vehicle routing problems [128]. Wu et al.,

within a multi-population framework, introduced a certain degree of heterogeneity

based on the different properties of each subpopulation to generate multiple

subpopulations balanced in new environments [106]. Yan et al. generated new

subpopulations by learning from the final populations of adjacent environments and

extracting patterns of dynamic environmental changes from high-quality solutions in

historical environments [129]. The third approach involves introducing randomness and

perturbation. Introducing randomness and perturbation is a classical method for

increasing algorithm diversity. By introducing a moderate amount of randomness or

perturbation during the search process, algorithms can avoid local optima and explore

the problem domain more comprehensively. Sun et al. used a random perturbation

approach to solve missile trajectory optimization problems [130]. Additionally,

introducing randomness when selecting individuals or subpopulations for reproduction

or search can ensure that the algorithm does not overly focus on a specific region of the

search domain, thus enhancing algorithm diversity. Lastly, dynamic parameter

adjustment involves dynamically adjusting algorithm parameters using KT. Parameter

settings learned from previous problem instances may not be applicable to new

problems, so dynamically adjusting parameters through KT can better adapt the

algorithm to the characteristics of the current problem. Zhan et al. employed adaptive

parameter control in the APSO algorithm, meaning that the parameters of algorithm can

be adjusted according to optimization progress or environmental changes [108].

Finally, KT accelerates the convergence rate and reduces the execution time of DOP.

In existing research, enhancing algorithm variety and speeding up convergence rate

often appear in the same study. For instance, Jiang et al. introduced the concept of the

Knee point, which cleverly integrates a small number of high-quality individuals and

imbalanced transfer learning techniques [131], thereby increasing algorithm diversity

while also speeding up convergence. According to the two assumptions of DOP,

45

continuous dynamic environments often exhibit significant correlations with one

another, and reusing historical solutions holds significant potential for expediting

convergence in novel environments. For instance, Jiang et al. reused past experiences

to generate an effective initial population pool [132]. There are two approaches to

historical solution reuse: directly utilizing historical solutions and predicting the

optimal solution's location, both of which are mentioned in early survey articles on DOP.

In practical applications, the more commonly used method may rely on the specific

nature of the problem, algorithm design, and researchers' preferences. Sometimes,

directly reusing historical solutions is straightforward, while predicting the optimal

solution's location may require more complex models and algorithms. For direct reuse

of historical optimal solutions, in Cao et al.'s study, the best solution in each generation

is stored, and when environmental changes are detected, historical solutions are

retrieved to collaborate with newly generated solutions to adapt to the new environment

[104]. Methods based on historical information for predicting the optimal solution have

received more research attention, such as variable relocation strategies [107]-[108]. In

specific operations, Rang et al. did not use a linear prediction model but employed Long

Short-Term Memory networks for prediction [127]. Wu et al. proposed the Archive-

based Historical Information Reuse (AHIR) strategy [106]. Guo et al. introduced a

subspace alignment method for KT [83]. Hatzakis et al. inferred the estimated value of

the next position using a prediction model created from the sequence of previous

optimal solution positions [133]. Jiang et al. used manifold transfer learning for

prediction [136]. Additionally, Liu and Wang proposed an enhanced population

prediction strategy for dynamic multi-objective optimization algorithms utilizing

transfer learning, aiming to effectively track optimal solutions in dynamic environments

by integrating historical information [134]. It is worth noting that if the prediction

model is inaccurate, it may have a negative impact on the optimization process. Ruan

et al. pointed out that prediction models based on incorrect assumptions may lead to

inaccurate predictions of the optimal solution [87]. Ma et al. proposed a higher order

knowledge transfer strategy for dynamic community detection, aiming to retain and

46

transfer advantages from previous snapshots to subsequent ones [135].

In DOP, another key challenge lies in determining when and how to conduct

transfer learning effectively [137]. Similar issues are also present in MTOP [22].

Transfer learning proves to be effective in addressing fixed POS problems and scenarios

with minor environmental changes [137]. However, some problems are not suitable for

transfer learning. Therefore, when dealing with issues where transfer learning fails, it

is advisable to avoid its usage.

2.4 Multi-task Optimization Problems (MTOP)

2.4.1 Introduction of MTOP

A significant distinction between humans and machine learning lies in humans'

capability for multitasking. During the learning process, humans can use knowledge

acquired in one task to aid in learning another task [21]. For instance, for a high school

student, improvement in mathematics performance may also contribute to learning

physics. Many outstanding students excel in all subjects precisely because they can

apply learning experiences from one subject to others. In complex optimization

problems, EC has been used to address various optimization challenges, but it faces two

key obstacles: heavy computational burden and poor generalization ability [21].

Inspired by human learning, a better strategy to address these challenges is MTOP.

Compared to single-task learning, multi-task learning offers several advantages:

multiple tasks share one model, reducing memory usage; enhanced convergence speed

and reduced learning difficulty; performance improvement in associated tasks through

shared information and KT [22]. Additionally, MTOP can also address scenarios with

insufficient data sources [21]. In the real world, insufficient training data for individual

tasks is common, making mutual learning between different tasks meaningful and

valuable [138].

Primarily focusing on the integration of EC and MTOP because EC exhibits

implicit parallelism, allowing for the simultaneous optimization of multiple tasks when

solving MTOP. Evolutionary computing algorithms can perform selection, crossover,

and mutation operations concurrently when handling multiple tasks. These operations

47

do not interfere with each other when dealing with different tasks, enabling parallel

execution. By leveraging the parallelism between tasks, the optimization process can

be accelerated, enhancing the efficiency of the algorithm. This parallelism is implicit,

as multiple tasks can be processed simultaneously without the explicit use of parallel

computing techniques. Therefore, the combination of MTOP and EC has become a

research hotspot in recent years, with review papers by prominent scholars providing

insights into research progress [27] [141].

Existing MTOP can be classified into single population and multiple population

strategies.

The most representative algorithm for single-population MTOP is the

multifactorial evolutionary algorithm (MFEA) [30]. MFEA is a single-population

MTOP algorithm that uses a single population to simultaneously optimize multiple

problems. The core idea of MFEA is to apply a single population to solve multiple

related tasks and promote information sharing and individual adaptability across tasks

through controlling mating intensity and implementing skill inheritance. This makes

MFEA an effective method for addressing MTOP.

In multi-population MTOP algorithms, each population corresponds to an

optimization task. Throughout the evolution process, populations can engage in two

distinct operations: self-evolution and inter-task evolution. Self-evolution means that

individuals in the population only use parents from the same population to generate

offspring. In other words, individuals undergo genetic operations only within the

current population. Inter-task evolution refers to the population using parents from the

same population and randomly selected parents from other populations to generate

offspring for the task. In inter-task evolution, operators and solutions generated by

parents can represent the shared information between different populations. This means

that individuals can leverage information from other tasks to generate offspring. The

determination of whether to conduct self-evolution or inter-task evolution is based on

a random parameter called the random mating probability (rmp), which is a control

parameter utilized to determine the probability of each population selecting self-

48

evolution or inter-task evolution. This multi-population framework aims to allow

individuals to exchange information between different tasks and enhance the efficacy

of multi-task optimization through inter-task evolution. Compared to single-population

MTOP, there are more research achievements in multi-population optimization. Chen

et al. adopted an adaptive archive mechanism to determine which task similar to the

current task can provide the most useful assistance [142]. Huang et al. used surrogate-

assisted strategies to minimize the quantity of fitness evaluations [143]. They also

developed a surrogate-assisted MA model using DE as the global search component

and the Gaussian process as the surrogate model [144]. Wei et al. addressed the

challenge of multi-class classification problems in multi-task optimization using gene

expression programming GEP [145]. In traditional GEP methods, an M-class

classification tasks is regarded as M independent binary classification tasks without

considering the correlation between classes. This approach may lead to output conflicts

because different binary classifiers may give inconsistent class labels. Therefore,

traditional GEP methods may perform poorly in handling multi-class classification

problems. By introducing the evolutionary multi-task optimization paradigm, this

method allows interaction and KT between different binary classifiers to address the

problem of output conflicts. Additionally, some scholars have combined multi-task

optimization with multi-objective optimization [32] and dynamic optimization [146] as

composite optimization problems.

2.4.2 KT in MTOP

The inspiration behind MTOP comes from the human ability to simultaneously

perform multiple tasks and the mature concept of multi-task learning in predictive

analytics. By applying this ability to optimization problems, MTOP can consider

multiple tasks simultaneously in a single optimization process, thereby improving the

efficiency and performance of the search. Therefore, a key concept in MTOP is inter-

task KT. During the evolutionary optimization process, useful knowledge transferred

across tasks can lead to the automatic resolution of related problems. This means that

solving one task may positively impact the optimization process of other tasks,

49

enhancing the search capability. Early applications of KT-inspired solutions to MTOP

problems were unidirectional [28], [29]. Subsequently, Gupta et al. proposed MFEA,

which was inspired by the biocultural model of multifactorial genetics, explaining how

genetic and cultural factors interact to pass on complex developmental traits to

offspring [30]. The cultural factor mentioned in the model refers to KT.

Research on MTOP has proliferated in the years following MFEA, with studies

emerging one after another [147]-[159]. These studies, originating from the perspective

of KT, delve into how evolutionary algorithms can be used to address multiple

independent tasks. Some papers propose new evolutionary algorithm paradigms, such

as generalized multi-task optimization and multifactorial genetics, which enhance

optimization by transferring knowledge across tasks [147],[151],[152]. Others focus on

improving and applying evolutionary multi-task algorithms, with some methods

employing online parameter estimation for KT [159]. Furthermore, some research

explores the application of cross-domain optimization and resource allocation strategies

in KT [148],[146],[153]. Collectively, these studies provide important theoretical and

practical foundations for the development and application of evolutionary multi-task

optimization.

However, as research into Evolutionary Multi-Task Optimization (EMTO) deepens,

the issue of negative transfer across tasks has become increasingly prominent, posing a

common challenge in current studies. Studies have shown that KT between tasks with

low relevance may even lead to a decrease in optimization performance [162],

underscoring the critical importance of effective inter-task KT for EMTO. Therefore,

addressing the problem of negative transfer across tasks is key to ensuring the success

of EMTO. Mitigating the impact of the negative transfer on EMTO primarily requires

consideration of two aspects: first, identifying the appropriate tasks for KT, and second,

improving methods to elicit more useful knowledge during the transfer process.

Regarding the identification of tasks suitable for KT, the MFEA-II algorithm

proposed by Bali et al. uses online transfer parameter estimation to dynamically adjust

the KT probability between tasks, increasing KT among highly correlated tasks and

50

mitigating the influence of negative transfer [159]. In the study by Yang et al. [163], a

two-stage pairing method is employed, considering the similarity between tasks to

ensure that KT only occurs between tasks with high relevance, thereby reducing the

likelihood of negative transfer. Similarly, Liaw et al.'s eco-symbiotic-based

evolutionary multi-task approach [151] adopts a similar strategy by modeling the

correlation between tasks and selectively transferring knowledge to mitigate the

influence of negative transfer. Regarding improving the KT process to extract more

useful knowledge, the MFEA-II algorithm [159] introduces online transfer parameter

estimation to dynamically optimize the KT process by adjusting the probability of KT

to ensure more useful knowledge is transferred among highly correlated tasks. On the

other hand, the studies by Yang et al. [163] and Liaw and Ting [151] leverage the

similarity between tasks and task characteristics to optimize the selection and crossover

methods of transferred individuals and construct task mappings, thereby extracting

more useful knowledge and mitigating the influence of negative transfer.

Existing research on MTOP has been summarized by scholars. Tan et al. provides

a comprehensive introduction to evolutionary transfer optimization, reviewing various

categories of optimization problems such as uncertain environments, multi-objective

optimization, etc. [164]. Xu et al. reviews the research progress in MTOP over the past

five years. The article examines various techniques, including chromosome encoding

and decoding, intra-population reproduction, inter-population reproduction, as well as

evaluation and selection methods. [141]. Osaba and Wei et al. provides a systematic

analysis and summary of evolutionary multi-task optimization methods [165], [166].

Gupta et al. discusses six case studies of evolutionary multi-task processing in practical

applications, emphasizing its practical applications and effects in various fields. The

article showcases the potential and value of evolutionary multi-task processing through

case analysis [167].

In these two years, there have been some novel research in KT within MTOP. Jiang

et al. proposed a evolutionary algorithm based on knowledge structure preservation,

which extracts useful structure-preserved knowledge from similar source tasks [154].

51

Wang et al. discovered that although many explicit transfer strategies have been

developed to enhance positive transfer between optimization tasks, most of these

methods achieve knowledge transfer by migrating the best solutions from the source

task to the target task, neglecting the proper use of information from the target task in

solution selection [155]. To address this issue, they proposed a lower confidence bound

solution selection method based on evolutionary multitasking optimization [155].

Additionally, Lin et al. integrated various domain adaptation methods for knowledge

transfer in EMT [156]. In terms of applications in evolutionary multitasking

optimization, Zhou et al. proposed an evolutionary multitask convolutional neural

architecture search framework [157]. Feng et al. used multitasking approaches to solve

multi-objective high-dimensional feature selection problems [158].

These studies indicate significant progress in methods for knowledge transfer

between optimization tasks and demonstrate their potential applications in various

fields.

52

CHAPTER 3

HISTORICAL INFORMATION-BASED DIFFERENTIAL

EVOLUTION FOR DYNAMIC OPTIMIZATION PROBLEM

3.1 Introduction

In the fast-paced and ever-changing world, DOP play a crucial role. DOP refer to

optimization problems where the objective function, constraints, and environmental

parameters change over time. Such problems are widely encountered in various

domains, including intelligent traffic management [168], Internet of Things [170],

operations management [171], logistics [114], power systems [115], financial markets

[116], manufacturing [117], and unmanned systems such as autonomous cars [118],

ships [119], and drones [120]. Research in these areas has been extensive. With

economic and technological developments, the emergence of DOP studies in more

fields, such as greenhouse control in agriculture, is being witnessed [121], electric

vehicles [122] [123], healthcare [124], environmental monitoring [125], and

telecommunications networks [126].

Unlike static optimization problems, the uncertainty and variability of dynamic

environments pose challenges to traditional optimization methods. Static optimization

algorithms often assume that problem parameters and constraints remain static, making

them unsuitable for direct application in dynamic environments. However, in practical

applications, changes in environmental parameters can render static optimization

solutions ineffective, thereby affecting system performance and efficiency. For instance,

in intelligent traffic management systems, parameters such as traffic flow, road

conditions, and vehicle destinations frequently change. Failure to promptly adapt traffic

signal optimization schemes to these changes can result in traffic congestion, energy

wastage, and reduced travel efficiency [168].

DOP faces various challenges due to the dynamic nature of the objective function,

constraints, and environmental parameters over time, leading to the dynamicity of the

53

search space, the failure of existing solutions, and the increased complexity of the

problem. For example, optimizing traffic signal lights involves fluctuations in traffic

and pedestrian flow [168]. DOP is inherently complex and multimodal because it

exhibits shifting peaks, where local optima at different times can lead to the problem

easily getting trapped in local optima [165] [169]. Furthermore, DOP demands

algorithms with high requirements, necessitating strong robustness to cope with

environmental changes, noise interference, and uncertainty. Lastly, DOP also faces

challenges similar to expensive optimization problems because it often requires

frequent updates and adjustments to solutions, which can result in higher computational

costs.

Evolutionary computation (EC) was initially developed for solving static

optimization problems, with traditional EC algorithms such as Genetic Algorithm (GA)

[181], Differential Evolution (DE) [44], and Particle Swarm Optimization (PSO) [45]

originally designed for such static optimization problems. However, as attention to

optimization problems in dynamic environments has increased, researchers have begun

applying EC algorithms to solve DOP. EC has certain advantages in addressing DOP,

primarily in adaptability and robustness [25], parallel computing [44], distributed

computing [102], diversity and exploratory behavior [168], parameter adaptability

[172], and reuse of historical information [106].

This thesis primarily focuses on addressing the challenges posed by the constantly

changing problem distributions in DOP using EC, aiming to alleviate the difficulties

associated with such problems. While DOP present significant challenges for

optimization, careful observation of real-world instances reveals three key

characteristics. Firstly, despite the dynamic nature of the problems, they often exhibit

stability periods, allowing them to be temporarily treated as static problems within

certain time intervals. For example, stability around specific values can be observed

within a time range. Another example is the relative stability of variations within

specific time periods. The second characteristic is that DOP can be decomposed into

multiple static optimization problems, as changes between two static environments are

54

not excessively drastic. These two characteristics provide an opportunity to enhance

search efficiency by utilizing historical information. For instance, traffic signal control

problems under different traffic volumes remain similar [168], enabling the utilization

of historical data. Given these characteristics, the focus of the research is on effectively

leveraging historical information from past environments in the context of new

environments [169]. To address this issue, the Historical Information-based DE (HIDE)

is proposed. This chapter introduces a Region-based Subpopulation Initialization (RSI)

method to create balanced subpopulations in new environments by initializing

subpopulations in various areas of the exploration space to enhance population variety.

Additionally, an Archive-based Historical Information Reuse (AHIR) method is

proposed to use previously discovered peaks as historical information to aid in tracking

and discovering new peaks.

The chapter follows this structure. Section 3.2 provides an overview of relevant

research on DOP. Next, Section 3.3 introduces the methodology and research

framework of the HIDE algorithm. Section 3.4 presents comparative experiments and

experimental data, and Section 3.5 offers conclusions and prospects.

3.2 Related Work

3.2.1 Dynamic Optimization Problem

DOP distributions are inherently complex and multimodal, with the dynamic nature

and multimodality of DOP often being correlated. This correlation arises because

changes in dynamic environments may increase the diversity of the objective function,

leading to the existence of multiple local optima in the solution space. Consequently,

most EC methods still face the challenge of falling into local optima, even global

optimization algorithms like GA, ACO, PSO, and DE algorithms. When addressing

DOP, several approaches are worth considering: modeling dynamic environments [24],

adaptive parameter tuning [96], [108], employing multi-population strategies [173],

[96], [97], reusing historical information [171], [176], [108], and parallel and

distributed computing [102]. Zhan et al. mentioned in their review of complex

optimization problems that reducing problem complexity, increasing algorithm

55

diversity, and accelerating convergence speed are effective strategies, which are also

applicable to DOP. However, categorizing existing research based on these strategies

poses difficulties because many novel algorithms simultaneously increase algorithm

diversity and convergence speed. In an earlier review, Thanh et al. mentioned common

methods for solving DOP, including introducing diversity at the onset of change,

maintaining diversity during the search process, memory-based methods, prediction-

based methods, adaptive methods, and multi-population methods [24]. This

classification is based on methods mentioned in existing research but does not consider

the interrelationships between these six methods, such as introducing diversity at the

onset of change and maintaining diversity during the search process, both of which

increase diversity, nor does it consider further subdivisions of methods. Therefore,

integrating these two reviews to classify existing EC methods for solving DOP.

Subsequently, elaborating on multi-population methods in detail.

The first method involves introducing diversity, including static and dynamic

diversity introduction. Static diversity introduction entails randomly initializing

populations, while dynamic diversity introduction maintains diversity during the search

process, such as through random perturbation, crossover swapping, and other diversity

maintenance strategies [179]. The second method involves reusing historical

information, also known as memory-based methods, such as archiving strategies [171],

[96], and knowledge pools [178], to store the historical best solutions. Additionally,

memory can be explicit or implicit. Explicit memory involves explicitly storing past

information through a mechanism for direct access and utilization in the future. Implicit

memory refers to the algorithm's ability to adapt to environmental changes through its

evolutionary process or behavior without the need for explicit storage of past

information. The third method involves predicting environmental changes using models

such as neural networks [176]. The fourth method involves adaptive parameter tuning.

The fifth method involves using multi-population strategies, including homogeneous

and heterogeneous populations [103]. Chapter 2 has provided detailed explanations of

multi-population methods. In this chapter, the second and fifth methods are primarily

56

adopted to address the problems.

3.2.2 Differential Evolution

DE is an algorithm in EC that uses differences among individuals to guide

evolution. It integrates the concepts of crossover and mutation from GA while also

drawing inspiration from the learning aspects of PSO [44]. Compared to other

evolutionary algorithms, DE maintains a population-based global search strategy,

employing a simple mutation operation based on differences in real-number coding [44].

Additionally, DE adopts a one-to-one competitive survival strategy, simplifying the

complexity of genetic operations. DE possesses unique memory capabilities,

dynamically tracking the current search status and adjusting search strategies as needed.

Due to its strong global convergence ability and robustness, DE is suitable for

addressing various kinds of conventional optimization problems, including DOP [90],

without relying on specific problem features. A detailed introduction to DE is provided

in Section 2.1.1.

3.2.3 Multi-population Methods

In the field of EC, multi-population methods are common strategies used to

enhance algorithm performance and efficiency. These methods decompose the entire

optimization process into the evolution of multiple subpopulations, akin to dividing a

class of students into smaller groups. Each subpopulation can evolve independently and

periodically share information or migrate individuals to facilitate global search and

avoid local optima [177]. This approach offers two advantages. Firstly, multi-

population methods divide the entire population into several subpopulations, each with

potentially different characteristics, parameter settings, or evolution strategies. These

subpopulations can evolve independently or periodically exchange information or

individuals to promote global search and prevent premature convergence. Secondly, in

multi-population methods, information or individuals are often exchanged regularly

between subpopulations to enhance diversity and global search. Forms of information

sharing may include individual migration, solution exchange, and parameter adjustment,

aimed at accelerating global search and improving algorithm robustness. In practice,

57

multi-population methods also involve considerations of population homogeneity and

heterogeneity, as detailed in Chapter 2. Additionally, some multi-population methods

are adaptive, dynamically adjusting the number, size, or parameter settings of

subpopulations based on problem characteristics or search progress. This adaptive

capability enables better adaptation to different problem domains and search

environments, enhancing algorithm robustness and adaptability [171], [96].

As a popular algorithm in the field of Evolutionary Computation (EC) in recent

years, some researchers have explored the application of the Differential Evolution (DE)

algorithm and employed the multi-population approach to address Dynamic

Optimization Problems (DOP) [174]. The CEC 2009 benchmark set has been used as a

dynamic testing problem set to evaluate the performance of evolutionary computation

in dynamic environments, with Li et al. introducing a General Dynamic Benchmark

Generator (GDBG) to construct dynamic environments across three solution spaces

[174]. Thus, many existing studies use the CEC 2009 benchmark set as the test problem

set. Existing research on DOP solutions can be roughly categorized into several

approaches: adaptive parameters [172], [173], history-based [175], prediction-based

[176], and parallel and distributed methods [102]. In terms of adaptive parameters,

Brest et al. proposed an adaptive control parameter setting method to dynamically

adjust control parameters related to differential evolution [172]. Based on this method,

three years later, Brest et al. applied an adaptive control parameter multi-population

differential evolution algorithm to solve DOP [173]. The algorithm demonstrated strong

performance on CEC 2009 dynamic optimization benchmark functions. Mendes et al.

proposed a multi-population DE algorithm, DynDE, tailored for DOP without requiring

F or CR parameters [175]. Experimental evidence supports the effectiveness of this

algorithm in solving dynamic peak benchmark functions. In history-based methods,

Halder et al. employed a multi-population approach and proposed a Cluster-based

Dynamic DE with an External Archive algorithm [96]. This method divides the entire

population into clusters based on the spatial location of the experimental solution,

allowing for the sharing of local information during the optimization process. In

58

prediction-based methods, Liu et al. suggested that when a new environment is closely

related to the previous one, transferring information can accelerate the acquisition of

high-quality solutions in the new environment. Thus, they proposed a neural network-

based information transfer method [176]. In parallel and distributed approaches, Zhan

et al. introduced a two-layer heterogeneous differential evolution algorithm in a cloud

computing distributed environment [102]. This method, called Cloudde, facilitates

simultaneous operation and adaptive migration of parameters or operators in different

populations. It utilizes Message Passing Interface MPI technology to achieve

distributed computing by sending different populations to different slave processes.

Each slave process performs mutation and crossover operations with different evolution

strategies independently during the evolutionary process. Subsequently, these slave

processes return the results to the master process, which performs migration operations

based on adaptive probability to facilitate information exchange and population

evolution. It can be seen that Cloudde also adopts an adaptive approach. Furthermore,

Li and Zhan et al. used Cloudde to solve cloud-based DOP [103].

The multi-population approach can be viewed in part as diversity maintenance. At

the same time, the multi-population approach also involves memory and adaptability.

The multi-population method is to divide a large population into several small sub-

populations, and each sub-population performs its duties and evolves independently.

There are mainly two types of multi-population methods. In the first type,

subpopulations are assigned different tasks, some subpopulations are responsible for

finding the global optimal solution, and some subpopulations focus on tracking changes

in the environment. These two subpopulations can share information and cooperate to

guide the population to evolve better. A co-evolutionary algorithm based on the PSO

algorithm and DE algorithm (CESO) is proposed by Lung et al. in [180]. In the CESO

algorithm, crowding DE, a variant of the DE algorithm, is used to maintain the diversity

of the population and avoid premature convergence. The PSO algorithm is used as a

local search operator for fast convergence. The CESO algorithm balances exploration

and exploitation and achieves good results. The second type, which is the focus of this

59

chapter, uses multiple homogeneous populations to locate and track distinct peaks. In

this multi-population approach, the entire search space is divided into different regions.

Each region may contain one or more peaks, and each subpopulation is responsible for

searching a given region to find the optimal solution to achieve a global search. In [93],

Yang et al. A clustering-based method of clustering particle swarm optimization CPSO

to divide a large population into multiple subpopulations is proposed. However,

partitioning leads to uneven distribution of subpopulations. When insufficient

computing resources are allocated, some regions may not be fully utilized. Therefore,

a more balanced approach to population division is needed.

3.3 Framework of HIDE Method

3.3.1 RSI Strategy (region-based subpopulation initialization)

In the context of multi-population methods, the quality of population partitioning

is crucial as it directly impacts the performance and efficiency of the algorithm. A good

partitioning scheme possesses the following characteristics: balance, diversity,

adaptability, and coverage of the entire search space. Addressing this issue, the Region-

based Subpopulation Initialization (RSI) strategy is proposed for initializing and

generating subpopulations in new environments. As mentioned earlier, the problem

arises when subpopulation partitioning is uneven, leading to certain regions being

underused due to insufficient computational resources. However, existing partitioning

methods often result in imbalanced population sizes. For instance, clustering-based

partitioning depends on the distribution of individuals in the search space, leading to

some subpopulations being disproportionately large while others are too small. This

issue becomes more severe when the partitioned population sizes are too small, as some

promising regions may not be thoroughly explored and evaluated for their fitness.

To address the initialization of subpopulations, the RSI strategy is introduced. In

the RSI approach, clustering is no longer simply used to partition subpopulations;

instead, subpopulations are generated with predefined cluster centers. This process is

akin to sowing seeds. Firstly, the number of subpopulations is specified, denoted as N,

and the subpopulation size, denoted as M. Next, an archive is used to guide the

60

initialization process of subpopulations. Each seed is considered as the center of a

cluster to generate new subpopulations. The set of seeds, contained within the archive,

comprises all seeds used to generate subpopulations. Initially, this archive is empty. The

algorithm checks if the seed set is empty. If it is empty, N seed individuals are generated

by DE according to Equation (3.1), and these generated seeds are placed into the seed

set. If the archive is not empty, the existing seeds in the archive are used. If the number

of seeds in the archive is less than N, randomly generated seeds are added to the seed

set until N is reached. Subsequently, individuals are generated in each subpopulation

according to Equation (3.1) until the subpopulation size M is reached. It is important to

note that each individual added to a subpopulation should satisfy the condition that its

distance from the seed individual of the subpopulation is smaller than that from other

seeds. Once all populations are generated, the algorithm evaluates all individuals and

clears the archive. This concludes the initialization process of subpopulations.

Algorithm 1 RSI Strategy

input: Archive, N, M

output: N subpopulations of size M

1 Begin

2 Seeds={};

3 If Archive is empty

4 Generate N individuals according to Eq. (3.1) and add them into Seeds;

5 Else

6 Add individual in Archive into Seeds;

7 Generate (N-size(Archive)) individuals and add into Seeds;

8 End If

9 For seedi in Seeds

10
 Generate M individuals around the seedi, which satisfy that the distance

to seedi is less than the distance to seedj (j≠i);

11 End For

12 If all subpopulations’ sizes are enough (M)

13 Evaluate the individuals in the population;

14 Archive={};

15 End If

16 End

As shown in Algorithm 1, this algorithm is used to initialize N subpopulations,

61

each containing M individuals. The algorithm first checks if the archive is empty. If it

is, then N individuals are generated as seeds according to a specific equation, and M

individuals are generated around each seed. Otherwise, individuals are selected from

the archive as seeds, and additional individuals are generated to fill the required number

of seeds. Next, for each seed individual, M individuals are generated, ensuring that their

distance to the seed is less than to any other seed, and all generated individuals are

evaluated. Finally, the archive is cleared for the next evolutionary iteration.

3.3.2 DE Optimization Process

After generating the subpopulations, each subpopulation is optimized using the DE

algorithm. Since diversity is already maintained by multiple subpopulations, it is

necessary to enhance the local search capability to achieve a balance between

exploration and exploitation. Therefore, the DE/best algorithm, which has a strong local

search capability, is adopted. In the DE/best algorithm, the mutation operation is not

based on the differences between the current individual and other individuals, but on

the differences between the best individual (i.e., the best individual) in the population

and other individuals. This strategy aims to guide the algorithm to converge faster to

the proximity of the optimal solution, as it directly uses the best information in the

population.

, ,0 ,min , ,max ,min[0,1] ()i j j i j j jx x rand x x= +  −
 (3.1)

, , ,

, ,

, ,

 if [0,1] or ,

 otherwise

j i G i j

j i G

j i G

v rand Cr j jrand
u

x

 =
= 
 (3.2)

The scaling factor F for the mutation operation is set to 0.5, which is a common

setting in DE. According to Equation (3.2), the crossover probability Cr is set to 0.9,

and the mutated individuals are mixed with the original individuals to construct tests

separately.

3.3.3 Subpopulation Merge

The purpose of merging subpopulations is to focus the energy of subpopulations

on the best solutions in the current region, enabling the sharing of information among

subpopulations to accelerate the convergence of the current local region and promote

62

the global search process. Firstly, population merging can enhance search diversity,

accelerate the convergence of the current local region, and promote the global search

process. Secondly, it speeds up the convergence of the local region. By merging

subpopulations with similar best individuals, their individual information can be

effectively used to speed up the convergence rate of the current local region. This helps

to adapt to changes in dynamic environments faster, improving the responsiveness of

the algorithm. Finally, it promotes the global search process. Population merging helps

to share the best individual information of each subpopulation in the global search

process, thereby providing more global search capabilities for the entire optimization

process and increasing the chances to find the global optimal solution. Therefore,

population merging is a strategy aimed at improving the search efficiency and

performance of optimization algorithms in dynamic environments, enabling them to

better adapt to environmental changes and quickly find the optimal solution.

In practical operation, after all subpopulations have run for one generation,

merging may converge to the same peak subpopulation. The specific operation process

is as follows.

Step 1: Predefine the parameters “max_subsize” and the threshold point “thmerge”

for the merging process. Represent the set including all subpopulations as S =

{subpop1,…, subpopn}, where n≤N. This set comprises the best individuals from each

subpopulation, denoted as G = {xbest,1,...,xbest,n}.

Step 2: Calculate the distance between each pair of best individuals in G and find

the minimum distance “distmin” along with its corresponding subpopulations i and j (i

≠ j). If distmin is below the threshold “thmerge” and the sum of the sizes of subpopulations

i and j is less than “max_subsize,” it is considered that the distance between these two

subpopulations is sufficiently small, and their merging will not cause the population

size to exceed the limit. Consequently, the subpopulation with inferior xbest is merged

with the one having superior xbest. Through this merging operation, subpopulations with

poorer search histories are combined with those having better search histories, thereby

enhancing the search capability and convergence speed of the entire population.

63

Subsequently, the subpopulation with inferior xbest is removed from the subpopulation

set S to ensure that they no longer affect subsequent operations. Repeat this process

until no valid subpopulation mergers occur. This process effectively uses the individual

information among subpopulations, promotes collaborative cooperation among

populations, speeds up the convergence rate of the entire population, and enhances the

search efficiency and performance in dynamic environments.

The parameter “max_subsize” is set to limit the size of subpopulations, thereby

requiring an appropriate upper limit to control the scale of subpopulations. If the

subpopulations are too large, they will consume too many limited resources on local

optimal solutions, which is inconsistent with the original intention of the multi-

population method. If “max_subsize” is too small, the subpopulations converging to the

same peak will not be able to communicate and share individual information in a timely

manner. Regarding the conditions for subpopulation merging, when the distance

between the best individuals in two subpopulations is less than the threshold “thmerge,”

and the sum of their population sizes is less than the upper limit of “max_subsize,”

merging them can fully use the information of their subpopulations and accelerate the

convergence of the current local region. This condition ensures that the merging does

not exceed the population size limit and ensures that the distance between the two

subpopulations is close enough to perform the merging operation. However, when the

distance between the best individuals in two subpopulations is greater than the threshold

“thmerge,” it is considered that the subpopulations are seeking different peaks or moving

towards different local regions, and it is not appropriate to perform the operation at this

time.

3.3.4 Archive-based historical information reuse (AHIR)

To fully make use of the historical information to guide the search, the AHIR

strategy is proposed. Suppose that the set denoted as Sprev_env= {subpop1, ..., subpopn}

contains n subpopulations from the previous environment. Two parameters is defined:

the threshold for duplicate removal and the convergence radius, which are denoted as

thdr and rconv, respectively. First, the searching radius for every subpopulation is

64

calculated in the Sprev_env according to:

1
(,)

()
i

i j center

j subpopi

radius d X X
size subpop 

= 
 (3.3)

In this formula, the function d (·,·) calculates the Euclidean distance between two

vectors, while the function size () returns the size of the subpopulation. Xcenter represents

the arithmetic mean of all individuals in the subpopulation.

Specifically, the AHIR strategy comprises several key steps:

Algorithm 2 AHIR Strategy

input: Sprev_env={subpop1, ..., subpopn}, thdr, rconv

output: Archive

1 Begin

2 Archive={};

3 For subpopi in Sprev_env

4 If radiusi < rconv

5 Archive += xbest,i;

6 End If

7 End For

8 While True

9 If there exists i, j (i≠j) that d(Archive[i], Archive[j])<thdr

10 Remove the worse individual from the Archive;

11 Else

12 Break;

13 End If

14 End While

15 End

Step 1, Archive Construction: In the previous environment, the best individual from

each subpopulation is added to the archive to record the excellent solutions from the

previous environment. Step 2, Search Radius Computation: For each subpopulation in

the archive, its search radius is computed. The search radius represents the average

distance between individuals in the subpopulation and the centroid of that

subpopulation, used to determine if the subpopulation is in a convergent state. If the

search radius of a subpopulation is less than the threshold rconv, it is considered to be in

a convergent state, and the best individual from the subpopulation is added to the

65

archive. Step 3, Duplicate Removal Operation: The duplicate removal operation is

proposed to remove similar individuals from the archive. If there exist two individuals

in the archive with a distance between them less than the threshold thdr, the inferior

individual is removed from the archive. This removal operation is repeated until there

are no similar individuals based on thdr in the archive. Finally, Extraction of Local

Optima: When the search radius of a subpopulation is less than the convergence radius,

the best individual from that subpopulation is added to the archive to record the local

optimum of that subpopulation in the current environment. Detailed information of the

AHIR strategy is presented in Algorithm 2.

3.3.5 The Whole HIDE Algorithm

In this section, the overall procedure of the proposed HIDE algorithm is presented.

The following are the steps of the Algorithm 3.

Algorithm 3 HIDE

input: max_FEs, N, M, thmerge, thdr, rconv

output: best individual

1 Begin

2 Archive={};

3 S=RSI strategy(N, M, Archive);

4 While FEs < max_FEs

5 For subpopi in S

6 DE(subpopi);

7 End For

8 S=Subpopulation merge(S, thmerge);

9 If the environment has changed

10 Archive=AHIR strategy(S, thdr, rconv);

11 S=RSI strategy(N, M, Archive);

12 Update FEs;

13 End If

14 End While

15 End

The population is initialized using the RSI strategy, creating initial subpopulations

for evolution. Throughout the evolution process, each subpopulation undergoes

independent updates using the DE process, striving for improved solutions. The

66

algorithm iterates until it reaches the preset maximum number of function evaluations

(max_FEs). To enhance global search capabilities and reduce overlap between

populations, a subpopulation merging process is employed, facilitating efficient

exploration of the solution space. While environment detection techniques can be

applied to check for changes in each generation, this study does not focus on such

detection, assuming environmental changes occur after a fixed number of function

evaluations. In case of an environment change, the AHIR strategy is activated. This

strategy preserves historical information by storing the best individuals from the

previous environment in an archive, which is then used to generate subpopulations in

the new environment, facilitating the location and tracking of moving peaks. The

detailed implementation of these steps, including the entire procedure of the HIDE

algorithm, can be found in Algorithm 3.

3.4 Experiment

3.4.1 Experiment Setting

In the experimental section of this chapter, the Moving Peaks Benchmark (MPB)

was used to evaluate the performance of the optimization algorithms. MPB serves as a

standardized test suite for evaluating the performance of optimization algorithms on

DOP. It was proposed by Branke et al. [25] and has been widely adopted in academic

research due to its high configurability and ease of implementation, enabling fair

comparisons and evaluations of different algorithms. MPB allows for easy

parameterization, and after parameter setting, the fitness landscape of MPB's objective

function changes over time (after a certain number of function evaluations), reflecting

variations in the number, positions, heights, and widths of peaks. The characteristic

feature of MPB is the dynamically changing peaks over time, which can simulate the

characteristics of many real-world DOP, such as dynamic resource allocation and

mobile target tracking. The mathematical expression of MPB's fitness function is as

follows:

21,...,

1

()
(,) max

1 () (() ())

i

Di P
i j ijj

H t
F t

W t x t X t=

=

=
+ −

x

 (3.4)

67

where P is the number of peaks in the environment, that is, the number of local

optimal regions; x(t) = [x1,..., xD] represents a vector of D-dimensional search space in

the t-th environment, also known as a candidate solution or individual; Hi(t), Wi(t), Xi(t)

= [Xi1,..., XiD] represent the height, weight, and position of the i-th peak in the t

environment, respectively. The height and weight obey the random Gaussian

distribution σ ~ N (0,1) and are affected by the parameter height disturbance degree SH

and the weight disturbance degree SW respectively,

() (1)i i HH t H t S = − + 

 (3.5)

() (1)i i WW t W t S = − + 
 (3.6)

The expressions for height and width imply that both the height and width of the

peaks are randomly sampled from a standard normal distribution with a mean of 0 and

a standard deviation of 1. This means that the height and width of the peaks are random

and exhibit characteristics of a normal distribution. Parameters SH and SW control the

extent to which these random values affect the peak height and width, determining the

range of fluctuation for both height and width. Here, t-1 denotes the state of the previous

environment, indicating that the state of the previous environment influences the peak

height and width in the current environment.

The position is changed by a velocity vector:

() (1) ()i i it t t= − +X X v

 (3.7)

() ((1) (1))
(1) (1)

X

i i

i

S
t t

t
 

 
= − + −

− + −
v r v

r v
 (3.8)

The purpose of this vector is to predict and adjust the position of peak i in the next

environment based on the state of the previous environment, Xi(t-1). r is a random

vector; λ is a correlation coefficient, which controls the correlation between the old

environment and the new environment. The moving vector vi(t-1) is normalized and

then multiplied by the moving length SX to get the moving vector vi(t) of the next

environmental change; SX controls the intensity of the environmental change. A series

of parameter settings for MPB are listed in Table 1.

68

In this chapter, the parameters of the proposed HIDE algorithm include the number

of initial seeds N, the size of subpopulation M, the size of the largest subpopulation

max_subsize, subpopulation merging threshold thmerge, duplication removal

threshold thdr, and the convergence radius rconv. Their corresponding settings are: N =

10, M = 25, max_subsize = 50, thmerge = thdr = 5.0, and rconv = 1.0.

Table 3.1 Parameter Setting for MPB

Parameter Value

Max FEs, max_FEs 5e5

Number of peaks, P 10

Environmental change

frequency

5000

Number of changes, C 100

Height severity, SH 7.0

Width severity, SW 1.5

Peak shape Cone

Correlation coefficient,

λ

0.0

Shift length, SX 5.0

Dimension, D 5

Search range [0, 100]

Height range [30.0, 70.0]

Width range [1.0, 12.0]

The algorithms are run on the MPB test suite, and different combinations of MPB

parameters form 12 DOPs with different environmental changing characteristics. Each

problem is composed of 100 continuously changing environments. After every 5000

FEs, the environment changes. Therefore, the complete execution of the algorithm

contains 5e5 FEs. To reduce the error caused by randomness, each algorithm is run 20

times on each corresponding MPB problem instance. Each MPB instance will be

reinitialized according to the given parameter settings. The average value and standard

deviation of the error obtained are taken as the final output. The comparing algorithms

include standard DE algorithms with different mutation strategies and different Cr

parameter settings, which are DE/best/0.1, DE/best/0.9, DE/rand/0.1, and DE/rand/0.9,

and some competitive multipopulation approaches and DE variants in global

optimization, which are jDE [20], Cloudde [27], CESO [31], and CPSO [32]. To ensure

69

fairness of the comparison, the parameters of the comparing algorithms are consistent

with the settings in the literature.

3.4.2 Performance Measure

In this chapter, two widely used indicators are used to evaluate the performance of

the algorithm, which are offline error (Eo) and the best before change error (Eb). The

calculation formula of Eo is shown as

1 1

1 C N

o iji j
E E

C N = =
=


 

 (3.9)

where C is the number of environmental changes, N is the FEs spent in each

environment, Eij is the error of the j-th FE under the i-th environment, and the error is

defined as the difference between the fitness value of the best solution found by the

algorithm and the real optimal solution under the current environment. Eo reflects the

ability of the algorithm to react to environmental changes. The Eb calculation formula

is shown in

,1

1 C

b i besti
E E

C =
= 

 (3.10)

where Ei,best is the best error obtained in the i-th environment. Eb reflects the global

search ability of the algorithm in dynamic environments. The combination of these two

indicators can make a comprehensive evaluation and measurement of the performance

of the DOP algorithms.

3.4.3 Results and Discussions

The experimental results are presented in Table 3.2, Table 3.3, and Table 3.5,

considering cases where P=5, 10, and 20. The parameter λ is divided into 0 and 1, while

SX is considered as 1 and 5. Each row corresponds to the offline error Eo and the best

error before environmental change Eb. Standard deviations over 20 runs are indicated

in parentheses. The best results for this set of test cases are shown in bold font in the

table. Additionally, a Wilcoxon rank-sum test at the 0.05 significance level is conducted

to assess whether there are significant differences in the comparison results. The

symbols “+”, “=”, and “-” indicate whether the performance of the HIDE algorithm is

70

significantly better than, equal to, or worse than the compared algorithms.

Table 3.2 Experimental Results on the MPB with P=5

P λ S
X
 Error DE/best/0.1 DE/best/0.9 DE/rand/0.1 DE/rand/0.9 jDE Cloudde CESO CPSO HIDE

5

0

1

E
o
 17.61(3.36)+ 13.19(2.44)+ 23.50(5.29)+ 18.19(3.65)+ 37.48(7.97)+ 29.44(5.49)+ 8.47(3.02)+ 3.86(0.85)+ 2.48(0.52)

E
b
 10.44(2.38)+ 11.34(2.27)+ 11.08(2.43)+ 9.29(2.40)+ 9.34(2.58)+ 8.35(2.22)+ 6.33(3.22)+ 1.38(0.41)+ 0.33(0.38)

5

E
o
 17.28(3.41)+ 13.09(2.37)+ 23.36(5.38)+ 18.05(3.74)+ 37.42(8.04)+ 29.48(5.60)+ 15.72(4.72)+ 9.16(1.94)+ 5.63(0.97)

E
b
 10.21(2.14)+ 11.25(2.25)+ 10.85(2.50)+ 9.11(2.40)+ 9.26(2.62)+ 8.33(2.32)+ 8.83(3.54)+ 2.04(0.79)+ 0.50(0.42)

1

1

E
o
 17.54(3.69)+ 12.99(2.41)+ 23.44(5.17)+ 18.07(3.67)+ 37.14(7.37)+ 29.33(5.82)+ 8.47(2.94)+ 3.93(0.90)+ 2.48(0.65)

E
b
 10.41(2.61)+ 11.14(2.27)+ 11.13(2.64)+ 9.14(2.48)+ 9.34(2.50)+ 8.24(2.36)+ 6.13(3.13)+ 1.38(0.58)+ 0.34(0.69)

5

E
o
 17.74(3.54)+ 13.18(2.52)+ 23.64(5.37)+ 18.01(3.80)+ 37.26(7.55)+ 29.57(6.36)+ 16.35(4.25)+ 9.28(2.12)+ 5.68(1.05)

E
b
 10.63(2.50)+ 11.31(2.34)+ 11.23(2.75)+ 8.95(2.74)+ 9.28(2.50)+ 8.32(2.65)+ 8.91(3.13)+ 2.32(1.07)+ 0.56(0.67)

Table 3.3 Experimental Results on the MPB with P=10

P λ S
X
 Error DE/best/0.1 DE/best/0.9 DE/rand/0.1 DE/rand/0.9 jDE Cloudde CESO CPSO HIDE

10

0

1

E
o
 16.42(3.24)+ 13.96(2.82)+ 20.52(3.53)+ 16.43(3.07)+ 34.30(6.42)+ 29.23(5.65)+ 7.97(2.53)+ 4.17(0.67)+ 2.68(0.38)

E
b
 11.53(2.79)+ 12.72(2.74)+ 12.14(2.66)+ 10.42(2.66)+ 10.86(2.81)+ 9.74(2.41)+ 5.92(2.39)+ 1.90(0.38)+ 0.74(0.50)

5

E
o
 16.53(3.14)+ 14.08(2.68)+ 20.54(3.66)+ 16.49(3.11)+ 34.16(6.32)+ 29.12(5.44)+ 14.89(3.42)+ 8.37(1.30)+ 5.69(0.83)

E
b
 11.61(2.54)+ 12.82(2.57)+ 12.04(2.64)+ 10.47(2.69)+ 10.73(2.58)+ 9.75(2.38)+ 9.79(2.81)+ 2.61(0.68)+ 1.39(0.68)

1

1

E
o
 16.76(2.84)+ 14.22(2.42)+ 20.56(3.56)+ 16.60(3.06)+ 34.36(6.34)+ 28.92(5.08)+ 8.83(2.82)+ 4.19(0.73)+ 2.81(0.69)

E
b
 11.89(2.23)+ 12.95(2.33)+ 12.12(2.50)+ 10.59(2.49)+ 10.83(2.64)+ 9.66(2.17)+ 6.75(2.73)+ 1.96(0.61)+ 0.87(0.80)

5

E
o
 17.08(3.04)+ 14.35(2.22)+ 20.84(3.37)+ 16.84(2.91)+ 34.79(6.21)+ 29.70(5.53)+ 15.31(3.86)+ 8.58(1.54)+ 5.66(0.95)

E
b
 12.23(2.58)+ 13.08(2.16)+ 12.43(2.52)+ 10.84(2.50)+ 11.13(2.56)+ 9.99(2.45)+ 9.89(3.31)+ 2.72(0.75)+ 1.37(0.90)

Table 3.4 Experimental Results on the MPB with P=20

P λ S
X
 Error DE/best/0.1 DE/best/0.9 DE/rand/0.1 DE/rand/0.9 jDE Cloudde CESO CPSO HIDE

20

0

1

E
o
 15.76(1.63)+ 14.53(1.86)+ 19.25(1.63)+ 15.37(1.53)+ 31.75(2.95)+ 27.57(2.84)+ 9.32(2.92)+ 4.19(0.54)= 3.89(1.01)

E
b
 11.42(1.49)+ 13.50(1.83)+ 11.74(1.32)+ 10.14(1.35)+ 10.31(1.35)+ 9.41(1.27)+ 7.52(2.91)+ 2.17(0.41)= 2.07(0.92)

5

E
o
 15.81(1.57)+ 14.19(1.57)+ 19.26(1.63)+ 15.27(1.74)+ 31.63(3.13)+ 28.06(2.65)+ 14.07(2.20)+ 7.91(0.85)+ 5.93(0.70)

E
b
 11.53(1.52)+ 13.17(1.53)+ 11.82(1.38)+ 10.04(1.69)+ 10.33(1.45)+ 9.59(1.35)+ 9.87(2.04)+ 2.90(0.62)+ 2.05(0.55)

1

1

E
o
 15.88(1.63)+ 14.14(1.52)+ 19.51(1.59)+ 15.52(1.66)+ 31.85(2.80)+ 27.84(2.81)+ 9.83(1.75)+ 4.27(0.54)+ 3.81(0.77)

E
b
 11.53(1.60)+ 13.10(1.52)+ 11.93(1.30)+ 10.38(1.59)+ 10.36(1.24)+ 9.43(1.30)+ 7.84(1.85)+ 2.23(0.46)= 1.92(0.74)

5

E
o
 15.98(1.42)+ 14.32(1.39)+ 19.66(1.70)+ 15.54(1.54)+ 32.10(2.99)+ 28.45(2.97)+ 15.58(3.01)+ 7.96(0.90)+ 5.84(0.73)

E
b
 11.68(1.28)+ 13.28(1.41)+ 12.15(1.33)+ 10.38(1.42)+ 10.55(1.31)+ 9.67(1.41)+ 11.04(2.75)+ 2.88(0.65)+ 2.00(0.63)

It can be observed that in all 12 MPB test cases, the HIDE algorithm outperforms

all other algorithms, with the minimum values of Eo and Eb obtained for each instance

indicating the strong performance of the HIDE algorithm in handling environmental

changes and conducting global searches. Furthermore, our proposed HIDE algorithm

adopts a strategy of generating subpopulations based on predefined or stored cluster

centers (seeds), which outperforms CPSO, which partitions the population into

subpopulations. These results suggest that the strategy of forming subpopulations

71

proposed in this study is effective and competitive among multi-population methods

for DOP.

3.5 Effect of the AHIR Strategy

This section investigates the impact of the AHIR strategy on the performance of

the HIDE algorithm. When the AHIR strategy is removed, all seeds initialized after

each environment change are randomly generated. Table V shows the results of the

proposed algorithm with or without AHIR, which are denoted as HIDE and HIDE-w/o-

AHIR respectively, on MPB with different parameter settings.

Table 3.5 Experimental Results of the Effect of the AHIR Strategy on the MPB Test Suite

 HIDE HIDE-w/o-AHIR

P=5 λ=0 S
X
=1 2.48(0.52)

0.33(0.38)

18.77(3.37)
5.01(1.65)

P=5 λ=0 S
X
=5 5.63(0.97)

0.50(0.42)

18.69(3.40)
4.92(1.90)

P=5 λ=1 S
X
=1 2.48(0.65)

0.34(0.69)

18.56(3.60)
4.85(1.82)

P=5 λ=1 S
X
=5 5.68(1.05)

0.56(0.67)

18.68(3.48)
5.03(1.77)

P=10 λ=0 S
X
=1 2.68(0.38)

0.74(0.50)

15.59(2.45)
5.94(1.42)

P=10 λ=0 S
X
=5 5.69(0.83)

1.39(0.68)

15.66(2.24)
5.99(1.38)

P=10 λ=1 S
X
=1 2.81(0.69)

0.87(0.80)

15.71(2.23)
6.01(1.27)

P=10 λ=1 S
X
=5 5.66(0.95)

1.37(0.90)

15.70(2.27)
5.92(1.70)

P=20 λ=0 S
X
=1 3.89(1.01)

2.07(0.92)

13.90(1.33)
5.78(1.14)

P=20 λ=0 S
X
=5 5.93(0.70)

2.05(0.55)

13.99(1.41)
5.89(1.17)

P=20 λ=1 S
X
=1 3.81(0.77)

1.92(0.74)

13.92(1.43)
5.83(1.17)

P=20 λ=1 S
X
=5 5.84(0.73)

2.00(0.63)

14.23(1.54)
6.05(1.39)

The upper row of each cell in the table is Eo, the lower row is Eb, and the result in

brackets is the standard deviation. By comparison, the better results are expressed in

bold font. It can be seen that the HIDE algorithm with AHIR is much better than the

HIDE algorithm without AHIR, in terms of the Eo or Eb. This shows that the HIDE

algorithm with AHIR has brought great benefit to the HIDE algorithm, and the AHIR

strategy is the core of the algorithm because it realizes the utilization of historical

information.

72

3.6 Conclusion

In this study, three strategies, namely RSI, AHIR, and HIDE, were investigated for

DOP. RSI demonstrated effective resource allocation among subpopulations during the

initial search phase, promoting a balanced exploration of the search space. AHIR

leveraged past information to accelerate search processes in new environmental

conditions, enhancing the efficiency of the algorithm. HIDE exhibited rapid adaptation

to environmental changes while maintaining robust global search capabilities.

Looking ahead, there are avenues for further improvement and exploration in

dynamic optimization research. Firstly, parameters such as N and M in the HIDE

algorithm may require fine-tuning to optimize performance. Developing an adaptive

mechanism to adjust these parameters dynamically could enhance the algorithm's

adaptability and efficiency. Secondly, while the subpopulations in HIDE operate

collaboratively, there is potential to explore the independent exploitation of partial

search spaces within each subpopulation. Implementing constraints to guide

subpopulations in exploring specific subspaces could lead to more targeted and efficient

search processes. These future directions hold promise for advancing the effectiveness

and applicability of DOP algorithms. Additionally, integrating solutions for DOP with

addressing challenges such as scalability, multi-objectivity, and high computational

costs could provide comprehensive approaches for tackling complex optimization tasks.

This work, entitled “Historical information-based differential evolution for

dynamic optimization problem,” was published in the Proceedings of the IEEE

Congress on Evolutionary Computation (CEC) in August 2021.

73

CHAPTER 4

MULTI-CRITERIA EVOLUTIONARY ALGORITHM FOR

MULTI-TASK OPTIMIZATION

4.1 Introduction

MTOP [27]-[150] is a promising research area. The core assumption of MTOP is

that knowledge gained from optimizing one task could be applied to improve the

performance of other tasks [30]-[185]. This is because, in certain dimensions, if the

optimal solutions of two different tasks exhibit similarity, the knowledge of optimal

solutions from one task can guide the evolutionary search for another. Many real-world

optimization problems [186]-[190], such as vehicle routing problems [186]-[187],

support this assumption. For example, in daily life, experienced drivers are preferred

for facing new tasks each time. They are preferred because they can use past

experiences to solve new problems more quickly and effectively. Therefore, dealing

with multi-task problems is more efficient than focusing on optimizing a single task. In

recent years, MTOP have attracted increasing attention and related research from more

scholars. A search using the keyword “multitasking” in the two most prestigious

journals in the IEEE Xplore and EC domains, IEEE Transactions on Cybernetics

(TCYB) and IEEE Transactions on Evolutionary Computation (TEVC), reveals that the

research interest in MTOP has been steadily increasing over the past decade, with a

particularly significant rise in the last five years on IEEE Xplore, and an unprecedented

increase in attention to this issue in the top EC journals in the last five years as well, as

Table 4.1 and Figure 4.1 shows.

In dealing with MTOP, EC emerges as a promising approach [164]. Due to its

robust search capabilities and straightforward implementation, EC has been effectively

utilized to address numerous complex optimization challenges. Widely used EC

algorithms include GA [2] [4] [41] [59], PSO [51] [53] [55] [56], ACO [114], DE [32]

[44]-[50], ES [128], and EDA [139]-[166] [195]. However, it is important to highlight

74

that traditional EC solvers typically initiate the search without any prior knowledge of

the tasks they are tackling. Nevertheless, given that problems rarely occur

independently, addressing one problem can provide insights beneficial for solving other

correlated problems. In recent years, there has been growing interest in ETO: An

approach that merges EC solvers with knowledge acquisition and transfer from

pertinent domains to improve optimization efficiency and effectiveness. [27].

Table 4.1 Number of papers of MTOP in the last ten years

Year IEEE Xplore TCYB TEVC

2014 105 8 0

2015 116 15 0

2016 139 13 1

2017 173 16 2

2018 207 14 1

2019 295 27 8

2020 300 29 8

2021 610 45 8

2022 1060 84 29

2023 1329 77 72

In existing approaches, multi-task problems are often treated as separate problems

rather than components or subproblems of the entire MTOP. Whether using single-

population or multi-population algorithms, solving MTOP typically involves designing

KT strategies. However, designing effective KT strategies is a challenging task. In this

chapter, a novel idea that considers multi-tasks as multi-criteria optimization problems

is proposed. The populations are evolved to address multiple related criteria

simultaneously, enabling a single search run to obtain optimal solutions for different

tasks. Inspired by this concept, the attempt is made to address MTOP using the MCOP

approach. For example, consider a classroom composed of high school students who

need to study subjects such as Mathematics, English, Physics, and Chemistry.

Traditional multi-population methods divide students into several groups, each

equivalent to a subpopulation, focusing on studying a specific subject. These groups

then exchange learning experiences, representing KT. In contrast, our multi-criteria

approach can be likened to evaluating students' learning performance using exam scores.

Exam scores not only serve as indicators of students' learning performance but also

75

reflect their mastery and proficiency levels in different subject areas. Consequently,

teachers can assess students' learning status in various subjects based on exam scores

and provide targeted guidance and assistance as needed. This problem-solving approach

is relatively novel, as there was no relevant literature in the EC field before embarking

on this work.

2014 2016 2018 2020 2022 2024
0

10

20

30

40

50

60

70

80

90

 TCYB

 TEVC

 IEEE Xplore

Year

N
u

m
b

er
s

o
f

T
C

Y
B

 &
 T

E
V

C

200

400

600

800

1000

1200

1400

 N
u

m
b

er
 o

f
IE

E
E

 X
p

lo
re

Figure 4.1 Number of papers of MTOP in the last ten years

This problem-solving approach is relatively novel, as there was no relevant

literature in the EC field before embarking on this work. The utilization of different

criteria was alternated, and despite this simplicity, experimental results demonstrated

promising performance compared to other algorithms. Subsequently, through

discussions and insights gained during conference exchanges, our idea received

academic recognition. Encouraged by the acknowledgment received at the GECCO

conference, we endeavored to increase the complexity of the problem. We combined

multi-objective optimization with MTOP, forming multi-objective MTOP (MO-MTOP).

To address MO-MTOP, a multi-objective multi-criteria optimization problem (MO-

MCOP) approach was employed, and a criterion selection strategy was proposed to

enrich the algorithm and enhance its efficiency. This achievement was published in a

journal after the conference.

4.2 Related Work

Some EC algorithms have been used to address MTOP, and existing research can

76

be broadly categorized into two categories. One category is based on single-population

multi-factorial methods [150], [191]-[195], while the other category is based on multi-

population algorithms [194]-[195].

The first category of methods is exemplified by the multi-factorial evolutionary

algorithm (MFEA) [150], which has provided a research paradigm for subsequent

studies. MFEA is an approach that uses a single population with multiple

subpopulations to solve MTOP. The MFEA framework divides a population into

multiple subpopulations, each focusing on optimizing a different task. These

subpopulations may share information during the evolution process to facilitate

collaborative learning and KT among tasks. Building upon this framework, some

enhanced variants of MFEA have been developed for further research and solving

MTOP. For instance, the cognizant MTOP, referred to as MFEA-II, leverages data

generated during the processing of multiple tasks to learn relationships among these

tasks [191].

The second category primarily addresses multi-task problems by maintaining

multiple populations [142]-[145]. In this approach, multiple populations are typically

used, with each population responsible for solving a specific task. Each population

independently executes the optimization process, attempting to find the optimal

solution to meet the requirements of its corresponding task. Chen et al. [142] introduced

an adaptive archive-based evolutionary method specifically designed for multi-task

optimization scenarios, demonstrating its effectiveness in enhancing multi-task

optimization performance. Building upon this, Huang et al. [143] introduced an

auxiliary agent-based evolutionary framework that combines adaptive KT mechanisms,

thereby improving optimization efficiency across different tasks. Liu et al. [144] made

contributions in this field by proposing an auxiliary agent-based multi-task evolutionary

algorithm that leverages agent models to enhance multi-task optimization performance.

Similarly, Chen et al. [32] introduced KT crossover to transfer knowledge among

subpopulations during the evolution process. Gong et al. [146] explored evolutionary

multi-task strategies with a focus on dynamic resource allocation, providing insights

77

into optimizing multiple tasks under dynamically allocated resources. Finally, Wei and

Zhong [145] conducted preliminary research on KT mechanisms in multi-classification

tasks using gene expression programming, offering potential avenues for KT in

complex optimization scenarios. These studies collectively advance our understanding

and capabilities in utilizing EC techniques to address the challenges of multi-task

optimization.

Regarding MTOP, recent research findings have been summarized in several

representative reviews [196]-[167]. However, existing MTOP algorithms, whether

employing a single population of multiple groups or utilizing multiple populations, still

face limitations in treating the multiple tasks of multi-task problems as separate issues.

Therefore, existing MTOP algorithms must be used in conjunction with carefully

designed KT strategies between tasks. However, designing an effective KT strategy is

a challenging problem and may even lead to negative transfer across tasks [162]. To

address this limitation, populations can be evolved correspondingly using multiple

relevant criteria, thus searching for optimal solutions for all different tasks in a single

run. MTOP is viewed as MCOP [196], allowing for more efficient resolution of MTOP

by fully using knowledge across different tasks using multiple criteria in MCOP for

environmental selection and population evolution. Through this approach, addressing

the complex challenge in MTOP of identifying valuable knowledge and transferring it

across various related multi-objective tasks transforms into a more manageable task:

employing multiple assessment criteria to direct environmental selection and

population evolution, thus generating optimal solutions that satisfy all tasks' different

criteria. Furthermore, this approach has been applied to address the MO-MTOP.

Therefore, this research direction holds tremendous potential, providing important

methodologies for handling MTOP and making substantial contributions to the

advancement of related research domains.

4.3 Treating Multi-task Optimization as Multi-Criteria Optimization

4.3.1 Introduction

MTOP is regarded as MCOP to effectively address MTOP. Specifically, we

78

approach MTOP, which encompasses multiple tasks, as MCOP with multiple evaluation

criteria (i.e., fitness functions) for individual selection and population evolution. This

reframing of MTOP addresses a significant challenge: how to acquire and transfer

valuable knowledge among diverse tasks. It simplifies the issue into one of utilizing

multiple evaluation criteria to guide selection operations and population evolution,

facilitating the discovery of optimal solutions for various tasks.

For example, consider a class composed of high school students who need to study

various subjects such as mathematics, English, physics, and chemistry, each subject

representing a task. Past multi-population methods have divided students into several

groups, with each group acting as a subpopulation focusing on studying a specific

subject. These groups exchange learning experiences, which is akin to KT. The multi-

criteria approach can be likened to evaluating students' learning performance using

exam scores. Exam scores not only serve as indicators of students' learning performance

but also reflect their proficiency and competence levels in different knowledge domains.

The overarching goal is to optimize the performance of all tasks, similar to students

achieving excellent scores in multiple subjects.

The work in this chapter represents the first attempt to address MTOP by viewing

it as MCOP, which was presented at the GECCO 2021 conference. To avoid ambiguity,

it is explicitly stated that in this chapter, MCOP refers to a problem with multiple

evaluation criteria, rather than a problem where the criteria themselves need to be

optimized. The chapter adopts a cyclic multi-criteria approach, where the selection of

which criterion to use is typically done in a predefined rotating order, rather than being

randomly selected. In subsequent work, more efficient methods for criterion selection

are explored.

For experimental investigation, a multi-criteria differential evolution (MCDE)

algorithm was developed, employing multi-criteria strategies and utilizing the

differential evolution algorithm as the optimizer. To assess the proposed algorithm's

efficacy, thorough experiments were conducted using widely adopted benchmark

datasets for MTOP and compared with some of the latest EMTO algorithms.

79

4.3.2 Method

Multiple tasks correspond to multiple fitness functions, which can serve as

evaluation criteria for environmental selection and individual evolution. More

importantly, the optimal solutions of fitness functions in different tasks may exhibit

similarities in certain dimensions. For example, consider two tasks: one aims to

minimize costs, while the other aims to maximize profits. Although the optimization

objectives of these two tasks differ, in practice, there may exist a trade-off between

minimizing costs and maximizing profits. For instance, reducing costs typically leads

to an increase in profits, and vice versa. Therefore, in such cases, although the

optimization objectives of the two tasks are different, their optimal solutions may

exhibit similarities in certain dimensions, such as a balance point between costs and

profits. Hence, in such scenarios, using a single fitness function as the guiding criterion

for evolution not only aids in optimizing the corresponding task but also facilitates the

optimization of other related tasks. Consequently, MTOP can be viewed as MCOP, and

appropriate criteria can be selected at different stages to guide optimization.

To efficiently use multiple criteria, a multi-criteria strategy employing a round-

robin approach is proposed. Specifically, the multiple criteria are sequentially activated

in a round-robin manner to guide evolution. To achieve this, a parameter G is introduced

to control the number of generations each criterion remains active. Each criterion is

activated in turn and serves as the current fitness function to guide evolution for G

generations, and every K×G generations constitute a complete cycle where all K criteria

are activated once. Furthermore, to enhance the diversity in criterion usage, whenever

all K criteria have been used once, the order of these K criteria is randomly shuffled.

By doing so, the next K×G generations will select the K criteria in a different order. It

is important to note that the population should be re-evaluated using the new criterion

each time a criterion is switched

4.3.3 Experiment

In this experiment, the DE algorithm is adopted due to its simplicity, gradient-free

nature, robustness, minimal parameter settings, and good parallelism, as detailed in

80

Section 2.1.1 regarding the introduction of the DE algorithm.

Six complex MTOP (i.e., P1-P6) from commonly used benchmark tests [162] are

used to evaluate the proposed algorithm. Regarding the parameters of MCDE, the

population size is configured as 50, the scaling factor F is specified as 0.5, and the

crossover rate CR is defined as 0.6, following the recommendations in [160].

Additionally, G is set to 150.

For comparisons, the Wilcoxon rank-sum test with a significance level of α=0.05

[197] and performance metrics [162] are used. The symbols “+”, “≈”, and “-” denote

that performance of MCDE is notably superior to, approximately equivalent to, and

significantly inferior to other algorithms, respectively. In this section, MCDE was

compared with the latest algorithms such as MFEA-I [30], MFEA-II [159], and EMT-

EGT [160]. To ensure a fair comparison, the total maximum available evaluation times

for each algorithm in each run is set to 1×105 [160]. To minimize statistical errors, each

algorithm is executed independently 20 times, and the average results are then

compared.

The comparison results presented in Table 4.2 demonstrate the effectiveness of

MCDE. As shown in Table 4.2, MCDE achieves the best score in 4 out of 6 problems,

while MFEA-I, MFEA-II, and EMT-EGT achieve the best score in 0, 1, and 1 problem,

respectively.

Table 4.2 Comparison with State-of-the-Art Algorithms

Statistical term MCDE MFEA-I MFEA-II EMT-EGT

+/≈/-/ NA 7/0/5 7/0/5 9/0/3

Number of best scores 4 0 1 1

According to the results of the Wilcoxon rank-sum test, the MCDE algorithm

significantly outperformed MFEA-I, MFEA-II, and EMT-EGT on 7, 7, and 9 tasks,

respectively. However, it produced inferior results on 5, 5, and 3 tasks, respectively.

Therefore, the experimental results validate the efficiency of MCDE, indicating its

potential to address MTOP as MCOP.

4.3.4 Conclusion

In this Section, the study aimed to treat MTOP as MCOP and efficiently solve them.

81

Experimental results suggest that this approach might be a promising direction for

addressing MTOP. Regarding the limitations of the study, a cyclic multi-criteria strategy

was employed, where the algorithm sequentially selects each evaluation criterion, akin

to students taking exams in different subjects in a classroom. However, since the

difficulty level varies across subjects, better selection of evaluation criteria, such as

using different evaluation standards to guide environmental selection and population

evolution in different generations or stages, could be a future research direction. In

Section 4.4, methods for selecting criteria were explored. Furthermore, dynamic MTOP

is also a potential research direction. For instance, in the early stages of optimization,

more emphasis might be placed on coarse exploration and seeking global solutions,

while in the later stages, finer tuning and convergence to local optima might be

prioritized. Therefore, different sequences of evaluation criteria could be chosen.

4.4 MCOP for Multi-Objective Multi-Task Optimization

4.4.1 Introduction

MO-MTOP is a complex and challenging task that involves considering multiple

optimization objectives and tasks, which may be interrelated or mutually influential.

The complexity of MO-MTOP is mainly manifested in several aspects. Firstly, there

may be objective conflicts, where improving one objective may result in the

deterioration of another. Secondly, as mentioned earlier, there are task correlations,

where different tasks may be interrelated or share some resources or information,

posing challenges related to KT. Additionally, the scale of MO-MTOP problems can be

significant, often involving large search spaces and complex problem structures.

Therefore, efficient optimization algorithms need to be designed to address such

complexity and scale. For example, consider a classroom of students, each of whom

needs to study multiple subjects and achieve good grades. Each subject represents a

task with its objectives and requirements. In this example, each student faces the

challenge of multiple tasks and objectives. They need to study different subjects and

strive to meet the objectives and requirements of each subject. Employing multi-

objective optimization methods can assist students in balancing their learning and

82

performance across various subjects, thereby maximizing their learning outcomes.

However, simultaneously handling multiple tasks during the evolutionary process in

MO-MTOP offers distinct advantages over traditional multi-objective optimization

problems. This is because tasks often exhibit correlations, allowing different tasks to

share information and thereby enhancing optimization efficiency.

Below are listed the main innovative points and contributions of this chapter.

“Multi-objective” refers to each subject having its objectives and requirements. For

example, English learning may involve expanding vocabulary, improving listening,

speaking, reading, and writing abilities, and achieving high scores in exams. In this

example, each student faces the challenge of multiple tasks and objectives. They need

to study different subjects and strive to meet the objectives and requirements of each

subject. In such scenarios, multi-objective optimization methods can be utilized to help

students balance their learning and performance across different subjects, maximizing

their learning objectives. However, even in this case, handling MO-MTOP, which

simultaneously deals with multiple tasks during the evolutionary process, has some

advantages over traditional multi-objective optimization problems because tasks are

correlated, and different tasks can share information, thereby enhancing optimization

efficiency.

Existing research on MO-MTOP, whether adopting a single population with

multiple groups like MFEA or utilizing multi-population methods, aims to reduce

problem complexity by grouping tasks. In particular, multi-population methods can be

likened to dividing students into different groups in a classroom to tackle various tasks,

with each group having its objectives and tasks. Each group can be viewed as a

subpopulation, focusing on solving specific learning tasks or problems. Meanwhile,

multi-criteria evaluation can be analogous to using exam scores to assess students'

learning performance. Exam scores not only serve as indicators of students' learning

performance but also reflect their mastery and proficiency across different knowledge

domains. Consequently, teachers can evaluate students' learning status in various

subjects based on exam scores and provide targeted guidance and tutoring as needed.

83

Compared to the MCOP approach for addressing MTOP problems discussed in

Section 4.3, the research problem in this chapter combines multiple objectives with

MTOP, thereby increasing the complexity of the problem. In terms of methodology, in

addition to continuing the idea of MCOP, a probability-based criterion selection

approach is introduced instead of the cyclic criterion selection. This change allows for

more flexible adaptation to different optimization requirements by selecting more

appropriate evaluation criteria. Similar to classroom exams, the selection process is no

longer based on the sequence of subjects but rather on the improvement of learning

abilities for each subject, where subjects with better performance are more likely to be

chosen.

Therefore, the contributions of this study are outlined below.

Firstly, this work attempts to solve MO-MTOP as MO-MCOP, providing a novel

and promising approach for handling MO-MTOPs. Additionally, this work is the first

to attempt to solve MO-MTOP by treating it as MO-MCOP.

Secondly, a Probability-based Criterion Selection Strategy (PCSS) is proposed,

which selects and uses multiple evaluation criteria derived from corresponding

probabilities. This strategy allows different criteria to have varying opportunities for

selection, guiding individual selection and population evolution.

Thirdly, an Adaptive Parameter Learning (APL) method is further introduced to

adaptively learn the selection probabilities of each criterion in PCSS. By employing

APL, the algorithm can acquire suitable probabilities to help determine which criterion

to aid in determining the criterion applicable for the current generation.

Fourthly, by integrating the above components, a Multi-objective Multi-criteria

Evolutionary Algorithm (MO-MCEA) is established for addressing MO-MTOPs.

4.4.2 Method of MO-MCEA

4.4.2.1 Definition of MO-MTOP

A Problem Definition

MO-MTOP is a diagram for solving multiple multi-objective optimization tasks

together. MO-MTOP can be defined as follows.

84

Given K multi-objective optimization tasks (assuming the objectives in every task

are all minimization problems), denoted as T1, T2, …, TK, where the kth task has Mk (Mk >

1) objective functions Fk (x) = [f1(x), f2(x), …, fMk (x)]. The search space and the

objective space of the kth task are Ωk and ΨM
k , respectively, and they satisfy that Fk :

Ωk →ΨM
k .The aim of a minimization MO-MTOP is to find the optimal solution set {xk}

for each task Tk , such that {xk} satisfies

{ xk } = argmin Fk (xk |xk ∈Ωk) , k = 1, 2, 3,, K (4.1)

As each Fk has multiple objectives, the following important concepts for each task

Tk are considered to determine whether a solution is optimal according to the related

definitions in the literature of multi-objective optimization [213, 214].

Definition 1 Pareto domination Given any two objective fitness vectors u = [u1,

u2, …, uM] and w = [w1, w2, …, wM] in the objective space Ψ M, u dominates w if um≤wm

for all m = 1, 2, …, M and u≠w, denoted as u≤w.

Definition 2 Pareto optimal A solution vector x ∈Ω is Pareto optimal if there is

no x* ∈Ω, such that F(x*) dominates F(x).

Definition 3 Pareto set The Pareto set (PS) is a set of the Pareto optimal solutions,

which can be represented as

 PS = {x ∈ Ω and x is Pareto optimal}. (4.2)

Definition 4 Pareto front The Pareto front (PF) is composed of the solutions in

PS, as

 PF = {F(x)|x ∈ PS}. (4.3)

Based on the above definitions, the optimal solution set {xk} for each task Tk is the

PS of the Tk.

B. Task Similarity and KT

Studies have shown that KT between tasks with low correlation may even lead to

a decrease in optimization performance [162]. Regarding the correlation between tasks,

it can be categorized into three types. Firstly, if the Pareto sets of two tasks are highly

similar, the population P can naturally maintain sufficient diversity, thus becoming the

ideal Pareto optimal solution set for both tasks Ti and Tj. In this scenario, treating MO-

85

MTOP as MO-MCOP can enable finding the Pareto sets of both tasks using a single

population. Secondly, if there is some similarity between the Pareto sets of two tasks,

the population P will become a partial Pareto optimal solution set for both tasks Ti and

Tj. However, since real-world problems typically require an adequate number of Pareto

optimal solutions rather than all optimal solutions, a population P with enough Pareto

optimal solutions can still be considered an acceptable Pareto optimal solution set for

both tasks Ti and Tj. Thirdly, if the Pareto sets of two tasks are significantly different,

and they share limited knowledge, theoretically, it is not advisable to integrate them

into a single MO-MTOP.

When defining the similarity between two tasks, two indicators are used:

intersection and similarity. The complete intersection (CI) and partial intersection (PI)

indicate whether the Pareto frontiers of two internal tasks are similar in all dimensions

and some dimensions, respectively. High similarity (HS), moderate similarity (MS),

and low similarity (LS) represent high, moderate, and low similarity between two tasks

determined by Pearson correlation measures of their function landscapes.

4.4.2.2 Framework of MO-MCEA

MO-MTOP involves multiple multi-objective functions. For example, assuming

there are K tasks and M objectives, where Fi(x) and Fj(x) represent the fitness functions

of tasks i and j, respectively, defined as Fi(x)= [f1(x), f2(x), …, fMi(x)] and Fj(x)= [f1(x),

f2(x), …, fMj(x)]. These functions serve as evaluation criteria for individual selection and

population evolution. Our assumption for MTOP is that the optimal solutions (or Pareto

optimal solutions) of different tasks may exhibit similarity. As demonstrated in Section

4.2, even with cyclic multi-criteria selection, rotating through each objective function

corresponding to a task can outperform other multi-population algorithms. To further

optimize the MCEA method, a more appropriate fitness function of a task is selected as

the guiding criterion for evolution to refine the MCEA algorithm.

The overall framework of MO-MCEA is illustrated in Figure 4.2, consisting of

three main parts. The first part is the collection of available fitness evaluation functions

(i.e., a set of different evaluation criteria). The second part involves criterion selection

86

based on PCSS and APL, i.e., selecting one evaluation function from the set as the

evaluation criterion for different evolutionary generations to evolve the population. The

third part encompasses population evolution and problem optimization based on the

selected criterion. In the following sections, PCSS, APL, and the complete algorithm

will be introduced step by step.

 Criterion

selection based

on PCSS and

APL
Initialization

Evaluation

criterion

Selection

Offsprings

Parents

Output

Solutions

Mutation

Crossover

Loop

Evolutionary

optimization

Evaluation

function

Multiple evaluation

functions

Figure 4.2 Framework of MO-MCEA

4.4.2.3 Probability-based Criterion Selection Strategy

The introduction of PCSS aims to select one evaluation function from multiple

multi-objective evaluation functions as the current evaluation criterion for comparing

individual fitness and population evolution. The concept behind PCSS is as follows:

each multi-objective function has a criterion selection probability (denoted as csp). For

instance, the criterion selection probability for multi-objective evaluation function Fi is

represented as cspi, where multi-objective functions with larger csp values will have a

higher chance of being selected as the evaluation criterion. Consequently, given K

multi-objective functions F1, F2, ..., and FK, along with their respective selection

probabilities csp1, csp2, ..., and cspK, the criterion selection process will be implemented

using a roulette wheel method based on csp1, csp2, ..., and cspK. Mathematically, the

criterion selection can be expressed as follows:

()cid roulette csp=

 (4.4)

Where cid is the index number of the selected criterion corresponding to the multi-

objective function (i.e., the selected criterion represented as Fcid), and the roulette

87

function returns the index result based on the roulette wheel selection method. During

initialization, the csp for different functions is set to 1/K, where K is the total number

of functions, indicating that initially, each function has an equal probability of being

selected.

4.4.2.3 APL Adaptive Parameter Learning

APL updates csp based on the improvement of each generation's population,

allowing PCSS to select criteria more appropriately. Generally, if the population shows

better improvement under the current criterion after one generation of evolution, then

this criterion may be more suitable for the current evolutionary stage, and vice versa.

Therefore, APL updates csp based on the population improvement of each generation.

Specifically, if the g-th generation's population (denoted as Pg) uses the k-th multi-

objective function (denoted as Fcid) as the evaluation criterion, then APL updates cspcid

using the following formula:

1, if is better than

, otherwise

k g g

k

k

csp P P
csp

csp

++
= 

− (4.5)

Here, ∆ is a fixed update amount, and “better” can be determined by comparing

various indicators of Pg+1 and Pg regarding the population performance over two

generations. However, these indicators should not rely on the true Pareto front, such as

hypervolume indicators. Traditional evaluation metrics like hypervolume often depend

on the known Pareto front to assess the population's performance, which may not be

accessible or determinable in MO-MTOP. Hence, MO-MCEA uses the C indicator to

compare Pg+1 and Pg. In addition to cspk , other csp values (i.e., cspj where j≠cid) are

updated accordingly:

1, if is better than
1

, otherwise
1

j g g

j

j

csp P P
K

csp

csp
K

+


− −

= 
 +

 − (4.6)

K is the total number of available multi-objective functions. If a cspi is less than

0.1, it will be set to 0.1, and then all csp values are normalized to ensure that the i-th

88

function still has a probability of being selected again as the evaluation criterion, and

the sum of all csp values equals 1.

4.4.2.4 The Complete MO-MCEA

Combining PCSS and APL, the complete pseudocode of MO-MCEA is presented

in Algorithm 1. The search space for all multi-objective tasks will be unified within the

range [0, 1] D, where D is the maximum variable dimension among all tasks. That is,

candidate solutions from different tasks will be mapped to [0, 1] D, a common practice

in the literature. After initialization, Algorithm 1 mainly consists of three repetitive

procedures. These procedures involve determining the selected criterion through PCSS,

population evolution, and parameter learning through APL, as depicted in lines 10 to

15, lines 16 to 18, and lines 19 to 20 of Algorithm 1, respectively. The population

evolution procedure in Algorithm 1 can use various carefully designed operators,

including efficient crossover, mutation, and selection operators, based on the user's

preferences and needs. Thus, MO-MCEA can be extended with powerful state-of-the-

art methods and operators to develop more effective algorithms. In this chapter, the

crossover and mutation operators used are those from the NSGA-II algorithm.

Additionally, the criterion for evaluation is switched by PCSS every G generation. Each

time the criterion is switched, the current population is re-evaluated using the new

criterion for its fitness before entering evolution. Therefore, NP fitness evaluations are

required after each switch, where NP is the population size, as shown in lines 13 and

14 of Algorithm 1. Overall, the algorithm iteratively repeats PCSS, population

evolution, and APL until the stopping criteria are met, such as the exhaustion of all

available FEs. Furthermore, K sets (denoted as NDS1, NDS2, ..., and NDSK) are used

here to respectively record the current nondominated solutions for K tasks. During

evolution, after one generation of population evolution using Fcid (i.e., line 16 of

Algorithm 1), the corresponding NDScid is updated. That is, all solutions in the current

population are merged with those in NDScid, and only the nondominated solutions in the

merged set are retained in NDScid. After the evolution process concludes, all solutions

in the final population are evaluated by K multi-objective functions respectively and

89

merged with each NDS to update them (similar to line 18), as shown in lines 23 to 24 of

Algorithm 1. Finally, the algorithm outputs the best-nondominated solution sets NDS1,

NDS2, ..., and NDSK for all different tasks.

Algorithm 1: The Complete MO-MCEA

Input: T1, T2, …, TK - K optimization tasks;

F1, F2, …, FK - the fitness function of the T1, T2, …, TK;

NP - the number of individuals in the population;

G - the number of generations for using each criterion.

Output: NDS1, NDS2, …, NDSk - The current Pareto sets for K tasks.

1 Begin

2 Initialize NP individuals;

3 Initialize NDS1, NDS2, …, NDSk as empty sets;

4 For i = 1 to K

5 cspi ← 1/K; // Initialize the criterion selection probability evenly

6 End For

7 FEs ← 0;

8 gen ← 1; // index of generation

9 While (FEs + NP×K < maximum number of available FEs) Do

10 If mod(gen, G) = =1

11 // Probability-based Criterion Selection Strategy

12 cid ← roulette selection of [1, 2, …, K] with [csp1, csp2, …, cspK];

13 Re-evaluate individuals by the function Fcid;

14 FEs ← FEs + NP;

15 End If

16 Evolve population for one generation with Fcid;

17 FEs ← FEs + NP;

18 Update and record the corresponding NDScid;

19 // Adaptive Parameter Learning

20 Update [csp1, csp2, …, cspK] according to Eq.(4.5) and Eq.(4.6);

21 gen←gen+1;

22 End While

23 Evaluate individuals by the K multi-objective functions F1, F2, …, and FK;

24 Update and record NDS1, NDS2, …, NDSk respectively;

25 End

4.4.3 Experiment

To evaluate the effectiveness and efficiency of the proposed algorithm, experiments

were conducted comparing it with several state-of-the-art and recently developed

90

algorithms known for their good performance on six different MO-MTOP problems.

Based on the degree of intersection and task similarity, the six problems with different

characteristics were classified into different categories, indicated by labels at the

problem IDs, such as (CI+HS). The algorithms used in the experiments included MO-

MFEA, MO-MFEA-II, and MO-EMTA, along with MO-MCEA proposed in this study.

For a fair comparison, all these algorithms used the same widely-used representative

multi-objective optimization algorithm (i.e., NSGA-II) as the optimizer. Therefore, the

difference between the proposed MO-MCEA and the three comparison algorithms lies

only in their approaches to handling MO-MTOPs (e.g., MO-MCEA treats MO-MTOPs

as MC-MTOPs, while MO-MFEA handles MO-MTOPs through a multi-factor method).

Additionally, the original NSGA-II (i.e., solving each task independently) was also used

as a benchmark algorithm, referred to as MO-STEA in the following content. All

algorithm settings were consistent with their original papers. For NSGA-II operators,

the settings were consistent with existing literature. Moreover, in MO-MCEA, G and ∆

were set to 25 and 0.01, respectively. Additionally, the population size for each task

was set to 50. Thus, the total population size for MO-MCEA and MO-STEA was 50,

while for MO-MFEA, MO-MFEA-II, and MO-EMTA, the total population size was

100. Table 4.3 presents the comparative results of the experiments.

In Table 1, “+”, “≈”, and “-” respectively indicate that the MO-MCEA algorithm

significantly outperforms the comparison algorithms, there is no significant difference,

and the MO-MCEA algorithm significantly underperforms compared to the comparison

algorithms. From Table 4.3, it can be observed that the MO-MCEA algorithm has a

significantly higher number of functions where it outperforms the comparison

algorithms than the number of functions where it underperforms. Moreover, the MO-

MCEA achieves the highest number of problems with the optimal MSS indicator,

indicating that the MO-MCEA algorithm exhibits the best overall performance.

4.4.4 Conclusion and Future Work

In this section, MO-MTOP is treated as MO-MCOP, and effectively solved using

this approach. The effectiveness and advantages of treating MO-MTOPs as MO-

91

MCOPs are then analyzed.

Furthermore, research can be conducted to enhance the adaptability of PCSS and

the efficiency of APL to further improve MO-MCEA. Additionally, MO-MCEA can be

further extended to handle complex real-world applications.

Table 4.3 Comparisons between the proposed MO-MCEA and state-of-the-art algorithms

Problem MO-MCEA MO-MFEA MO-MFEAII MO-EMTA MO-STEA

MO-MTOP1

(CI+HS)

Task1 (T1)
Mean 1.68E-01 6.05E-01(+) 8.50E-01(+) 1.46E+00(+) 2.14E+00(+)

Std. 9.46E-02 2.08E-01 3.29E-01 9.34E-01 1.13E+00

Task2 (T2)
Mean 9.35E-01 4.94E+00 (+) 2.09E+00 (+) 2.53E+00 (+) 2.43E+00(+)

Std. 3.28E-01 1.24E+00 5.17E-01 7.92E-01 5.89E-01

MSS -5.99E+01 3.31E+01 -1.59E+01 1.18E+01 3.09E+01

MO-MTOP2

(CI+MS)

Task1 (T1)
Mean 1.44E-02 3.56E-02(+) 3.14E-01(+) 3.18E-01(+) 2.70E-01(+)

Std. 4.27E-03 1.39E-02 2.09E-01 1.47E-01 1.32E-01

Task2 (T2)
Mean 1.20E-01 1.82E-01(+) 1.78E-01(+) 1.84E-01(+) 1.80E-01(+)

Std. -5.10E+01 4.33E-02 4.09E-02 4.60E-02 4.32E-02

MSS -5.10E+01 -1.87E+01 2.40E+01 2.75E+01 1.82E+01

MO-MTOP3

(PI+HS)

Task1 (T1)
Mean 3.04E-01 4.53E-01(+) 2.35E+00(+) 4.07E+00(+) 5.25E+00(+)

Std. 5.35E-01 4.23E-01 2.50E+00 2.39E+00 1.87E+00

Task2 (T2)
Mean 9.79E-01 9.70E-01(+) 9.17E-01(+) 9.16E-01(+) 9.16E-01(+)

Std. 5.10E-01 3.02E-01 2.13E-02 2.16E-02 2.18E-02

MSS -2.04E+01 -1.96E+01 -4.12E+00 1.54E+01 2.87E+01

MO-MTOP4

(PI+HS)

Task1 (T1)
Mean 3.74E+02 5.52E+00(-) 4.01E+00(-) 2.92E+00(-) 3.65E+00(-)

Std. 5.55E+02 2.10E+00 1.69E+00 8.83E-01 1.12E+00

Task2 (T2)
Mean 9.75E+02 3.94E+01(-) 2.85E+01(-) 2.69E+01(-) 2.77E+01(-)

Std. 6.44E+02 1.20E+01 8.26E+00 1.03E+01 7.34E+00

MSS 7.84E+01 -1.89E+01 -1.97E+01 -2.00E+01 -1.98E+01

MO-MTOP5

(PI+MS)

Task1 (T1)
Mean 3.87E+02 3.95E+00(≈) 3.31E+00(≈) 2.83E+00(≈) 3.70E+00(≈)

Std. 5.82E+02 1.56E+00 1.44E+00 1.09E+00 1.20E+00

Task2 (T2)
Mean 1.01E+03 3.63E+01(-) 2.65E+01(-) 2.88E+01(-) 2.84E+01(-)

Std. 6.98E+02 9.43E+00 7.40E+00 9.27E+00 1.01E+01

MSS 7.75E+01 -1.89E+01 -1.96E+01 -1.95E+01 -1.94E+01

MO-MTOP6

(PI+LS)

Task1 (T1)
Mean 3.18E-01 3.76E-01(+) 2.69E-01(+) 2.46E-01(+) 2.63E-01(+)

Std. 3.29E-01 6.91E-02 6.20E-02 5.93E-02 5.47E-02

Task2 (T2)
Mean 1.75E+01 5.71E+00(-) 1.17E+01(-) 5.08E+00(-) 1.99E+01(+)

Std. 3.22E+00 1.33E+00 6.11E+00 2.25E+00 2.39E+00

MSS 2.80E+01 -1.23E+01 -5.69E+00 -3.86E+01 2.86E+01

Number of +/≈/- NA 7/1/4 7/1/4 7/1/4 8/1/3

Number of best MSS 3 0 1 2 0

92

4.5 Conclusion

This chapter analyzes MTOP characteristics and current research. MCEA was

proposed, treating MTOP as multi-criteria problems. Furthermore, the complexity was

increased by optimizing the challenges of both multi-objective and MTOP together,

leading to the proposition of solving MO-MTOP using the MO-MCEA method.

Experimental results indicate that this could be a potential direction for addressing

MTOPs.

Regarding future research directions, dynamic multi-task optimization is also a

promising area of study. Additionally, attention could be directed towards the practical

application of multi-task optimization in engineering problems, such as logistics,

supply chain, network optimization, sensor optimization, and traffic optimization,

among others.

The content of this chapter, covering the research in Sections 4.3 and 4.4, has been

published respectively in the International Conference of Gecco 2021 and the journal

Complex & Intelligent Systems.

93

CHAPTER 5

A KNOWLEDGE LEARNING MEMETIC ALGORITHM FOR

USER ROUTE PLANNING IN BIKE-SHARING SYSTEM

5.1 Introduction

Bike-sharing is a service that allows the public to rent bicycles for use, eliminating

the need for users to carry their own bikes at all times. Due to its environmentally

friendly nature, affordability, independence from fixed public transportation routes, and

avoidance of congested road sections, bike-sharing systems are increasingly chosen by

people as a means of transportation [199]-[213]. With the widespread use of mobile

internet and smartphones, bike-sharing apps provide convenient services for locating,

returning, route planning, maintenance, and bike fleet management. For ordinary

citizens, bike-sharing has become an integral part of urban public transportation,

alongside subways, buses, and ride-hailing services. The high popularity and systematic

management of bike-sharing have brought about a series of optimization problems,

such as bike redistribution [204]-[208], bike retrieval [209]-[211], and bike lane

planning [212]-[214]. A more user-friendly and convenient bike-sharing system can

attract more users, thereby increasing the profitability of bike-sharing companies,

reducing energy consumption during travel, and contributing to carbon neutrality and

smoother traffic flow in cities. Therefore, research on bike-sharing is of great

significance for the development of smart cities [216].

However, as mentioned earlier, existing research has mostly focused on the bike-

sharing redistribution problem, with limited attention given to the User Route Planning

Problem (URPP). Yet, appropriate route planning is crucial for bike-sharing users. In

current bike-sharing systems, after paying a certain membership fee, users can enjoy

free rides for a period of time. For short-distance trips, route planning needs to consider

nearby pick-up and drop-off locations, while for medium to long-distance trips, users

may encounter transfer issues if they wish to continue enjoying the free membership

94

service. Regarding this issue, Zhang et al. proposed to transform URPP into a network

flow problem, eliminating all illegal routes through pruning techniques, and then

optimizing the travel cost using 0-1 integer programming methods [217]. However, this

chapter only considers static scenarios; that is, it assumes that bike station inventory is

always sufficient [217]. In reality, some bike stations may lack bikes, making it

impossible to arrange them as intermediate stations for cycling routes, while some bike

stations without bikes may become available again due to other passengers returning

bikes. In other words, the availability of bike stations is dynamic. This dynamic aspect

of bike station availability constitutes the research gap in URPP. In real-life scenarios,

URPP is a DOP, where the number of bikes at bike stations is subject to change.

Ignoring the dynamic availability of bike stations makes it difficult for URPP to have

practical significance.

Regarding the route planning problem, vehicle routing optimization is a typical

path planning problem, and there has been a large amount of research on similar issues,

such as private car and ride-hailing route optimization. However, compared to typical

vehicle routing optimization problems, there are significant differences in route

optimization for bike-sharing. This is because, in the URPP as a DOP, the difficulty lies

not only in the changing availability of bikes at stations but also in the variable number

of stations users may visit during their journey. For example, during a 20-kilometer ride,

a user may switch bikes 2 or 3 times, leading to variable-length encodings. These

different encoding lengths pose challenges for the crossover and mutation operations in

EC. Additionally, the URPP differs from classical Traveling Salesman Problems due to

these variable-length encodings, presenting challenges in achieving optimal solutions.

Therefore, this chapter models URPP as a discrete optimization problem with

constraints that can be used in not only static situations but also dynamic situations.

Specifically, in the proposed URPP model, discrete variables are used to encode each

bike station, and the solution to the problem is composed of bike station indexes. This

encoding method can intuitively and clearly show the intermediate stations and the

complete riding route.

95

Based on the two research challenges mentioned above, our approach is as follows.

First, addressing the encoding difficulty, the URPP is modeled as a constrained

discrete optimization problem, applicable to both static and dynamic scenarios.

Specifically, in the proposed URPP model, discrete variables are used to encode each

bike station, and the solutions to the problem consist of indices of bike stations. This

encoding method provides an intuitive and clear representation of intermediate stations

and complete biking routes. Methods for handling variable encoding lengths are also

provided.

Secondly, for the route planning optimization algorithm, a novel and efficient MA

within the EC framework is selected. As an efficient optimization algorithm in the EC

field, the MA combines Genetic Algorithms with local search methods, continuously

introducing new “memes” (knowledge fragments) to balance the global and local search

for more effective exploration of solution space [218]. Existing MA algorithms have

been effectively utilized to address various optimization challenges such as linear

ordering problems [219], traveling salesman problems [220], and high-dimensional

feature selection problems [221]. In MA, EC is typically employed for global search

owing to its strong global search capability and diversity of parallelism [222]-[224].

Therefore, EC algorithms perform well on many complex optimization problems [225]-

[227], including single-objective optimization [228]-[229], multi-objective

optimization [230]-[232], multi-task optimization [233]-[236], multimodal

optimization [237]-[240], expensive optimization [241]-[243], and DOP [244]-[247].

Thus, EC algorithms are used as the global optimizer to compose the MA. Local search

in MA is aimed at improving the solutions obtained by the global optimizer. However,

as mentioned earlier, the challenge of the variable solution dimensionality in URPP

means that the optimal solution dimensionality is uncertain, implying that different

biking routes may have different numbers of stations (i.e., different solutions have

different dimensions). This makes traditional EC operators such as crossover, mutation,

and local search unsuitable for URPP. Therefore, knowledge learning-based crossover

(KLC) is proposed, random pruning-based mutation (RPM), and two-phase local search

96

(TPLS) to develop knowledge learning and random pruning-based MA (KLRP-MA),

making a contribution to developing more suitable operators for efficient MA to solve

URPP. Specifically, KLC allows each individual to cross with the current best

individual, thereby learning solution knowledge from the current best individual,

including dimensionality scale knowledge (i.e., how many stations to choose) and

station selection knowledge (i.e., which stations to choose). RPM shortens the

individual length by randomly pruning redundant stations to perform mutation on each

individual. Additionally, TPLS can use two types of local search in two phases to further

improve individual quality. Therefore, KLRP-MA is a typical and efficient MA, and the

first MA proposed for solving URPP.

Finally, addressing the DOP, this chapter considers not only solving URPP in static

scenarios but also in dynamic scenarios. This means that the inventory of bike stations

may change, leading to changes in the availability status of bike stations (e.g., if there

are no bikes available, the bike station will be unavailable). Therefore, dynamic

inventory will result in the activation and deactivation of bike stations during user

biking, and KLRP-MA may not work properly in dynamic scenarios. Consequently, this

chapter further proposes a dynamic version of KLRP-MA (referred to as DyKLRP-MA)

to solve URPP in dynamic scenarios. The proposed DyKLRP-MA uses the operators

proposed in KLRP-MA (i.e., KLC, RPM, and TPLS) to efficiently find optimal

solutions in changing environments, thus responding quickly to dynamic changes.

Furthermore, depending on the type of dynamic change, the optimal solutions from

previous environments will be reused to help obtain the best solutions in new dynamic

environments more quickly, thereby further improving the algorithm's performance in

dynamic scenarios, i.e., through KT, the reuse of historical information. Therefore,

DyKLRP-MA is suitable for solving URPP in dynamic scenarios.

The innovations and contributions of this chapter include the following aspects:

1. A novel KLRP-MA algorithm is proposed, which efficiently solves URPP by

utilizing KLC and RPM for global optimization and TPLS for local optimization. The

proposed KLRP-MA is efficient and the first MA designed to solve URPP.

97

Experimental results demonstrate that the proposed KLRP-MA can find optimal

solutions for URPP in a short time.

2. Unlike existing URPP models designed for static scenarios, the URPP model

proposed in this chapter is applicable not only to static scenarios but also to dynamic

scenarios. Building upon KLRP-MA, DyKLRP-MA is introduced to address URPP in

dynamic scenarios, enabling rapid response to dynamic changes and enhancing the

algorithm's performance under dynamic conditions.

The subsequent sections of this chapter are organized as follows. Section 5.2

illustrates the proposed URPP model. Then, Section 5.3 provides a detailed description

of the proposed KLRP-MA method. Section 5.4 describes DyKLRP-MA for dynamic

scenarios. Section 5.5 presents and analyzes the experimental results. Finally, Section

5.6 concludes the findings and delineates future prospects.

5.2 URPP Model

For membership users of the bike-sharing app, riding bicycles for a certain period

(e.g., 30 minutes) incurs additional charges [217]. To avoid extra fees, users need to

change bicycles during their ride, while also getting adequate rest and supplies.

Minimizing the total riding time for membership users without incurring additional

charges requires proper route planning. For instance, the biking route a→b→c→d→h

depicted in Figure 5.1 may result in a longer time compared to a direct biking route

a→h. Therefore, it is necessary to plan reasonable routes for users. Such a problem is

referred to as User Route Planning Problem (URPP).

98

bike station a

riding time>30min

riding time 30min

source

destination

walking
bike station b

bike station c
bike station d

bike station e
bike station f

bike station g

bike station h

Figure 5.1 An example of riding route planning

The objective of URPP is to minimize travel time without paying additional fees.

Given the user’s starting point, ending point, and all available bike stations between the

starting point and the ending point, the model for URPP is formulated as

1(,)

min () _ () _ ()

s.t. _ 1,2,..., 1
i ix x

f x walk time x ride time x

ride time threshold i D
+

= +

  = −
 (5.1)

where x=[x1, x2, …, xD] represents a planning riding route (i.e., a candidate

solution). That is, the user starts from the available bike Station x1, rides to the available

bike Station x2 to change the bike, …, and finally rides to the available station xD, where

D represents the solution dimensions (i.e., the number of bike stations in this solution).

f(x) represents the objective function, and the value of f is called the function fitness.

walk_time represents the walking time from the starting point source to x1 and the

walking time from xD to the ending point dest, ride_time represents the riding time from

x1 to xD. The specific calculation formulas are shown as

1(,) (,)

1

_ () _ _

(,) (,)

_ _

Dsource x x dest

D

walk time x walk time walk time

dist source x dist x dest

walk speed walk speed

= +

= +
 (5.2)

1

1

(,)

1

1
1

_

1

_ () _ _ ()

(,)
 _

_

i i

D

x x

i

D
i i

one transfer

i

ride time x ride time transfer time x

dist x x
num transfer time

ride speed

+

−

=

−
+

=

= +

= + 




 (5.3)

99

where dist(m, n) represents the distance between location m and location n, and

walk_speed and ride_speed represent the walking speed and riding speed, respectively.

When calculating the riding time, the time for transferring the bike is also considered,

which is the multiply of the number of transfers (denoted as num_transfer) and the time

of each transfer (denoted as timeone_transfer). As a kind of routing problem, the URPP is

similar with the vehicle routing problem, while the URPP is different in that it does not

require to reach all bike stations in the planned route (the vehicle routing problem

requires that all customers are served in the planned route) and therefore the optimal

dimension of the solution is uncertain. Moreover, in the URPP, the availability of bike

stations may change in a dynamic situation.

5.3 KLRP-MA Approach

5.3.1 Encoding Scheme

The planned riding route x=[x1, x2, …, xD] is a D-dimensional vector, which shows

that the user starts from the available bike Station x1, rides to the transfer bike Station

xi (i=2, …, D–1), and finally arrives at the available bike station xD. Note that the first

dimension of each solution in the population is the available bike station start_bs

nearest to the starting point source, and the last dimension is the available bike station

end_bs nearest to the ending point dest. It is worth noting that the dimensions of

different solutions may be different (i.e., different riding routes may contain different

numbers of bike stations). To avoid frequent transferring, the dimensions of all solutions

cannot exceed the maximum dimension Dmax. The calculation formulas of Dmax are

shown as Eq.(5.4) and Eq.(5.5).

_

6
18

candi

num bs
D

 
=   

 
 (5.4)

 min(_ ,)max candiD num bs D= (5.5)

where Dcandi represents the candidate value of the maximum dimension, and

num_bs represents the number of available bike stations between the starting point and

the ending point. To avoid the dimensions of the solution being larger than the number

100

of available bike stations, Dmax is set as the minimum between num_bs and Dcandi.

5.3.2 Population Initialization

First, the KLRP-MA initializes the first dimension of all individuals in the

population as start_bs. Second, the KLRP-MA generates a candidate set csind for each

individual ind in the population, where csind stores all the available bike stations (except

for start_bs and end_bs). Then, for i=2, …, Dmax–1, the KLRP-MA generates a random

number ri among (0, 1). If ri is smaller than the generation probability Pg, the KLRP-

MA randomly selects an available bike station in csind to add to the end of the solution

vector (i.e., the end of the current riding route) and then removes the selected bike

station from csind. Otherwise, no bike station will be added to the solution vector. Finally,

the KLRP-MA adds end_bs to the end of the solution vector. Note that the individuals

who violate constraints will be reinitialized.

Figure 5.2 illustrates the individual initialization process in the situation of Figure

5.1. As the available bike Station a is nearest to the starting point, the first dimension

of x is set as a. Assume that the randomly generated numbers r3 and r5 are less than Pg;

therefore, two available bike stations are randomly selected from cs (i.e., bike Station f

and bike Station d) to assign to x. Finally, the available bike Station h is added to the

end of the solution vector to generate an initial planning route a→f→d→h.

Figure 5.2 Illustration of individual initialization.

Due to the characteristics of encoding, different solutions may have different

dimensions (i.e., a different number of used bike stations), making it impossible to

cs b c d e gf

x a

i=1

cs b c d e g

x a

i=2

r2 Pg

cs b c d e g

x a

i=3

r3<Pg

f

cs b c d e g

x a

i=4

r4 Pg

f

cs b c e g

x a

i=5

r5<Pg

f d

cs b c e g

x a

i=Dmax

f d h

f

101

directly use the traditional crossover operator and mutation operator to generate

offspring. Therefore, this chapter proposes the KLC and the RPM. Each individual

(solution) in the population generates offspring through these two strategies.

5.3.3 Knowledge Learning-based Crossover

The KLC aims to help individuals learn the knowledge from the current-best

individual to generate more promising individuals. In the literature, learning and

transferring solution knowledge via evolutionary operators have attracted increasing

attention and have been successful in various optimization problems [235], especially

in problems with variable-sized dimensions [236][246][247]. As the URPP is also a

problem with uncertainty dimensions, the KLC is proposed to help the individual learn

and transfer the solution knowledge from the global best individual.

Unlike EC algorithms in existing research that directly consider the knowledge of

solution value, KLC involves dimension scale knowledge and station selection

knowledge. For example, if the best-performing individual in the population has five

dimensions, represented as x_best=[b, c, f, g, h], the remaining individuals in the

population will learn the dimension scale (i.e., 5) from x_best, which is Dimension

Adaptation, and the knowledge of station selection (i.e., b, c, f, g, and h), which is

Station Transfer. Therefore, KLC generates new individuals using two steps: learning

dimension scale knowledge for dimension adaptation and learning station selection

knowledge for station transfer. If the size of the current individual is different, size

adaptation adjusts the size of the current individual to approximate the size of the best

individual, as described in the following three cases: when the individual's dimension

is greater than, equal to, or less than the optimal individual's dimension. After

dimension adaptation, bike station information is transferred from the route represented

by x_best to the route represented by the current individual to achieve KT.

To provide a better illustration, the KLC for an individual, denoted as xind, is given

as an example in the following, with the pseudocode given as Algorithm 1.

102

Algorithm 1: KLC(xind, xbest)
Input: xind(the current individual), xbest(the current best individual)

Output: xnew(the new individual generated by crossover with xind and xbest)

1 Begin

1:2 di ← the dimension of xind;

2:3 db ← the dimension of xbest;

3:4 xnew ← xind;

4:5 Flag ← True; // to indicate whether the xnew will be feasible

5:6 If di ≠ db Then

6:7 If di>db Then // the dimension of xind is larger than xbest

7: 8 i← a random integer in [1, di-1]; // a random dimension of xind

8: 9 j← a random integer in [1, db-1]; // a random dimension of xbest

9: 10 For k=1 to db

10: 11 If xbest,j or xbest, j+1 equal to an element in xind except xind,i and xind,i+1 Then

11: 12 Flag ← False; // the crossover will make the generated xnew infeasible

12: 13 End If

13: 14 If Flag=True Then

14: 15 break the For loop;

15: 16 End If

16: 17 j←((j+1)%db)+1; // select next random dimension of xbest

17: 18 End For

18: 19 If Flag=True Then // the generated xnew can be feasible

19: 20 Compress xnew,i and xnew,i+1 to be one element as xbest,j;

20: 21 Evaluate xnew and update its fitness;

21: 22 End

22: 23 Else // the dimension of is xind smaller than xbest

23: 24 i← a random integer in [1, di-1]; // a random dimension of xind

24: 25 j← a random integer in [1, db]; // a random dimension of xbest

25: 26 For k=1 to db

26: 27 If xbest,j equals to an element in xind Then

27: 28 Flag ← False; // the crossover will make the generated xnew infeasible

28: 29 End If

29: 30 If Flag=True Then // the generated xnew can be feasible

30: 31 break the For loop;

31: 32 End If

32: 33 j←((j+1)%db)+1; // select next random dimension of xbest

33: 34 End for

34: 35 If Flag=True Then // the generated xnew can be feasible

35: 36 Insert xbest,j between xnew,i and xnew,i+1;

36: 37 Evaluate xnew and update its fitness;

37: 38 End

38: 39 End If

39: 40 Else // the dimension of is xind equal to xbest

40: 41 i← a random integer in [1, di-1]; // a random dimension of xind

41: 42 j← a random integer in [1, db-1]; // a random dimension of xbest

42: 43 For k=1 to db

43: 44 If xbest,j or xbest, j+1 equal to an element in xind except xind,i and xind,i+1 Then

44: 45 Flag ← False; // the crossover will make the generated xnew infeasible

45: 46 End If

46: 47 If Flag=True Then

47: 48 break the For loop;

48: 49 End If

49: 50 j←((j+1)%(db-1))+1; // select next random dimension of xbest

50: 51 End For

51: 52 If Flag=True Then // the generated xnew can be feasible

52: 53 Replace xnew,i and xnew,i+1 with xbest,j and xbest,j;

53: 54 Evaluate xnew and update its fitness;

54: 55 End

55: 56 End If
57 End

103

1) If the dimension of xind (e.g., xind=[a, c, b, e, g, h]) is greater than the dimension

of xbest (i.e., [b, c, f, g, h]), the dimension adaptation will randomly select two adjacent

intermediate bike stations in xind and compress them into one new bike station, so as to

reduce the dimension of xind to get close to the dimension of xbest. For example, as shown

in Figure 5.3(a), b and e in xind are compassed to generate the new individual, which

can be represented by xnew=[a, c, ?, g, h]. Then, to determine the station of “?”, a random

intermediate bike station (which is also not in the compressed xind) will be transferred

from xbest to “?” in xnew. For example, the “f” in xbest will be transferred to xnew, and the

final xnew is finally [a, c, f, g, h].

2) If the dimension of xind (e.g., xind=[a, b, c, h]) is smaller than the dimension of

xbest (i.e., [b, c, f, g, h]), then the dimension adaptation will extend with a random

position between the begin and end station to become xnew, e.g., xnew=[a, b, c, ?, h]. Then,

as shown in Figure 5.3, similar to the procedure in 1), a random intermediate bike

station (which is also not in the xind) will be transferred from xbest to determine the “?”

in xnew, e.g., transfer the “f” in xbest to xnew to obtain xnew =[a, b, c, f, h].

3) If the dimension of xind (e.g., xind=[a, b, f, d, h]) is equal to the dimension of xbest

(i.e., [b, c, f, g, h]), then the dimension adaptation does not need to be conducted. In this

case, two random two adjacent intermediate bike stations in xbest will be transferred to

replace two random adjacent intermediate bike stations in xind to generate xnew. Note

that, if the replacement makes the xnew infeasible, the replacement is not carried out. For

example, as shown in Figure 5.3(c), b and f in xind=[a, b, f, d, h] are replaced by f and g

transferred from xbest, and the final generated xnew is [a, c, f, d, h].

The generated offspring The current best solutionThe current individual

(a)

(b)

(c)

a f g hcb f g jca b e g hc

a c f hbb f g jca c hb

b f g jca f d hb a f d hc

Figure 5.3 Three examples of KLC.

After the above, if no feasible xnew can be generated, the xnew is set as xind. Otherwise,

104

the newly generated feasible solution xnew is evaluated and replaced the xind if the fitness

value of xnew is better.

5.3.4 Random Pruning-based Mutation

The purpose of RPM is to remove unnecessary station selections from the current

individual to reduce the total travel time of the route. This operation involves randomly

selecting an intermediate bike station from the current individual and deleting it to

generate a new individual. Similar to KLC, if the newly generated individual is feasible

and its fitness value improves, the original individual will be updated with the newly

generated solution. It is important to note that RPM is only applied to solutions with

dimensions greater than 3.

5.3.5 Two-phase Local Search

The KLRP-MA contains not only the global optimizer via KLC and RPM, but also

the local optimizer named TPLS. The TPLS contains two local search phases to further

enhance the current individuals, where each phase considers the local search in different

search spaces. The first phase considers the local search within the selected bike stations

in the individual. Specifically, given an individual, two intermediate bike stations in the

individual (i.e., excluding the begin and end stations) are selected randomly and then

their positions are exchanged to generate a new individual. The second phase considers

all the bike stations that have not been selected by the individual, which randomly

selects a bike station in the individual and then replaces it with the nearest available

bike station.

Each individual goes through the above two phases in turn. After each phase, if the

newly generated individual is feasible and has a better fitness value, the newly

generated individual will be used to update the original individual. Otherwise, the

newly generated individual will be discarded. Note that the first phase is only performed

on the solutions whose dimension is greater than three.

5.3.6 The Completed Algorithm

105

Yes

Start

Population initialization

KLC and individual update

RPM and individual update

End

Stop?
No

Record the best individual

TPLS and individual update

Figure 5.4 The Flowchart of KLRP-MA.

Figure 5.4 is the flowchart of the KLRP-MA. First, KLRP-MA initializes and

evaluates the individuals. Then, the KLRP-MA enters the main loop of the algorithm,

that is, iteratively performs the KLC, RPM, and TPLS one by one. The main loop will

be repeated until the stop conditions are met. Finally, the solution with the best fitness

value is output as the final planning route.

5.4 DyKLRP-MA Approach

In the practical situation, the bikes at available bike stations may be used by other

users, making the available bike stations unavailable due to insufficient inventory. In

addition, some unavailable bike stations may become available again because of the

bikes newly parked by other users. Therefore, the number of available bike stations will

be dynamically decreased and increased during user riding. If the unavailable bike

stations belong to the adopted planning route, the planning route will become invalid.

In addition, if some bike stations become available during the riding time, they may be

used in the riding route to shorten the traveling time. In this case, the original best

solution obtained by KLRP-MA cannot remain the best solution. To solve the above

issues, this chapter proposes the DyKLRP-MA for solving the URPP in a dynamic

situation.

106

The idea to solve this dynamic situation is as follows. First, the planning route is

obtained under the initial situation by executing KLRP-MA. Then, if the availability of

the bike stations changes, execute DyKLRP-MA to update the planning route;

otherwise, ride according to the current planning route.

DyKLRP-MA uses the set Sc to store the bike stations that are accessible in the

current situation, which excludes those bike stations that have been visited. After every

situation changes, all the newly disabled bike stations will be deleted from Sc, and all

the newly enabled stations will be added to Sc, which results in the set Sn that stores the

available bike stations in the new situation. If the current planning route is affected by

the dynamic change (i.e., some unvisited bike stations of the current planning route are

disabled or some candidate bike stations are enabled), the route re-planning process will

be immediately triggered.

b d e f g i jc b d e f g i j k l

the Sc for the current situation the Sn for the new situation

Figure 5.5 Illustration of Sc and Sn for the current situation and new situation.

Figure 5.5 gives an example to show how to update Sc to Sn. Given ten available

bike stations (denoted as a ~ j), and the current planning route xbest_c=[a, h, j, g, c].

Assuming the user has reached the available bike Station h, and the availability of the

bike stations does not change in the current static situation, then Sc is {b, c, d, e, f, g, i,

j} as shown in Figure 5.5(a). When the user is riding from h to j, bike Stations a and c

are disabled, while bike Stations k and l are enabled. As a does not exist in Sc, only c

will be deleted from Sc. Moreover, k and l are added to Sc to form Sn, and then the final

Sn is {b, d, e, f, g, i, j, k, l}, as shown in Figure 5.5(b).

Algorithm 2 is the pseudocode of DyKLRP-MA. First, DyKLRP-MA initializes

Dy_N individuals to be the population Q, and fixes the first n_index dimensions of all

individuals to be the same as the first n_index dimensions of xbest_c (the n_index is the

index of the currently arriving bike station in xbest_c), because the first n_index stations

have already been visited and do not need to change. Moreover, the last dimension of

all individuals is fixed as the available bike station nearest to the destination (i.e.,

107

end_bs) in the updated available_bs. Then, the remaining dimensions of the individuals

are reinitialized by the population initialization method mentioned in Section 5.3.2 with

the candidate set cs as the available_bs without end_bs. Note that in the dynamic

situation, the maximum dimensionality of the individual is still limited by Dmax as

mentioned in Eq. (5.5). After the initialization, the fitness of each individual in the

population Q is calculated (as shown in Line 2 of Algorithm 1), and then the KLC, RPM,

and TPLS are performed one by one to evolve the population Q iteratively (as shown

in Line 3 to Line 7 of Algorithm 1). When the number of iterations exceeds Dy_Tmax,

the best solution xbest_n is obtained as the planning route in the new situation. Note that

if Sc (the station set before change) is the subset of Sn (the station set after change), the

best solution for the current situation (i.e., xbest_c) is still feasible for the new situation.

Therefore, in this case, Algorithm 1 will replace xbest_n with xbest_c if xbest_c has a better

fitness than xbest_n, as shown in Lines 10-16 of Algorithm 1.

Algorithm 2: DyKLRP-MA(Sc, Sn, xbest_c, Dy_N, Dy_ Tmax)

Input: Sc (station set for current situation), Sn (station set for the new situation),

xbest_c (the best planning route in the current situation),

Dy_N (population size in the new situation),

Dy_ Tmax (the maximum number of iterations)

Output: xbest_n (the best planning route in the new situation)

1:1: Initialize Dy_N individuals as the population Q;

2:2: Evaluate individuals in Q;

3:3: For T=1 to Dy_Tmax

4:4: global_best ← the best individual in Q;

5:5: Perform KLC;

6:6: Perform RPM;

7:7: Perform TPLS;

8:8: End For

9:9: xbest_n ←the current best individual in Q;

10:10: If Sc ⊆ Sn Then //the xbest_c is still feasible

11:11: If the fitness of xbest_n is better than the fitness of xbest_c Then

12:12: xbest_n ← xbest_c;

13:13: End If

14:14: End If

15:15: Return xbest_n

108

5.5 Experimental Results

5.5.1 Experimental Design

Both medium-distance and long-distance instances are considered in the

experiments. The distance between the starting point and the ending point (i.e., distance)

is set to 12 km for the medium distance and 20 km for the long-distance. The starting

point is set to (0, 0) and the ending point is set to (distance, 0). The bike stations are

randomly distributed on the map with a size of [0, distance]×[-6, 6].

The experiments are divided into static situations and dynamic situations. In the

static situation, experiments are tested on both the medium-distance and long-distance

instances. In the dynamic situation, experiments are tested on the long-distance

instances to better challenge the proposed algorithm. The test instances at different

distances are divided into small-scale, medium-scale, and large-scale categories, where

the number of available bike stations (i.e., num_bs) is set as 10, 20, and 50, respectively.

The experiments at each scale contain 30 randomly generated test instances, that is, 30

different bike station distributions. For clarity and simplicity, each instance is named in

the format of A-B-C, where A represents the medium-distance (i.e., A=M) or long-

distance (i.e., A=L), B represents the small-scale (i.e., B=S), medium-scale (i.e., B=M),

and large-scale (i.e., B=L) category, and C represents the index of the instance in the

corresponding category. For example, M-S-1 represents the first test instance in the

medium-distance and small-scale instance categories.

For the fitness function of each instance problem (refer to Eq. (5.1) and Eq. (5.3)),

the threshold is set to 30 min, walk_speed is set to 5 km/h, ride_speed is set to 18 km/h,

and timeone_transfer is set to 1 min. Note that the unit of distance is the kilometer and the

unit of time is the minute for calculating the function fitness. For KLRP-MA, Pg is set

to 0.8, population size N is set to 20, and the maximum number of iterations Tmax is set

to 50. For DyKLRP-MA, Dy_N is set to 20, Dy_Tmax is set to 20, and the remaining

parameters are the same as those in KLRP-MA. All algorithms run 20 times

independently on each test instance and the statistical results are used for analysis.

Moreover, two parameters are used to generate the bike station change in dynamic

109

situations, including Pfirst_change=0.8 which indicates the probability of bike station

changes, and Psecond_change=0.7, which indicates the probability of a second change after

the first change. The process of the dynamic change is as follows: If a random number

r1≥Pfirst_change, then no change will occur. Otherwise, if r1<Pfirst_change and another

random number r2≥Psecond_change, o1 bike stations will be randomly enabled or disabled

(but not both), while if r1<Pfirst_change and another random number r2<Psecond_change, o1

bike stations will be enabled and o2 bike stations will be disabled, where both o1 and o2

are random integers belonging to [1, omax], and omax represents the maximum number

of changed bike stations and can be represented as

_ _

10
max

num current bs
o

 
=  
 

 (5.6)

where num_current_bs represents the number of available bike stations in the

current situation. Note that each newly enabled bike station will be randomly distributed

in the [0, distance]×[-2, 2].

5.5.2 Experimental Results under Static Situations

As this Chapter is the first to propose the MA to solve the URPP, a greedy algorithm

and an enumeration method are used for comparison. Moreover, as the dimension of

the optimal solution is unknown, the implementations of the greedy method and the

enumeration method are described as follows.

First, in these competitor methods, the first dimension of the solution is set to the

available bike station start_bs nearest to the starting point, and the last dimension is set

to the available bike station end_bs nearest to the ending point. Second, in the greedy

method, assume the dimensions of the solution are 3, 4, …, up to num_bs. In each

assumed dimension, two solutions are obtained according to the following two greedy

strategies. The first greedy strategy starts with the bike station in the first dimension

and chooses the nearest unvisited bike station as the next dimension repeatedly until it

reaches the assumed dimension. The second greedy strategy starts with the bike station

in the first dimension and chooses the nearest unvisited bike station to end_bs that is

accessible to the current bike station as the next dimension repeatedly until it reaches

110

the assumed dimension. In this way, a total of 2×(num_bs–2) solutions are built (as

there are two greedy strategies), and the solution with the best fitness is selected as the

solution obtained by the greedy method. In addition, in the enumeration method, all

possible solutions will be generated, and the best solution among them is regarded as

the final solution, which is actually the real global optimal solution of the problem.

Table 5.1 The experimental results between KLRP-MA and competitor methods on the

medium-distance and small-scale test instances

Test instance
Greedy

method

Enumeration

method
KLRP-MA

Test

instance

Greedy

method

Enumeration

method
KLRP-MA

M-S-1 52.6520 51.8913 51.8913 M-S-16 54.8386 54.8386 54.8386

M-S-2 71.6806 68.5978 68.5978 M-S-17 74.9605 74.9605 76.3093

M-S-3 94.0827 92.4959 92.4959 M-S-18 74.1424 67.8647 67.8647

M-S-4 90.6652 80.2666 81.2166 M-S-19 92.1081 92.1081 93.3415

M-S-5 68.5535 68.5535 68.9791 M-S-20 61.9282 61.7869 61.8152

M-S-6 58.6853 58.6853 58.6853 M-S-21 107.828 106.946 107.2100

M-S-7 80.3379 79.0350 79.0415 M-S-22 67.5303 67.5303 67.5303

M-S-8 84.9594 80.8133 80.9834 M-S-23 85.2568 85.2568 85.2568

M-S-9 90.1771 84.3752 84.3752 M-S-24 98.2756 98.2756 98.2756

M-S-10 61.9360 61.1748 61.1748 M-S-25 95.4848 95.2801 95.2801

M-S-11 57.0987 50.8631 51.3888 M-S-26 69.6845 68.6136 68.6671

M-S-12 79.1271 79.0012 79.0012 M-S-27 61.2547 59.5600 59.8142

M-S-13 80.1535 78.1813 78.1813 M-S-28 78.7486 78.2241 78.2241

M-S-14 75.0700 75.0700 75.0700 M-S-29 90.7250 90.7250 91.1207

M-S-15 87.0149 87.0149 87.0149 M-S-30 66.8113 65.1081 65.3607

Table 5.2 The experimental results between KLRP-MA and competitor methods on the

medium-distance and medium-scale test instances

Test

instance

Greedy

method
KLRP-MA

Test

instance

greedy

method
KLRP-MA

Test

instance

greedy

method
KLRP-MA

M-M-1 59.9528 60.2560 M-M-11 81.1852 79.1799 M-M-21 75.9139 72.8263

M-M-2 97.5751 97.3354 M-M-12 77.2515 76.6066 M-M-22 86.4848 85.2704

M-M-3 63.1605 63.1852 M-M-13 113.828 113.875 M-M-23 80.6237 79.6352

M-M-4 85.2785 85.2267 M-M-14 78.0762 77.8335 M-M-24 84.8765 84.2151

M-M-5 93.5649 92.0777 M-M-15 68.4442 67.3662 M-M-25 85.1789 82.4892

M-M-6 75.7488 75.8091 M-M-16 74.2283 74.0354 M-M-26 101.692 101.718

M-M-7 63.7517 64.2728 M-M-17 72.1250 68.4100 M-M-27 100.567 99.5029

M-M-8 96.0293 90.5164 M-M-18 85.8888 85.4967 M-M-28 79.2305 79.6745

M-M-9 78.2761 77.6066 M-M-19 93.1040 89.4831 M-M-29 71.8424 71.8424

M-M-10 102.809 97.0502 M-M-20 78.8271 76.8394 M-M-30 65.6666 66.0240

111

Table 5.3 The experimental results between KLRP-MA and competitor methods on the

medium-distance and large-scale test instances

Test

instance

greedy

method

KLRP-

MA

Test

instance

greedy

method

KLRP-

MA

Test

instance

greedy

method
KLRP-MA

M-L-1 66.2695 64.0927 M-L-11 58.4579 58.1563 M-L-21 74.5157 74.2784

M-L-2 58.3499 55.1941 M-L-12 62.0149 58.1667 M-L-22 58.1792 57.3695

M-L-3 74.8173 74.6563 M-L-13 66.2812 66.4338 M-L-23 58.3318 56.9933

M-L-4 55.4424 55.2051 M-L-14 71.2747 71.2670 M-L-24 61.1710 61.3044

M-L-5 61.8389 61.8007 M-L-15 59.8665 60.2019 M-L-25 54.0756 54.5772

M-L-6 75.5564 73.9086 M-L-16 56.3731 55.9977 M-L-26 56.9090 56.6509

M-L-7 80.1910 80.0624 M-L-17 60.4991 59.5487 M-L-27 54.6087 53.3714

M-L-8 60.9766 60.5787 M-L-18 67.3189 66.9636 M-L-28 64.0283 63.0352

M-L-9 57.8430 54.5254 M-L-19 59.5935 59.7938 M-L-29 81.7327 81.7752

M-L-10 64.7589 63.8456 M-L-20 61.7252 61.5662 M-L-30 61.5761 62.1307

Table 5.1, Table 5.2, and Table 5.3 show the experimental results between KLRP-

MA and the competitor methods on small-scale, medium-scale, and large-scale test

instances when distance=12 (i.e., the medium distance). Table 5.1, Table 5.1, Table 5.2,

and Table 5.3 show the experimental results between KLRP-MA and the competitor

methods on small-scale, medium-scale, and large-scale test instances when distance=12

(i.e., the medium distance), respectively. 5.2, and Table 5.3 show the experimental

results between KLRP-MA and the competitor methods on small-scale, medium-scale,

and large-scale test instances when distance=12 (i.e., the medium distance),

respectively. 5.4, Table 5.5 and Table 5.1, Table 5.2, and Table 5.3 show the

experimental results between KLRP-MA and the competitor methods on small-scale,

medium-scale, and large-scale test instances when distance=12 (i.e., the medium

distance), respectively. show the experimental results between KLRP-MA and the

competitor methods on small-scale, medium-scale, and large-scale test instances when

distance=20, respectively. Note that on the medium-scale and large-scale test instances,

the enumeration method cannot finish in the acceptable time (i.e., 3 minutes). Therefore,

the enumeration method is only compared on small-scale test instances. In addition, on

each test instance, the KLRP-MA result in the table is the average of 20 independent

runs. The best result on each test instance is marked in boldface.

112

Table 5.4 The experimental results between KLRP-MA and competitor methods on the

long-distance and small-scale test instances

Test

instance

greedy

method

enumeration

method
KLRP-MA

Test

instance

greedy

method

enumeration

method
KLRP-MA

L-S-1 146.368 145.607 145.683 L-S-16 144.611 144.611 144.611

L-S-2 166.176 163.093 163.093 L-S-17 158.557 158.557 159.350

L-S-3 185.805 184.218 184.218 L-S-18 166.416 158.889 159.265

L-S-4 180.979 170.580 173.285 L-S-19 181.706 181.706 182.216

L-S-5 155.339 155.339 155.943 L-S-20 152.143 152.001 152.015

L-S-6 150.814 150.814 152.040 L-S-21 185.747 185.458 185.458

L-S-7 177.749 177.749 177.786 L-S-22 156.661 156.661 156.661

L-S-8 164.614 160.446 160.808 L-S-23 169.953 169.953 169.953

L-S-9 169.857 168.431 168.431 L-S-24 191.069 191.069 191.069

L-S-10 150.688 149.927 149.927 L-S-25 178.791 178.586 178.855

L-S-11 151.377 145.141 145.667 L-S-26 165.013 163.942 163.996

L-S-12 175.125 174.999 174.999 L-S-27 156.426 154.731 154.985

L-S-13 164.258 162.286 162.286 L-S-28 158.705 158.181 158.218

L-S-14 163.034 163.034 163.034 L-S-29 160.882 160.882 161.409

L-S-15 193.222 193.222 193.222 L-S-30 158.307 156.604 156.730

Table 5.5 The experimental results between KLRP-MA and competitor methods on the

long-distance and medium-scale test instances

Test

instance

greedy

method

KLRP-

MA
Test instance

greedy

method
KLRP-MA Test instance greedy method KLRP-MA

L-M-1 182.172 151.745 L-M-11 164.650 157.954 L-M-21 167.028 158.704

L-M-2 180.370 180.753 L-M-12 193.188 163.981 L-M-22 181.053 177.942

L-M-3 157.675 158. 079 L-M-13 213.896 200.739 L-M-23 178.447 163.330

L-M-4 192.355 174.624 L-M-14 170.510 167.331 L-M-24 192.296 171.036

L-M-5 200.180 183.618 L-M-15 170.610 158.056 L-M-25 188.101 178.068

L-M-6 180.857 149.732 L-M-16 174.404 166.159 L-M-26 206.555 195.827

L-M-7 161.444 158.335 L-M-17 187.395 156.761 L-M-27 180.744 168.672

L-M-8 175.794 170.853 L-M-18 165.116 163.053 L-M-28 161.676 162.120

L-M-9 161.961 160.531 L-M-19 181.719 174.936 L-M-29 179.326 165.033

L-M-10 177.456 175.119 L-M-20 166.130 165.622 L-M-30 182.275 153.519

For the medium-distance test instances, when the number of available bike stations

is 10 (i.e., small-scale), the greedy method, enumeration method, and KLRP-MA obtain

the global optimal solution on 10, 30, and 17 test instances, respectively. Moreover,

when the number of available bike stations is 20 (i.e., medium-scale), the greedy

method and KLRP-MA obtain the best solution on 8 and 22 test instances, respectively.

113

In addition, when the number of available bike stations is 50 (i.e., large-scale), the

greedy method and KLRP-MA obtain the best solution on 6 and 24 test instances,

respectively. Although the enumeration method can find the global optimal solution in

the acceptable time for small-scale test instances, the running time of the enumeration

method is affected by the scale of the test instances and cannot work well on larger-

scale problems. At the same time, with the increase in the problem scale, the

performance of KLRP-MA is obviously better than that of the greedy method, which

indicates the efficiency of KLRP-MA in solving URPP.

Table 5.6 The experimental results between KLRP-MA and competitor methods on the

long-distance and large-scale test instances

Test

instance

greedy

method

KLRP-

MA

Test

instance

greedy

method
KLRP-MA

Test

instance

greedy

method
KLRP-MA

L-L-1 205.486 161.580 L-L-11 156.764 146.867 L-L-21 169.864 167.581

L-L-2 155.254 151.140 L-L-12 174.803 147.628 L-L-22 156.597 152.587

L-L-3 160.072 156.928 L-L-13 183.723 153.419 L-L-23 154.935 150.506

L-L-4 157.532 148.430 L-L-14 172.212 154.239 L-L-24 168.420 145.153

L-L-5 164.043 146.193 L-L-15 173.966 153.175 L-L-25 162.001 149.335

L-L-6 168.737 162.315 L-L-16 152.307 142.097 L-L-26 160.858 147.455

L-L-7 211.420 163.571 L-L-17 181.566 141.894 L-L-27 193.759 148.514

L-L-8 231.163 159.418 L-L-18 159.789 151.141 L-L-28 174.118 162.989

L-L-9 154.948 150.355 L-L-19 165.210 155.069 L-L-29 178.577 165.325

L-L-10 168.075 147.628 L-L-20 183.143 147.992 L-L-30 201.066 152.043

For the long-distance test instances, when the number of available bike stations is

10 (i.e., small-scale), the greedy method, enumeration method, and KLRP-MA obtain

the best results on 11, 30, and 16 test instances, respectively. Moreover, when the

number of available bike stations is 20 (i.e., medium-scale), the greedy method and

KLRP-MA obtain the best results on 8 and 22 test instances, respectively. In addition,

when the number of available bike stations is 50 (i.e., large-scale), KLRP-MA performs

best on all 30 test instances. Based on the above comparison with the greedy and

enumeration methods, the effectiveness of the KLRP-MA has been verified.

114

Table 5.7 The running time of KLRP-MA and the enumeration method on the medium-

distance test instances (Unit: Second)

Test

instance

num_bs =10(*=S) num_bs =20(*=M) num_bs =50(*=L)

KLRP-MA
enumeration

method
KLRP-MA

enumeration

method
KLRP-MA

enumeration

method

M-*-1 0.0104 1.3630 0.0195 NAN 0.0369 NAN

M-*-2 0.0113 1.4270 0.0184 NAN 0.0385 NAN

M-*-3 0.0115 1.4010 0.0234 NAN 0.0241 NAN

M-*-4 0.0126 1.3830 0.0157 NAN 0.0221 NAN

M-*-5 0.0108 1.3780 0.0172 NAN 0.0236 NAN

M-*-6 0.0089 1.3180 0.0173 NAN 0.0227 NAN

M-*-7 0.0103 1.4060 0.0144 NAN 0.0243 NAN

M-*-8 0.0107 1.4590 0.0201 NAN 0.0237 NAN

M-*-9 0.0089 1.3230 0.0151 NAN 0.0336 NAN

M-*-10 0.0110 1.4010 0.0153 NAN 0.0261 NAN

M-*-11 0.0102 1.3320 0.0187 NAN 0.0257 NAN

M-*-12 0.0105 1.3780 0.0193 NAN 0.0226 NAN

M-*-13 0.0113 1.3720 0.0243 NAN 0.0230 NAN

M-*-14 0.0118 1.4210 0.0150 NAN 0.0256 NAN

M-*-15 0.0113 1.3250 0.0154 NAN 0.0330 NAN

M-*-16 0.0110 1.3690 0.0160 NAN 0.0256 NAN

M-*-17 0.0111 1.3230 0.0176 NAN 0.0250 NAN

M-*-18 0.0110 1.3250 0.0164 NAN 0.0281 NAN

M-*-19 0.0106 1.3600 0.0154 NAN 0.0223 NAN

M-*-20 0.0095 1.3580 0.0146 NAN 0.0260 NAN

M-*-21 0.0111 1.3310 0.0155 NAN 0.0264 NAN

M-*-22 0.0110 1.3520 0.0148 NAN 0.0239 NAN

M-*-23 0.0105 1.4410 0.0175 NAN 0.0298 NAN

M-*-24 0.0082 1.3150 0.0155 NAN 0.0266 NAN

M-*-25 0.0109 1.4570 0.0156 NAN 0.0237 NAN

M-*-26 0.0107 1.4140 0.0150 NAN 0.0266 NAN

M-*-27 0.0083 1.3490 0.0158 NAN 0.0315 NAN

M-*-28 0.0104 1.3970 0.0180 NAN 0.0245 NAN

M-*-29 0.0108 1.3310 0.0155 NAN 0.0250 NAN

M-*-30 0.0104 1.3510 0.0159 NAN 0.0352 NAN

Besides the optimization results, Table 5.7 and Table 5.8 compare the running time

of KLRP-MA and the enumeration method on medium-distance and long-distance test

instances. Although the running time of the greedy method is short, the greedy method

is not compared due to the poor quality of its solution. In addition, NAN in Table 5.7

115

and Table 5.8 indicates that the enumeration method cannot find the optimal solution

within the acceptable time (i.e., 3 minutes). The enumeration method cannot find the

optimal solution within even an hour on medium-scale test instances.

Table 5.8 The running time of KLRP-MA and the enumeration method on the long-

distance test instances (Unit: Second)

Test

instance

num_bs =10(*=S) num_bs =20(*=M) num_bs =50(*=L)

KLRP-MA
enumeration

method
KLRP-MA

enumeration

method
KLRP-MA

enumeration

method

L-*-1 0.0127 1.3460 0.0152 NAN 0.0332 NAN

L-*-2 0.0120 1.3310 0.0158 NAN 0.0336 NAN

L-*-3 0.0126 1.3720 0.0223 NAN 0.0245 NAN

L-*-4 0.0125 1.3310 0.0170 NAN 0.0227 NAN

L-*-5 0.0103 1.3360 0.0134 NAN 0.0236 NAN

L-*-6 0.0091 1.3040 0.0199 NAN 0.0236 NAN

L-*-7 0.0119 1.3130 0.0153 NAN 0.0239 NAN

L-*-8 0.0112 1.3360 0.0150 NAN 0.0250 NAN

L-*-9 0.0091 1.3100 0.0158 NAN 0.0337 NAN

L-*-10 0.0109 1.3110 0.0218 NAN 0.0264 NAN

L-*-11 0.0104 1.3080 0.0147 NAN 0.0273 NAN

L-*-12 0.0105 1.3090 0.0142 NAN 0.0229 NAN

L-*-13 0.0111 1.3070 0.0155 NAN 0.0240 NAN

L-*-14 0.0110 1.3070 0.0169 NAN 0.0266 NAN

L-*-15 0.0101 1.3040 0.0146 NAN 0.0313 NAN

L-*-16 0.0118 1.3170 0.0151 NAN 0.0262 NAN

L-*-17 0.0115 1.3050 0.0138 NAN 0.0251 NAN

L-*-18 0.0287 1.3330 0.0150 NAN 0.0295 NAN

L-*-19 0.0104 1.3080 0.0147 NAN 0.0225 NAN

L-*-20 0.0096 1.3060 0.0176 NAN 0.0273 NAN

L-*-21 0.0114 1.3160 0.0153 NAN 0.0283 NAN

L-*-22 0.0122 1.3020 0.0155 NAN 0.0244 NAN

L-*-23 0.0108 1.3060 0.0178 NAN 0.0314 NAN

L-*-24 0.0080 1.3060 0.0153 NAN 0.0242 NAN

L-*-25 0.0108 1.3440 0.0155 NAN 0.0240 NAN

L-*-26 0.0109 1.3240 0.0178 NAN 0.0266 NAN

L-*-27 0.0090 1.3050 0.0156 NAN 0.0325 NAN

L-*-28 0.0113 1.3160 0.0176 NAN 0.0253 NAN

L-*-29 0.0110 1.3050 0.0154 NAN 0.0278 NAN

L-*-30 0.0108 1.3040 0.0154 NAN 0.0371 NAN

116

As shown in Table 5.7, the running time of KLRP-MA slightly increases with the

increment of the number of available bike stations (i.e., the problem scale). On the

medium-distance and large-scale test instances, the maximum running time is 0.0385 s,

which is within the user’s acceptable time. In addition, when the number of available

bike stations is 10, the running time of KLRP-MA is much less than that of the

enumeration method, i.e., less than 0.8% of the time cost of the enumeration method on

most test instances. For the long-distance test instances, as shown in Table 5.8, the

running time of KLRP-MA is significantly better than that of the enumeration method

on all test instances with different scales. In addition, as seen from Table 5.7 and Table

5.8, the running time of KLRP-MA increases with the increment of the number of

available bike stations on the test instances with different distances. Meanwhile, on the

test instances with the same scale, the running time of the long-distance test instances

is longer than that of the medium-distance test instances. Although the search space of

these two experiments is the same, the distribution of the bike stations is relatively

sparse on the long-distance test instances, which makes the solutions more likely to

violate the constraints and need to be re-executed, thus taking more time. Based on the

above, the efficiency of KLRP-MA has been verified.

5.5.3 Experimental Results under Dynamic Situations

Table 5.9 shows the results of DyKLRP-MA before and after dynamic change on

small-scale, medium-scale, and large-scale test instances when distance=20 (i.e., the

long distance). The distribution of available bike stations of the test instances is

consistent with those in Section 5.4.3, and the results before the change are the best

results obtained by KLRP-MA.

As shown in Table 5.9, when compared with the results before the dynamic change,

DyKLRP-MA can find solutions with better fitness or at least not worse fitness on

almost all test instances, and only produces worse results on two instances, i.e., L-S-8

and L-S-12. The reason for the worse results in these two instances may be that the

small-scale instances only have ten bike stations to choose from, and impor stations are

disabled during the dynamic change, while the rest of the existing and newly enabled

117

bike stations are not ideal for substituting the disabled bike stations to generate a good

solution. However, in instances with more available bike stations (i.e., L-M-* and L-L-

* instances), DyKLRP-MA can always find a better solution after the dynamic change.

Based on the above, the problem-solving ability of DyKLRP-MA for dynamic URPP

instances has been verified.

Table 5.9 The experimental results of DyKLRP-MA on the long-distance test instances

Test

instance

Results

before change

Results after

change

Test

instance

Results

before change

Results after

change

Test

instance

Results

before change

Results after

change

L-S-1 145.607 145.607 L-M-1 151.743 90.087 L-L-1 161.154 92.647

L-S-2 163.093 113.065 L-M-2 179.905 179.905 L-L-2 150.712 150.712

L-S-3 184.218 184.218 L-M-3 157.427 91.130 L-L-3 156.850 119.994

L-S-4 170.580 143.295 L-M-4 174.442 143.130 L-L-4 147.997 78.141

L-S-5 155.339 155.339 L-M-5 182.403 128.431 L-L-5 146.176 98.676

L-S-6 150.814 139.424 L-M-6 149.695 104.259 L-L-6 162.164 156.805

L-S-7 177.749 98.536 L-M-7 158.099 158.099 L-L-7 163.546 104.075

L-S-8 160.446 167.643 L-M-8 170.813 170.813 L-L-8 159.201 105.527

L-S-9 168.431 119.146 L-M-9 160.531 160.531 L-L-9 150.264 96.877

L-S-10 149.927 145.141 L-M-10 175.097 175.097 L-L-10 146.940 85.569

L-S-11 174.999 174.999 L-M-11 157.326 139.932 L-L-11 146.860 86.021

L-S-12 162.286 162.707 L-M-12 193.927 193.927 L-L-12 147.524 78.374

L-S-13 163.034 163.034 L-M-13 200.739 190.423 L-L-13 153.235 153.235

L-S-14 117.893 117.893 L-M-14 167.231 167.231 L-L-14 152.630 88.311

L-S-15 193.222 193.222 L-M-15 157.647 149.588 L-L-15 152.152 114.135

L-S-16 144.611 103.299 L-M-16 166.108 123.331 L-L-16 142.091 142.091

L-S-17 158.557 158.557 L-M-17 156.761 103.625 L-L-17 141.584 101.127

L-S-18 158.889 158.889 L-M-18 162.977 151.339 L-L-18 151.066 93.044

L-S-19 181.706 137.015 L-M-19 174.790 174.790 L-L-19 154.912 154.912

L-S-20 152.001 133.623 L-M-20 165.325 165.325 L-L-20 147.969 89.547

L-S-21 185.458 185.458 L-M-21 158.665 95.079 L-L-21 167.541 115.816

L-S-22 156.661 156.661 L-M-22 177.805 105.825 L-L-22 152.543 107.593

L-S-23 169.953 121.699 L-M-23 162.068 157.430 L-L-23 150.396 105.275

L-S-24 191.069 191.069 L-M-24 171.022 137.088 L-L-24 144.422 95.477

L-S-25 178.586 178.586 L-M-25 177.897 177.897 L-L-25 148.512 103.226

L-S-26 163.942 163.942 L-M-26 195.452 195.452 L-L-26 147.125 141.623

L-S-27 154.731 154.731 L-M-27 168.469 168.469 L-L-27 148.382 108.920

L-S-28 158.181 158.181 L-M-28 161.676 119.153 L-L-28 162.799 149.843

L-S-29 160.882 131.783 L-M-29 164.910 126.064 L-L-29 165.263 152.802

L-S-30 156.604 142.026 L-M-30 153.270 95.370 L-L-30 150.842 98.973

118

5.5.4 Experiments on Real-world Bike-sharing Instances

Figure 5.6 Visualization of bike location data in real-world test instances.

To further investigate the proposed DyKLRP-MA, this part compares the

DyKLRP-MA with state-of-the-art approaches on some real-world test instances. The

real-world instances are based on bike-sharing data from Shenzhen, China [248].

Specifically, Figure 5.6 hows all the bike location data used in this chapter. The test

instances are construed as follows. To begin with, all the bike locations are clustered by

K-means into 50 groups, where the center of each group represents a bike station. Then,

10 user records (including the source and destination of the same user) are used to

generate 10 test instances for route planning based on the 50 bike stations. For

simplicity, the 10 instances are denoted as R-1, R-2, …, and R-10, respectively. In

addition, as re-initialization and using archive are two state-of-the-art and popular

dynamic optimization approaches [244]-[245], the proposed DyKLRP-MA is compared

with the KLRP-MA variants using re-initialization and archive. The compared two

variants are denoted as MA-R and MA-A for short, respectively. The MA-R re-

initializes the population when the problem is dynamically changed, while the MA-A

stores all the best solutions found in every previous dynamic environment in an archive

and re-evaluates the solutions in the archive when the problem is changed again. For

better comparisons, the best-before-change error metric (denoted as EB) is used herein,

which is a widely-used indicator designed for dynamic optimization [176]. The

calculation of EB is as follows:

119

 ,

1

1 C

B b i

i

E E
C =

=  (5.7)

where Eb,i is the fitness of the best solution found before the ith dynamic change,

and C is the total number of changes during the optimization. Each algorithm runs 20

runs to obtain the results for comparison. During each run, each algorithm will evolve

for 400 generations. Every 20 generations, all the bike stations will have a probability

of 0.1 to become unavailable. That is, there will be 20 dynamic changes in each run.

The experimental results on the real-world test instances are given in Table 5.10. As can

be seen, the DyKLRP-MA obtains the best results on 8 of the 10 problems, while the

MA-R and MA-A can only obtain the best results on 0 and 1 problems, respectively.

This suggests that the proposed DyKLRP-MA is very suitable for solving the URPP in

dynamic situations.

Table 5.10 The experimental results of DyKLRP-MA, ma-r, and ma-a on the real-world

test instances

Test instance DyKLRP-MA MA-R MA-A

R-1 86.0332 86.2664 86.5661

R-2 137.678 140.664 138.027

R-3 52.2539 54.9427 56.1207

R-4 157.785 157.851 157.929

R-5 89.1900 91.6647 91.1149

R-6 77.9556 80.3473 75.7700

R-7 184.270 189.564 185.992

R-8 23.4204 27.9302 26.5034

R-9 137.310 137.536 138.627

R-10 70.5298 70.2346 70.2020

5.5.5 Component Analysis

To further study the influence of the KLC, RPM, and TPLS, three variants of the

KLRP-MA are designed, namely the KLRP-MA without KLC, the KLRP-MA without

RPM, and the KLRP-MA without TPLS. For simplicity, these three algorithms are

denoted as KLRP-MA-w/o-KLC, KLRP-MA-w/o-RPM, and KLRP-MA-w/o-TPLS,

respectively. The experiment is conducted on small-scale, medium-scale, and large-

scale test instances with distance=20.

120

Table 5.11 The experimental results among KLRP-MA variants on the long-distance and

small-scale test instances.

Test

instance

KLRP-

MA

KLRP-

MA-w/o-

KLC

KLRP-

MA-w/o-

RPM

KLRP-

MA-w/o-

TPLS

Test

instance

KLRP-

MA

KLRP-

MA-w/o-

KLC

KLRP-

MA-w/o-

RPM

KLRP-

MA-w/o-

TPLS

L-S-1 145.683 145.645 146.683 145.607 L-S-16 144.611 145.141 145.290 144.611

L-S-2 163.093 163.401 165.615 163.555 L-S-17 159.350 159.906 166.281 159.876

L-S-3 184.218 184.358 185.295 184.338 L-S-18 159.265 159.830 160.040 159.202

L-S-4 173.285 172.018 178.571 171.734 L-S-19 182.216 182.467 185.685 182.556

L-S-5 155.943 155.339 160.137 155.424 L-S-20 152.015 152.022 155.461 152.223

L-S-6 152.040 153.499 162.624 152.272 L-S-21 185.458 185.459 186.066 185.459

L-S-7 177.749 177.779 178.732 177.785 L-S-22 156.661 157.245 163.980 157.036

L-S-8 160.808 160.660 162.227 160.472 L-S-23 169.953 170.255 171.846 170.075

L-S-9 168.431 168.574 170.076 168.431 L-S-24 191.069 191.069 193.886 191.148

L-S-10 149.927 150.041 151.184 150.117 L-S-25 178.855 179.020 180.372 178.731

L-S-11 145.667 147.605 151.534 145.930 L-S-26 163.996 167.144 166.060 164.305

L-S-12 174.999 175.131 175.595 175.045 L-S-27 154.985 156.147 159.127 154.985

L-S-13 162.286 162.483 164.341 162.286 L-S-28 158.218 158.360 160.004 158.270

L-S-14 163.034 163.251 165.543 163.359 L-S-29 161.409 161.445 164.072 161.445

L-S-15 193.222 193.222 197.569 193.222 L-S-30 156.730 156.985 158.574 156.730

Table 5.12 The experimental results among KLRP-MA variants on the long-distance and

medium-scale test instances.

Test

instance

KLRP-

MA

KLRP-

MA-w/o-

KLC

KLRP-

MA-w/o-

RPM

KLRP-

MA-w/o-

TPLS

Test

instance

KLRP-

MA

KLRP-

MA-w/o-

KLC

KLRP-

MA-w/o-

RPM

KLRP-

MA-w/o-

TPLS

L-M-1 151.745 151.755 160.652 151.759 L-M-16 166.159 166.359 181.164 166.284

L-M-2 180.753 180.596 204.168 181.265 L-M-17 156.761 158.077 172.800 157.729

L-M-3 158. 079 157.801 178.955 157.944 L-M-18 163.053 163.032 175.342 163.070

L-M-4 174.624 174.723 191.755 174.806 L-M-19 174.936 174.922 181.165 174.893

L-M-5 183.618 183.627 201.651 182.943 L-M-20 165.622 165.914 188.786 166.497

L-M-6 149.732 149.752 162.619 149.734 L-M-21 158.704 158.704 168.389 158.697

L-M-7 158.335 158.570 176.063 158.634 L-M-22 177.942 178.281 189.962 178.574

L-M-8 170.853 171.059 183.684 171.175 L-M-23 163.330 163.006 181.266 162.678

L-M-9 160.531 161.502 179.280 160.546 L-M-24 171.036 171.290 183.729 171.357

L-M-10 175.119 175.223 189.831 175.388 L-M-25 178.068 178.366 191.277 178.256

L-M-11 157.954 157.883 173.137 158.287 L-M-26 195.827 195.536 205.150 195.500

L-M-12 163.981 164.044 170.893 163.991 L-M-27 168.672 168.961 183.239 168.849

L-M-13 200.739 201.266 216.789 201.355 L-M-28 162.120 161.948 182.096 162.564

L-M-14 167.331 167.706 183.756 167.437 L-M-29 165.033 165.008 179.273 165.108

L-M-15 158.056 158.151 172.444 158.498 L-M-30 153.519 153.907 167.854 153.511

121

Table 5.13 The experimental results among KLRP-MA variants on the long-distance and

large-scale test instances.

Test

instance

KLRP-

MA

KLRP-

MA-w/o-

KLC

KLRP-

MA-w/o-

RPM

KLRP-

MA-w/o-

TPLS

Test

instance

KLRP-

MA

KLRP-

MA-w/o-

KLC

KLRP-

MA-w/o-

RPM

KLRP-

MA-w/o-

TPLS

L-L-1 161.580 161.733 221.976 161.614 L-L-16 142.097 142.195 195.381 142.192

L-L-2 151.140 150.857 212.062 150.944 L-L-17 141.894 141.728 191.577 141.797

L-L-3 156.928 156.978 220.983 157.237 L-L-18 151.141 151.237 208.436 151.272

L-L-4 148.430 148.938 203.483 149.153 L-L-19 155.069 155.116 219.126 155.791

L-L-5 146.193 146.222 197.404 146.194 L-L-20 147.992 148.106 203.097 148.115

L-L-6 162.315 162.343 210.326 162.216 L-L-21 167.581 167.618 226.688 167.601

L-L-7 163.571 163.602 217.838 163.677 L-L-22 152.587 152.969 206.170 153.123

L-L-8 159.418 159.530 214.666 159.431 L-L-23 150.506 150.587 195.281 150.721

L-L-9 150.355 150.663 212.608 150.527 L-L-24 145.153 144.884 195.139 145.100

L-L-10 147.628 147.084 202.815 147.255 L-L-25 149.335 148.951 199.760 148.701

L-L-11 146.867 146.919 199.303 146.920 L-L-26 147.455 147.467 200.671 147.574

L-L-12 147.628 147.623 198.857 147.671 L-L-27 148.514 148.805 206.939 148.722

L-L-13 153.419 153.569 213.253 153.523 L-L-28 162.989 162.980 209.753 162.957

L-L-14 154.239 154.378 209.416 154.273 L-L-29 165.325 165.343 217.156 165.405

L-L-15 153.175 153.124 203.778 153.425 L-L-30 152.043 152.389 208.967 151.596

Table 5.14 The optimization results and running time of different KLRP-MA variants

with different maximum dimensions on the long-distance and medium-scale test instances.

Optimization results Running time

Test

instance

KLRP-

MA

KLRP-

MA-1

KLRP-

MA-2

KLRP-

MA-3

Test

instance

KLRP-

MA

KLRP-

MA-1

KLRP-

MA-2

KLRP-

MA-3

L-M-1 151.745 151.752 151.836 151.839 L-M-1 0.01455 0.02305 0.01330 0.01095

L-M-2 180.753 181.601 180.847 180.807 L-M-2 0.01510 0.02415 0.01330 0.01135

L-M-3 158. 079 158.411 158.759 158.784 L-M-3 0.02090 0.27080 0.01525 0.01100

L-M-4 174.624 174.929 174.624 174.644 L-M-4 0.01705 0.03550 0.01345 0.01105

L-M-5 183.618 184.023 184.158 184.213 L-M-5 0.01690 0.05035 0.01555 0.01175

L-M-6 149.732 150.121 149.740 149.738 L-M-6 0.01750 0.10340 0.01385 0.01200

L-M-7 158.335 158.365 158.680 158.570 L-M-7 0.01310 0.02105 0.01215 0.01025

L-M-8 170.853 171.004 170.934 170.907 L-M-8 0.01850 0.12720 0.01535 0.01100

L-M-9 160.531 161.127 160.806 161.001 L-M-9 0.01460 0.02245 0.01230 0.01060

L-M-10 175.119 175.223 175.119 175.206 L-M-10 0.01455 0.02595 0.01270 0.01060

L-M-11 157.954 158.189 158.640 158.170 L-M-11 0.01535 0.03680 0.01365 0.01125

L-M-12 163.981 164.256 164.256 163.981 L-M-12 0.02115 0.18830 0.01615 0.01160

L-M-13 200.739 200.739 200.739 200.752 L-M-13 0.02840 0.19975 0.02120 0.01280

L-M-14 167.331 167.431 167.431 167.331 L-M-14 0.01430 0.02505 0.01285 0.01075

L-M-15 158.056 158.610 158.140 158.152 L-M-15 0.01420 0.02440 0.01260 0.01080

122

Table 5.15 The optimization results and running time of different KLRP-MA variants

with different generation probabilities on the long-distance and medium-scale test instances.

Test instance Pg=0.8 Pg=0 Pg=0.2 Pg=0.4 Pg=0.6 Pg=1.0

L-M-1 151.745 151.745 151.744 151.751 151.750 151.745

L-M-2 180.753 181.905 181.130 181.958 182.928 180.782

L-M-3 158. 079 158.427 158.427 158.759 158.128 158.452

L-M-4 174.624 174.929 175.442 174.688 174.868 174.624

L-M-5 183.618 184.673 184.078 184.483 184.745 184.158

L-M-6 149.732 150.703 149.799 149.703 149.734 149.751

L-M-7 158.335 158.388 159.190 158.455 158.833 158.425

L-M-8 170.853 170.853 170.894 170.910 170.937 170.924

L-M-9 160.531 160.532 160.534 161.133 161.138 160.945

L-M-10 175.119 175.197 175.203 175.211 175.106 175.100

L-M-11 157.954 158.545 158.864 157.983 157.983 157.814

L-M-12 163.981 164.927 163.927 163.981 163.981 163.981

L-M-13 200.739 200.739 200.739 200.739 200.739 200.739

L-M-14 167.331 167.431 167.431 167.331 167.331 167.431

L-M-15 158.056 158.658 158.766 158.145 158.461 158.183

Table 5.11, Table 5.12, and Table 5.13 show the experimental results of KLRP-MA

and its variants on small-scale, medium-scale, and large-scale test instances with

distance=20, respectively, where the best result is marked in boldface. Specifically, on

the small-scale, medium-scale, and large-scale test instances, the original KLRP-MA

performs the best on 24, 19, and 19 test instances, respectively, which is significantly

better than the compared variants without KLC, RPM, or TPLS. In addition, Figure 5.7

plots the convergence curve of different KLRP-MA variants on a medium-scale test

instance. As seen in Figure 5.7, the proposed KLRP-MA has better convergence than

the remaining three variants. Therefore, the experimental results show that the KLC,

RPM, and TPLS can improve the performance of the KLRP-MA, and removing any of

them will decrease the algorithm’s performance.

5.5.6 Influence of Parameter

This part studies the parameters Dmax and Pg. Dmax controls the maximum

dimension of the candidate solution. As the original Dmax is set according to Eq.(5.4)

and Eq.(5.5), which will belong to [num_bs/2, num_bs/3] when num_bs is larger than

123

6, the KLRP-MA is compared with its variants that use Dmax=num_bs, Dmax= num_bs/2,

and Dmax= num_bs/3. For simplicity, the three variants are denoted as KLRP-MA-1,

KLRP-MA-2, and KLRP-MA-3, respectively. The experimental results are given in

Table 5.14. As can be seen, the KLRP-MA obtains the best optimization results on all

the test instances. For the running time, KLRP-MA-3 has less running time, and the

time costs of KLRP-MA are between those of KLRP-MA-1 and KLRP-MA-2. This

shows that the larger Dmax is, the lower the running time will be. As the setting of Dmax

in the original KLRP-MA can obtain the best optimization results, the slight additional

time costs of the KLRP-MA over the variants KLRP-MA-2 and KLRP-MA-3 are

acceptable. Based on the above, the original setting of Dmax in KLRP-MA (according to

Eq.(5.4) and Eq.(5.5)) is recommended in this chapter.

1 2 4 8 16

140

160

180

200

220

240

260

280

300

320

340

360

F
it

n
es

s

Generation

 KLRP-MA

 KLRP-MA-w/o-KLC

 KLRP-MA-w/o-RPM

 KLRP-MA-w/o-TPLS

Figure 5.7 The convergence curve of different KLRP-MA variants on the L-M-1 test instance.

Moreover, the generation probability Pg is set as Pg=0.8 in the original KLRP-MA.

Therefore, the original KLRP-MA is compared with its variants with Pg=0, Pg=0.2,

Pg=0.4, Pg=0.6, and Pg=1.0. For simplicity, the original KLRP-MA is directly denoted

as Pg=0.8, and the five variants are denoted as Pg=0, Pg=0.2, Pg=0.4, Pg=0.6, and

Pg=1.0, respectively. The experimental results are given in

Table 5.15. As can be seen in

Table 5.15, variants with different Pg obtain similar results, which indicates that

the KLRP-MA is not that sensitive to the setting of Pg. As Pg=0.8 obtains the best

124

results on most problems, Pg=0.8 is recommended by this chapter.

5.6 Conclusion

In this chapter, a new URPP model is proposed for route planning for the user in

not only static situations but also dynamic situations, and the KLRP-MA is proposed to

solve the URPP. As the traditional crossover operator and mutation operator are not

suitable for solving the URPP with uncertain dimensions, this chapter proposes and

integrates the KLC, RPM, and TPLS into KLRP-MA to generate better individuals. In

addition, the KLRP-MA is extended as a dynamic optimization algorithm, and the novel

DyKLRP-MA is proposed to handle the dynamic changes of the bike stations in

dynamic URPP. Experimental results show that when compared with the greedy method

and enumeration method, KLRP-MA can quickly search for the best solution.

Specifically, KLRP-MA has more advantages in solving ability than the greedy method

and more advantages in running time than the enumeration method. In addition, when

the bike stations change dynamically, the DyKLRP-MA can produce promising

solutions efficiently.

In future work, the tradeoff between riding cost and riding time is an important

direction to extend the URPP model. For example, modelling URPP as a constraint

optimization problem where the objective is traveling time and the user-specified cost

is set as a constraint. In addition, the cost and time can be also modeled as a multi-

objective optimization problem and a new multi-objective algorithm based on the

proposed algorithm can be studied. In addition, expanding the scale size of the problem

and conducting experiments with more bike stations will be considered. In these

scenarios, the techniques for data-driven optimization [249]-[197], multi-objective

optimization [195]-[252], and large-scale optimization can be applied [253]-[256].

This work was published on the journal of Memetic Computing.

125

CHAPTER 6

EVOLUTIONARY MULTITASKING BI-DIRECTIONAL

PARTICLE SWARM OPTIMIZATION FOR HIGH-

DIMENSIONAL FEATURE SELECTION

6.1 Introduction

In the era of big data, with the advancement of information retrieval technologies,

the number of features in data has increased dramatically. Hence, in the industrial field,

there is a popular saying that “feature engineering determines the upper limit of

generalization ability, while models and algorithms merely approximate this limit”

[225]. Feature selection is a common preprocessing method in data analysis [225]. It

aims to select a subset of features most relevant to the problem and eliminate redundant

or noisy features from the entire feature set. By performing feature selection, accuracy

and efficiency in data processing can be enhanced by removing irrelevant and redundant

features. Furthermore, in practical applications, feature selection can reduce

dimensionality to improve model efficiency, mitigate the risk of overfitting, address

noise issues, and enhance model interpretability [225]. Therefore, feature selection

plays an increasingly important role in many fields today [257]. Even in deep learning,

where features are learned automatically from raw data, effective feature selection

remains crucial. Deep learning models can automatically learn higher-level abstract

feature representations from raw data, expanding the scope of feature selection beyond

the data preprocessing stage [257].

In the context of feature selection, let's use the process of admitting graduate

students to a university as an example. Suppose a university is preparing to admit new

graduate students. During the admission process, the university needs to select the most

outstanding and promising students from a large pool of applicants. This process is akin

to the task of feature selection, where various background information of students (such

as grades, research experience, recommendation letters, etc.) corresponds to the

126

features in a dataset. When admitting graduate students, the university may encounter

challenges and employ strategies similar to feature selection: selecting important

features, eliminating redundant features, balancing feature weights, and handling high-

dimensional data. Just like in feature selection, when the dataset's feature dimension is

very high, algorithms may face difficulties in training, and high computational

complexity, making it challenging to effectively handle and utilize all the feature

information.

Most existing feature selection algorithms fall into three categories: filter methods,

wrapper methods, and embedded methods [258]. Filter methods evaluate and rank

features using statistical tests or correlation analysis before training the model, selecting

the most relevant features for the problem. While filter methods have the advantage of

lower model iteration overhead, they require features to be mutually independent,

overlooking relationships between features. Embedded methods integrate the feature

selection process into other machine learning algorithms without separate

implementation. However, this approach requires careful model design and entails large

computational costs due to the extensive input data. Wrapper methods determine

whether a candidate feature subset is optimal by evaluating it within the corresponding

problem. Compared to filter methods, wrapper methods may perform better as they

consider the impact of feature combinations through classifier evaluation. Additionally,

wrapper methods can be used independently without the need for specialized algorithm

design as with embedded methods. However, wrapper methods still face challenges

such as overfitting and high computational costs [259]. In practical applications,

wrapper methods are commonly used for relatively small feature sets. For large-scale

datasets, the computational overhead poses a research gap that has attracted the interest

of scholars in recent years, leading to attempts to use different algorithms to address

this issue.

As one type of wrapper method, swarm intelligence-based algorithms have

demonstrated strong capabilities in feature selection problems in recent years [260].

Particle Swarm Optimization (PSO) is one of the most well-known swarm intelligence

127

algorithms, known for its ease of implementation and fast convergence [25]–[261].

However, PSO is often plagued by the “curse of dimensionality,” exhibiting weak

search capabilities when dealing with high-dimensional data [262]. Many PSO-based

algorithms have been proposed to enhance its performance in high-dimensional feature

selection problems, which can be roughly divided into two categories. The first

category of PSO-based algorithms focuses on designing efficient particle evolution

strategies to help them fully explore the solution space and escape local optima [263]–

[265]. The second category of PSO-based algorithms calculates the importance of

features using similarity or correlation measures and then focuses on those features with

high importance to improve search efficiency [266]–[268]. Overall, the second category

of PSO-based algorithms performs better because they can determine which features

are worth further exploration to narrow down the search space. However, these

algorithms often rely on correlation analysis, which is time-consuming and complex to

implement on high-dimensional data. Due to the large number of features in high-

dimensional data, conducting correlation analysis requires significant computational

resources and time, and may lead to performance degradation or failure to converge.

These two categories can also be exemplified using the university admissions

process. In the first category of PSO algorithms, the admissions committee adopts a

comprehensive search approach, considering all features of every applicant, including

academic records, personal statements, recommendation letters, etc., as equally

important. While this method ensures that no potentially promising student is

overlooked, it may result in a significant amount of time and effort being spent

considering all features, rather than focusing on the most relevant and valuable ones. In

the second category of PSO algorithms, the admissions committee may employ a more

targeted approach to more effectively select the most promising group of students. The

committee might first use correlation analysis methods, such as correlation measures

based on academic records, recommendation letters, community service, etc., to

determine which features are most highly correlated with successful admissions.

Although this method can help the committee identify promising students more quickly,

128

inaccurate or incomplete correlation measures may lead to some potentially promising

students being overlooked. Additionally, computing correlation measures may require

a significant amount of time and resources. Overall, the first category of PSO

algorithms is similar to a comprehensive search approach considering all features, while

the second category of PSO algorithms resembles a targeted approach utilizing

correlation information to select specific features.

Recently, Yang et al. proposed a novel framework called bidirectional feature fixing

(BDFF) for high-dimensional feature selection [269]. In BDFF, each particle has two

different search directions. One direction guides the particle to find a large feature

subset with more selected features, while the other direction guides the particle to find

a small feature subset with fewer selected features. Based on their search directions,

particles can dynamically fix the selection status of features, which also helps narrow

down the search space without overly relying on correlation analysis. Therefore, BDFF

holds great potential for addressing high-dimensional feature selection problems.

However, BDFF still faces some challenges. Firstly, particles may be misled by the

search directions, resulting in missing the optimal solution. Since in BDFF, search

directions are only inferred and adjusted based on the performance of the current

population, some particles' search directions may be incorrect. Secondly, BDFF

sometimes struggles to obtain a feature subset with few selected features because the

initial number of features always remains around half of the total number of features,

which is quite large in high-dimensional data. Therefore, addressing this issue becomes

a research challenge.

In recent years, KT has garnered considerable attention in the field of EC due to its

ability to accelerate the optimization process, enhance search capabilities, adapt to

dynamic environments, and improve algorithm robustness. Taking cues from the

concept of KT, the presence of crucial prior knowledge in the field of feature selection

is recognized. Firstly, the objective of feature selection is to obtain a feature subset with

as few selected features as possible. Secondly, reducing the number of features

considered during the search for the optimal feature subset helps mitigate interference

129

between features and speeds up the feature selection process. However, existing

methods for feature selection still inadequately leverage this prior knowledge. This

chapter aims to integrate this prior knowledge into the BDFF framework while

preserving its original capability for global knowledge discovery by designing different

optimization tasks for feature selection. MTOP technology has emerged as a promising

approach in high-dimensional feature selection, facilitating KT between different

optimization tasks. In multi-task optimization, there may exist certain correlations or

similarities between tasks. KT methods facilitate the transfer of valuable expertise and

insights among various tasks, ensuring the efficiency and adaptability of the system.

Therefore, this chapter introduces, for the first time, the combination of the BDFF

framework with MTOP technology, proposing an algorithm called multi-task

bidirectional particle swarm optimization (MBDPSO) for high-dimensional feature

selection. In comparison with other existing EMTO-based feature selection algorithms,

MBDPSO emphasizes the integration of MTOP and BDFF, particularly in leveraging

the prior knowledge introduced by MTOP while retaining the global search capability

of BDFF. The main contributions of this chapter can be summarized as follows.

Firstly, designing two related tasks, incorporating prior knowledge of feature

selection into MBDPSO. Both tasks are aimed at feature selection. However, one task

focuses solely on promising features, while the other considers all features to retain

global search capability. Therefore, MBDPSO can quickly identify small feature

subsets while still retaining the ability to search for feature subsets with different

selected feature counts.

Secondly, proposing a novel KT approach to assist particles in searching in a multi-

task environment. The KT process combines the advantages of feature fixation and a

widely used PSO variant called Bare-Bones Particle Swarm Optimization (BBPSO).

Additionally, using a linearly increasing function dynamically adjusts the probability

of KT, helping particles strike a balance between mining knowledge within their task

and learning from other tasks.

The remaining sections of this chapter are organized as follows. Section 6.2 briefly

130

introduces related work, while section 6.3 describes the detailed implementation of the

proposed MBDPSO. In section 6.4, experimental results and analysis of MBDPSO on

public feature selection datasets and real research cases are presented. Finally, section

five concludes the chapter.

6.2 Related Work

6.2.1 Feature Selection

Feature selection is the process of selecting a subset of features from the entire

feature set to optimize an evaluation function relevant to a specific problem. For

instance, in classification problems, the evaluation function could be classification

accuracy. Suppose there are D features in the entire feature set, then the feature selection

problem for classification can be represented as:

1 2

max f(x)

 s. t. (, ,...,)

 {0,1}, 1,2,...,

D

d

x x x x

x d D

=

 = (6.1)

Where f(⋅) represents the classification accuracy, x is the solution to the feature

selection problem, and xd takes a value of 1 to select the dth feature or 0 to not select it.

Choosing a sufficiently small feature subset with high classification accuracy is

extremely challenging when D is large.

6.2.2 Bidirectional Feature Fixing Framework

The BDFF framework [269] was proposed for PSO to effectively address high-

dimensional feature selection problems. It helps particles reduce the search space as

they update their positions and can be combined with most PSO variants into a unified

framework. In BDFF, each particle is defined with two search directions. One direction,

diru, guides the particle to find a large feature subset, while the other direction, dirl,

guides the particle to find a small feature subset. Additionally, BDFF divides all features

into different feature neighborhoods. Then, if the features meet the feature fixing

conditions based on the particle's current search direction, features within the same

feature neighborhood will be fixed, maintaining their selection status. Corresponding

to the two search directions, there are also two feature fixing conditions. If the direction

131

is diru and all features in the same neighborhood in the particle's historical best position

are selected, feature fixing will be executed. Similarly, if the direction is dirl and no

features in the same neighborhood are selected, feature fixing will also be executed. In

BDFF, the feature fixing technique reduces the features considered in optimization,

narrowing down the search space for each particle and thus improving search efficiency.

Although BDFF shows promising potential in high-dimensional feature selection,

it still faces some challenges. The first challenge is the difficulty in adjusting search

directions, which may lead to being trapped in the wrong direction. Initially, half of the

particles use diru as the search direction, and the other half use dirl, as shown below:

Where dir(pi) returns the search direction of the ith particle pi, and P is the total

number of particles in the swarm. Only one direction is correct because the optimal

solution can only be in one direction. Then, BDFF uses an adaptive direction change

strategy to change the direction of particles to fully utilize particles in the wrong

direction. However, ensuring the correct direction adjustment is extremely difficult. In

some accidental cases, particles may all end up in the wrong direction, resulting in poor

optimization results. The second challenge is that BDFF requires a significant amount

of resources to search for small feature subsets. According to BDFF's initialization

strategy, the number of features selected by each particle is approximately half of the

total number of features. If the optimal solution contains a small feature subset, BDFF

can only gradually reduce the size of the selected feature subset starting from half of

the total features to find the optimal solution, which wastes a considerable amount of

computational resources, especially when dealing with high-dimensional data.

6.2.3 Evolutionary Multi-Task Optimization

EMTO has seen significant advancements in recent years, with Multi-Factorial

Evolutionary Algorithm (MFEA) being one of the most prominent approaches [30]. It

introduces four fundamental concepts—Factorial Cost, Factorial Rank, Scalar Fitness,

and Skill Factor—to assess individuals' performance in multi-task environments.

MFEA incorporates techniques like assortative mating and vertical cultural

transmission to facilitate information exchange among different tasks. By utilizing a

132

unified search space, MFEA enables the simultaneous optimization of multiple tasks

within a single population, offering an efficient framework for EMTO. Various variants

based on MFEA have been proposed, such as Multi-Factor Differential Evolution and

Multi-Factor Particle Swarm Optimization by Feng et al. [31]. Additionally, efforts

have been made to apply MFEA to expensive optimization problems, aiming to extract

useful knowledge from cheaper problems and reduce computational costs, as

demonstrated by Ding et al. [147]. Further enhancements include KT and resource

allocation to improve the efficiency of MFEA [273][274][146][275].

6.3 Framework of MBDPSO

In this section, the detailed implementation of the proposed MBDPSO algorithm is

presented. Firstly, two related tasks designed for high-dimensional feature selection

problems and the overall framework of MBDPSO are provided. Then, the initialization

of the three main components of particles in the population is discussed. To coordinate

particles in the two tasks and transfer knowledge between different tasks, the multi-task

evolutionary paradigm of MBDPSO is described. Finally, the complete MBDPSO is

presented.

6.3.1 Two tasks of feature selection

The design of MBDPSO aims to leverage prior knowledge in the field of feature

selection by combining BDFF with EMTO to help particles efficiently find optimal

solutions [33]. In feature selection problems, the preference is to obtain feature subsets

containing as few features as possible. Additionally, priority is given to features that are

more likely to appear in the optimal solution rather than considering all features, which

can provide useful information to expedite the optimization process. Based on the

aforementioned prior knowledge, two related tasks specifically for feature selection are

proposed. The objectives of these two tasks are the same, i.e., to select an optimal

feature subset from the same dataset to maximize the function described in Equation

(6.1) [33]. However, the feature scope to be considered differs between these two tasks.

The first task only considers promising features that constitute a small portion of

the total features. Correlation analysis based on similarity or information entropy is an

133

effective method for assessing the importance of features for classification problems

[276] [277]. Generally, features highly correlated with the classification labels have a

higher probability of appearing in the optimal feature subset because they have a greater

impact on the classification results. Therefore, these features can be prioritized and

considered as promising features. Here, Symmetrical Uncertainty (SU) [278] was

adopted to identify promising features, where the SU value between feature F and class

label C can be calculated as follows:

H() H(|)

SU(,)=2
H() H()

F F C
F C

F C

−

+
 (6.2)

Here, H(F|C) represents the conditional entropy of F given C, while H(F) and H(C)

are the entropies of F and C, respectively. After ranking the features based on their SU

values with the class labels in descending order, the top K promising features are

considered. Then, the first task selects features only from these promising ones to form

a candidate feature subset. It's worth noting that the computation of SU results, used for

locating promising features, is also required in BDFF as part of the preparation work

for partitioning feature neighborhoods. Therefore, identifying promising features does

not require additional computational resources.

Figure 6.1 The framework of two tasks in feature selection

The second task considers the entire feature set range, which is necessary because

the optimal feature subset is often not entirely composed of promising features used in

the first task. The correlation analysis in the first task only considers the relationship

between individual features and labels, making the collection of promising features

134

somewhat biased. Therefore, the second task retains the ability to comprehensively

consider all features to help PSO reveal the implicit associations among features in the

entire feature set.

Based on these two related tasks, the overall framework of MBDPSO is illustrated

in Figure 6.1. The first task focuses on promising features with high SU values to

incorporate prior knowledge of feature selection, while the second task considers the

entire feature set to gain a comprehensive perspective on feature selection. Then,

particles in the population are assigned different tasks for optimization. Each particle

also possesses a search direction for feature fixing. In Figure 6.1, particles with upward

and downward arrows search for solutions with more and fewer features, respectively,

similar to BDFF. During evolution, knowledge can be transferred from one task to

another, aiding in the search process for both tasks.

Given that both tasks perform feature selection on the same problem, they share a

lot of similar knowledge. For example, features selected in one task are likely to be

selected in the other task as well. Therefore, KT between these two tasks can be more

reasonable and effective.

6.3.2 Multi-Task Knowledge Transfer

The multi-task KT in MBDPSO is based on the MFEA paradigm. In MFEA, the

skill factor τi denotes the index of the task solved by particle pi. MBDPSO adopts this

definition. If the value of τi is 1, it indicates that pi is assigned to the first task. Otherwise,

if the value of τi is 2, it indicates that pi solves the second task. Then, the assortative

mating process in MBDPSO is designed as follows:

, ,

, ,

,

, 3,

, 3,

(,), if
2

(,), otherwise
2

i

i

i

i

i d d

i d d

i d

i d d

i d d

pbest lbest
N pbest lbest r rmp

x
pbest lbest

N pbest lbest









− +

− +

+
− 

= 
+ −

 (6.3)

In equation 6.3, rmp represents the random mating probability, lbestτ is the local

best position found by the task τ, with τi∈{1,2}. If the random value r is greater than

rmp, pi will generate a new xi,d using the lbest of its task. Otherwise, pi will use the lbest

of the other task, facilitating KT from one task to the current one. Additionally, to

135

control the frequency of KT the value of rmp is adjusted during the evolution process

of MBDPSO using a linearly increasing strategy.

min max min()

g
rmp rmp rmp rmp

G
= +  −

 (6.4)

Where rmpmin and rmpmax represent the minimum and maximum values of rmp,

respectively, g is the current iteration number, and G is the total number of iterations in

the entire evolution process. Gradually increasing the value of rmp helps particles focus

more on learning from their tasks at the beginning and then facilitates KT later on.

Algorithm 1 Particle Position Update for MBDPSO

Input: The ith particle to be updated pi, the total number of features

D, the current position xi of pi, the personal best position pbesti

found by pi so far

Output: The updated particle pi

Begin

1 For j = 1 to D Do

2 If xi,j meets the conditions of feature fixation Then

2 xi,j ← pbesti,j;

4 Else

5 Update xi,j with Eq. (6.4);

6 End If

7 End For

8 Return pi;

End

The strategy for MBDPSO to update particle positions is described in Algorithm 1.

For each dimension xi,j of xi, if xi,j meets the conditions of feature selection mentioned

in Section 6.2.2, its selection state will be fixed and directly use the value of pbesti,j. If

xi,j is not fixed, then it will be updated adopting the assortative mating in Eq. (6.4).

6.3.3 Complete MBDPSO

The complete implementation of MBDPSO is described in Algorithm 2. It begins

with sorting all features based on their SU values with the class labels. Then, it

initializes the search directions, assigns tasks, and initializes the positions of each

particle. In each iteration, particles search for the optimal solution based on their

respective task directions. Through vertical cultural transmission, particles can change

their tasks by utilizing knowledge from other tasks when generating new positions. The

136

evaluation of particles depends on their tasks, with particles in the first task focusing

on promising features, and those in the second task considering the entire feature set.

After each iteration, the local best (lbest) and global best (gbest) for each task are

updated. Finally, when the maximum evaluation count is reached, MBDPSO returns

gbest and terminates the algorithm.

Algorithm 2 MBDPSO

Input: The total number of features D, the number of promising features K, the

maximum number of generations G, the size of the swarm P, the maximum

number of fitness evaluations MAX_FE

Output: The global optimal solution gbest found by the swarm

Begin

1 Rank features with SU and generate two tasks;

2 Initialize search direction with Eq. (6.2);

3 Randomly assign a task for each particle;

4 Randomly initialize the position x of each particle;

5 Set the number of fitness evaluations FEs ← 0;

6 g ← 1;

7 While FEs < MAX_FE Do

8 For i = 1 to P Do

9 Update xi of particle pi with Algorithm 1;

10 Employ vertical cultural transmission to pi;

11 Evaluate xi according to τi and then update pbesti;

12 End For

13 Update lbest1, lbest2, and gbest;

14 g ← g + 1;

15 End while

16 Return gbest;

End

The time complexity of MBDPSO is O(G×P×(Tu+Te)), where G is the maximum

number of iterations, P is the population size, Tu is the time complexity for updating

each particle's new position, and Te is the time complexity for evaluating each particle.

With the feature fixation technique, Tu is less than O(D) since not all features need to

be updated. Additionally, using the k-nearest neighbors (k-NN) method for evaluating

candidate solutions in classification problems [297], with S samples in the dataset, the

time complexity of k-NN is O(S2K) in the first task where only K (K<D) promising

137

features are considered. Overall, the time complexity is greater than O(S2K) but less

than O(S2D).

6.4 Experiment Results and Discussion

In this section, experiments are conducted to evaluate the performance of the

proposed MBDPSO algorithm. Ten commonly used feature selection datasets are

employed to compare MBDPSO with other Particle Swarm Optimization (PSO)-based

feature selection algorithms.

6.4.1 Datasets

Basic information for the ten public datasets is listed here, with “#” representing

the number of respective items, as detailed in Table I. All datasets used are for

classification problems and are sourced from [271] and [276]. These datasets include

face image data and biological data, characterized by small sample sizes and large

numbers of features. Therefore, the classification on these datasets poses a challenging

task. Additionally, the datasets used contain both discrete and continuous data, allowing

for comprehensive testing of MBDPSO's performance across different data types

without the need for a specific design for each data type.

6.4.2 Experimental Setup

Six Particle Swarm Optimization (PSO)-based feature selection algorithms were

selected for comparison to test the performance of the proposed MBDPSO algorithm.

BPSO [279] serves as the baseline method, being the first PSO algorithm applicable to

feature selection problems. BBPSO [272] is a widely used PSO variant that, after simple

discretization, can be employed for feature selection. MIBBPSO [266], ISBPSO [267],

and HFS-C-P [268] are recently proposed PSO-based algorithms that have shown good

performance on high-dimensional feature selection problems. BBPSO-ACJ-BDFF

[269] is a specific implementation version of the BDFF framework, demonstrating good

search performance on high-dimensional feature sets. The parameter settings for the

algorithms used for comparison are consistent with those in their original papers.

However, for fair comparison, the maximum fitness evaluation times (MAX_FE) was

limited for each algorithm to 5000, as the values of the population size P differ across

138

algorithms. For MBDPSO, P was set to 20, the value of rmp ranges from 0 to 0.6, and

K is set to 0.2D.

Table 6.1 Basic information of 10 data sets

Dateset #Samples #Features #Classes Data Type

Colon 62 2000 2 discrete

WarpAR10P 130 2400 10 continuous

GLIOMA 50 4434 4 continuous

Leukemia_1 72 5327 3 discrete

9_Tumor 60 5726 9 continuous

TOX_171 171 5748 4 continuous

Brain_Tumor_1 90 5920 5 continuous

Nci9 60 9712 9 discrete

Arcene 200 10000 2 continuous

Orlraws10P 100 10304 10 continuous

K-NN was chosen as the classifier for the classification problem, with the

parameter k set to 5. In the experiment, 70% of the samples from each dataset were used

as the training dataset, while the remaining 30% were used as the testing dataset. A 5-

fold cross-validation method was employed, using k-NN to evaluate the classification

accuracy of all algorithms on the training dataset during the training process. Then,

during the testing process, the best feature subset found by each algorithm was tested

on the testing dataset to obtain the classification accuracy for comparison using k-NN.

To reduce experimental errors, each algorithm was independently run 20 times with

different random seeds. Wilcoxon rank-sum test was employed 错误!未找到引用源。

to analyze significant differences between MBDPSO and other algorithms, with a

significance level set to 0.05. Additionally, Feature Selection Toolbox 3 [281], an open-

source library based on C++, which implemented all algorithms on a platform with an

Intel Core i7-10700F CPU @2.90GHz and a total memory of 8GB was used.

6.4.3 Compare the results and discussion

In Table II, the average classification accuracy of the best feature subset found by

MBDPSO and other comparison algorithms in 20 runs on 10 public datasets is recorded.

The numbers in parentheses indicate the ranking of the algorithms. Symbols “+” , “≈”,

and “-” indicate whether MBDPSO achieved significantly higher, similar, or

significantly lower classification accuracy compared to the comparison algorithms,

139

respectively. Among all algorithms, MBDPSO exhibited the best classification

accuracy performance. On 9 out of 10 datasets, MBDPSO demonstrated higher or

similar classification accuracy compared to BPSO, BBPSO, MIBBPSO, and HFS-C-P.

Compared to ISBPSO, MBDPSO performed significantly better on 4 datasets and

similarly on 4 datasets. Additionally, MBDPSO outperformed BBPSO-ACJ-BDFF on

6 datasets, achieving lower results on only 2 datasets. Moreover, bold numbers indicate

the best classification accuracy among all algorithms in Table II. MBDPSO found 5 out

of the 10 best results among all algorithms, the highest among all algorithms. The rank

sum of algorithms on the 10 datasets was also calculated to demonstrate their overall

performance. Across all datasets, MBDPSO had a rank sum of 24, significantly lower

than other algorithms.

Table 6.2. Classification accuracy of MBDPSO and other comparative algorithms on 10

datasets (bold numbers indicate the best results).

Dataset MDBPSO BPSO BBPSO MIBBPSO ISBPSO HFS-C-P
BBPSO-

ACJ-BDFF

Colon 0.737 (1) 0.695 (5, +) 0.689 (6, +) 0.674 (7, +) 0.705 (2, ≈) 0.700 (3, +) 0.697 (4, +)

WarpAR10P 0.540 (2) 0.401 (7, +) 0.416 (6, +) 0.458 (5, +) 0.510 (4, +) 0.515 (3, +) 0.630 (1, –)

GLIOMA 0.753 (1) 0.717 (3, +) 0.714 (4, +) 0.714 (4, +) 0.703 (7, +) 0.728 (2, ≈) 0.706 (6, +)

Leukemia_1 0.954 (3) 0.939 (5, ≈) 0.965 (1, ≈) 0.946 (4, ≈) 0.930 (6, ≈) 0.861 (7, +) 0.959 (2, ≈)

9_Tumor 0.391 (7) 0.430 (6, –) 0.445 (4, –) 0.448 (3, –) 0.452 (2, –) 0.439 (5, –) 0.489 (1, –)

TOX_171 0.711 (1) 0.627 (7, +) 0.698 (5, ≈) 0.707 (2, ≈) 0.705 (3, ≈) 0.705 (4, ≈) 0.674 (6, +)

Brain_Tumor_1 0.791 (1) 0.766 (6, +) 0.761 (7, +) 0.780 (3, ≈) 0.773 (4, +) 0.786 (2, ≈) 0.768 (5, +)

Nci9 0.486 (1) 0.370 (7, +) 0.380 (6, +) 0.389 (4, +) 0.420 (2, +) 0.418 (3, +) 0.384 (5, +)

Arcene 0.817 (2) 0.807 (3, ≈) 0.803 (4, ≈) 0.801 (5, ≈) 0.829 (1, ≈) 0.754 (7, +) 0.788 (6, +)

Orlraws10P 0.875 (5) 0.873 (6, ≈) 0.870 (7, ≈) 0.880 (3, ≈) 0.897 (1, –) 0.888 (2, ≈) 0.875 (4, ≈)

+/≈/- NA 6/3/1 5/4/1 4/5/1 4/4/2 5/4/1 6/2/2

Rank Sum 24 55 50 40 32 38 40

In addition to classification accuracy, the number of selected features is also a

crucial indicator in feature selection. Table III presents the average number of selected

features in the best feature subset found by each algorithm, where symbols “+”, “≈”,

and “-” indicate whether MBDPSO significantly reduced, was similar to, or

significantly increased the number of selected features compared to the comparison

algorithms, respectively. MBDPSO found feature subsets much smaller than BPSO,

BBPSO, MIBBPSO, and ISBPSO on all datasets. Compared to HFS-C-P, MBDPSO

140

required fewer features on 7 datasets and a similar number on the Arcene dataset. On 9

out of 10 datasets, MBDPSO found feature subsets much smaller than BBPSO-ACJ-

BDFF. While MBDPSO selected more features than BBPSO-ACJ-BDFF on the

WarpAR10P dataset, it still selected significantly fewer features compared to other

comparison algorithms. Overall, MBDPSO found the smallest feature subset on 6 out

of 10 datasets and achieved a rank sum of 14, indicating its superior performance.

Table 6.3 Average number of selected features by algorithms on 10 datasets.

Dataset MDBPSO BPSO BBPSO MIBBPSO ISBPSO HFS-C-P
BBPSO-

ACJ-BDFF

Colon 152.7 (1) 1206.9 (7, +) 996.2 (6, +) 624.7 (4, +) 292.5 (3, +) 243.3 (2, +) 671.3 (5, +)

WarpAR10P 96.7 (2) 1488.6 (7, +) 1191.7 (6, +) 506.4 (5, +) 343.8 (3, +) 374.2 (4, +) 21.9 (1, –)

GLIOMA 538.4 (1) 2700.8 (7, +) 2199.8 (6, +) 1943.4 (5, +) 1694.0 (4, +) 666.4 (2, +) 1321.7 (3, +)

Leukemia_1 590.4 (2) 3290.2 (7, +) 2651.8 (5, +) 2918.0 (6, +) 2143.2 (4, +) 218.0 (1, –) 1124.0 (3, +)

9_Tumor 610.4 (1) 3532.1 (6, +) 2859.3 (5, +) 2798.6 (4, +) 1142.9 (2, +) 4326.0 (7, +) 1198.7 (3, +)

TOX_171 448.0 (2) 3582.2 (7, +) 2872.0 (6, +) 1280.6 (4, +) 653.8 (3, +) 204.1 (1, –) 1375.4 (5, +)

Brain_Tumor_1 454.6 (1) 3638.7 (7, +) 2967.2 (6, +) 1500.9 (4, +) 1365.9 (3, +) 1242.2 (2, +) 1977.4 (5, +)

Nci9 500.6 (1) 5789.1 (7, +) 4857.4 (6, +) 3263.5 (4, +) 1412.5 (2, +) 2524.1 (3, +) 3705.9 (5, +)

Arcene 661.7 (2) 6176.4 (7, +) 4991.2 (6, +) 4276.7 (5, +) 2836.1 (4, +) 616.5 (1, ≈) 1301.4 (3, +)

Orlraws10P 867.6 (1) 5905.7 (7, +) 5133.7 (6, +) 3454.4 (3, +) 1613.8 (2, +) 3522.8 (4, +) 4125.7 (5, +)

+/≈/- NA 10/0/0 10/0/0 10/0/0 10/0/0 7/1/2 9/0/1

Rank Sum 14 69 58 44 30 27 38

Table 6.4 Comparison of running time

Dataset MDBPSO BPSO BBPSO MIBBPSO ISBPSO HFS-C-P
BBPSO-

ACJ-BDFF

Colon 0.26 (3) 0.45 (6, +) 0.36 (5, +) 0.46 (7, +) 0.15 (1, –) 0.15 (2, –) 0.29 (4, +)

WarpAR10P 0.91 (4) 1.57 (6, +) 1.26 (5, +) 14.84 (7, +) 0.72 (2, –) 0.74 (3, –) 0.66 (1, –)

GLIOMA 0.76 (1) 1.54 (6, +) 1.22 (5, +) 7.92 (7, +) 0.98 (4, +) 0.77 (2, ≈) 0.94 (3, +)

Leukemia_1 1.47 (3) 2.46 (6, +) 1.91 (5, +) 7.97 (7, +) 1.60 (4, +) 0.81 (1, –) 1.18 (2, –)

9_Tumor 1.68 (3) 2.65 (5, +) 2.05 (4, +) 19.07 (7, +) 0.91 (1, –) 3.75 (6, +) 1.46 (2, –)

TOX_171 3.25 (3) 6.07 (6, +) 4.61 (5, +) 148.27 (7, +) 1.58 (2, –) 0.69 (1, –) 3.32 (4, ≈)

Brain_Tumor_1 1.82 (3) 3.43 (6, +) 2.66 (5, +) 43.76 (7, +) 1.39 (1, –) 1.74 (2, ≈) 2.12 (4, +)

Nci9 3.15 (2) 6.98 (6, +) 5.43 (5, +) 8.97 (7, +) 1.79 (1, –) 4.34 (3, +) 4.41 (4, +)

Arcene 7.96 (3) 14.83 (6, +) 11.95 (5, +) 451.34 (7, +) 9.27 (4, +) 7.87 (2, ≈) 7.04 (1, ≈)

Orlraws10P 4.95 (2) 8.50 (6, +) 6.88 (4, +) 170.88 (7, +) 2.86 (1, –) 8.39 (5, +) 5.89 (3, +)

+/≈/- NA 10/0/0 10/0/0 10/0/0 3/0/7 3/3/4 5/2/3

Rank Sum 27 59 48 70 21 27 28

141

The average running time of 20 runs was also recorded and the results are presented

in Table IV. Symbols “+” and “_” denote significantly more or less time spent by

MBDPSO compared to the respective algorithms, while “≈” indicates no significant

difference between MBDPSO and the compared algorithms. MBDPSO required less

time to complete the search on these 10 datasets compared to BPSO, BBPSO, and

MIBBPSO. Compared to BBPSO-ACJ-BDFF, MBDPSO had shorter running times on

5 datasets and similar times on the other 2 datasets. Additionally, MBDPSO exhibited

similar running times to HFS-C-P, with a rank sum of 27. Compared to ISBPSO,

MBDPSO required less time to search for solutions. However, in most cases, MBDPSO

achieved higher classification accuracy and fewer selected features.

6.4.4 Composition Analysis of MBDPSO

In this subsection, the two components of MBDPSO are further analyzed: the

BDFF framework and the EMTO technique. Firstly, the MBDPSO-w/o-EMTO variant

was designed, retaining only the second task of MBDPSO while eliminating KT

between different tasks. Then, the BDFF component was removed from the particle

update process, resulting in the MBDPSO-w/o-BDFF variant. The experimental results

are presented in Table V.

Compared to MBDPSO-w/o-EMTO, MBDPSO exhibited an 8.22% improvement

in classification accuracy and, on average, reduced the number of selected features by

76.66%. In 7 out of 10 datasets, MBDPSO significantly enhanced its classification

accuracy through the integration of the EMTO technique. Across all datasets, MBDPSO

consistently reduced the number of selected features relative to MBDPSO-w/o-EMTO.

Hence, the EMTO component in MBDPSO generally aids particles in discovering

smaller feature subsets and enhancing classification performance. Compared to

MBDPSO-w/o-BDFF, MBDPSO required significantly fewer selected features in 8

datasets. Overall, MBDPSO achieved an average improvement of 1.30% in

classification accuracy and reduced the number of selected features by an average of

26.14% across 10 datasets. Thus, the BDFF component used in MBDPSO can reduce

the number of selected features while slightly improving classification performance.

142

Table 6.5. Experimental results of component analysis.

Dataset
MBDPSO MBDPSP-w/o-EMTO MBDPSP-w/o-BDFF

Accuracy Features Accuracy Features Accuracy Features

Colon 0.737 152.7 0.666 (+) 797.7 (+) 0.726 (=) 197.4 (+)

WarpAR10P 0.540 96.7 0.411 (+) 431.4 (+) 0.525 (=) 232.6 (+)

GLIOMA 0.753 538.4 0.711 (+) 1919.1 (+) 0.733 (=) 702.5 (+)

Leukemia_1 0.954 590.4 0.935 (=) 1586.4 (+) 0.959 (=) 535.6 (=)

9_Tumor 0.391 610.4 0.450 (–) 2577.8 (+) 0.386 (=) 580.5 (=)

TOX_171 0.711 448.0 0.673 (+) 1815.9 (+) 0.700 (=) 913.3 (+)

Brain_Tumor_1 0.791 454.6 0.761 (+) 2303.5 (+) 0.789 (=) 592.7 (+)

Nci9 0.486 500.6 0.366 (+) 4351.9 (+) 0.468 (=) 964.5 (+)

Arcene 0.817 661.7 0.797 (+) 2376.5 (+) 0.824 (=) 996.7 (+)

Orlraws10P 0.875 867.6 0.873 (=) 4531.4 (+) 0.872 (=) 1037.1 (+)

+/≈/- 7/2/1 10/0/0 0/10/0 8/2/0

6.4.5 Impact of Parameter K

Table 6.6. Experimental results of different variants of MBDPSO with various K values

Dataset
Accuracy Features

K = 0.1D K = 0.2D K = 0.3D K = 0.4D K = 0.5D K = 0.1D K = 0.2D K = 0.3D K = 0.4D K = 0.5D

Colon 0.661 (5) 0.737 (1) 0.732 (2) 0.729 (3) 0.713 (4) 683.8 (5) 152.7 (1) 253.7 (2) 339.5 (3) 497.9 (4)

WarpAR10P 0.594 (1) 0.540 (3) 0.575 (2) 0.516 (5) 0.521 (4) 36.4 (1) 96.7 (3) 84.6 (2) 313.6 (5) 254.0 (4)

GLIOMA 0.753 (2) 0.753 (1) 0.708 (5) 0.708 (3) 0.708 (4) 104.8 (1) 538.4 (2) 1407.5 (4) 987.9 (3) 1497.9 (5)

Leukemia_1 0.946 (5) 0.954 (2) 0.965 (1) 0.952 (3) 0.948 (4) 688.9 (2) 590.4 (1) 889.6 (3) 1276.6 (4) 1350.9 (5)

9_Tumor 0.373 (5) 0.391 (4) 0.480 (2) 0.500 (1) 0.457 (3) 291.3 (1) 610.4 (2) 921.1 (3) 965.4 (4) 1328.2 (5)

TOX_171 0.708 (2) 0.711 (1) 0.670 (4) 0.638 (5) 0.678 (3) 164.1 (1) 448.0 (2) 878.2 (3) 1052.4 (4) 1268.9 (5)

Brain_Tumor_1 0.796 (1) 0.791 (2) 0.779 (4) 0.775 (5) 0.780 (3) 223.9 (1) 454.6 (2) 726.7 (3) 1087.6 (4) 1245.5 (5)

Nci9 0.520 (1) 0.486 (2) 0.441 (3) 0.395 (5) 0.395 (4) 348.6 (1) 500.6 (2) 991.8 (3) 1750.7 (5) 1577.3 (4)

Arcene 0.847 (1) 0.817 (2) 0.801 (4) 0.796 (5) 0.802 (3) 403.1 (1) 661.7 (2) 2163.1 (3) 2848.6 (5) 2199.1 (4)

Orlraws10P 0.877 (4) 0.875 (5) 0.885 (3) 0.900 (1) 0.900 (1) 1126.6 (2) 867.6 (1) 1145.7 (3) 1374.5 (4) 2407.8 (5)

Rank Sum 27 23 30 36 33 16 18 29 41 46

The number of hopeful features, K, is a crucial parameter in MBDPSO,

determining the size of the hopeful feature subset in the first task of MBDPSO. On one

hand, larger values of K consistently slow down the search for hopeful features. On the

other hand, smaller values of K may weaken the diversity of the population. To

investigate the impact of K, different variants of MBDPSO was compared with varying

K values, and the experimental results are listed in Table VI. Overall, MBDPSO

performs best in terms of classification accuracy and ranks when K=0.2D, with a

ranking sum of 23. As the value of K decreases, the number of selected features also

143

decreases in most cases. Therefore, smaller values of K can effectively reduce the

number of selected features discovered by MBDPSO. Taking into account both

classification accuracy and the number of selected features, the value of K is suggested

to be set to 0.2D.

6.5 Conclusion

The chapter introduces MBDPSO, which combines EMTO technology and the

BDFF framework for high-dimensional feature selection. Initially, MBDPSO devises

two correlated tasks to leverage prior knowledge from the BDFF framework for feature

selection. Subsequently, MBDPSO proposes a KT strategy, effectively exchanging

knowledge between the tasks, thereby enhancing its performance. Experimental results

on 10 public classification datasets demonstrate that MBDPSO can find smaller feature

subsets with higher classification accuracy compared to other algorithms [265].

However, despite the effectiveness of the KT strategy in MBDPSO, each task can

only learn from the local optimum of the other task, limiting the scope of KT. For future

work, advanced KT techniques such as orthogonal KT [236], meta-knowledge transfer

[234], and bi-objective KT [235] could be considered to further enhance the

performance of MBDPSO on complex feature selection problems. Additionally,

comparing MBDPSO with more recent algorithms, especially non-PSO algorithms,

could provide a more comprehensive validation of its performance.

144

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions

In conclusion, this thesis has done research in both theoretical research and

application research in the field of optimization.

The theoretical contributions focus on integrating KT into EC for efficiently

solving optimization problems, addressing challenges in DOP with the HIDE algorithm,

and shifting the perspective in MTOP with the MCOP algorithm. These theoretical

researches provide valuable frameworks for tackling complex optimization challenges.

On the application aspect, this thesis has presented effective solutions to real-world

problems. In DOP applications, the KLRP-MA algorithm offers a robust solution to the

dynamic nature of urban bike-sharing systems, ensuring swift re-optimization of

planned routes and accelerating convergence through KT mechanisms. In MTOP

applications, the integration of MTOP with the BDFF framework within the MBDPSO

algorithm significantly enhances feature selection capabilities across multiple tasks,

demonstrating improved performance in solving complex optimization problems.

7.2 Future Work

In the research area of DOP, future research endeavors can explore both theoretical

and application directions. On the theoretical front, investigating strategies for

subpopulations to independently explore partial search spaces within collaborative

environments holds promise for enhancing algorithm efficiency. Furthermore,

addressing challenges related to multi-modal, multi-objective, and expensive

characterics could encourage more comprehensive solutions in dynamic optimization.

Application-wise, integrating data-driven optimization techniques and multi-objective

optimization strategies into DOP algorithms could facilitate their deployment in real-

world scenarios, such as urban logistics and resource management.

Future research directions of MTOP also encompass theoretical advancements and

145

practical applications. Theoretical investigations may delve into advancing KT

techniques within MTOP algorithms to enable more effective learning across multiple

tasks. Moreover, exploring the integration of MTOP with engineering applications like

logistics, supply chain management, and traffic optimization holds promise for

addressing complex real-world challenges. Additionally, further research efforts could

focus on extending the scope of MTOP algorithms to accommodate diverse

optimization objectives and constraints in practical configurations.

In future research, techniques from dynamic optimization and multi-task

optimization can be mutually beneficial to improve the efficiency and effectiveness of

solving complex optimization problems. Although current searches in IEEE Xplore do

not reveal papers combining dynamic and multi-task, this is undoubtedly a promising

direction. From the problem perspective, dynamic optimization can be seen as a multi-

task optimization problem that changes over time, while multi-task optimization can be

viewed as dynamic optimization in the spatial dimension. Real-time decision-making

methods, adaptability techniques, and the use of historical data in dynamic optimization

can enhance the real-time response and adaptability of multi-task optimization systems.

Conversely, multi-task optimization techniques such as multi-objective optimization

algorithms, knowledge transfer, and co-evolution mechanisms can provide valuable

solutions and insights for dynamic optimization. Additionally, common techniques like

metaheuristic algorithms, reinforcement learning, and machine learning methods are

crucial in handling complex data relationships and feature selection in dynamic and

multi-task environments. For example, in intelligent transportation systems, the

combination of these two approaches can improve real-time traffic signal adjustments

and overall traffic flow balance. Therefore, further exploring and integrating these

optimization techniques will provide strong support for addressing increasingly

complex and dynamic optimization challenges in the real world.

146

BIBLIOGRAPHY

[1] A. Telikani, A. Tahmassebi, W. Banzhaf, and A. H. Gandomi, “Evolutionary

machine learning: a survey,” ACM Computing Surveys, vol. 54, no. 8, pp. 1-35,

Nov. 2022.

[2] X. Pang, Y. Ge, and K. Wang, “Genetic algorithm for patient assignment

optimization in cloud healthcare system,” in Proc. International Conference on

Health Information Science, Oct. 2022, vol. 13705, pp. 1-12.

[3] S. Supriya, S. Siuly, H. Wang, and Y. Zhang, “EEG sleep stages analysis and

classification based on weighed complex network features,” IEEE Transactions

on Emerging Topics in Computational Intelligence, vol. 5, no. 2, pp. 236-246,

Apr. 2021.

[4] Y. F. Ge, H. Wang, J. Cao, and Y. Zhang, “An information-driven genetic

algorithm for privacy-preserving data publishing,” in Proc. International

Conference on Health Information Science, Nov. 2022, pp. 1-15.

[5] Y. F. Ge, E. Bertino, H. Wang, J. Cao, and Y. Zhang, “Distributed cooperative

coevolution of data publishing privacy and transparency,” ACM Transactions

on Knowledge Discovery from Data, vol. 18, no. 1, pp. 1-23, Jan. 2024.

[6] Y. F. Ge, M. Orlowska, J. Cao, H. Wang, and Y. Zhang, “MDDE: multitasking

distributed differential evolution for privacy-preserving database fragmentation,”

The VLDB Journal, vol. 31, pp. 957-975, Sep. 2022.

[7] J. Zhang, H. Li, X. Liu, Y. Luo, F. Chen, H. Wang, and L.Chang, “On efficient

and robust anonymization for privacy protection on massive streaming

categorical information,” IEEE Transactions on Dependable and Secure

Computing, vol. 14, no. 5, pp. 507-520, 1 Sept.-Oct. 2017.

[8] K. Cheng, L. Wang, Y. Shen, H. Wang, Y. Wang, X. Jiang, and H. Zhong,

“Secure k-NN query on encrypted cloud data with multiple keys,” IEEE

Transactions on Big Data, vol. 7, no. 4, pp. 689-702, Oct. 2021.

[9] X. Sun, H. Wang, J. Li, and J. Pei, “Publishing anonymous survey rating data,”

Data Mining and Knowledge Discovery, vol. 23, no. 3, pp. 379-406, Nov. 2011.

[10] M. You, Y. F. Ge, K. Wang, H. Wang, J. Cao, and G. Kambourakis, “TLEF: two-

layer evolutionary framework for t-closeness anonymization,” in Proc. of Web

Information Systems Engineering – WISE, Oct. 2023, vol. 14306, pp. 401-423.

147

[11] E. Kabir, A. Mahmood, H. Wang, and A. Mustafa, “Microaggregation sorting

framework for k-anonymity statistical disclosure control in cloud computing,”

IEEE Transactions on Cloud Computing, vol. 8, no. 2, pp. 408-417, 1 April-

June 2020.

[12] E. Kabir and H. Wang, “A role-involved purpose-based access control model,”

Information Systems Frontiers, vol. 14, pp. 809-822, Jul. 2012.

[13] J. Yin, M. Tang, J. Cao, H. Wang, M. You, and Y. Lin, “Vulnerability

exploitation time prediction: an integrated framework for dynamic imbalanced

learning,” World Wide Web, vol. 25, pp. 401-423, Jan. 2022.

[14] J. Yin, G. Chen, W. Hong, H. Wang, J. Cao, and Y. Miao, “Empowering

vulnerability prioritization: a heterogeneous graph-driven framework for

exploitability prediction,” in Proc. Web Information Systems Engineering –

WISE, Oct. 2023, pp. 401-423.

[15] H. Wang, Y. Zhang, and J. Cao, “Ubiquitous computing environments and its

usage access control,” in Proc. of of the 1st international conference on Scalable

information systems, New York, May 2006, pp. 47-54.

[16] Y. Qin, Q. Z. Sheng, N. J. G. Falkner, S. Dustdar, H. Wang, and A. V. Vasilakos,

“When things matter: a data-centric view of the internet of things,” arXiv, Jul.

2014. [Online]. Available: https://arxiv.org/abs/1407.2704.

[17] M. Foth, I. Anastasiu, M. Mann, and P. Mitchell, “From automation to autonomy:

technological sovereignty for better data care in smart cities,” Automating Cities,

pp. 319-343, Jan. 2021.

[18] J. Du, J. Rong, H. Wang, and Y. Zhang, “Neighbor-aware review helpfulness

prediction,” Decision Support Systems, vol. 148, pp. 113581, Sep. 2021.

[19] H. Jiang, R. Zhou, L. Zhang, H. Wang, and Y. Zhang., “Sentence level topic

models for associated topics extraction,” World Wide Web, vol. 22, no. 6, pp.

2545-2560, Nov. 2019.

[20] S. Vandehende, S. Georgoulis, W. V. G. M. Proesmans, D. Dai, and L. V. Gool,

“Multi-Task learning for dense prediction tasks: a survey,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3614-3633,

Jul. 2022.

[21] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Transactions

on Knowledge and Data Engineering, vol. 34, no. 12, pp. 5586-5609, Dec. 2022.

148

[22] Z. Tan, L. Luo, and J. Zhong, “Knowledge transfer in evolutionary multi-task

optimization: A survey,” Applied Soft Computing, vol. 138, Art. no. 110182,

May 2023.

[23] M. Pelikan, M.W. Hauschild, and P.L. Lanzi, “Transfer learning, soft distance-

based bias, and the hierarchical boa,” in Proc. of the International Conference

on Parallel Problem Solving from Nature, Sep. 2012, pp. 173–183.

[24] N. T. Thanh, S. Yang, and J. Branke, “Evolutionary dynamic optimization: A

survey of the state of the art,” Swarm and Evolutionary Computation, vol. 6, pp.

1-24, Oct. 2012.

[25] Z. H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolutionary

computation for complex continuous optimization,” Artificial Intelligence

Review, vol. 55, pp. 59–110, Jan. 2022.

[26] J. Branke, “Memory enhanced evolutionary algorithms for changing

optimization problems,” in Proc. of the IEEE Congress on Evolutionary

Computation, Jul. 1999, pp. 1875–1882.

[27] K. C. Tan, L. Feng, and M. Jiang, “Evolutionary transfer optimization—a new

frontier in evolutionary computation research,” IEEE Computational

Intelligence Magazine, vol. 16, no. 1, pp. 22–33, Feb. 2021.

[28] M. Pelikan, M. W. Hauschild, and P. L. Lanzi, “Transfer learning, soft distance

based bias, and the hierarchical boa,” in Proc. of the International Conference

on Parallel Problem Solving from Nature, Sep. 2012, pp. 173–183.

[29] L. Feng, Y. S. Ong, A. H. Tan, and I. W. Tsang, “ Memes as building blocks: a

case study on evolutionary optimization + transfer learning for routing

problems,” Memetic Computing, vol. 7, no. 3, pp. 159–180, 2015.

[30] A. Gupta, Y. S. Ong, and L. Feng, “Multifactorial evolution: toward

evolutionary multitasking,” IEEE Transactions on Evolutionary Computation,

vol. 20, no. 3, pp. 343–357, 2015.

[31] L. Feng, W. Zhou, L. Zhou, S. Jiang, J. Zhong, B. Da, Z. Zhu, and Y. Wang, “An

empirical study of multifactorial PSO and multifactorial DE,” in Proc. of 2017

IEEE Congress on Evolutionary Computation, 2017, pp. 921–928.

[32] Y. Chen, J. Zhong, and M. Tan, “A fast memetic multi-objective differential

evolution for multi-tasking optimization,” in Proc. of 2018 IEEE Congress on

Evolutionary Computation, Jul. 2018, pp. 1–8.

149

[33] G. B. Dantzig and N. N. Thapa, Linear Programming 1: Introduction. Berlin,

Germany: Springer-Verlag, 1997.

[34] Z. Dostl, Optimal Quadratic Programming Algorithms: With Applications to

Variational Inequalities. Springer-Verlag, 2009.

[35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:

Cambridge University Press, 2004.

[36] J. H. Holland, “Outline for a logical theory of adaptive system,” Journal of the

Association for Computing Machinery, vol. 3, pp. 297-314, 1962.

[37] D. B. Fogel, Evolutionary computation: Toward a new philosophy of machine

intelligence, IEEE Press Series on Computational Intelligence, 1995.

[38] R. Salomon, “Evolutionary algorithms and gradient search: similarities and

differences,” IEEE Transactions on Evolutionary Computation, vol. 2, no. 2, pp.

45-55, 1998.

[39] A. E. Eiben and J. Smith, “From evolutionary computation to the evolution of

things,” Nature, vol. 521, pp. 476-482, 2015.

[40] R. S. Parpinelli and H. S. Lopes, “New inspirations in swarm intelligence: a

survey,” International Journal of Bio-Inspired Computation, vol. 3, no. 1, pp.

1-16, Feb. 2011.

[41] P. Moscato, “On evolution, search, optimization, genetic algorithms and martial

arts - towards memetic algorithms,” California Inst. Technol. Technical Report

Caltech Concurrent Comput. Prog. Rep. 826, 1989.

[42] A. Gupta and Y. S. Ong, Memetic Computation: The Mainspring of Knowledge

Transfer in a Data-Driven Optimization Era, Springer-Verlag, 2019.

[43] L. Feng, Y. Ong, M. Lim, and I. W. Tsang, “Memetic search with interdomain

learning: A realization between CVRP and CARP,” IEEE Transactions on

Evolutionary Computation, vol. 19, no. 5, pp. 644-658, Oct. 2015.

[44] R. Storn and K. Price, “Differential evolution–A simple and efficient heuristic

for global optimization over continuous spaces,” Journal of Global

Optimization, vol. 11, no. 4, pp. 341-359, Dec. 1997.

[45] S. Das and P. N. Suganthan, “Differential evolution: a survey of the state-of-the-

art,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4-31,

Feb. 2011.

[46] M. Bilal, M. Pant, H. Zaheer, L. G. Hernandez, and A. Abraham, “Differential

150

evolution: A review of more than two decades of research,” Engineering

Applications of Artificial Intelligence, vol. 90, pp. 1-24, Apr. 2020.

[47] J. Ilonen, J. Kamarainen, and J. Lampinen, “Differential evolution training

algorithm for feed-forward neural networks,” Neural Processing Letters, vol.

17, pp. 93–105, Feb. 2003.

[48] N. Karaboga, “Digital IIR filter design using differential evolution algorithm,”

EURASIP Journal on Advanced Signal Processing, vol. 2005, Art. no. 856824,

2005.

[49] S. Chakraborty, A. K. Saha, A. E. Ezugwu, J. O. Agushaka, R. A. Zitar, and L.

Abualigah, “Differential evolution and its applications in image processing

problems: a comprehensive review,” Archives of Computational Methods in

Engineering, vol. 30, pp. 985–1040, 2023.

[50] W. Gong, Z. Cai, and D. Liang, “Engineering optimization by means of an

improved constrained differential evolution,” Computer Methods in Applied

Mechanics and Engineering, vol. 268, pp. 884-904, Jan. 2014.

[51] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of ICNN'95

- International Conference on Neural Networks, Perth, WA, Australia, Nov.

1995, vol.4, pp. 1942-1948.

[52] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in

MHS'95. Proc. of the Sixth International Symposium on Micro Machine and

Human Science, Nagoya, Japan, Oct. 1995, pp. 39-43.

[53] R. C. Eberhart and Y. Shi, “Guest editorial special issue on particle swarm

optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3,

pp. 201-203, Jun. 2004.

[54] X. Yao, “Evolving artificial neural networks,” in Proc. of the IEEE, Sep. 1999,

vol. 87, no. 9, pp. 1423-1447.

[55] R. C. Eberhart and X. Hu, “Human tremor analysis using particle swarm

optimization,” in Proc. of the 1999 Congress on Evolutionary Computation-

CEC99 (Cat. No. 99TH8406), Washington, DC, 1999, vol. 3, pp. 1927-1930.

[56] G. C. Onwubolu and M. Clerc, “Optimal path for automated drilling operations

by a new heuristic approach using particle swarm optimization,” International

Journal of Production Research, vol. 42, no. 3, pp. 473–491, 2004.

[57] B. Liu, L. Wang, and Y. H. Jin, “An effective PSO-based memetic algorithm for

151

flow shop scheduling,” IEEE Transactions on Systems, Man, and Cybernetics:

Part B (Cybernetics), vol. 37, no. 1, pp. 18-27, Feb. 2007.

[58] T. Tsukada, T. Tamura, S. Kitagawa, and Y. Fukuyama, “Optimal operational

planning for cogeneration system using particle swarm optimization,” in Proc.

of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706),

Indianapolis, IN, USA, 2003, pp. 138-143.

[59] P. Moscato, “On evolution, search, optimization, genetic algorithms and martial

arts: toward memetic algorithms,” California Institute of Technology, Technical

Report Caltech Concurrent Computation Program Report 826, 1989.

[60] R. Dawkins, The selfish gene, New York: Oxford University Press, 1976.

[61] N. Krasnogor and J. Smith, “A tutorial for competent memetic algorithms:

model, taxonomy, and design issues,” IEEE Transactions on Evolutionary

Computation, vol. 9, no. 5, pp. 474-488, Oct. 2005.

[62] J. E. Smith, “Coevolving memetic algorithms: a review and progress report,”

IEEE Transactions on Systems, Man, and Cybernetics: Part B (Cybernetics),

vol. 37, no. 1, pp. 6-17, Feb. 2007.

[63] P. Assiroj, H. L. H. S. Warnars, E. Abdurachman, A. I. Kistijantoro, and A.

Doucet, “The implementation of memetic algorithm on image: a survey,”

Journal of Mathematical and Computational Science, vol. 11, pp. 6872-6896,

2021.

[64] R. Kumar and M. Memoria, “A review of memetic algorithm and its application

in traveling salesman,” International Journal on Emerging Technologies, vol.

11, no. 2, pp. 1110-1115, 2020.

[65] Y. F. Ge, Y. J. Gong, S. Kwong, H. Wang, and J. Zhang, “A niching memetic

algorithm for multi-solution traveling salesman problem,” IEEE Transactions

on Evolutionary Computation, vol. 24, no. 3, pp. 508-522, Jun. 2020.

[66] P. Moscato and L. Mathieson, “Memetic algorithms for business analytics and

data science: a brief survey,” Business and Consumer Analytics: New Ideas, P.

Moscato and N. de Vries, Eds. Springer, Cham, 2019, pp. 545-608.

[67] J. Yin, M. Tang, J. Cao, and H. Wang, “Apply transfer learning to cybersecurity:

Predicting exploitability of vulnerabilities by description,” Knowledge-Based

Systems, vol. 210, Art. no. 106529, Dec. 2020.

[68] N. Krasnogor and J. Smith, “Multimeme algorithms for the structure prediction

152

and structure comparison of proteins,” in Proc. of the Genetic and Evolutionary

Computation Conference (GECCO), 2002, pp. 42-44.

[69] A. Quintero and S. Pierre, “A memetic algorithm for assigning cells to switches

in cellular mobile networks,” IEEE Communications Letters, vol. 6, no. 11, pp.

484-486, Nov. 2002.

[70] X. Yao, Knowledge Incorporation in Evolutionary Computation. Berlin,

Germany: Springer-Verlag, 2005.

[71] Y. F. Ge, W. J. Yu, J. Cao, H. Wang, Z. H. Zhan, Y. Zhang, and J. Zhang,

“Distributed memetic algorithm for outsourced database fragmentation,” IEEE

Transactions on Cybernetics, vol. 51, no. 10, pp. 4808-4821, Oct. 2021.

[72] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, Oct. 2010.

[73] J. Yin, M. Tang, J. Cao, H. Wang, and M. Alazab, “Knowledge-driven

cybersecurity intelligence: software vulnerability coexploitation behavior

discovery,” IEEE Transactions on Industrial Informatics, vol. 19, no. 4, pp.

5593-5601, Apr. 2023.

[74] J. Kunze, L. Kirsch, I. Kurenkov, A. Krug, J. Johannsmeier, and S. Stober,

“Transfer learning for speech recognition on a budget,” in Proc. of the 2nd

Workshop on Representation Learning for NLP, 2017, pp. 168-177.

[75] C. Sferrazza and R. DAndrea, “Transfer learning for vision-based tactile

sensing,” in Proc. of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2019, pp. 7961-7967.

[76] S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf, “Transfer learning in

natural language processing,” in Proc. of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Tutorials,

2019, pp. 15-18.

[77] K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, “A survey of transfer learning,”

Journal of Big Data, vol. 3, no. 9, May 2016.

[78] S. Marsland, Machine Learning: An Algorithmic Perspective. Chapman & Hall,

2014.

[79] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press,

2016.

[80] L. Shao, F. Zhu, and X. Li, “Transfer learning for visual categorization: A

153

survey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26,

no. 5, pp. 1019-1034, May 2015.

[81] D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine

Learning. Addison-Wesley, 1989.

[82] M. Ansari Ardeh, Y. Mei, and M. Zhang, “Genetic programming with

knowledge transfer and guided search for uncertain capacitated arc routing

problem,” IEEE Transactions on Evolutionary Computation, vol. 26, no. 4, pp.

765-779, Aug. 2022.

[83] Y. Guo, G. Chen, M. Jiang, D. Gong, and J. Liang, “A knowledge guided transfer

strategy for evolutionary dynamic multiobjective optimization,” IEEE

Transactions on Evolutionary Computation, vol. 27, no. 6, pp. 1750-1764, Dec.

2023.

[84] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments-a

survey,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 3, pp.

303-317, Jun. 2005.

[85] H. Fu, P. R. Lewis, B. Sendhoff, K. Tang, and X. Yao, “What are dynamic

optimization problems?” in Proc. of the IEEE Congress on Evolutionary

Computation (CEC), 2014, pp. 1550-1557.

[86] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization using

cooperative coevolution,” Information Sciences, vol. 178, no. 15, pp. 2985-2999,

Aug. 2008.

[87] A. Rakitianskaia and A. P. Engelbrecht, “Cooperative charged particle swarm

optimiser,” in Proc. of IEEE Congress on Evolutionary Computation, 2008, pp.

933–939.

[88] C. K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary paradigm

for dynamic multiobjective optimization,” IEEE Transactions on Evolutionary

Computation, vol. 13, no. 1, Feb. 2009.

[89] A. B. Hashemi and M. R. Meybodi, “Cellular PSO: A PSO for dynamic

environments,” in Proc. of International Symposium on Intelligence

Computation and Applications, 2009, pp. 422–433.

[90] V. Noroozi, A. B. Hashemi, and M. R. Meybodi, “Cellularde: A cellular based

differential evolution for dynamic optimization problems,” in Proc. of

International Conference on Adaptive and Natural Computing Algorithms, 2011,

154

pp. 340–349.

[91] Y. Jin, H. Wang, and C. Sun, “Knowledge transfer in data-driven evolutionary

optimization,” Data-Driven Evolutionary Optimization, vol. 975, pp. 273-294,

Jun. 2021.

[92] A. Sharifi, V. Noroozi, M. Bashiri, A. B. Hashemi, and M. R. Meybodi, “Two

phased cellular PSO: A new collaborative cellular algorithm for optimization in

dynamic environments,” in Proc. of IEEE Congress on Evolutionary

Computation, 2012, pp. 1–8.

[93] S. X. Yang and C. H. Li, “A clustering particle swarm optimizer for locating and

tracking multiple optima in dynamic environments,” IEEE Transactions on

Evolutionary Computation, vol. 14, pp. 959–974, Dec. 2010.

[94] C. H. Li and S. X. Yang, “A general framework of multipopulation methods with

clustering in undetectable dynamic environments,” IEEE Transactions on

Evolutionary Computation, vol. 16, pp. 556–577, Aug. 2012.

[95] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A competitive clustering

particle swarm optimizer for dynamic optimization problems,” Swarm

Intelligence, vol. 6, pp. 177–206, Jun. 2012.

[96] U. Halder, S. Das, and D. Maity, “A cluster-based differential evolution

algorithm with external archive for optimization in dynamic environments,”

IEEE Transactions on Cybernetics, vol. 43, pp. 881–897, Jun. 2013.

[97] C. H. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. X. Yang, “An

adaptive multipopulation framework for locating and tracking multiple optima,”

IEEE Transactions on Evolutionary Computation, vol. 20, no. 4, pp. 590–605,

Aug. 2016.

[98] X. Luo, Z. Wang, R. Guan, Z. Zhan, and Y. Gao, “A distributed multiple

populations framework for evolutionary algorithm in solving dynamic

optimization problems,” IEEE Access, vol. 7, pp. 44372–44390, Mar. 2019.

[99] W. W. Zhang, W. Z. Zhang, G. G. Yen, and H. L. Jing, “A cluster-based clonal

selection algorithm for optimization in dynamic environment,” Swarm and

Evolutionary Computation, vol. 50, Art. no. 100454, Nov. 2019.

[100] J. Branke, T. Kaussler, C. Smidt, and H. Schmeck, “A multi-population

approach to dynamic optimization problems,” in Proc. of Evolutionary Design

and Manufacture, 2000, pp. 299–307.

155

[101] C. H. Li and S. X. Yang, “Fast multi-swarm optimization for dynamic

optimization problems,” in Proc. of 4th International Conference on Natural

Computation, 2008, pp. 624–628.

[102] Z. H. Zhan, X. F. Liu, H. Zhang, Z. Yu, J. Weng, Y. Li, T. Gu, and J. Zhang,

“Cloudde: a heterogeneous differential evolution algorithm and its distributed

cloud version,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,

no. 3, pp. 704–716, Mar. 2017.

[103] Y. Li, Z. Zhan, H. Jin, and J. Zhang, “Cloudde-based distributed differential

evolution for solving dynamic optimization problems,” in Proc. of Tenth

International Conference on Intelligent Control and Information Processing,

2019, pp. 94–99.

[104] L. Cao, L. Xu, and E. D. Goodman, “A collaboration-based particle swarm

optimizer with history-guided estimation for optimization in dynamic

environments,” Expert Systems with Applications, vol. 120, pp. 1–13, Apr. 2019.

[105] W. Liu, Y. Zhou, B. Li, and K. Tang, “Cooperative co-evolution with soft

grouping for large scale global optimization,” in Proc. of IEEE Congress on

Evolutionary Computation, 2019, pp. 318–325.

[106] S. H. Wu, K. J. Du, Z. H. Zhan, H. Wang, and J. Zhang, “Historical information-

based differential evolution for dynamic optimization problems,” in Proc. of

IEEE Congress on Evolutionary Computation, 2021, pp. 1-8.

[107] Y. G. Woldesenbet and G. G. Yen, “Dynamic evolutionary algorithm with

variable relocation,” IEEE Transactions on Evolutionary Computation, vol. 13,

no. 3, pp. 500–513, Jun. 2009.

[108] Z. H. Zhan, J. J. Li, and J. Zhang, “Adaptive particle swarm optimization with

variable relocation for dynamic optimization problems,” in Proc. of IEEE

Congress on Evolutionary Computation, IEEE, 2014, pp. 1565–1570.

[109] J. Wang, W. Zhang, and J. Zhang, “Cooperative differential evolution with

multiple populations for multiobjective optimization,” IEEE Transactions on

Cybernetics, vol. 46, no. 12, pp. 2848–2861, Dec. 2016.

[110] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive particle swarm

optimization,” IEEE Transactions on Systems, Man, and Cybernetics - Part B:

Cybernetics, vol. 39, no. 6, pp. 1362–1381, Dec. 2009.

[111] Z. H. Zhan, J. Zhang, Y. Li, and Y. H. Shi, “Orthogonal learning particle swarm

156

optimization,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 6,

pp. 832–847, Dec. 2011.

[112] X. F. Liu, Z. H. Zhan, and J. Zhang, “Neural network for change direction

prediction in dynamic optimization,” IEEE Access, vol. 6, pp. 72649–72662,

Nov. 2018.

[113] G. W. F. Hegel, The Science of Logic, transl. A. V. Miller, Humanities Press,

1969.

[114] L. J. Wu, L. Shi, Z. H. Zhan, K. K. Lai, and J. Zhang, “A buffer-based ant colony

system approach for dynamic cold chain logistics scheduling,” IEEE

Transactions on Emerging Topics in Computational Intelligence, vol. 6, no. 6,

pp. 1438-1452, Dec. 2022.

[115] X. Sui, Y. Tang, H. He, and J. Wen, “Energy-storage-based low-frequency

oscillation damping control using particle swarm optimization and heuristic

dynamic programming,” IEEE Transactions on Power Systems, vol. 29, no. 5,

pp. 2539-2548, Sep. 2014.

[116] L. Rosenberg, N. Pescetelli, and G. Willcox, “Artificial swarm intelligence

amplifies accuracy when predicting financial markets,” in Proc. of 2017 IEEE

8th Annual Ubiquitous Computing, Electronics and Mobile Communication

Conference (UEMCON), New York, NY, USA, 2017, pp. 58-62.

[117] L. Wang, Z. Luo, H. Tang, S. Guo, and X. Li, “A Novel model for dynamic

manufacturing service collaboration on industrial internet,” IEEE Transactions

on Industrial Informatics, vol. 19, no. 12, pp. 11788-11799, Dec. 2023.

[118] Z. Lin, J. Ma, J. Duan, S. E. Li, H. Ma, B. Cheng, and T. H. Lee, “Policy iteration

based approximate dynamic programming toward autonomous driving in

constrained dynamic environment,” IEEE Transactions on Intelligent

Transportation Systems, vol. 24, no. 5, pp. 5003-5013, May 2023.

[119] Z. Peng, J. Wang, D. Wang, and Q. L. Han, “An overview of recent advances in

coordinated control of multiple autonomous surface vehicles,” IEEE

Transactions on Industrial Informatics, vol. 17, no. 2, pp. 732-745, Feb. 2021.

[120] J. Guo, S. Tang, and Q. Xu, “An improved particle swarm optimization and its

application in maneuvering control laws design of the unmanned aerial vehicle,”

in Proc. of the 2012 8th International Conference on Natural Computation,

Chongqing, China, 2012, pp. 1107-1111.

157

[121] Y. Su, L. Xu, and D. Li, “Adaptive fuzzy control of a class of mimo nonlinear

system with actuator saturation for greenhouse climate control problem,” IEEE

Transactions on Automation Science and Engineering, vol. 13, no. 2, pp. 772-

788, Apr. 2016.

[122] J. T. B. A. Kessels, M. W. T. Koot, P. P. J. van den Bosch, and D. B. Kok, “Online

energy management for hybrid electric vehicles,” IEEE Transactions on

Vehicular Technology, vol. 57, no. 6, pp. 3428-3440, Nov. 2008.

[123] W. L. Liu, Y. J. Gong, W. N. Chen, Z. Liu, H. Wang, and J. Zhang, “Coordinated

charging scheduling of electric vehicles: a mixed-variable differential evolution

approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 21,

no. 12, pp. 5094-5109, Dec. 2020.

[124] D. Wang, C. Yan, L. Wang, D. Lu, and L. Ma, “Optimization methods for joint

capacity and appointment scheduling problem with walk-in patients,” in Proc.

of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 2016,

pp. 9600-9604.

[125] S. Choi et al., “A wide dynamic range multi-sensor ROIC for portable

environmental monitoring systems with two-step self-optimization schemes,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 6,

pp. 2432-2443, Jun. 2021.

[126] S. A. Fernandez, A. A. Juan, J. de Armas Adrián, D. G. e. Silva, and D. R. Terrén,

“Metaheuristics in telecommunication systems: network design, routing, and

allocation problems,” IEEE Systems Journal, vol. 12, no. 4, pp. 3948-3957, Dec.

2018.

[127] G. Rang, B. Xu, W. Li, Z. Fan, and Y. Su, “A long short-term memory

prediction-based dynamic multi-objective evolutionary optimization algorithm,”

in Proc. of the 2023 IEEE Congress on Evolutionary Computation (CEC), 2023,

pp.1-8.

[128] L. Zhou, L. Feng, A. Gupta, Y. S. Ong, K. Liu, C. Chen, E. Sha, B. Yang, and B.

W. Yan, “Solving dynamic vehicle routing problem via evolutionary search with

learning capability,” in Proc. of the IEEE Congress on Evolutionary

Computation (CEC), 2017, pp. 890-896.

[129] L. Yan, W. Qi, J. Liang, B. Qu, K. Yu, C. Yue, and X. Chai, “Interindividual

correlation and dimension-based dual learning for dynamic multiobjective

158

optimization,” IEEE Transactions on Evolutionary Computation, vol. 27, no. 6,

pp. 1780-1793, Dec. 2023.

[130] X. Sun, R. Chai, S. Chai, B. Zhang, and A. Tsourdos, “Flexible final-time

stochastic differential dynamic programming for autonomous vehicle trajectory

optimization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59,

no. 5, pp. 6658-6669, Oct. 2023.

[131] M. Jiang, Z. Wang, H. Hong, and G. G. Yen, “Knee point based imbalanced

transfer learning for dynamic multi-objective optimization,” IEEE Transactions

on Evolutionary Computation, vol. 25, no. 1, pp. 117-129, Feb. 2020.

[132] M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. G. Yen, “Transfer learning-based

dynamic multiobjective optimization algorithms,” IEEE Transactions on

Evolutionary Computation, vol. 22, no. 4, pp. 501-514, Aug. 2018.

[133] I. Hatzakis and D. Wallace, “Dynamic multi-objective optimization with

evolutionary algorithms: A forward-looking approach,” in Proc. of the 8th

Annual Conference on Genetic and Evolutionary Computation, 2006, pp. 1201-

1208.

[134] Z. Liu and H. Wang, “Improved population prediction strategy for dynamic

multi-objective optimization algorithms using transfer learning,” 2021 IEEE

Congress on Evolutionary Computation (CEC), Kraków, Poland, 2021, pp. 103-

110.

[135] H. Ma, K. Wu, H. Wang and J. Liu, “Higher order knowledge transfer for

dynamic community detection with great changes,” IEEE Transactions on

Evolutionary Computation, vol. 28, no. 1, pp. 90-104, Feb. 2024.

[136] M. Jiang, Z. Wang, L. Qiu, S. Guo, X. Gao, and K. C. Tan, “A fast dynamic

evolutionary multiobjective algorithm via manifold transfer learning,” IEEE

Transactions on Cybernetics, vol. 51, no. 7, pp. 3417-3428, Jul. 2021.

[137] G. Ruan, L. L. Minku, S. Menzel, B. Sendhoff, and X. Yao, “When and how to

transfer knowledge in dynamic multi-objective optimization,” in Proc. of the

2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, pp.

2034-2041.

[138] J. Yi, J. Bai, H. He, W. Zhou, and L. Yao, “A multifactorial evolutionary

algorithm for multitasking under interval uncertainties,” IEEE Transactions on

Evolutionary Computation, vol. 24, no. 5, pp. 908–922, Oct. 2020.

159

[139] E. Osaba, J. Del Ser, A. D. Martinez, and A. Hussain, “Evolutionary Multitask

Optimization: a Methodological Overview, Challenges, and Future Research

Directions,” Cognitive Computation, vol. 14, pp. 927-954, Apr. 2022.

[140] W. Shi, W. N. Chen, S. Kwong, J. Zhang, H. Wang, T. Gu, H. Yuan, and J. Zhang,

“A coevolutionary estimation of distribution algorithm for group insurance

portfolio,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol.

52, no. 11, pp. 6714-6728, Nov. 2022.

[141] Q. Xu, N. Wang, L. Wang, W. Li, and Q. Sun, “Multi-task optimization and

multi-task evolutionary computation in the past five years: A brief review,”

Mathematics, vol. 9, no. 8, Arc. no. 864, Apr. 2021.

[142] Y. Chen, J. Zhong, L. Feng, and J. Zhang, “An adaptive archive-based

evolutionary framework for many-task optimization,” IEEE Transactions on

Emerging Topics in Computational Intelligence, vol. 4, no. 3, pp. 369–384, Jun.

2020.

[143] S. Huang, J. Zhong, and W. Yu, “Surrogate-assisted evolutionary framework

with adaptive knowledge transfer for multi-task optimization,” IEEE

Transactions on Emerging Topics in Computational Intelligence, vol. 9, no. 4,

pp. 1930–1944, 1 Oct.–Dec. 2021.

[144] D. Liu, S. Huang, and J. Zhong, “Surrogate-assisted multi-tasking memetic

algorithm,” in Proc. of IEEE Congress on Evolutionary Computation (CEC),

2018, pp. 1–8.

[145] T. Wei and J. Zhong, “A preliminary study of knowledge transfer in multi-

classification using gene expression programming,” Frontiers in Neuroscience,

vol. 13, Arc. no. 1396, Jan. 2020.

[146] Y. Chen, J. Zhong, and M. Tan, “A fast memetic multi-objective differential

evolution for multi-tasking optimization,” in Proc. of IEEE Congress on

Evolutionary Computation (CEC), 2018, pp. 1–8.

[147] J. Ding, C. Yang, Y. Jin, and T. Chai, “Generalized multitasking for evolutionary

optimization of expensive problems,” IEEE Transactions on Evolutionary

Computation, vol. 23, no. 1, pp. 44-58, Jan. 2019.

[148] K. K. Bali, A. Gupta, L. Feng, Y. S. Ong, and Tan Puay Siew, “Linearized

domain adaptation in evolutionary multitasking,” in Proc. of IEEE Congress on

Evolutionary Computation (CEC), 2017, pp. 1295-1302.

160

[149] J. Tang, Y. Chen, Z. Deng, Y. Xiang, and C. P. Joy, “A group-based approach to

improve multifactorial evolutionary algorithm,” in Proc. of the 27th

International Joint Conference on Artificial Intelligence (IJCAI-18), 2018, pp.

3870-3876.

[150] A. Gupta, Y. Ong, L. Feng, and K. C. Tan, “Multiobjective multifactorial

optimization in evolutionary multitasking,” IEEE Transactions on Cybernetics,

vol. 47, no. 7, pp. 1652-1665, Jul. 2017.

[151] R. Liaw and C. Ting, “Evolutionary many-tasking based on biocoenosis through

symbiosis: A framework and benchmark problems,” in Proc. of IEEE Congress

on Evolutionary Computation (CEC), 2017, pp. 2266-2273.

[152] J. Zhong, L. Feng, W. Cai, and Y. Ong, “Multifactorial genetic programming for

symbolic regression problems,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 50, no. 11, pp. 4492-4505, Nov. 2020.

[153] H. Li, Y. Ong, M. Gong, and Z. Wang, “Evolutionary multitasking sparse

reconstruction: Framework and case study,” IEEE Transactions on Evolutionary

Computation, vol. 23, no. 5, pp. 733-747, Oct. 2019.

[154] Y. Jiang, Z. H. Zhan, K. C. Tan, S. Kwong, and J. Zhang, “Knowledge structure

preserving-based evolutionary many-task optimization,” IEEE Transactions on

Evolutionary Computation, early access, doi: 10.1109/TEVC.2024.3355781.

[155] Z. Wang, L. Cao, L. Feng, M. Jiang, and K. C. Tan, “Evolutionary multitask

optimization with lower confidence bound-based solution selection strategy,”

IEEE Transactions on Evolutionary Computation, early access, doi:

10.1109/TEVC.2023.3349250.

[156] W. Lin, Q. Lin, L. Feng, and K. C. Tan, “Ensemble of domain adaptation-based

knowledge transfer for evolutionary multitasking,” IEEE Transactions on

Evolutionary Computation, vol. 28, no. 2, pp. 388-402, Apr. 2024.

[157] X. Zhou, Z. Wang, L. Feng, S. Liu, K. C. Wong, and K. C. Tan, “Toward

evolutionary multitask convolutional neural architecture search,” IEEE

Transactions on Evolutionary Computation, vol. 28, no. 3, pp. 682-695, Jun.

2024.

[158] Y. Feng, L. Feng, S. Liu, S. Kwong, and K. C. Tan, “Towards multi-objective

high-dimensional feature selection via evolutionary multitasking,” arXiv, vol.

2401.01563, 2024. doi: 10.48550/arXiv.2401.01563.

161

[159] K. K. Bali, Y. Ong, A. Gupta, and P. S. Tan, “Multifactorial evolutionary

algorithm with online transfer parameter estimation: MFEA-II,” IEEE

Transactions on Evolutionary Computation, vol. 24, no. 1, pp. 69-83, Feb. 2020.

[160] L. Feng, L. Zhou, J. Zhong, A. Gupta, Y. S. Ong, K. C. Tan, and A. K. Qin,

“Evolutionary multitasking via explicit autoencoding,” IEEE Transactions on

Cybernetics, vol. 49, no. 9, pp. 3457-3470, Sep. 2019.

[161] X. Ma, Q. Chen, Y. Yu, Y. Sun, L. Ma, and Z. Zhu, “A two-level transfer learning

algorithm for evolutionary multitasking,” Frontiers in Neuroscience, vol. 13, pp.

1-15, Jan. 2020.

[162] B. Da, Y. S. Ong, L. Feng, A. K. Qin, A. Gupta, Z. Zhu, C. K. Ting, K. Tang,

and X. Yao, “Evolutionary multitasking for single-objective continuous

optimization: Benchmark problems, performance metric, and baseline results,”

arXiv, preprint arXiv:1706.03470, 2017.

[163] C. Yang, J. Ding, K. C. Tan, and Y. Jin, “Two-stage assortative mating for multi-

objective multifactorial evolutionary optimization,” in Proc. of the 2017 IEEE

56th Annual Conference on Decision and Control (CDC), 2017, pp. 76–81.

[164] K. C. Tan, L. Feng, and M. Jiang, “Evolutionary transfer optimization-a new

frontier in evolutionary computation research,” IEEE Computational

Intelligence Magazine, vol. 16, no. 1, pp. 22–33, Feb. 2021.

[165] Z. J. Wang, Z. H. Zhan, Y. Lin, W. J. Yu, H. Wang, S. Kwong, and J. Zhang,

“Automatic niching differential evolution with contour prediction approach for

multimodal optimization problems,” IEEE Transactions on Evolutionary

Computation, vol. 24, no. 1, pp. 114-128, Feb. 2020.

[166] T. Wei, S. Wang, J. Zhong, D. Liu, and J. Zhang, “A review on evolutionary

multitask optimization: Trends and challenges,” IEEE Transactions on

Evolutionary Computation, vol. 26, no. 5, pp. 941-960, Oct. 2022.

[167] A. Gupta, L. Zhou, Y. S. Ong, Z. Chen, and Y. Hou, “Half a dozen real-world

applications of evolutionary multitasking, and more,” IEEE Computational

Intelligence Magazine, vol. 17, no. 2, pp. 49–66, May 2022.

[168] Z. Kai, Y. J. Gong, and J. Zhang, “Real-time traffic signal control with dynamic

evolutionary computation,” in Proc. of 2014 IIAI 3rd International Conference

on Advanced Applied Informatics, 2014, pp. 493-498.

[169] T. Huang, Y. J. Gong, W. N. Chen, H. Wang, and J. Zhang, “A probabilistic

162

niching evolutionary computation framework based on binary space

partitioning,” IEEE Transactions on Cybernetics, vol. 52, no. 1, pp. 51-64, Jan.

2022.

[170] Z. Yang, Y. Jin, and K. Hao, “A bio-inspired self-learning coevolutionary

dynamic multiobjective optimization algorithm for Internet of things services,”

IEEE Transactions on Evolutionary Computation, vol. 23, no. 4, pp. 675-688,

Aug. 2019.

[171] Y. Jia, W. N. Chen, T. Gu, H. Zhang, H. Yuan, Y. Lin, W. J. Yu, and J. Zhang, “A

dynamic logistic dispatching system with set-based particle swarm

optimization,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,

vol. 48, no. 9, pp. 1607-1621, Sep. 2018.

[172] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting

control parameters in differential evolution: a comparative study on numerical

benchmark problems,” IEEE Transactions on Evolutionary Computation, vol.

10, no. 6, pp. 646-657, Dec. 2006.

[173] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer, “Dynamic

optimization using self-adaptive differential evolution,” in Proc. of IEEE

Congress on Evolutionary Computation, 2009, pp. 415-422.

[174] C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer, and P. N.

Suganthan, “Benchmark generator for CEC 2009 competition on dynamic

optimization,” University of Leicester, University of Birmingham, Nanyang

Technological University, Tech. Rep., 2008.

[175] R. Mendes and A. S. Mohais, “DynDE: a differential evolution for dynamic

optimization problems,” in Proc. of IEEE Congress on Evolutionary

Computation, 2005, vol. 3, pp. 2808-2815.

[176] X. F. Liu, Z. H. Zhan, T. L. Gu, S. Kwong, Z. Lu, H. B. L. Duh, and J. Zhang,

“Neural network-based information transfer for dynamic optimization,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 31, no. 5, pp.

1557-1570, May 2020.

[177] J. Branke, T. Kaußler, C. Schmidt, and H. Schmeck, “A multipopulation

approach to dynamic optimization problems,” in Proc. of Evolutionary Design

and Manufacture, I. C. Parmee, Ed. Springer, London, 2000, pp. 1-2.

[178] D. Parrott and X. Li, “A particle swarm model for tracking multiple peaks in a

163

dynamic environment using speciation,” in Proc. of the IEEE Congress on

Evolutionary Computation, 2004, vol. 1, pp. 98-103.

[179] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anticonvergence in

dynamic environments,” IEEE Transactions on Evolutionary Computation, vol.

10, no. 4, pp. 459-472, Aug. 2006.

[180] R. I. Lung and D. Dumitrescu, “A collaborative model for tracking optima in

dynamic environments,” in Proc. of the IEEE Congress on Evolutionary

Computation, 2007, pp. 564-567.

[181] J. H. Holland, “Outline for a logical theory of adaptive systems,” Journal of

ACM, vol. 9, no. 3, pp. 297-314, Mar. 1962.

[182] Y. S. Ong and A. Gupta, “AIR5: five pillars of artificial intelligence research,”

IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 3,

no. 5, pp. 411–415, Oct. 2019.

[183] A. Gupta and Y. S. Ong, “Insights on transfer optimization: because experience

is the best teacher,” IEEE Transactions on Emerging Topics in Computational

Intelligence, vol. 2, no. 1, pp. 51–64, Mar. 2017.

[184] Y. S. Ong and A. Gupta, “Evolutionary multitasking: a computer science view

of cognitive multitasking,” Cognitive Computation, vol. 8, no. 2, pp. 125–142,

Apr. 2016.

[185] G. Li, Q. Lin, and W. Gao, “Multifactorial optimization via explicit

multipopulation evolutionary framework,” Information Sciences, vol. 512, pp.

1555–1570, Feb. 2020.

[186] L. Feng, L. Zhou, A. Gupta, J. Zhong, Z. Zhu, K. C. Tan, and K. Qin, “Solving

generalized vehicle routing problem with occasional drivers via evolutionary

multitasking,” IEEE Transactions on Cybernetics, vol. 51, no. 6, pp. 3171–3184,

Jun. 2019.

[187] L. Feng, Y. Huang, I. W. Tsang, A. Gupta, K. Tang, K. C. Tan, and Y. S. Ong,

“Towards faster vehicle routing by transferring knowledge from customer

representation,” IEEE Transactions on Intelligent Transportation Systems, vol.

23, no. 2, pp. 952-965, Feb. 2022.

[188] H. Wang, L. Feng, Y. Jin, and J. Doherty, “Surrogate-assisted evolutionary

multitasking for expensive minimax optimization in multiple scenarios,” IEEE

Computational Intelligence Magazine, vol. 16, no. 1, pp. 34–48, Feb. 2021.

164

[189] J. Y. Li, Z. H. Zhan, and J. Zhang, “Evolutionary computation for expensive

optimization: a survey,” Machine Intelligence Research, vol. 19, no. 1, pp. 3–

23, Jan. 2022.

[190] M. Y. Cheng, A. Gupta, Y. S. Ong, and Z. W. Ni, “Coevolutionary multitasking

for concurrent global optimization: With case studies in complex engineering

design,” Engineering Applications of Artificial Intelligence, vol. 64, pp. 13–24,

Sep. 2017.

[191] K. K. Bali, A. Gupta, Y. S. Ong, and P. S. Tan, “Cognizant multitasking in

multiobjective multifactorial evolution: MO-MFEA-II,” IEEE Transactions on

Cybernetics, vol. 51, no. 4, pp. 1784–1796, Apr. 2021.

[192] Y. Zheng, Z. Zhu, Y. Qi, L. Wang, and X. Ma, “Multi-objective multifactorial

evolutionary algorithm enhanced with the weighting helper-task,” in Proc. of

the 2nd International Conference on Industrial Artificial Intelligence (IAI), Jan.

2020, pp. 1-6.

[193] C. Yang, J. Ding, K. C. Tan, and Y. Jin, “Two-stage assortative mating for multi-

objective multifactorial evolutionary optimization,” in Proc. of the 2017 IEEE

56th Annual Conference on Decision and Control, Jan. 2017, pp. 76-81.

[194] X. Zhang, Z. H. Zhan, W. Fang, P. Qian, and J. Zhang, “Multi population ant

colony system with knowledge based local searches for multiobjective supply

chain configuration,” IEEE Transactions on Evolutionary Computation, vol. 26,

no. 3, pp. 512-526, Jun. 2022.

[195] Z. H. Zhan, J. Li, J. Cao, J. Zhang, H. S. Chung, and Y. Shi, “Multiple

populations for multiple objectives: a coevolutionary technique for solving

multiobjective optimization problems,” IEEE Transactions on Cybernetics, vol.

43, no. 2, pp. 445–463, Apr. 2013.

[196] J. Y. Li, K. J. Du, Z. H. Zhan, H. Wang, and J. Zhang, “Multi-criteria differential

evolution: treating multitask optimization as multi-criteria optimization,” in

Proc. of the Genetic and Evolutionary Computation Conference, 2021, pp. 183-

184.

[197] J. Y. Li, Z. H. Zhan, C. Wang, H. Jin, and J. Zhang, “Boosting data-driven

evolutionary algorithm with localized data generation,” IEEE Transactions on

Evolutionary Computation, vol. 24, no. 5, pp. 923–937, Oct. 2020.

[198] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

165

multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[199] W. Wang, X. Zhao, Z. Gong, Z. Gong, Z. Chen, N. Zhang, and W. Wei, “An

attention-based deep learning framework for trip destination prediction of

sharing bike,” IEEE Transactions on Intelligent Transportation Systems, vol. 22,

pp. 4601–4610, Nov. 2021.

[200] P. Jiménez, M. Nogal, B. Caulfield, and F. Pilla, “Perceptually important points

of mobility patterns to characterise bike sharing systems: The Dublin case,”

Journal of Transport Geography, vol. 54, pp. 228–239, Nov. 2016.

[201] S. Yan, J. R. Lin, Y. C. Chen, and F. R. Xie, “Rental bike location and allocation

under stochastic demands,” Computers & Industrial Engineering, vol. 107, pp.

1–11, Apr. 2017.

[202] S. Maas, M. Attard, and M. A. Caruana, “Assessing spatial and social

dimensions of shared bicycle use in a Southern European Island context: The

case of Las Palmas de Gran Canaria,” Transportation Research Part A: Policy

and Practice, vol. 140, pp. 81–97, Dec. 2020.

[203] Y. Li and Y. Zheng, “Citywide bike usage prediction in a bike-sharing system,”

IEEE Transactions on Knowledge and Data Engineering, vol. 32, pp. 1079–

1091, Jun. 2020.

[204] Y. Xing, K. Wang, and J. J. Lu, “Exploring travel patterns and trip purposes of

dockless bike-sharing by analyzing massive bike-sharing data in Shanghai,

China,” Journal of Transport Geography, vol. 87, Arc. no. 102787, May 2020.

[205] Y. Liu, W. Y. Szeto, and S. C. Ho, “A static free-floating bike repositioning

problem with multiple heterogeneous vehicles, multiple depots, and multiple

visits,” Transportation Research Part C: Emerging Technologies, vol. 92, pp.

208–242, May 2018.

[206] H. Jia, H. Miao, G. Tian, M. Zhou, Y. Feng, Z. Li, and J. Li, “Multiobjective

bike repositioning in bike-sharing systems via a modified artificial bee colony

algorithm,” IEEE Transactions on Automation Science and Engineering, vol.

17, pp. 909–920, Jul. 2020.

[207] R. Guo, Z. Jiang, J. Huang, J. Tao, C. Wang, J. Li, and L. Chen, “BikeNet:

Accurate bike demand prediction using graph neural networks for station

rebalancing,” in Proc. of the 2019 IEEE Smart World, 2019, pp. 686–693.

166

[208] D. Liang, Z. H. Zhan, and J. Zhang, “An adaptive ant colony system for public

bicycle scheduling problem,” in Proc. of the 11th International Conference on

Swarm Intelligence, 2018, pp. 417-429.

[209] A. Liu, X. Ji, L. Xu, and H. Lu, “Research on the recycling of sharing bikes

based on time dynamics series, individual regrets and group efficiency,” Journal

of Cleaner Production, vol. 208, pp. 666–687, Feb. 2019.

[210] H. Lu, M. Zhang, S. Su, X. Gao, and C. Luo, “Broken bike recycling planning

for sharing bikes system,” IEEE Access, vol. 7, pp. 177354–177361, Dec. 2019.

[211] D. Zhang, W. Xu, B. Ji, S. Li, and Y. L. Liu, “An adaptive tabu search algorithm

embedded with iterated local search and route elimination for the bike

repositioning and recycling problem,” Computers & Operations Research, vol.

123, pp. 1-17, Dec. 2020.

[212] P. Schimek, “Bike lanes next to on-street parallel parking,” Accident Analysis &

Prevention, vol. 120, pp. 74–82, Nov. 2018.

[213] J. B. Cicchino, M. L. McCarthy, C. D. Newgard, S. P. Wall, C. J. DiMaggio, P.

E. Kulie, B. N. Arnold, and D. S. Zuby, “Not all protected bike lanes are the

same: Infrastructure and risk of cyclist collisions and falls leading to emergency

department visits in three U.S. cities,” Accident Analysis & Prevention, vol. 141,

Arc. no. 105490, Jun. 2020.

[214] T. He, J. Bao, S. Ruan, S. Ruan, R. Li, Y. Li, H. He, and Y. Zheng, “Interactive

bike lane planning using sharing bikes’ trajectories,” IEEE Transactions on

Knowledge and Data Engineering, vol. 32, no. 8, pp. 1529–1542, Aug. 2020.

[215] Z. Li, J. Zhang, J. Gan, P. Lu, Z. Gao, W. Kong, “Large-scale trip planning for

bike-sharing system,” Pervasive and Mobile Computing, vol. 54, pp. 16–28,

Mar. 2019.

[216] Z. G. Chen, Z. H. Zhan, S. Kwong, J. Zhang, “Evolutionary computation for

intelligent transportation in smart cities: A survey,” IEEE Computational

Intelligence Magazine, vol. 17, no. 2, pp. 83–102, May 2022.

[217] J. Zhang and P. S. Yu, “Trip route planning for bicycle-sharing systems,” in Proc.

of the 2016 IEEE 2nd International Conference on Collaboration and Internet

Computing (CIC), 2017, pp. 381–390.

[218] X. Chen, Y. Ong, M. Lim, and K. C. Tan, “A multi-facet survey on memetic

computation,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 5,

167

pp. 591–607, Oct. 2011.

[219] L. Lugo, C. Segura, and G. Miranda, “A diversity-aware memetic algorithm for

the linear ordering problem,” Memetic Computing, vol. 14, pp. 395–409, Dec.

2022.

[220] A. V. Eremeev and Y. V. Kovalenko, “A memetic algorithm with optimal

recombination for the asymmetric travelling salesman problem,” Memetic

Computing, vol. 12, pp. 23–36, Mar. 2020.

[221] J. Luo, D. Zhou, L. Jiang, and H. Ma, “A particle swarm optimization based

multiobjective memetic algorithm for high-dimensional feature selection,”

Memetic Computing, vol. 14, pp. 77–93, Mar. 2022.

[222] X. Shao, Y. J. Gong, Z. H. Zhan, and J. Zhang, “Bipartite cooperative

coevolution for energy-aware coverage path planning of UAVs,” IEEE

Transactions on Artificial Intelligence, vol. 3, no. 1, pp. 29-42, Feb. 2022.

[223] Y. Guo, J.Y. Li, and Z. H. Zhan, “Efficient hyperparameter optimization for

convolution neural networks in deep learning: A distributed particle swarm

optimization approach,” Cybernetics and Systems, vol. 52, no. 1, pp. 36–57, Oct.

2020.

[224] S. C. Liu, Z. G. Chen, Z. H. Zhan, S. W. Jeon, S. Kwong, and J. Zhang, “Many-

objective job-shop scheduling: A multiple populations for multiple objectives-

based genetic algorithm approach,” IEEE Transactions on Cybernetics, vol. 53,

no. 3, pp. 1460-1474, Mar. 2023.

[225] Z. H. Zhan, J. Y. Li, and J. Zhang, “Evolutionary deep learning: A survey,”

Neurocomputing, vol. 483, pp. 42–58, Apr. 2022.

[226] J. Y. Li, Z. H. Zhan, J. Xu, S. Kwong, and J. Zhang, “Surrogate-assisted hybrid-

model estimation of distribution algorithm for mixed-variable hyperparameters

optimization in convolutional neural networks,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 34, no. 5, pp. 2338-2352, May 2023.

[227] Z. H. Zhan, Z. J. Wang, H. Jin, and J. Zhang, “Adaptive distributed differential

evolution,” IEEE Transactions on Cybernetics, vol. 50, no. 11, pp. 4633–4647,

Nov. 2020.

[228] J. Y. Li, K. J. Du, Z. H. Zhan, H. Wang and J. Zhang, “Distributed differential

evolution with adaptive resource allocation,” IEEE Transactions on Cybernetics,

vol. 53, no. 5, pp. 2791-2804, May 2023.

168

[229] Z. H. Zhan, J. Zhang, Y. Lin, J. Y. Li, T. Huang, X. Q. Guo, F. F. Wei, S. Kwong,

X. Y. Zhang, and R. You, “Matrix-based evolutionary computation,” IEEE

Transactions on Emerging Topics in Computational Intelligence, vol. 6, no. 2,

pp. 315–328, Apr. 2022.

[230] J. Y. Li, Z. H. Zhan, R. D. Liu, C. Wang, S. Kwong, and J. Zhang, “Generation-

level parallelism for evolutionary computation: a pipeline-based parallel particle

swarm optimization,” IEEE Transactions on Cybernetics, vol. 51, no. 10, pp.

4848-4859, Oct. 2021.

[231] X. Zhang, Z. H. Zhan, W. Fang, P. Qian, and J. Zhang, “Multipopulation ant

colony system with knowledge-based local searches for multiobjective supply

chain configuration,” IEEE Transactions on Evolutionary Computation, vol. 26,

no. 3, pp. 512-526, Jun. 2022.

[232] X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,

“Coevolutionary particle swarm optimization with bottleneck objective learning

strategy for many-objective optimization,” IEEE Transactions on Evolutionary

Computation, vol. 23, no. 4, pp. 587–602, Aug. 2019.

[233] S. C. Liu, Z. H. Zhan, K. C. Tan, and J. Zhang, “A multiobjective framework

for many-objective optimization,” IEEE Transactions on Cybernetics, vol. 52,

no. 12, pp. 13654-13668, Dec. 2022.

[234] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “A meta-knowledge transfer-based

differential evolution for multitask optimization,” IEEE Transactions on

Evolutionary Computation, vol. 26, no. 4, pp. 719–734, Aug. 2022.

[235] Y. Jiang, Z. H. Zhan, K. C. Tan, and J. Zhang, “A bi-objective knowledge

transfer framework for evolutionary many-task optimization,” IEEE

Transactions on Evolutionary Computation, vol. 27, no. 5, pp. 1514-1528, Oct.

2023.

[236] S. H. Wu, Z. H. Zhan, K. C. Tan, and J. Zhang, “Orthogonal transfer for

multitask optimization,” IEEE Transactions on Evolutionary Computation, vol.

27, no. 1, pp. 185-200, Feb. 2023.

[237] K. J. Du, J. Y. Li, H. Wang, and J. Zhang, “Multi-objective multi-criteria

evolutionary algorithm for multi-objective multi-task optimization,” Complex

Intelligent Systems, vol. 9, pp. 1211–1228, Apr. 2023.

[238] H. Zhao, Z. H. Zhan, Y. Lin, X. Chen, X. N. Luo, J. Zhang, S. Kwong, and J.

169

Zhang, “Local binary pattern-based adaptive differential evolution for

multimodal optimization problems,” IEEE Transactions on Cybernetics, vol. 50,

no. 7, pp. 3343–3357, Jul. 2020.

[239] Z. G. Chen, Z. H. Zhan, H. Wang, and J. Zhang, “Distributed individuals for

multiple peaks: a novel differential evolution for multimodal optimization

problems,” IEEE Transactions on Evolutionary Computation, vol. 24, no. 4, pp.

708-719, Aug. 2020.

[240] Y. Jiang, Z. H. Zhan, K. C. Tan, and J. Zhang, “Optimizing niche center for

multimodal optimization problems,” IEEE Transactions on Cybernetics, vol. 53,

no. 4, pp. 2544-2557, Apr. 2023.

[241] Z. J. Wang, Z. H. Zhan, Y. Lin, W. J. Yu, H. Q. Yuan, T. L. Gu, S. Kwong, and

J. Zhang, “Dual-strategy differential evolution with affinity propagation

clustering for multimodal optimization problems,” IEEE Transactions on

Evolutionary Computation, vol. 22, no. 6, pp. 894–908, Dec. 2018.

[242] S. H. Wu, Z. H. Zhan, and J. Zhang, “SAFE: Scale-adaptive fitness evaluation

method for expensive optimization problems,” IEEE Transactions on

Evolutionary Computation, vol. 25, no. 3, pp. 478–491, Jun. 2021.

[243] X. F. Liu, Z. H. Zhan, and J. Zhang, “Resource-aware distributed differential

evolution for training expensive neural-network-based controller in power

electronic circuit,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 33, no. 11, pp. 6286-6296, Nov. 2022.

[244] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao, “A survey of

evolutionary continuous dynamic optimization over two decades—Part A,”

IEEE Transactions on Evolutionary Computation, vol. 25, no. 4, pp. 609–629,

Aug 2021.

[245] L. Shi, Z. H. Zhan, D. Liang, and J. Zhang, “Memory-based ant colony system

approach for multi-source data associated dynamic electric vehicle dispatch

optimization,” IEEE Transactions on Intelligent Transportation Systems, vol.

23, no. 10, pp. 17491–17505, Oct. 2022.

[246] C. He, Y. Zhang, D. Gong, X. Song, and X. Sun, “A multi-task bee colony band

selection algorithm with variable-size clustering for hyperspectral images,”

IEEE Transactions on Evolutionary Computation, vol. 26, no. 6, pp. 1566–1580,

Dec. 2022.

170

[247] X. F. Song, Y. Zhang, Y. N. Guo, X. Y. Sun, and Y. Li. Wang, “Variable-size

cooperative coevolutionary particle swarm optimization for feature selection on

high-dimensional data,” IEEE Transactions on Evolutionary Computation, vol.

24, no. 5, pp. 882–895, Oct. 2020.

[248] Data Open Platform of Shenzhen Government.

https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_00403627.

[249] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen, “Data-driven evolutionary

optimization: An overview and case studies,” IEEE Transactions on

Evolutionary Computation, vol. 23, no. 3, pp. 442–458, Jun. 2019.

[250] J. Y. Li, Z. H. Zhan, H. Wang, and J. Zhang, “Data-driven evolutionary

algorithm with perturbation-based ensemble surrogates,” IEEE Transactions on

Cybernetics, vol. 51, no. 8, pp. 3925–3937, Aug. 2021.

[251] C. A. C. Coello, S. G. Brambila, J. F. Gamboa, and M. G. C. Tapia, “Multi-

objective evolutionary algorithms: Past, present, and future,” Springer

Optimization and Its Applications, vol. 170, pp. 137–162, Jan. 2021.

[252] J. Y. Li, X. Y. Deng, Z. H. Zhan, L. Yu, K. C. Tan, K. K. Lai, and J. Zhang “A

multipopulation multiobjective ant colony system considering travel and

prevention costs for vehicle routing in covid-19-like epidemics,” IEEE

Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 25062-

25076, Dec. 2022

[253] J. R. Jian, Z. G. Chen, Z. H. Zhan and J. Zhang, “Region encoding helps

evolutionary computation evolve faster: a new solution encoding scheme in

particle swarm for large-scale optimization,” IEEE Transactions on

Evolutionary Computation, vol. 25, no. 4, pp. 779-793, Aug. 2021.

[254] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “Dual differential grouping: a more

general decomposition method for large-scale optimization,” IEEE

Transactions on Cybernetics, vol. 53, no. 6, pp. 3624-3638, Jun. 2023.

[255] X. Zhang, B. W. Ding, X. X. Xu, J. Y. Li, Z. H. Zhan, P. Qian, W. Fang, K. K.

Lai, and J. Zhang, “Graph-based deep decomposition for overlapping large-

scale optimization problems,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 53, no. 4, pp. 2374-2386, Apr. 2023.

[256] J. Q. Yang, C. H. Chen, J. Y. Li, D. Liu, T. Li, and Z. H. Zhan, “Compressed-

encoding particle swarm optimization with fuzzy learning for large-scale feature

171

selection,” Symmetry, vol. 14, no. 6, pp. 1142, Jun. 2022.

[257] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “Recent

advances and emerging challenges of feature selection in the context of big data,”

Knowledge-Based Systems, vol. 86, pp. 33–45, Sep. 2015.

[258] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”

Computers & Electrical Engineering, vol. 40, no. 1, pp. 16-28, Jan. 2014.

[259] Y. Li, T. Li, and H. Liu, “Recent advances in feature selection and its

applications,” Knowledge and Information Systems, vol. 53, no. 3, pp. 551–577,

Dec. 2017.

[260] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary

computation approaches to feature selection,” IEEE Transactions on

Evolutionary Computation, vol. 20, no. 4, pp. 606-626, Aug. 2016.

[261] Z. H. Zhan, J. Y. Li, S. Kwong, and J. Zhang, “Learning-aided evolution for

optimization,” IEEE Transactions on Evolutionary Computation, vol. 27, no. 6,

pp. 1794-1808, Dec. 2023.

[262] Q. Yang, W. N. Chen, T. Gu, H. Jin, W. Mao, and J. Zhang, “An adaptive

stochastic dominant learning swarm optimizer for high dimensional

optimization,” IEEE Transactions on Cybernetics, vol. 52, no. 3, pp. 1960–1976,

Mar. 2022.

[263] B. Tran, B. Xue, and M. Zhang, “A new representation in PSO for discretization-

based feature selection,” IEEE Transactions on Cybernetics, vol. 48, no. 6, pp.

1733–1746, Jun. 2018.

[264] Y. Xue, B. Xue, and M. Zhang, “Self-adaptive particle swarm optimization for

large-scale feature selection in classification,” ACM Transactions on

Knowledge Discovery from Data, vol. 13, no. 5, pp. 1-27, Sep. 2019.

[265] Y. Xue, T. Tang, W. Pang, and A. X. Liu, “Self-adaptive parameter and strategy

based particle swarm optimization for large-scale feature selection problems

with multiple classifiers,” Applied Soft Computing, vol. 88, pp. 1-12, Mar. 2020.

[266] X. Song, Y. Zhang, D. Gong, and X. Sun, “Feature selection using bare-bones

particle swarm optimization with mutual information,” Pattern Recognition, vol.

112, pp. 1-17, Apr. 2021.

[267] A. D. Li, B. Xue, and M. Zhang, “Improved binary particle swarm optimization

for feature selection with new initialization and search space reduction

172

strategies,” Applied Soft Computing, vol. 106, arc. no. 107302, Jul. 2021.

[268] X. F. Song, Y. Zhang, D. W. Gong, and X. Z. Gao, “A fast hybrid feature

selection based on correlation-guided clustering and particle swarm

optimization for high-dimensional data,” IEEE Transactions on Cybernetics,

vol. 52, no. 9, pp. 9573–9586, Sep. 2022.

[269] J. Q. Yang et al., “Bi-directional feature fixation-based particle swarm

optimization for large-scale feature selection,” IEEE Transactions on Big Data,

vol. 9, no. 3, pp. 1004-1017, Jun. 2023.

[270] K. Chen, B. Xue, M. Zhang, and F. Zhou, “Evolutionary multitasking for feature

selection in high-dimensional classification via particle swarm optimization,”

IEEE Transactions on Evolutionary Computation, vol. 26, no. 3, pp. 446–460,

Jun. 2022.

[271] K. Chen, B. Xue, M. Zhang, and F. Zhou, “An evolutionary multitasking-based

feature selection method for high-dimensional classification,” IEEE

Transactions on Cybernetics, vol. 52, no. 7, pp. 7172-7186, Jul. 2022.

[272] J. Kennedy, “Bare bones particle swarms,” in Proc. of the 2003 IEEE Swarm

Intelligence Symposium, Apr. 2003, pp. 80–87.

[273] X. Zheng, A. K. Qin, M. Gong, and D. Zhou, “Self-regulated evolutionary

multitask optimization,” IEEE Transactions on Evolutionary Computation, vol.

24, no. 1, pp. 16–28, Feb. 2020.

[274] L. Zhou, L. Feng, K. C. Tan, J. Zhong, Z. Zhu, K. Liu, and C. Chen, “Toward

adaptive knowledge transfer in multifactorial evolutionary computation,” IEEE

Transactions on Cybernetics, vol. 51, no. 5, pp. 2563–2576, May 2021.

[275] S. Yao, Z. Dong, X. Wang, and L. Ren, “A multiobjective multifactorial

optimization algorithm based on decomposition and dynamic resource

allocation strategy,” Information Sciences, vol. 511, pp. 18–35, Feb. 2020.

[276] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu,

“Feature selection: A data perspective,” ACM Computing Surveys, vol. 50, no.

6, pp. 1-45, Dec. 2017.

[277] A. Bommert, X. Sun, B. Bischl, J. Rahnenführer, and M. Lang, “Benchmark for

filter methods for feature selection in high dimensional classification data,”

Computational Statistics & Data Analysis, vol. 143, arc.no. 106839, Mar. 2020.

[278] B. Singh, N. Kushwaha, and O. P. Vyas, “A feature subset selection technique

173

for high dimensional data using symmetric uncertainty,” Journal of Data

Analysis and Information Processing, vol. 2, Art. no. 4, pp. 95-105, Nov. 2014.

[279] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm

algorithm,” in Proc. of the 1997 IEEE International Conference on Systems,

Man, and Cybernetics, Oct. 1997, vol. 5, pp. 4104–4108.

[280] F. Wilcoxon, "Individual Comparisons by Ranking Methods," in Breakthroughs

in Statistics, S. Kotz and N.L. Johnson (eds.), Springer Series in Statistics,

Springer, New York, NY, 1992, doi: 10.1007/978-1-4612-4380-9_16.

[281] P. Somol, P. Vácha, S. Mikeš, J. Hora, P. Pudil, and P. Zid, “Introduction to

feature selection toolbox 3–the c++ library for subset search, data modeling and

classification,” Academy of Sciences of the Czech Republic Institute of

Information Theory and Automation (UTIA), Technical Report No. 2287, Oct.

2010.

