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A B S T R A C T   

This paper introduces a novel clustering approach based on Minkowski’s mathematical similarity to improve EEG 
feature selection for classification and have efficient Particle Swarm Optimization (PSO) in the context of ma
chine learning. Given the intricacy of high-dimensional medical datasets, feature selection plays a critical role in 
preventing disease and promoting public health. By employing Minkowski clustering, the objective is to group 
dataset records into two clusters exhibiting high feature coherence, thereby improving accuracy by applying 
optimization techniques like PSO to select the most optimal features. Furthermore, the proposed model can be 
extended to intelligent datasets, including EEG and others. As fewer features are needed for precise categori
zation, intelligent feature selection is an advanced step of machine learning. This paper investigates the key 
factors influencing feature selection in the EEG Bonn University dataset. The proposed system is compared 
against various optimization and feature selection methods, demonstrating superior performance in analyzing 
and classifying EEG signals based on accuracy measures. The experimental results have confirmed the effec
tiveness of the suggested model as a valuable tool for EEG data classification, achieving up to 100% accuracy. 
The outcomes of this research have the potential to benefit medical experts in related specialties by streamlining 
the process of identifying and diagnosing brain disorders. Technically, the machine learning algorithms RF, KNN, 
SVM, NB, and DT are employed to classify the selected features.   

1. Introduction 

In machine learning, the feature selection process holds significant 
importance as it involves identifying and removing non-effective fea
tures, resulting in several benefits such as model simplification, reduced 
training time, improved prediction accuracy, efficient memory storage, 
and avoidance of high-dimensional data [1]. As a high-dimensional 
dataset, the EEG dataset has many features that are employed in the 
classification procedure. However, not all of these features are essential 
for distinguishing between normal and epileptic seizures [2]. Therefore, 
selecting effective features has become crucial as it enables early 
detection, reduces data size, and mitigates the complexity of execution 
time due to the dataset’s wide dimensions. Feature selection algorithms 
aim to identify the most compelling features that adequately explain the 
entire dataset without compromising the performance of the classifica
tion model [3]. Furthermore, two standard Filter and wrapper 

approaches are employed for feature selection as shown in Fig. 1. 
Filter approaches in feature selection do not rely on machine 

learning methods to determine the selection of features. Instead, they 
utilize basic data qualities as a scoring mechanism for feature selection. 
Statistical indicators such as the Laplacian score and entropy are 
employed to calculate this score. Although Filter approaches require less 
processing time, they are only suitable for independent features [5]. 

On the other hand, Wrapper approaches encompass three essential 
components for feature selection: search strategy, prediction function, 
and fitness function. The search strategy selects the subset of features to 
be evaluated. The prediction function assesses the performance of the 
selected features compared to the fitness function, which can utilize any 
classification method. However, Wrapper techniques often face chal
lenges with the time-consuming nature of the search strategy’s pro
cessing. To overcome this limitation, metaheuristic techniques have 
emerged as a potential solution [4]. 
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1.1. Motivation 

The number of scientists studying the analysis of EEG signals has 
significantly increased in the last several years, primarily driven by the 
significance of these signals in the discovery and diagnosis of brain 
diseases [6]. With billions of interconnected neurons, the EEG signal is a 
complicated network that produces dozens of characteristics every 
second. When trying to classify EEG data, machine learning algorithms 
are faced with a significant problem due to this high feature rate. This is 
because they frequently require assistance in processing such a vast 
number of features, many of which may be undesired [6]. To address 
this challenge, feature selection algorithms have been developed to 
identify and select the best qualities for enhanced exploration and uti
lization [7]. Technically, effective extracting and reducing the data di
mensions, feature selection techniques can lead to improvements in 
computational complexity, processing time, and memory storage. The 
main motivation for this paper is to increase feature selectors efficiency 
by determining features with high harmony of the dataset mainly by 
separate records into two clusters based on Minkowski’s mathematical 
similarity. This would lead to more efficient Particle Swarm Optimiza
tion (PSO) as a feature selection example. However, it is important to 
acknowledge that feature selection and optimization algorithms have 
limitations. These limitations can be summarized in the following steps:  

• Optimal Local Stagnation Probability: One notable limitation in 
optimization algorithms is the probability of encountering optimal 
local stagnation. This issue arises when there is a lack of diversity in 
the population, hindering the exploration of new solutions and 
impeding the extraction of essential features from previous 
iterations. 

• High Time Requirement: Another limitation is the substantial pro
cessing time required by many iterative processes. This can lead to 
longer convergence rates and pose challenges in terms of computa
tional efficiency.  

• Inconsistent Results: In general, Particle Swarm Optimization (PSO) 
techniques tend to yield highly varied results, especially when 
applied to high-dimensional objective functions. This inconsistency 
can pose difficulties in achieving reliable and stable outcomes. 

1.2. Problem statement 

The high-dimensional medical dataset makes feature selection an 
essential process for early detecting diseases to protect people’s health 
by reducing the number of features to be included in the classification 
function process [22]. High-dimensional medical data such as EEG 
burdens machine learning algorithms as they suffer greatly from high 
feature rates [23]. On the other hand, the present methodologies fall 
short of identifying the most useful features. In fact, search time 
complexity is technically a problem for the wrapper feature selection 
approaches. Moreover, the standard PSO algorithm for feature selection 

suffers from the stagnation effect in local optima, and the convergence 
rate of many iterative processes needs to be higher and produce 
consistent results. Potential feature selection algorithms must overcome 
traditional feature selection challenges and drawbacks. Therefore, The 
research problem is developing a new feature selection technique for 
analyzing and classifying EEG signals better to get consistent results to 
help diagnose and detect epileptic seizures from EEG signals. 

1.3. Existing solutions 

Main previous studies and achievements have concentrated on using 
metrics and algorithms to efficiently distribute and allocate with the aim 
increase the probability of having similar points in the same cluster. For 
instance, Minkowski Weighted K-means is optimized using Particle 
Swarm Optimization (PSO) in order to identify features [8]. This method 
has demonstrated an accuracy of 82.3% and 93.6%. Furthermore, a 
hybrid Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) 
is proposed [9] and based on K-means clustering technique for dis
tinguishing two-class motor imagery (MI) tasks. The average accuracy 
achieved by the model is 60.42%. Additionally [10], the focus of this 
study was the application of clustering techniques utilizing the 
ACO-Decision Tree method, with the Euclidean distance measure 
employed for feature extraction. EEG classification accuracy is of 
71.30%. In another study [11], the authors proposed utilization of 
Artificial Bee Colony (ABC) and Radial-Based Function Networks 
(RBFNNs) for the EEG signal analysis-based identification of epileptic 
seizure disorders. Resulting in a maximum accuracy of 82.3% for epi
lepsy identification. 

1.4. Contribution 

This research paper introduces a clustering approach based on 
Minkowski mathematical similarity to improve efficient Particle Swarm 
Optimization (PSO). The goal is to enhance machine learning by 
selecting more effective feature data and eliminating non-effective fea
tures. This process significantly reduces the number of features, conse
quently impacting system performance. Moreover, Minkowski feature 
selection demonstrates its applicability in handling high-dimensional 
intelligent data, such as EEG signals. 

The proposed method utilizes the Minkowski scale to analyze EEG 
signals and identify the most effective features for Epileptic seizures 
detection in patient data. The research findings have demonstrated 
several promising achievements:  

• Low Stagnation Probability: The Minkowski clustering technique 
aims to group dataset records into two clusters with high feature 
coherence, thereby promoting exploration and minimizing the like
lihood of falling into stagnation. 

• Consistent Results: Minkowski PSO clustering consistently pro
duces similar outcomes when dealing with high-dimensional 
problems. 

• Reduced Time Requirement: The Minkowski PSO clustering algo
rithm requires less time than traditional PSO methods to obtain the 
optimal solution for a given objective function.  

• Improved Accuracy: Selecting highly optimal features through 
optimization techniques like PSO contributes to developing high- 
performance systems. 

1.5. Paper organization 

The rest of the paper is organized as Section 2 describes related work, 
Section 3 illustrates Minkowski distance metric, Section 4 presents the 
proposed method, Section 5 presents discussion and experimental re
sults, Section 6 presents traditional evaluation of PSO, and finally con
clusions and future work is presented in Sections 7 and 8 respectively. 

Fig. 1. Wrapper and Filter methods feature selection [4].  

D. Al-Shammary et al.                                                                                                                                                                                                                         



Informatics in Medicine Unlocked 47 (2024) 101492

3

2. Related works 

Jamali-Dinan et al. [8] centered their investigation on identifying 
individuals suffering from Temporal Lobe Epilepsy (TLE), the most 
common type of focal epilepsy. This work presents a novel approach to 
optimize Minkowski Weighted K-means using Particle Swarm Optimi
zation (PSO) (MWK) clustering was applied to identify the characteris
tics associated with temporal lobe epilepsy. The traditional K-means 
algorithm was found to be susceptible to noisy features. To address this 
limitation, the weighted K-means algorithm was optimized using the 
Minkowski distance metric. Technically, sensitivity to the initialization 
process is one of the challenges encountered with the weighted K-means 
algorithm. To mitigate this issue, the researchers incorporated Particle 
Swarm Optimization (PSO) to take advantage of the benefits of both 
MWK and PSO techniques and prevent local stagnation. The accuracy 
metric was the only one used to assess the suggested model. Addition
ally, the Silhouette criteria were employed to determine the optimal 
number of clusters. The researchers utilized standard datasets selected 
from the UCI Machine Learning Repository for their experiments. The 
proposed method demonstrated the ability to identify epilepsy with an 
accuracy of 82.3% and 93.6%. However, it is important to note that the 
evaluation of the model’s performance was limited to the accuracy 
measure alone, neglecting other important criteria such as processing 
time and complexity. 

Suraj et al. [9] conducted a study on diagnosing changes in brain 
cells using electroencephalogram (EEG) signals. The dynamic nature of 
the EEG signal prompted the researchers to explore the application of 
evolutionary algorithms (EA) in this context. In this paper, the authors 
proposed a hybrid Genetic Algorithm (GA) and Particle Swarm Opti
mization (PSO) based K-means clustering technique for distinguishing 
two-class motor imagery (MI) tasks. The effectiveness of the proposed 
model was evaluated using two key metrics: accuracy and execution 
time. In order to validate the model, experimental evaluation was per
formed using standard datasets specifically designed for classifying 
two-class MI tasks. The average accuracy achieved by the model was 
reported to be 60.42%. However, it is worth noting that the researchers 
did not provide a comprehensive analysis of additional metrics such as 
precision, recall, and F1-score. This omission leaves the performance 
evaluation of the model somewhat ambiguous. In conclusion, the study 
conducted focused on diagnosing changes in brain cells through the 
analysis of EEG signals. The proposed hybrid GA-PSO-based K-means 
clustering technique showed promise in distinguishing two-class MI 
tasks. Nevertheless, the evaluation of the model’s performance was 
limited to accuracy and lacked a comprehensive analysis of other 
important metrics. Future research should aim to address these limita
tions and provide a more thorough evaluation of the model’s 
effectiveness. 

Bursa et al. [10] conducted research on the processing of 
high-dimensional medical datasets using artificial intelligence tech
niques and evolutionary algorithms (EA). Applying clustering tech
niques utilizing the ACO-Decision Tree method, with the Euclidean 
distance measure employed for feature extraction is the main focus of 
this study. The effectiveness of the proposed model was evaluated using 
two key metrics: accuracy and Sensitivity-Specificity. To validate the 
model, experimental evaluation was conducted using standard datasets, 
specifically the MIT-BIH (ECG) database containing over 80,000 re
cords, as well as EEG data consisting of approximately 4000 instances. 
The reported results indicated an ECG classification accuracy of 97.11% 
and an EEG classification accuracy of 71.30%. However, it is important 
to note that the researchers did not provide a comprehensive analysis of 
additional metrics, thereby leaving the performance evaluation of the 
model somewhat ambiguous. In conclusion, focused on the processing of 
high-dimensional medical datasets using artificial intelligence tech
niques and evolutionary algorithms. The proposed ACO-Decision Tree 
clustering method demonstrated promising results in ECG and EEG 
classification tasks. Future research should aim to address these 

limitations and provide a more thorough evaluation of the model’s 
performance. 

Satapathy et al. [11] conducted a study primarily focused on iden
tifying and categorizing epileptic seizures in comparison to non-seizure 
patients. In this paper, the authors proposed the utilization of Artificial 
Bee Colony (ABC) and Radial-Based Function Networks (RBFNNs) for 
the EEG signal analysis-based identification of epileptic seizure disor
ders in the human brain. Several measures were used to assess the 
effectiveness of the suggested approach, including accuracy, recall, 
mean square error (MSE), and the discrete wave transformation (DWT) 
technique for feature extraction from the signal. Five sets of EEG data for 
epileptic seizure identification were collected from publicly accessible 
sources at the University of Bonn. The modified ABC algorithm was 
employed for the classification of EEG data, resulting in a maximum 
accuracy of 82.3% for epilepsy identification. However, in comparison 
to other existing methods, it is important to note that the outcomes of 
the proposed method are not highly efficient. Moreover, performance 
measurements like system complexity and computation time are 
missing. which could provide a more comprehensive assessment of the 
proposed method’s performance. In conclusion, focused on the detection 
and classification of epileptic seizures using EEG signal analysis. The 
proposed approach utilizing ABC and RBFNNs showed potential, 
although it did not outperform other existing methods. 

Wang et al. [12] conducted a study that focuses on using smart 
computing tools to diagnose epilepsy early. The study utilized the 
K-Nearest Neighbors (KNN) algorithm to determine the proximity be
tween data points in both the training and validation datasets. The KNN 
method employed the Minkowski Distance metric, which takes into 
consideration three crucial factors: the distance metric itself, the selec
tion of the K-value, and the decision-making process. The effectiveness 
of the classifier was assessed using various criteria, including accuracy, 
precision, recall, sensitivity, specificity, and the F1-score. To validate 
the model, the researchers utilized the Bonn EEG dataset, which is a 
widely accepted standard dataset for experimental evaluation in this 
domain. The experimental results have indicated an average classifica
tion accuracy of 100% for the proposed model. However, it is clear that 
this method has certain weaknesses. More specifically, lower feature 
counts in high-dimensional datasets can result from applying KNN al
gorithms with the Minkowski scale. Concluded with an emphasis on 
using smart computing tools to diagnose epilepsy early. The KNN al
gorithm with the Minkowski Distance metric demonstrated promising 
results, achieving a high average classification accuracy of 100%. 
However, it is important to consider the limitations of this method, 
particularly the potential loss of features in high-dimensional datasets 
when utilizing KNN algorithms with the Minkowski scale. 

3. Minkowski distance 

In the context of a normed vector space, Minkowski distance serves 
as a metric for measuring the similarity of distances between vectors. 
This distance metric can be employed in machine learning to assess the 
similarity of two or more vectors [13]. 

Consider a symmetric, open, strictly convex set X, which represents a 
bounded domain in R. The function d, defined by 

D=

(
∑n

i=0
|Pi − Qi|

k

)1
k

(1) 

D represents the Minkowski distance. Here, k denotes a parameter, n 
represents the number of data vector values (attributes), Pi and Qi 
denote the data points (data values). 

The term (|Pi-Qi|) represents the distance between two points in an n- 
dimensional space, as measured by the Minkowski metric. This metric 
adheres to the strict triangle inequality and serves as a generalization of 
both the Manhattan distance and the Euclidean distance. 

When k is equal to 1, the Minkowski distance coincides with the 
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Manhattan distance, given by 

DM=

∑n

i=1

⃒
⃒
⃒
⃒
⃒
Pi − Qi| (2) 

Alternatively, when k is equal to 2, the Minkowski distance aligns 
with the Euclidean distance, represented by 

DE=

[
∑n

i=0
(Pi − Qi)

2

]1/2

(3) 

The Minkowski distance is widely utilized in the field of machine 
learning, particularly when seeking to determine optimal correlations or 
classifications of data [14]. 

4. Proposed method 

The Particle Swarm Optimization (PSO) algorithm is widely recog
nized as one of the most commonly used metaheuristic algorithms in 
feature selection for high-dimensional datasets due to its effectiveness 
and ease of implementation [15]. PSO has demonstrated the capability 
to efficiently identify optimal features compared to other approaches. 
However, the traditional PSO algorithm often encounters the issue of 
stagnation at local optimum, resulting from deficiencies in solution 
search and exploitation [7]. 

This paper introduces a novel clustering approach based on Min
kowski for (PSO), specifically for selecting highly effective features in 
EEG datasets. Minkowski similarity measurements are applied to the 
static clustering of the EEG dataset based on the maximum similarity 
values. To achieve potentially high accuracy, divide the EEG dataset 

Fig. 2. Illustrates the main operations of the proposed Minkowski PSO clustering.  
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records into two clustering to obtain better accuracy by selecting the 
optimal and more similar features in the classification process. Experi
ments have shown that EEG dataset can have necessary features for the 
diagnosis of brain diseases more effectively when using the Minkowski 
clustering model compared to other methods. The selected features are 
then classified using machine learning algorithms such as Random 
Forest (RF), K-Nearest Neighbors (KNN), Support Vector Machine 
(SVM), Naive Bayes (NB), and Decision Tree (DT). 

The proposed system aims to address the challenges associated with 

the classification of high-dimensional data by partitioning the dataset 
into two clusters with high feature harmony. This approach promotes 
exploration and reduces the likelihood of stagnation. Mathematical 
models and statistics are employed in machine learning to identify 
patterns within high-dimensional datasets. Specifically, Minkowski 
similarity measurements are utilized to cluster EEG datasets based on 
the maximum similarity values. Fig. 2 provides a detailed overview of 
the main steps of the proposed method. 

In this model, vector weights are calculated using a polynomial 
equation (Eq. 1), and they are subsequently sorted in ascending order to 
determine the center of the point. Additionally, the displacement be

Table 1 
Explains the Accuracy metric results of classifiers SVM, KNN, DT, NB, and RF 
With PSO Minkowski clustering optimizer based on EEG signal length 15s (2604 
features)test size 10%.  

Dataset SVM KNN DT NB RF 

S, Z 60 60 85 100 90 
S, Z, O 76.6 76.6 90 100 96.6 
F, N, S 76.6 50 80 66.6 83.3 
N, O, S, Z 50 62.5 75 85 90 
F, O, S, Z 50 60 72.5 72.5 92.5 
F, N, O, S 50 70 72.5 70 82.5 
F, N, S, Z 52.5 62.5 62.5 75 87.5 
F, N, O, S, Z 32 58 58 70 90  

Table 2 
Explains the Accuracy metric results of classifiers SVM, KNN, DT, NB, and RF 
With PSO Minkowski clustering optimizer based on EEG signal length 15s (2604 
features)test size 30%.  

Dataset SVM KNN DT NB RF 

S, Z 65 51.6 81.6 98.3 96.6 
S,Z,O 70 73.3 86.6 100 96.6 
F, N, S 70 58.8 74.4 71.1 83.3 
N,O,S,Z 48.3 58.3 72.5 85 90.8 
F, O, S, Z 48.3 56.6 72.5 80.8 94.1 
F, N, O, S 48.3 63.3 75 79.1 85.8 
F, N, S, Z 52.5 61.6 69.1 74.1 79.1 
F, N, O, S, Z 37.3 55.3 58.6 69.3 81.3  

Table 3 
Describe the Accuracy metric results of classifiers SVM, KNN, DT, NB, and RF 
With PSO Minkowski clustering optimizer based on EEG signal length 23.6s 
(4097 features)test size 30%.  

Dataset SVM KNN DT NB RF 

S,Z 60 53 75 100 96.6 
S,Z,O 70 73 77.7 100 96.6 
F, N, S 70 56 75.5 71.1 82.2 
N,O,S,Z 48 55 65.8 82.5 85.8 
F, O, S, Z 48 55 69.1 75 87.5 
F, N, O, S 48 60.8 69.1 79.1 83.3 
F, N, S, Z 48 66 72.5 80 85 
F, N, O, S, Z 37 52.6 58.6 72 80.66  

Table 4 
Explains the precision metric results of classifiers SVM, KNN, DT, NB, and RF 
With PSO clustering based on EEG signal length 15s (2604 features)test size 
10%.  

Dataset SVM KNN DT NB RF 

S, Z 30 30 87.3 100 92.7 
S,Z,O 38.3 38.3 98.0 100 98.0 
F, N, S 38.3 60.7 53.2 70 67.8 
N,O,S,Z 25 78.5 75.9 86.9 90.6 
F, O, S, Z 25 77.8 72.5 70.0 92.6 
F, N, O, S 25 79.5 75 67.8 83.1 
F, N, S, Z 22.0 61.0 56.0 66.1 88.8 
F, N, O, S, Z 10.6 62.2 47.6 52.7 93.6  

Table 5 
Explains the recall metric results of classifiers SVM, KNN, DT, NB, and RF With 
PSO clustering based on EEG signal length 15s and test size 10%.  

Dataset SVM KNN DT NB RF 

S, Z 50 50 78.3 100 86.6 
S,Z,O 50 50 91.6 100 91.6 
F, N, S 50 59.8 72.7 69.3 72.7 
N,O,S,Z 50 62.5 72.5 85 90 
F, O, S, Z 50 60 72.5 72.5 92.5 
F, N, O, S 50 70 75 70 82.5 
F, N, S, Z 41.6 54.4 57.1 65.8 82.0 
F, N, O, S, Z 33.3 43.4 34.2 63.5 85.4  

Table 6 
Explains the F1-score metric results of classifiers SVM, KNN, DT, NB, and RF 
With PSO clustering based on EEG signal length 15s and test size 10%.  

Dataset SVM KNN DT NB RF 

S, Z 37.2 37.2 89.5 100 89.5 
S,Z,O 43.3 43.3 94.6 100 94.6 
F, N, S 43.3 60.2 58.5 69.6 70 
N,O,S,Z 33.3 69.6 72.6 85.9 90.3 
F, O, S, Z 33.3 67.7 72.5 71.2 92.5 
F, N, O, S 33.3 74.1 67.9 68.8 82.8 
F, N, S, Z 28.8 57.4 56.5 66.0 85.2 
F, N, O, S, Z 15.9 51.2 41.2 57.6 89.1  

Table 7 
Describes the Accuracy metric results of classifiers SVM, KNN, DT, NB, and RF 
With PSO optimization based on EEG signal length 15s (2604 features) test size 
30%.  

Dataset SVM KNN DT NB RF 

S, Z 48 61 90 100 100 
S, Z, O 30 43 61 78 76 
F, N, S 30 53 62 72 91 
N, O, S, Z 21 35 56 60 67 
F, O, S, Z 21 38 51 62 75 
F, N, O, S 21 45 39 57 72 
F, N, S, Z 21 50 53 56 70 
F, N, O, S, Z 18.0 32 38 58 67  

Table 8 
Describes the Accuracy metric results of classifiers SVM, KNN, DT, NB, and RF 
With PSO optimizer based on EEG signal length 15s (2604 features) test size 
10%.  

Dataset SVM KNN DT NB RF 

S, Z 50 65 80 100 100 
S, Z, O 20 50 56.6 73.3 66.6 
F, N, S 20 50 73.3 76.6 93.3 
N,O,S,Z 20 32.5 57.5 67.5 67.5 
F, O, S, Z 20 37.5 55 62.5 77.5 
F, N, O, S 20 47.5 62.5 60 77.5 
F, N, S, Z 20 50 35 50 82.5 
F, N, O, S, Z 18 32 54 60 76  
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tween centers is computed to achieve better clustering by obtaining 
optimal spacing. The remaining EEG dataset is then allocated to clusters 
based on Minkowski measurements. For each vector, Minkowski simi
larity measurements are computed with all centers, and the signal is 
allocated to the cluster with the maximum similarity value. This process 
ensures that highly harmonious features are selected through optimi
zation techniques like PSO, which enhances the system’s performance 
and improves accuracy. Finally, the average accuracy for the two clus
ters is determined. 

W =
∑N

k=1
k ∗ xk (4)  

Where: N: - number of vector items. 
xk: - vector items 
k: - vector index. 

5. Discussion and experimental results 

In order to assess the effectiveness of the proposed model, various 
performance metrics including accuracy, recall, F1-score, and precision 
are calculated. These metrics provide a comprehensive analysis and 
clear evaluation of the system’s performance [16]. In order to evaluate 
the proposed model, a high-dimensional and widely used Bonn Uni
versity EEG dataset is employed. This dataset is commonly utilized for 
diagnosing and identifying epileptic seizures [17]. Furthermore, PSO 
empowered with Minkowski clustering model is compared with the 
traditional PSO approach. Experimental results indicate that the utili
zation of the Minkowski clustering model yields superior effectiveness 
compared to alternative methods. 

The main limitation for the proposed model is forcing records allo
cation to the closest cluster although it may not highly similar. Tech
nically, this is clearly caused by the static clustering behavior as all 
records have to be allocated to one of the two clusters. 

5.1. Dataset description 

The electroencephalogram (EEG) is a valuable and cost-effective 
diagnostic tool used to examine the electrical activity in the brain. It 
serves as the most prevalent method for diagnosing changes in brain 
functions. EEG data is obtained by placing electrodes on the scalp, 
enabling the measurement of brain activity. This technique is particu
larly effective in identifying and monitoring neurological conditions 
such as epilepsy and sleep disturbances [18]. In addition to its diagnostic 
applications, EEG signals are used in many investigations and research 
projects, including as applications for gaming and lie detection. How
ever, these signals are characterized by complexity, noise, nonlinearity, 
and instability. Consequently, extracting meaningful information 
related to the brain from EEG signals is a challenging task. As a result, 
many researchers have proposed a range of feature selection and opti
mization techniques to accurately analyze and classify EEG signals, to 
safeguard individuals’ health, and facilitate early detection of brain 
diseases. The dataset employed in this study consists of 500 segments of 
single-channel EEG recordings, which have been evenly divided into five 
sets. Each set comprises 100 files representing five distinct classes. All 
sets adhere to identical patient conditions. Each EEG signal within the 
dataset lasts 23.6 s and is associated with 4097 features. 

5.2. Results for clustering approach based on Minkowski 

The superiority of a feature selection and clustering algorithm lies 
not in its ability to select fewer features, but rather in its capability to 
identify the most effective features that significantly impact the accu
racy of the objective function. In this study, the implementation of 
Minkowski clustering aims to group the dataset records into two clusters 
with high feature harmony, thereby enhancing accuracy through the use 
of Particle Swarm Optimization (PSO) to select highly optimal features. 
Various data test sizes (10%, 20%, and 30%) have been utilized in order 
to evaluate the system’s performance and assess the impact of training 
accuracy on the developed patterns. Additionally, different signal 
lengths (1s, 5s, 15s, and 23.6s) have been employed during the evalu
ation. No preprocessing techniques have been applied to the EEG sig
nals. Remarkably, even with a small record of EEG signals with a length 
of 1 s, the Minkowski clustering approach has demonstrated promising 
achievements. Experimental results indicate that the highest accuracy 

Table 9 
Describes the Accuracy metric results of classifiers SVM, KNN, DT, NB, and RF 
With PSO optimizer based on an EEG signal length of 23.6s and test size of 30%.  

Dataset SVM KNN DT NB RF 

S, Z 48.3 61.6 76.6 100 100 
S,Z,O 30 43.3 60 78.8 75.5 
F, N, S 30 55.5 56.6 71.1 91.1 
N,O,S,Z 21.6 35 46.6 65 72.5 
F, O, S, Z 21.6 36.6 55 61.6 75 
F, N, O, S 21.6 43.3 49.1 56.6 75.8 
F, N, S, Z 21.6 46.6 56.6 57.5 74.1 
F, N, O, S, Z 18 28.6 36 59.3 66  

Table 10 
Describes the precision metric results of classifiers SVM, KNN, DT, NB, and RF 
With PSO optimizer based on EEG signal length 15s (2604 features) test size 
10%.  

Dataset SVM KNN DT NB RF 

S, Z 25 79.4 85.3 100 100 
S,Z,O 6.6 55.8 53. 70.0 65.5 
F, N, S 6.6 66.8 77.2 69.7 91.4 
N,O,S,Z 5 48.8 59.3 70.6 67.1 
F, O, S, Z 5 62.8 56.2 61.3 80.9 
F, N, O, S 5 55.4 63.0 65.0 84.4 
F, N, S, Z 5 55.5 40.0 52.9 82.1 
F, N, O, S, Z 3.6 52.7 59.5 55.0 76.0  

Table 11 
Describes the recall metric results of classifiers SVM, KNN, DT, NB, and RF With 
PSO optimizer based on EEG signal length 15s (2604 features) test size 10%.  

Dataset SVM KNN DT NB RF 

S, Z 50 65 85 100 100 
S, Z, O 33.3 43.3 67.9 70.5 65.3 
F, N, S 50 65 80 100 100 
N, O, S, Z 33.3 43.3 51.2 70.5 65.3 
F, O, S, Z 33.3 57.6 72.1 69.1 91.4 
F, N, O, S 25 34.9 52.0 65.8 65.1 
F, N, S, Z 25 41.1 46.3 61.7 75.8 
F, N, O, S, Z 25 43.8 52.2 64.0 79.4  

Table 12 
Describes the F1-score metric results of classifiers SVM, KNN, DT, NB, and RF 
With PSO optimizer based on EEG signal length 15s (2604 features) test size 
10%.  

Dataset SVM KNN DT NB RF 

S, Z 33.3 71.4 75.1 100 100 
S,Z,O 11.1 48.8 60.3 70.2 65.4 
F, N, S 11.1 61.8 69.1 69.4 91.4 
N,O,S,Z 8.3 40.7 48.3 68.1 66.1 
F, O, S, Z 8.3 49.7 43.4 61.5 78.3 
F, N, O, S 8.3 48.9 49.8 64.5 81.8 
F, N, S, Z 8.3 50.8 31.9 54.2 83.2 
F, N, O, S, Z 6.1 41.8 48.5 56.4 75.7  
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achieved for two classes was 100% for classifiers Naive Bayes (NB) and 
Random Forest (RF), except for the K-Nearest Neighbors (KNN) classi
fier, which exhibited a decrease in accuracy. The performance tests 
presented in Tables 1–6 provide detailed insights into the accuracy 
metric results of classifiers Support Vector Machine (SVM), KNN, Deci
sion Tree (DT), and RF with Minkowski feature selection clustering. 
Notably, the clustering model required less execution time to select 
effective features in the five classes for the NB classifier, with an average 
of 0.00028 s, compared to the standard PSO approach, which had an 
average execution time of 0.00036 s. 

6. PSO traditional evaluation 

The Particle Swarm Optimization (PSO) algorithm, Stochastic 

optimization is a technique first presented by Eberhart and Kennedy in 
1995. PSO is inspired by the collective behavior of various species such 
as insects, herds, birds, and fish [19]. These species exhibit cooperative 
behavior in acquiring food, with each member continuously adapting 
their search strategy based on its own experiences and the experiences of 
other members. 

PSO is a computational technique that iteratively improves candi
date solutions to optimize a given quality measure. It operates by 
maintaining a swarm of particles, where each particle represents a po
tential solution to the problem at hand. These particles navigate through 
a multidimensional search space, adjusting their positions based on their 
own experiences and the experiences of their neighboring particles [20]. 
Recently, PSO has been successfully applied in various research and 
application domains. It has demonstrated superior performance 

Fig. 3. Describes the Accuracy metric results of classifiers SVM, KNN, DT, NB, and RF With PSO optimizer based on EEG signal length 15s (2604 features) test 
size 30%. 

Fig. 4. Explains the Accuracy metric results of classifiers SVM, KNN, DT, NB, and RF With PSO Minkowski clustering optimizer based on EEG signal length 15s (2604 
features) test size 30%. 

Fig. 5. Explains the Accuracy metric results of classifiers SVM, KNN, DT, NB, and RF With PSO Minkowski clustering optimizer based on EEG signal length 15s (2604 
features) test size 10%. 
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compared to other methods, offering faster and more cost-effective 
outcomes. Another notable advantage of PSO is its limited number of 
adjustable parameters [15]. A single version of the algorithm can be 
readily applied to different applications with minimal modifications. 
The local best optimum (pbest) designates the PSO’s particle’s optimal 
solution. Following a full optimization cycle, the global best solution 
(gbest), which is the best among the pbests, is updated. Equation (5) 
calculates the velocity of particles [21]. 

Vi d(t+ 1)=w(t)Vid(t)+ c1r1(pbest id − xi d(t)+ c2r2(gbest d

− xid(t))…… (5)  

where: vi d (t),xi d (t) indicates the velocity and position of i tℎ particle at 
iteration t in d tℎ dimension respectively, c1 and c2 are positive co
efficients. r1 and r2 are random variables in the range [0, 1]. w is the 
inertia weight. Equation (6) is applied to find the new value of particle 
position (candidate solution). 

xi t+ 1 = xi t + vi t + 1 …….. (6)  

Where: xi t+1 is the new particle position and xi t is the old particle 
position. 

6.1. Results for traditional PSO algorithm 

The following tables present the results of the PSO optimizer for 
various evaluation metrics, including accuracy, precision, recall, and F1- 
score. These results are obtained using a signal duration of 15 s and a 
testing size of 30% with a corresponding training size of 70%. 
Furthermore, the proposed Minkowski feature selection technique is 
compared with the traditional PSO approach. Experimental observa
tions reveal that the accuracy tends to decrease as the number of classes 
increases. Additionally, the highest accuracy is achieved for the Naive 
Bayes (NB) and Random Forest (RF) classifiers when dealing with two 
classes. Evidently, PSO optimizers typically rely on random feature se
lection, necessitating multiple iterations to attain the best feature subset 
during the system training stage [19,20]. Furthermore, these optimizers 
often require a larger number of features and more execution time, 
leading to increased complexity. Detailed performance test results can 
be found in Tables 7–12. 

Bar chart figures serve as a visual display, With the goal of obtaining 
a lucid visual evaluation of all resulting Accuracy, shown in Table 7. 
(Fig. 3), by different classes for the PSO optimizer for 15 s of signal 
length. Although Minkowski has been applied to a small dataset testing 
size, potential Accuracy has been achieved. SVM has shown the least 
accurate achievement when Minkowski is applied. However, KNN keeps 
outperforming SVM with the Minkowski feature selection. Moreover, 
the performance increases with the height of the sample length signals. 
Shown in Tables 3 and 4 (Figs. 4 and 5). 

Finally, several different methods have been devised to identify 

seizures caused by epilepsy. Using accuracy metrics, the suggested 
strategy is contrasted with other previously established techniques. This 
comparison only includes strategies tested within the same dataset, 
allowing Results from groups of the same classes will be compared. The 
comparison results in Table 13 show that Minkowski feature selection 
and clustering models outperformed most of the earlier techniques. Most 
alternative EEG signal categorization methods have employed up to two 
classes to evaluate the performance of their classifiers. In contrast to our 
way of classifying various EEG data, we have discovered more states. 

7. Conclusion 

In summary, the progress of feature selection algorithms often re
quires additional support to overcome the challenge of stagnation and 
improve exploration efficiency. This paper presents a novel clustering 
approach based on Minkowski’s mathematical similarity, which dem
onstrates high efficiency in machine learning applications, characterized 
by fast detection and high accuracy. The proposed method effectively 
mitigates the issue of stagnation commonly encountered in clustering 
algorithms. Generally, clustering is a widely used machine learning 
technique, assigns data points to groups based on their similarities, 
without prior knowledge of the data point labels. The accuracy of the 
Minkowski clustering approach surpasses that of alternative methods, 
offering improved classification results. Moreover, compared to other 
models, Minkowski exhibits lower complexity as it does not require an 
iterative mode like Particle Swarm Optimization (PSO). One limitation 
of the proposed system is that the accuracy decreases with an increasing 
number of classes. However, empirical findings demonstrate the po
tential of Minkowski feature selection, even with a small dataset of EEG 
signals. Minkowski enables traditional classifiers to achieve high accu
racy levels, close to or equal to 100%, with the exception of the K- 
Nearest Neighbors (KNN) classifier, which exhibits reduced accuracy as 
the number of features increases. Although the evaluation is conducted 
on a small dataset testing size, the potential for achieving high accuracy 
is evident. Support Vector Machine (SVM) achieves the lowest accuracy 
when combined with Minkowski optimization, while KNN consistently 
outperforms SVM in this regard. 

8. Future work 

In order to overcome the limitation of the static Minkowski clus
tering when all records would be allocated to clusters although they may 
not quietly similar, a new dynamic Minkowski clustering model would 
be proposed for future work. This would assure allocating records to 
their best similar clusters. 

Using various methods for processing EEG data, such as the wavelet 
transform, Fourier transform, and others before the Minkowski measure 
Similarity. 

The system proposed used only PSO algorithms for clustering data. 
Can be developed system through applying many optimization algo
rithms such as GWO, ABC, ACO, Firefly, and other approaches to in
crease efficiency. 
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Comparison of Minkowski selection features with other previous models.  

Author Method Dataset Best 
accuracy 

Jamali-Dinan 
et al. [8] 

PSO and MWK methods The EEG 93.6% 

Suraj et al. [9] a hybrid GA-PSO-based K- 
means clustering 

classifying two 
class MI tasks 

60.42 %. 

Miroslav Bursa 
et al. [10] 

Clustering techniques using the 
ACO-Decision Tree method 

The EEG 71% 

Satapathy 
et al. [11] 

of Artificial Bee Colony (ABC) 
and Radial-Based Function 
Networks (RBFNNs) 

University of 
Bonn 

82.3 

Wang et al. 
[12] 

KNN method employed the 
Minkowski Distance metric 

University of 
Bonn 

100% 

Proposed 
method 

Minkowski selection features 
and clustering 

The EEG 100%  
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