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Abstract

Cyberattacks cause havoc in the digital world, but the most significant threat
might be from those who appear to be trustworthy: insiders. Insider threats
pose a significant and evolving challenge to organisations, jeopardizing data se-
curity, operational processes, and overall well-being. Unlike external threats,
these threats stem from individuals with authorized access and deep familiarity
with internal systems, making them particularly difficult to detect and potentially
causing more substantial damage. Insiders, including employees, contractors, or
business partners, possess legitimate access to a company’s systems and data.
When these insiders act maliciously or negligently, they can cause significant
damage through theft, sabotage, or espionage. While robust for detecting and
preventing insider threats, machine learning and deep learning techniques face
several challenges. This thesis aims to highlight three significant challenges in
insider threat detection and prediction.

A significant challenge in evaluating insider threat detection and prediction al-
gorithms is the lack of standardized datasets and problem settings. This variabil-
ity makes it difficult to compare the effectiveness of different approaches and pro-
vide clear recommendations for decision-makers. To address this challenge, this
study aims to objectively evaluate the performance of supervised machine learn-
ing algorithms within a consistent experimental setting. This will be achieved
by implementing supervised algorithms using the balanced CERT r4.2 dataset,
employing a uniform feature extraction methodology. The performance of various
supervised machine learning algorithms on a balanced dataset using the same fea-
ture extraction method is thoroughly evaluated. Additionally, an exploration of

the impact of hyperparameter tuning on performance within the balanced dataset



is conducted.

The second challenge is, traditionally, detecting insider threats, which involves
analyzing user behaviours recorded in logs and developing a binary classifier to
differentiate between malicious and non-malicious individuals. However, existing
approaches only consider either standalone activities or sequential activities. A
novel approach is proposed to enhance the detection of malicious insiders: a bilat-
eral insider threat detection method that harnesses the power of recurrent neural
networks and incorporates both standalone and sequential activities. Initially,
behavioural characteristics are extracted from log files, representing the stan-
dalone activities. Then, RNN models are utilized to capture the features that
represent sequential activities. Subsequently, the features obtained from stan-
dalone and sequential activities are merged, and a binary classification model is
employed to detect insider threats effectively. The experiment findings using the
publicly available CERT r4.2 dataset demonstrate that the proposed bilateral in-
sider threat detection approach significantly improves the performance of insider
threat detection.

The third challenge is that previous research has addressed the challenge by
pinpointing malicious actions that have already occurred but they have provided
limited assistance in preventing these risks. This research introduces a novel ap-
proach based on bidirectional long-term memory networks, aiming to effectively
capture and analyse the patterns of individual actions and their sequential de-
pendencies. The focus lies in predicting whether an individual will become a
malicious insider in the future based on their daily behavioural records over the
preceding several days. The performance of the four supervised learning algo-
rithms on manual features, sequential features, and the ground truth of the day
with various combinations is analysed. Additionally, the performance of different
RNN models, such as RNN, LSTM, and BiLSTM, in incorporating these features
is investigated. Moreover, the performance of different predictive lengths on the
ground truth of the day and different embedded lengths for the sequential fea-
tures is explored. All experiments are conducted on the CERT r4.2 dataset, with
experiment results indicating that BiLSTM achieves the highest performance in

combining these features.
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In summary, this research can effectively address three significant challenges

in insider threat detection and prediction.
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Chapter 1

Introduction

1.1 Background

In today’s hyper-connected world, the pervasive spectre of cyber threats casts a
formidable shadow across the entire digital landscape. These threats encompass
various malicious activities and vulnerabilities, posing an omnipresent and mul-
tifaceted risk to individuals, organisations, and nations. Insider threats emerge
as a nuanced and distinctive category, casting a shadow within the organisation’s
walls. As we delve into the broader sphere of cyber threats, we inevitably arrive
at insider threats, where the lines between friend and foe blur, and the risks are
often concealed in plain sight.

Recent data breaches and system sabotage activities that have seriously af-
fected users worldwide have brought cyber security into greater prominence [1l
2, 13, [4]. For example, Australians lost a staggering A$13,885,099 to threats and
extortion scams in 2023, according to Scamwatch [5]. These incidents serve as
compelling reminders of the urgent need to prioritize and strengthen cyber se-
curity measures to safeguard sensitive information and protect against malicious
threats [0, [7, 8, @].

Insider threats pose a significant challenge to cyber security in contemporary
times. Such a threat can manifest in various forms of malicious activity, including

exploiting security privileges to pilfer intellectual property, divulging or trading



customer data, or deploying malware and backdoors on corporate computers.
This constitutes insider misconduct. Insider threats are more vulnerable than
outsider threat attacks, and while rare, they can cause significant damage [10,
11, [12], 13].

A recent report by Ponemon Institute (2022) paints a concerning picture of
insider threats [14]. The frequency of these incidents is on the rise, with 67% of
organisations experiencing between 21 and more than 40 insider attacks annually.
This represents a significant jump from 60% in 2020 and 53% in 2018. Further-
more, the cost associated with each incident has risen dramatically. According to
the same report, the average cost per incident now stands at a staggering $15.38
million [I4]. This highlights the severe financial impact insider threats can have
on organisations. The report also reveals that the time to detect and contain
insider attacks remains a challenging task. On average, it takes organisations 77
days to address them, with data loss occurring in 42% of cases before containment
[14].

A separate survey found that privileged users pose the most significant insider
threat risk, with 55% of organisations identifying them as a Concernﬂ This under-
scores the importance of implementing robust monitoring of privileged accounts
closely. Moreover, it confirms insider threats’ rise, reporting a 47% increase over
the past two years.

The 2023 Insider Threat Report by Gurucul reveals a significant increase
in insider threats, with a staggering 74% of organisations reporting a rise in
the frequency of such attacks. This pervasive risk is further emphasized by the
finding that over half (more than 50%) of organisations have experienced insider
threats in the past year, with a concerning 8% facing more than 20 incidents.
As organisations transition to hybrid work models, a significant portion (68%)
express concern about insider risk. This growing concern and the report’s finding
that most organisations (approximately 74%) are considered moderately or highly
vulnerable to insider threats, underscores the critical need for robust security

measures to safeguard sensitive data and IT infrastructure [15, [16].

ISource: https://techjury.net/blog/insider-threat-statistics/#gref
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Fig. 1.1. Average cost of insider threat incidents

The COVID-19 pandemic has further amplified the problem. The shift to
remote work and increased reliance on digital platforms have created new oppor-
tunities for malicious insiders to exploit vulnerabilities [I7]. organisations must
remain vigilant in the face of this evolving threat landscape. Implementing ro-
bust security measures, including user monitoring, access controls, and data loss
prevention techniques, is crucial to detect and prevent insider attacks [18] 19} 20].

Insider threats can inflict a financial triple whammy on organisations. Direct
costs encompass the immediate spending required to identify, contain, investigate,
and recover from the incident. These are followed by indirect costs, representing
the value of lost employee productivity and resources dedicated to managing the
fallout. Finally, there are lost opportunity costs, reflecting potential profits for-
feited due to the disruption caused by the attack. The Ponemon Institute’s 2023
report reveals a troubling trend — the total cost of insider threats has surged nearly
95% since 2018, highlighting the critical need for robust preventative measures
[21].

From Figure the average cost of insider threat incidents in the United



States has steadily increased since 2018. The cost in 2018 was $8.3 million,
and it rose to a staggering $18.33 million in 2023 [2I]. This significant increase

highlights insider threats’ growing financial risk to organisations.

1.1.1 Insider Threats Across Industries

The threat of insider attacks isn’t limited to a single industry. Malicious actors
with authorized access can pose significant risks in various sectors. Here are some

examples:

e Financial Industry: Employees with access to sensitive customer data, like
account numbers or credit card information, could steal and sell it on the

black market for fraud.

e Technology Industry: Disgruntled employees with knowledge of a com-
pany’s intellectual property, such as trade secrets or software code, could
leak or misuse that information to harm the organisation or give themselves

or another company a competitive edge.

e Healthcare Industry: Employees with access to patient records might inten-
tionally disclose or sell confidential medical information for personal gain.
This could involve selling patient data to pharmaceutical companies or iden-

tity thieves.

e Government Sector: Insiders with access to classified information could leak
sensitive data, such as national security secrets, to unauthorized individuals
or foreign entities. This could be done for personal gain, ideological reasons,

or even blackmail.

e Retail Industry: Employees with access to inventory management systems
could manipulate data to steal valuable merchandise or sell product infor-

mation to competitors.

e Energy and Utilities: Insiders with access to control systems could disrupt
critical infrastructure in this industry. For example, a disgruntled employee

at a power plant could manipulate controls to cause a blackout.



e Media and Entertainment: Employees with access to sensitive or unreleased
content could leak it to the public before its intended release date. Addi-
tionally, insider access to celebrity or customer data could be sold to third

parties for malicious purposes.

1.1.2 Recent Insider Threats in world-wide

We will examine a few recent cases of insider threats involving data breaches.

In the 2019 Capital One breach, a former Amazon employee who partici-
pated in the attack was convicted in 2022 H At the beginning of the COVID-19
pandemic, a disgruntled ex-employee from a medical packing company misused
a previously established admin account. They created a fraudulent new user
account and manipulated thousands of files to disrupt or halt the delivery of
personal protective equipment to hospitals and healthcare providers E|

Following the breach, Tesla promptly mitigated the damage and bolstered
their security systems. Collaborating closely with law enforcement, they pin-
pointed the two former employees responsible. Affected staff were promptly no-
tified and provided with resources to safeguard personal information. Tesla com-
prehensively reviewed their I'T security and data protection policies, identifying
and addressing potential vulnerabilities. They instituted additional security mea-
sures, including stricter access controls, heightened user activity monitoring, and
enhanced encryption protocols. Moreover, Tesla underscored the significance of
employee training in cybersecurity best practices. These proactive steps demon-
strate Tesla’s commitment to fortifying its defences and safeguarding sensitive
information [22].

In 2022, Yahoo sued a former research scientist who stole proprietary source
code about their AdLearn product E| Minutes after receiving a job offer from a

competitor, the employee downloaded approximately 570,000 pages of Yahoo's

thttps://firewalltimes.com /recent-data-breaches/
Zhttps://www.justice.gov/usao-ndga/pr/former-employee-medical-packaging-company-

allegedly-sabotages-electronic-shipping
3https://www.thedrum.com/news/2022/05/19 /yahoo-lawsuit-alleges-employee-stole-

trade-secrets-upon-receiving-trade-desk-job



intellectual property (IP) to his personal devices, knowing that the information
could benefit him in his new job. In the lawsuit, Yahoo claimed the stolen data
would give competitors an immense advantage. Furthermore, in 2022, Microsoft
employees accidentally exposed login credentials on GitHub, potentially granting
access to Azure servers and other internal systems [23]. Fortunately, this leak,
which could have included source code, was discovered by a security firm before
exploitation. The incident highlights the risk of unintentional insider threats and
the potential for hefty fines under regulations like GDPR.

In November 2021, a security breach at South Georgia Medical Center exposed
sensitive patient information [} A disgruntled former employee, with legitimate
access even after quitting, downloaded private data, including test results, names,
and birth dates, onto a USB drive. This incident highlights the risk of insider
threats motivated by personal motives. While the medical centre’s security soft-
ware eventually detected the unauthorized download, the breach emphasizes the

need for proactive measures.

1.1.3 Motivation for Insider Threat Research

Several factors have prompted us to direct our research towards insider threat de-
tection and prediction. The increasing number of insider threats, both malicious
and accidental, has become a critical issue for organisations of all kinds. This
surge in threats has significantly exposed sensitive data and intellectual property.

Proactive solutions are essential to address this escalating threat landscape.
Insider threat detection and prediction research is at the forefront of this fight.
The primary goal is to harness advanced technologies to create effective strate-
gies that identify potential insider threats and implement preventative measures
to safeguard critical information. By achieving this, organisations can mitigate
internal risks, protect their valuable data assets, and reduce insider threats’ fi-
nancial and reputational risks.

Furthermore, data breaches, often a consequence of insider threats, can have

devastating financial implications. organisations face significant costs associated

thttps://www.hipaajournal.com /former-south-georgia-medical-center-employee-arrested-

over-41k-record-data-breach/
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Fig. 1.2. Insider threat increases

with remediation, legal repercussions, and lost business opportunities. Research
is driven by the need to develop proactive methods to detect and prevent insider
threats. This proactive approach aims to lessen the financial impact of data
breaches and ensure an organisation’s financial stability.

Figure[l.2illustrates the rise in insider threats from 2016 to 2022 across various
categories. The figure shows an upward trend in all categories, including creden-
tial theft, malicious insider threats, and negligent employee behaviour. Notably,
the data indicates a significant increase in all these categories in 2022 compared

to previous years.

1.2 Research Problems

In past decades, many techniques have been used to control insider threats. Ac-
cess control techniques are essential for safeguarding data privacy and ensuring
security [24] 25 26, 27]. They are used in diverse domains, including healthcare

systems and data dissemination. Despite authorized access, traditional security



measures often fail to thwart insider threats. Conventionally, access control sys-
tems are used. In [28] introduced an adaptive risk management and access control
framework to mitigate insider threats in organisations. It extends the traditional
role-based access control model by incorporating risk assessment and trust in
users’ behaviour. Even though users can access data, these access controls can’t
stop them from misusing it. Following these access control systems, much re-
search has focused on understanding insiders and developing methods to detect
insider threats [29, B0, B1), 32]. Insider threats can include data exfiltration, es-
pionage and fraud, exposure of classified information, I'T sabotage, and theft of
intellectual property [33], 34) [35, [36].

The growing prevalence of insider threats has spurred a surge in research
aimed at understanding and mitigating these risks. However, despite this research
effort, our ability to effectively address insider threats remains limited. We can
formulate and explore two primary research questions through subquestions to
address this gap.

Research Question 1: Can machine learning and deep learning
algorithms leverage standalone and sequential features to achieve su-
perior detection performance for insider threats?

Traditional security methods often struggle to identify insider threats be-
cause these individuals have authorized access to data and systems [37, [38] 139,
40]. Therefore, machine learning and deep learning algorithms have emerged as
promising tools for insider threat detection. These algorithms can analyse vast
amounts of user activity data to identify patterns and anomalies that might in-
dicate malicious intent. However, the effectiveness of these algorithms depends
on the features used to train them.

Previous research has explored two main types of features for insider threat
detection: standalone features and sequential features. While both offer valuable
insights, some studies have focused solely on one type or the other [2, 41] 42, 143
44). This leaves a gap in our understanding of the potential benefits gained by
combining these features to create a more comprehensive picture of user activity.
Subquestion 1 compares the performance of various supervised machine learning

algorithms on the CERT r4.2 balanced dataset and in real-world scenarios with



imbalanced datasets. Additionally, subquestion 2 addresses the combination of
standalone and sequential features in insider threat detection.

Subquestion 1: How do various supervised machine learning algo-
rithms perform on the CERT rj.2 balanced dataset compared to real-
world scenarios with imbalanced datasets, particularly under varying
levels of class imbalance, ranging from 40% to as low as 0.5% of
insider cases in the dataset?

Machine learning has emerged as a promising tool for various cybersecurity
applications, including insider threat detection and cyber-attack prediction [45]
46, 47, 48, 49]. However, a major challenge lies in effectively comparing the
performance of existing approaches across different datasets and settings.

Previous research has utilized diverse datasets and settings, making direct
comparisons between these approaches difficult due to the influence of these vary-
ing parameters [50, 51, 52]. To address this challenge, we propose a controlled
evaluation methodology. We compare the performance of various supervised ma-
chine learning algorithms on a standardized balanced dataset and under consis-
tent settings. Furthermore, we investigate the impact of hyperparameter tuning
on the algorithms’ performance. Additionally, we explore the effectiveness of
these same algorithms in handling datasets with different levels of class imbal-
ance, reflecting real-world scenarios where insider representation may be much
lower than the number of normal user cases.

Subquestion 2: How does combining standalone and sequential fea-
tures extracted from wuser activity data impact the performance of
insider threat detection algorithms compared to using standalone or
sequential features alone?

Existing research on insider threat detection has explored various machine
learning and deep learning techniques [6], [53, 54]. These approaches typically
focus on two main types of features: behavioural features and standalone fea-
tures. Behavioural features capture user activity patterns to identify suspicious
behaviour, while standalone features focus on static characteristics of user activ-
ity. However, a key limitation of many existing approaches is their reliance on
only one type of feature, either standalone or sequential. This can lead to a less

comprehensive picture of user activity and potentially hinder detection accuracy.



To address this limitation, we propose a bilateral insider threat detection
framework. This framework incorporates standalone and sequential features to
create a more holistic view of user activity. By combining these features, we aim
to improve the effectiveness of insider threat detection compared to approaches
that rely solely on one feature type.

Research Question 2: Can incorporating daily ground truth data
about insider threat incidents improve the prediction of future insider
threats compared to methods that rely solely on historical user activity
data?

In recent years, numerous studies have explored machine learning-based ap-
proaches for insider threat detection [55] 56, [57]. Similarly, research has focused
on user behaviour analysis for threat detection [58, [59) [60]. However, these tech-
niques primarily concentrate on identifying threats that have already occurred
based on historical user activity data. Traditional access control methods focus
on post-occurrence detection and can lead to response delays, especially for large
organisations as highlighted in [611 [62] [63]. This research addresses this limitation
by exploring methods for the prediction of insider threats.

Subquestion 3: Can recurrent neural networks (RNN, LSTM, Bi-
LSTM) leverage daily ground truth data Xg to learn more effec-
tive patterns from user activity features Xm,Xs for improved insider
threat prediction?

Traditional methods often struggle with insider threat detection, highlighting
the need for a more predictive approach. This research proposes a framework
incorporating user activity features, including confirmation of whether an attack
occurred each day (ground truth), to train RNN models. The model can learn
user behavioural patterns by analysing standalone and sequential user activities.
Including ground truth data as a feature allows the RNN to identify deviations
from normal user behaviour and potentially refine its predictions. This system-
atic evaluation will compare the performance of RNNs utilizing this combined
feature set with potentially less informative models, aiming to demonstrate the
effectiveness of RNNs in learning from ground truth data for improved insider

threat prediction.

10



Ground-turth of

the day Feature

Feature
Extraction

Sequential
Features

Pre-processing

Standalone
Features

Insider Threat
Prediction

Bilateral Insider
Threat Detection

Insider Threat

Detection

Fig. 1.3. Overall framework

11




1.3 Thesis Contribution

Outlined below are the primary contributions made by this thesis:

e This research compares the various supervised machine learning algorithms,
including RF, XG Boost, KNN, GNB, DT, MLP, AdB, and QDA, using the
CERT r4.2 balanced dataset to evaluate their performance in insider threat
detection. It also investigates the influence of hyperparameter modifications
on the performance of specific machine learning models, namely KNN, DT,
and AdB, within the balanced dataset.

e This research examines the performance of various supervised machine
learning methods in addressing imbalanced datasets, which are common
in real-world scenarios. Specifically, we assessed their effectiveness in the
presence of different levels of class imbalance, ranging from 40% to as low

as 0.5% of insider cases.

e This research also introduces a novel Bilateral insider threat detection
framework that utilizes both standalone and sequential activities from users’
daily behaviours. Furthermore, it develops a feature extraction method
based on RNNs and LSTM to capture and utilize sequential features in the
data.

e The experiments compare the performance of our bilateral features with
various classifiers on the CERT r4.2 dataset. Additionally, we assessed the
effectiveness of RNN and LSTM feature extractors in combination with the
same classifiers, namely KNN, MLP, LR, and SVM.

e This research introduces a comprehensive framework for insider threat pre-
diction that leverages user activity features, including the ground truth of
each day. This framework addresses the challenge of accurately identifying
potential insider threats by considering both standalone and sequential user

activity data from previous days.

e The experiments conduct a systematic evaluation to assess the impact of

integrating standalone features X m, sequential features X s, and the ground
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truth for a specific day X ¢ on insider threat prediction accuracy. This com-
prehensive assessment involves a comparative analysis of the performance
of three distinct models: RNN, LSTM, and Bi-LSTM on Xm/|| X s|| Xg.

e This research investigates the impact of varying predictive lengths on Bi-
LSTM’s ability to predict threats. Our goal is to identify the optimal length
that maximises Bi-LSTM’s efficiency in threat prediction. It is achieved
by comparing its performance with other models (KNN, LR, AdB, GNB)
across different predictive lengths. Additionally, it explores the impact of
various embedding sizes (16, 32, 64, and 128) on a BiLSTM architecture
with a fixed sequence predictive length (e.g., 5). All models are evaluated

using the combined feature set Xm|| X s|| Xg).

1.4 Thesis Structure

This thesis comprises seven chapters, the current one included. The remaining
chapters are structured as follows:

Chapter 2 meticulously examines existing knowledge to establish a strong
foundation for the research. To understand insider threat detection and predic-
tion, the chapter first defines "insiders” and explores the various insider threats
organisations face. It then delves into the motivations behind insider attacks,
examining reasons ranging from financial gain and revenge to emotional ones.
Following this foundational understanding, the chapter dives deeper into insider
threat detection and prediction research. Critically, the chapter also explores
various methods for analysing user activity data, a crucial component for both
detection and prediction.

Chapter 3 takes a technical turn, delving into the core of the proposed frame-
work: the learning algorithms and datasets. It details the various machine and
deep learning algorithms employed in the research, including K-Nearest Neigh-
bors (KNN), Logistic Regression (LR), AdaBoost, Gaussian Naive Bayes (GNB),
LSTM, and BiLSTM etc. The chapter explains the functionality of each al-
gorithm, highlighting its strengths and potential applications in insider threat

prediction. Furthermore, the chapter explores a specific dataset commonly used
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in insider threat detection - CERT r4.2. It delves into the details of this dataset,
explaining the types of files and information it contains.

Chapter 4 introduces insider threat detection using supervised machine learn-
ing algorithms. This chapter compares a wide range of algorithms, including
Random Forest, XGBoost, KNN, GNB, Decision Tree, MLP, AdaBoost, and
QDA on a balanced version of the CERT r4.2 dataset. Furthermore, the chap-
ter presents the impact of hyperparameter tuning on the performance of specific
algorithms (KNN, DT, and AdaBoost) within the balanced dataset. Finally in-
vestigates how various supervised machine learning methods handle imbalanced
datasets, which are common in real-world scenarios.

Chapter 5 introduces a novel approach to insider threat detection: the bilat-
eral framework. This framework leverages standalone user activities (individual
actions) and sequential activities (sequences of actions) to enhance detection accu-
racy. By incorporating this bilateral approach, the research aims to improve tra-
ditional methods. Additionally, the chapter proposes a feature extraction method
that utilizes Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) networks to capture the sequential nature of user activity data. To
evaluate the effectiveness of this approach, the chapter conducts experiments on
the CERT r4.2 dataset. These experiments compare the performance of bilateral
features with various classifiers and the effectiveness of RNN and LSTM feature
extractors using the same set of classifiers.

Chapter 6 builds upon the previous chapters and proposes a comprehensive
framework for insider threat prediction. This framework incorporates user activ-
ity data, including a crucial element — the daily ground truth (whether an insider
threat occurred that day). This approach addresses the challenge of accurately
identifying potential threats by considering individual user actions and sequences
from past days. The research employs four supervised learning algorithms to
achieve robust and effective threat prediction: KNN, LR, AdaBoost, and GNB.
Furthermore, the chapter delves into the effectiveness of Bi-LSTM networks.

Chapter 7 concludes the research findings, highlights the thesis’s contribu-
tions, and outlines potential future research directions. In Figure the overall

thesis structure is presented.
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Chapter 2

Background and Literature View

Insider threats are one of the most challenging tasks in today’s cyber world. Over
the past decade, these threats and broader cyber-security issues have become fo-
cal points of attention for researchers and organisations alike. Detecting insider
threats has emerged as a crucial undertaking within organisational cybersecurity
protocols, emphasising the need for robust measures to identify and mitigate risks
originating from within the organisation. This chapter offers background infor-
mation on the nature of insider threats and examines relevant research findings
from the literature. By delving into the intricacies of this cybersecurity issue, the
chapter aims to contribute to the collective knowledge base and enhance the ca-
pabilities of organisations in addressing and safeguarding against insider threats.

Technological advancements and data analytics have played a pivotal role
in enhancing insider threat detection and prevention capabilities in this rapidly
changing environment. Machine learning and behavioural analytics have become

central to identifying and mitigating these risks.

2.1 Insider & Insider Threats

Many of the following definitions draw a clear distinction between insiders and

the notion of insider threats.

16



2.1.1 Who is Insider?

The term ”Insider” is defined by the CERT Coordination Center (CERT/CC)
[64] as: ”A current or former employee, contractor, or business partner who has
or had authorised access to an organisation’s network, system, or data, and has
intentionally exceeded or intentionally used that access in a manner that nega-
tively affected the confidentiality, integrity, or availability of the organisation’s
information or information systems.”

The Rand Corp [65] defined the insider as ”anyone with access, privilege, or
knowledge of information systems and services.”. They also described a malicious
insider as "motivated to intentionally adversely impact an organisation’s mission”
(e.g., deny, damage, degrade, destroy). The term ”Insider” is described by Kim
et al. [66] as ”Someone who has the authority to enter a company as an employee,
contractor or guest, regardless of the authority of the information system”.

A definition of insider threat described by the US’s Cyber and Infrastruc-
ture Security Agency (CISA) [67] as: ”"The potential for an insider to use their
authorised access or special understanding of an organisation to harm that organ-
isation. This harm can include malicious, complacent, or unintentional acts that
negatively affect the integrity, confidentiality, and availability of the organisation,

its data, personnel, facilities, and related resources”.

2.1.2 Insider Threats

The term insider threat is defined by Predd et al. [68] as ”an insider’s action that
puts an organisation or its resources at risk”. According to Schultz and Shumway
[69], an insider attack is ”the intentional misuse of computer systems by users
authorised to access those systems and networks”. As per Pfleeger et al., [70],
an insider threat is "an insider’s action that jeopardises an organisation’s data,
processes, or resources in a disruptive or unwelcome manner”.

Greitzer and Frinke elaborate that insider threats involve ”harmful acts that
trusted insiders might carry out, causing harm to an organisation or engaging
in an unauthorised act for personal benefit [71]”. Hunker and Probst [72]frame
insider threat as ”an individual with privileges who misuse them or whose access

results in misuse.”
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Bishop [73] conceptualises insider threat as when "a trusted entity abuses
given power to violate one or more rules in a given security policy”. Theoharidou
et al. [74] defines insider threat as ”threats originating from people with access
rights to an IS (Information Systems) who misuse their privileges, violating the

IS security policy of the organisation.”

2.1.3 Insider Types

As we've established, insider threats pose a significant risk to organisations across
various sectors [75], [76]. However, not all insider threats are created equal. To
effectively mitigate these risks, we need to explore in more detail the different
motivations and behaviours that can lead to insider breaches.

This section will explore the various types of insiders, categorised by their
intent and potential impact. By recognising these distinctions, organisations can
develop targeted security measures to address every threat. Figure indicates
various types of insiders.

In theory, insiders can be categorised into various groups based on their lev-
els of access and authority within the organisation. There are several types of

insiders:
1. Malicious insiders
2. Contractors
3. Inadvertent insiders

4. Negligent employees

2.1.3.1 Malicious Insiders

A malicious insider threat occurs when an individual in an organisation possesses
the proper authorisation and permissions but engages in harmful activities and
thereby poses a security risk. Malicious insiders are typically disgruntled current
or former employees who intentionally misuse their access for revenge, financial

gain, or both, often after failing to have their credentials revoked [77].
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2.1.3.2 Contractors

Contractors pose a unique security challenge. Because their temporary pres-
ence makes managing access controls challenging, onboarding processes might be
rushed, granting contractors more access than necessary. Revoking access af-
ter the project is complete can also be lax, potentially leaving contractors with
lingering privileges. Furthermore, their lack of familiarity with internal security
procedures makes them more vulnerable to social engineering attacks. Essentially,
contractors can become unintentional security weaknesses due to the imperma-

nent nature of their work and potential gaps in security awareness.

2.1.3.3 Inadvertent Insiders

Inadvertent insiders are a hidden threat within organisations, the trusted employ-
ees who usually follow security protocols. However, their lack of complete security
awareness can create vulnerabilities. A single click on a well-crafted phishing link,
leaving a work laptop unlocked with sensitive data exposed, or unintentionally
leaking confidential information through personal email or lost USB drives - these
seemingly harmless mistakes can have serious consequences. Despite having good
intentions, inadvertent insiders remain a significant risk, potentially exposing the

organisation’s data or network to potential breaches without even realising their
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mistake.

2.1.3.4 Negligent Employees

A negligent employee unintentionally fails to meet the expected standard of care
in their work, causing issues such as errors, accidents, or data breaches. This can
stem from carelessness, a lack of knowledge, or poor decision-making, leading to
reduced productivity, financial losses, and legal troubles for the employer. Ad-
ditionally, negligent employees can be susceptible to social engineering attacks,
further compromising sensitive information, and may create a negative work en-

vironment for colleagues due to unreliable work habits.

2.1.4 Insider Threat Activities

Insider threat attacks vary depending on the organisations, how they are iden-
tified, and how they are analysed. Based on these details, insider threats are

categorised into the following types.

2.1.4.1 Information Technology (IT) Sabotage

The intentional disruption, manipulation, or destruction of an organisation’s I'T
infrastructure or data characterises I'T sabotage. Perpetrators achieve this using

various methods, including:

e Denial-of-service (DoS) attacks: Overwhelming a system with traffic to

render it unusable for legitimate users.

e Data deletion or manipulation: Deleting critical data files, corrupting databases,

or modifying data to cause operational problems.

e Installing malware: Introducing malicious software that can steal data, dis-

rupt operations, or provide unauthorised access to attackers.

e Turning off security controls: Intentionally bypassing or turning off security

measures to facilitate other malicious activities.
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2.1.4.2 Intellectual Property (IP) Theft

IP theft involves the unauthorised acquisition of sensitive organisational data,
such as trade secrets, product designs, customer lists, or proprietary algorithms.

Both technical and non-technical personnel can commit this theft.

e Technical personnel might exploit security vulnerabilities to access and steal
data, while non-technical personnel might pilfer physical documents or mis-

use their access privileges to copy electronic data.

2.1.4.3 Fraud

Fraud is the unauthorised manipulation of data for personal benefit. This could

involve:

e financial fraud: embezzlement, manipulating financial records, or using

stolen credentials to make unauthorised purchases.

e data manipulation: changing data to hide mistakes, create false advantages,

or sabotage projects.

2.1.4.4 Espionage

Espionage involves covert or illicit acts of spying on a company, person, or en-
tity to obtain sensitive information. This information could be used for various

purposes, such as:

e competitive advantage: spying on competitors to gain insights into their

products, strategies, or future plans.

e compromising national security: spying on governments or organisations to

obtain classified information.
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2.1.4.5 Unintentional Insider Threats

Unintentional insider threats include current or former employees, contractors,
or business partners who pose inadvertent risks due to authorised access. These

threats can arise from:

e negligence: weak cybersecurity awareness, failure to follow security proto-
cols (e.g., clicking on phishing links), or the accidental sharing of sensitive

information.

e human error: downloading malware from untrusted sources, losing laptops
or mobile devices containing sensitive data, or making configuration mis-

takes.

e disgruntled employees: individuals unhappy with the organisation might

accidentally leak sensitive information or disrupt operations out of spite.

2.1.5 Levels of Insider Threats

Insider threats can be categorised into three levels based on the severity of their

potential consequences and the harm they can inflict on an organisation.

e Low-level threats are unintentional or careless actions by authorised users.
These individuals have no malicious intent but can unknowingly compro-
mise security due to mistakes, lack of awareness, or falling victim to social

engineering attacks [78].

e Medium-level threats involve insiders with some level of malicious intent but
with limited goals. They might be disgruntled employees seeking revenge,
opportunistic individuals looking for personal gain, or those pressured by

external forces [78].

e High-level threats represent the most serious insider threat, involving indi-
viduals with significant malicious intent and the potential to cause substan-
tial damage. These could be highly skilled insiders with privileged access,
disgruntled employees with detailed knowledge of the organisation’s vulner-

abilities, or even foreign spies posing as insiders [78].
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Understanding these levels of insider threats can help organisations prioritise

their security measures and focus on mitigating risks based on their potential

impact.

2.1.6 Motivation for Insider Attacks

Understanding the motivations behind insider attacks is crucial for organisations

to develop effective security strategies. Figure shows the various motivations

for the insider attacks.

1.

Financial gain: This is the most common motivator. Insiders may steal
or sell sensitive data, embezzle funds, or commit fraudulent activities by

exploiting their access.

Revenge or retaliation: Disgruntled employees feeling wronged by the organ-
isation, often due to termination, lack of recognition, or unfair treatment,
might seek revenge by damaging systems or leaking confidential informa-

tion.

Espionage: Insiders can be recruited by competitors or foreign governments

to steal intellectual property, trade secrets, or classified information

. Negligence: Perhaps the most widespread yet unintended threat, negligent

insiders simply lack awareness of security protocols or make careless mis-

takes that compromise data or systems

. Politically-based: A desire to expose the organisation’s wrongdoings or ad-

vance a political agenda can lead to classified information leaks or damage

to the organisation’s reputation.

. Emotion-based: Anger, frustration, or a desire for revenge against the em-

ployer can drive these insiders to leak information, sabotage systems, or

commit fraud.

. Lack of knowledge/understanding: Security awareness is crucial. Employees

who don’t understand cyber threats might click on phishing links, share

sensitive information inadvertently, or fail to secure their devices properly.
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2.2 Literature View

Over the last decade, humans have stored and transferred several bytes of data
over the internet. According to a report by Rayaprolu, as of 2025, 463 exabytes
of data will be generated per day[79]. These data require protection from both
outsider and insider threats. These threats can seriously affect a company’s rep-
utation, financial assets, and intellectual resources. Firewalls, intrusion detection
systems, access control, authentication, physical security and data encryption
techniques control the external threats. However, threats caused by insiders are
mostly undetected. A survey report states that 68% of organisations believe they
are moderately to highly vulnerable to insider threats [80].

Insiders are often highly trained computer technicians with good internal net-
works and security control knowledge. They can circumvent conventional security
mechanisms and perform a broader range of actions than outside attackers. In-
sider threat detection is one of the biggest challenges in the cyber world. Various
techniques for dealing with insider threats are already in place, such as security
information and event management(SIEM), Data Loss Prevention (DLP), User
Activity Monitoring (UAM), and Privileged Access Management (PAM).

Insider threat detection has been researched for many years. However, the
research community could not significantly contribute to this attack because of
the scarce real-time datasets. Eventually, the increasing number of insider attacks
attracted a wide range of researchers. Recently, many techniques have been
proposed for insider threat detection. DARPA’s project ADAMS, which seeks to
find trends and anomalies in comprehensive datasets to address insider threats,
is the basis of many insider threat detection systems [81].

The complex nature of insider threats necessitates a multifaceted approach to
detection within the cybersecurity landscape. This section describes the related
work and the literature on different insider threat detection techniques.

Cybersecurity professionals categorise these detection approaches and tech-
niques into several vital strategies. When combined, these strategies enhance an
organisation’s ability to identify and respond to the diverse and evolving nature

of insider threats. On the other hand, malicious insider methods can be clas-
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sified into different categories based on the underlying methods and techniques
employed.
The malicious threat detection literature commonly employs the following

methodologies:

e behaviour-based detection methods

graph-based detection methods

anomaly detection methods

learning-based insider threat detection techniques

survey and review

other approaches

2.2.1 Behaviour-based Detection Methods

Behavior-based detection methods analyse individual user activities to identify
deviations from established patterns, such as unusual access times, data transfers,
or system modifications. These deviations may signal malicious intent and can
be used to detect potential insider threats. This subsection discusses some of the
existing works on behaviour-based detection methods.

Yuan et al. [58] introduced a sequential method for detecting insider threats
based on user behaviour, utilising a Deep Neural Network (DNN) approach. It
leveraged the sequential nature of user actions over time by representing them
as action sequences. These sequences were then processed in the past using an
LSTM network to capture temporal dependencies and extract abstracted tempo-
ral features. Subsequently, the extracted features were fed into a Convolutional
Neural Network (CNN) classifier to categorise the behaviour as normal or ab-
normal. The sequential analysis of user actions allowed the model to capture
patterns effectively and detect anomalous behaviour within the sequences. In
the best case, the proposed approach achieved an AUC of 0.9449 on a CERT
r4.2 dataset of insider threats, indicating high accuracy in detecting anomalous

behaviour.
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In [82], the authors proposed an insider threat detection method based on
User Behaviour Analysis (UBA) to address the challenges of insider threats in
information security. The model addressed these challenges by aggregating user
behaviour data over time, characterising user attributes, and leveraging the XG-
Boost algorithm for training. It offered several key advantages: overcoming infor-
mation loss during feature extraction, addressing data imbalance, and minimis-
ing false alarms. The experiment results showcased high detection rates, with an
outstanding F-measure of 99.96%, exceeding the performance of Support Vector
Machines (SVM) and random forest algorithms.

Jiang et al. [83] proposed a novel approach for insider threat prediction, util-
ising sentiment analysis of network browsing and email content. To achieve this,
they implemented a strategy to build user sentiment profiles by monitoring in-
dicators such as web browsing habits, the presence of malicious URLs, and the
language used in emails. The system could create daily and weekly sentiment
profiles for each user by quantifying users’ negative emotions and extreme psy-
chological tendencies. Anomaly detection techniques were then used to identify
deviations from a user’s established behavioural patterns. This behaviour-based
approach focuses on proactively detecting malicious insiders based on their po-
tential attack motivations, such as feelings of revenge or dissatisfaction.

Liu et al. [84] proposed a method for detecting malicious user behaviour
using Improved Hidden Markov Models (IHMM) for log data mining. This ap-
proach involved recording user actions, analysing data, and analysing them with
IHMMs. The system could identify abnormal activities that might indicate po-
tential threats by comparing user activity sequences to established normal be-
haviour patterns. This focus on behaviour analysis underscored the importance
of dynamic monitoring for effective insider threat detection and enhanced infor-
mation security. The study also suggested exploring the integration of IHMMs
with deep learning and artificial intelligence to improve operational efficiency
further. Overall, the approach aimed to achieve the comprehensive and accurate
detection of malicious behaviour by continuously refining and leveraging user
behavioural patterns within network security.

Wang et al. [85] investigated insider threats through a data-centric approach

focused on user behaviour analysis, explicitly examining the actions of privileged
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users during data interaction (shell commands, keystrokes, mouse events). Their
system built models of normal behaviour and identified deviations that might
indicate malicious intent. Statistical learning algorithms played a key role in
anomaly detection [86]. By profiling user behaviour and intent, the approach
aimed to effectively detect insider threats and offer organisations tools to prevent
data breaches.

Nasir et al. investigated a novel approach for insider utilised detection that
utilised analyse-Autoencoder to analyse user activity data represented as multi-
variate time-series data [87]. The approach involved collecting data from various
sources, such as logon /logoff events, user roles, functional units, and departments.
The model then extracted rich features and was trained to detect anomalies that
might indicate insider threats. This deep learning technique leveraged the power
of LSTM networks, known for their effectiveness in capturing long-term dependen-
cies within sequences, particularly in natural language processing. They applied
LSTMs in an autoencoder architecture to automatically learn complex patterns
and relationships within the heterogeneous user data.

In the approach proposed by Song et al. [88], the Behavior Rhythm Insider
Threat Detection (BRITD) scheme introduced a novel method for prioritising
detection by emphasising time awareness and user adaptation. The system cap-
tured users utilising behaviour rhythm, using time information to enhance in-
sider threat detection. Employing a feature extraction method that implicitly
encoded absolute time information and adapted to behaviour rhythm, BRITD
extracted user-day behaviour rhythms tailored to each individual. Additionally,
the model outperformed standard insider threat detection models, demonstrating
heightened accuracy and precision. The experiment validation and comparisons
underscored BRITD’s advantages as a comprehensive and innovative solution for

insider threat detection in real-world cybersecurity scenarios.

2.2.2 Graph-based Approaches

Over the years, researchers have drawn on graph theory to develop methods for

detecting insider threats. These methods analyze user relationships and informa-
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tion flow to identify suspicious patterns. This subsection explores several existing
studies on methods for graph-based approaches.

Gamachchi et al. [55] proposed a graph-based framework to address malicious
insider threats. This framework represented users, systems, and their interactions
as a graph, enabling relationships and behaviour patterns analysis. Anomaly
detection techniques were employed to identify deviations from normal user be-
haviour within the graph, potentially uncovering hidden connections indicative of
malicious intent. This approach offered advantages in distinguishing legitimate
user activity from suspicious patterns.

Liu et al. proposed Log2vec, a system for detecting cyber threats within an en-
terprise network using heterogeneous graph embedding [89]. Log2vec constructs a
heterogeneous graph representing relationships between log entries, including user
actions, devices involved, and referenced files. Each log entry is then converted
into a low-dimensional vector for efficient analysis. By identifying significant de-
viations in these vector representations from normal user behaviour, Log2vec is
able to detect potential malicious activities. This approach offers advantages in
its comprehensive analysis of user interactions and the ability to function without
prior examples of cyberattacks while still allowing for the integration of expert
knowledge through predefined relationship rules.

Mishra et al. proposed LAC LSTM Autoencoder with Community (LAC) for
insider threat detection [90]. LAC utilises an autoencoder to analyse daily user
action sequences. This model is trained to reconstruct user behaviour, allowing
it to identify deviations that might indicate suspicious activity. The approach
went beyond individual analysis by incorporating user communities. By training
on interleaved activity sequences within communities, LAC considers the con-
text of user roles and expected group behaviour, potentially improving anomaly
detection.

The work in [10] addresses authorise threats, where authorised users exhibit
malicious behaviour. The framework, built on daily activities and graph analy-
sis, identifies suspicious behaviour. The proposed daily activity graph approach
tracks user actions and connects them based on interactions and potential rela-
tionships. To understand user patterns, the framework combines manually se-

lected features with those automatically extracted by an LSTM autoencoder, a
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neural network adept at uncovering hidden patterns. Anomaly detection relies
on ResHybNet, a deep learning model that merges GNNs to analyse user-activity
connections and CNNs to extract patterns from user analysing sequences. By
analysing features and network structure, ResHybNet identifies user behaviours
deviating from established patterns, potentially indicating insider threats.

The work in [91] introduced the user action graph (UAG), a novel method
for identifying insider threats. UAG transforms user actions extracted from sys-
tem logs into a graph structure. This graph representation captures both the
order and relationships between actions, effectively encapsulating the complexity
of user behaviour across various system logs. UAG extracts two features: char-
acteristics that characterise overall user activity and local features that capture
specific patterns within the graph. Finally, a lightweight model compares a user’s
behaviour with their historical actions and those of their peers to detect anoma-
lies indicative of malicious intent. The effectiveness of UAG in insider threat
detection is confirmed through extensive experiments.

Xiao et al. [92] investigated a novel approach for insider threat detection
utilizing GNNs. This method analyzes user interactions within a network by
leveraging GNNs. Unlike traditional methods which focus on isolated user ac-
tions, GNNs captures user relationships, providing a more comprehensive picture
of user behaviour. The model is designed to resist manipulation attempts by
malicious insiders. The approach involves modelling user interactions as a graph,
with users as nodes and interactions as edges. A GNN then extracts informative
features from the graph, considering individual user activities and their connec-
tions within the network. Finally, these features are used to identify deviations

from normal user behavior patterns, potentially indicating insider threats.

2.2.3 Anomaly Detection Methods

Anomaly detection methods play a vital role in uncovering potential insider
threats by identifying unusual patterns in user activities. Subtle anomalies may
indicate attempts to bypass security controls or engage in malicious activity.
This subsection analyzes several existing studies on methods for detecting these

anomalies in the context of insider threat detection.
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Gayathri et al. [93] investigated a novel approach to insider threat detection
using adversarial training. In this approach, the researchers leveraged adversar-
ial training, a technique commonly used to improve the robustness of machine
learning models. The researchers investigated using these adversarial examples
to train the model, potentially improving its ability to identify malicious insider
activity, even when attackers attempt to disguise their actions. By incorporating
adversarial training, the research develops more robust and reliable methods for
organizations to identify insider threats.

The approach proposed in [56] focuses on detecting insider threats by mod-
elling a user’s normal behaviour. It identifies anomalies using hidden Markov
models (HMMSs). The approach assumes that a user’s anomalous behaviour indi-
cates a potential insider threat. By analysing sequences of actions over time, the
model can distinguish between normal and abnormal behaviour patterns. Using
HMMs allows for learning parameters from observed sequences and predicting
the probability of observing a given sequence. This approach improves insider
threat detection by capturing deviations from the user’s normal behaviour and
detecting behaviour that might indicate a security risk.

Sharma et al. [7] proposed a novel approach for insider threat detection using
anomaly detection in user behaviour analytics. An LSTM autoencoder models
normal user behaviour by analyzing session-based user activities and extracting
feature vectors. The method prioritises deviations (reconstruction errors) from
this established pattern to improve security protocols. The model is trained
unsupervised on the CERT r4.2 dataset, achieving high accuracy and a low false
positive rate.

In [94], the authors investigated the effectiveness of combining supervised and
unsupervised learning for insider threat detection. They proposed a workflow that
analyzes various data streams, such as emails and logins, to uncover suspicious
patterns. The researchers evaluated the impact of different training approaches
on detection, finding that using 20% labelled data yielded the best results. This
study highlights the importance of optimizing training regimes for superior insider
threat detection and suggests supervised and unsupervised learning as a promising

approach to improving security measures.

31



Al-Shehari et al. [95] proposed a novel, unsupervised approach for insider
threat detection using an isolation forest algorithm. This method addresses the
challenge of imbalanced datasets commonly faced in insider threat detection. The
IF algorithm iteratively isolates anomalies by splitting data based on random fea-
tures. Points that are easier to isolate are flagged as potential threats. Trained
on user behaviour data, the system learns normal patterns and identifies devi-
ations that might suggest insider activity. This approach avoids the need for
scarce labelled data and focuses on detecting unusual behaviour. The model’s
effectiveness is demonstrated on a benchmark dataset, highlighting its potential
for improved insider threat detection.

Jiang et al. proposed a method for insider threat and fraud detection us-
ing graph convolutional networks (GCNs) [96]. They constructed a graph where
nodes represent entities (users, systems) and edges represent their interactions.
GCNs are then applied to analyse the graph and learn representations for each
entity, considering its own attributes and the attributes of its connected nodes.
This approach is able to identify nodes with significantly different representations
from the norm, potentially indicating anomalous activity. The method’s advan-
tage lies in capturing network effects through relationship analysis and learning

the effective representations of entities in the network context.

2.2.4 ML & DL Approaches

Machine learning (ML) and deep learning (DL) approaches have emerged as pow-
erful tools for insider threat detection. These techniques leverage large datasets
to learn user behaviour patterns and identify anomalies indicative of potential
threats. This subsection reviews existing studies that employ ML and DL ap-
proaches for insider threat detection.

Le et al. [0] investigated the impact of user data granularity on the abil-
ity of machine learning to detect insiders. Their system analysed user activity
data at two levels, user-day and user-week. Evaluating its effectiveness against
different insider threat scenarios at each level, the system provides insights into
how granularity affects detection accuracy and speed. Importantly, it not only

detects suspicious activity but also pinpoints the specific insiders involved. This

32



multi-granularity analysis achieves a balance between catching malicious acts and
minimising false positives, ultimately offering guidance for optimising machine
learning for better insider detection in organisations.

The paper by Gavai et al. identifies insider threats by analysing employee
activity data, including social media interactions, browsing history, and file ac-
cess patterns [97]. The system flags abnormal behaviours that might indicate
insider threats by extracting features from this data and applying anomaly de-
tection. Notably, the approach achieves a well-performing ROC score of 0.77.
To aid visualization, a dashboard was developed to help managers and HR per-
sonnel identify employees with high-threat risk scores, enabling timely preventive
measures to be taken. This method focuses on detecting statistically unusual be-
haviour, eliminating the need for complex baseline models of normal behaviour.

Le and Zincir-Heywood [98] tackled insider threats with a machine-learning
approach. They gathered user activity data across various sources (system logs,
network traffic, emails) and extracted features such as access times and locations
that reflect user behaviour. By training machine learning models on historical
data labeled as normal or suspicious, the system learns typical user patterns in
the network. Once trained, the model continuously monitors user activity in real
time. Any deviations from established patterns or behaviours flagged as suspi-
cious triggers alerts for investigation. This approach boasts several advantages.
Machine learning models are able to continuously learn and adapt to evolving
threats, making the system more resilient. Additionally, it scales well to han-
dle large datasets from a growing user base within an organization. Finally, the
ability of machine learning to identify subtle behavioural changes surpasses tra-
ditional rule-based systems, potentially leading to the earlier detection of insider
threats.

Bose et al. [99] tackled insider threats with RADISH, a system designed for
real-time anomaly detection. In a departure from traditional methods, RADISH
analyzes many data streams (emails, logins) concurrently. This simultaneous
analysis allows it to identify suspicious patterns in real time, potentially stop-
ping insider attacks as they unfold. To efficiently handle large data volumes,
RADISH employs distributed computing frameworks. The authors argued that

RADISH represents a significant advancement in streaming analytics and insider
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threat detection. RADISH provides a more comprehensive and timely approach
to mitigating insider threats by analysing diverse data streams simultaneously
and offering real-time analysis.

In [T00], the authors investigated using semi-supervised learning to improve
insider threat detection in scenarios with limited labeled data. They proposed
a novel system that combined various semi-supervised learning algorithms and
considers different data availability situations to enhance detection capabilities.
The study explores the impact of different training approaches on the effectiveness
of this method. Key aspects examined include data pre-processing techniques,
label propagation algorithms for graph-based models, and experiment settings
that simulate real-world limitations on data availability. The analysis reveals
that using 20% labeled data yields the best detection performance, with the RF
algorithm outperforming the others.

In their paper, Bin Sarhan and Altwaijry [101] explored machine learning to
identify insider threats and individuals with authorised access who intend to steal
or damage data. The authors investigated two approaches: anomaly-based de-
tection, which analyzes deviations from typical user behaviour, and classification-
based detection, which trains a model to distinguish between normal and anoma-
lous activity. They discussed algorithms like deep learning and addressed the
challenges associated with imbalanced datasets (datasets where one class is sig-
nificantly larger than others). Building on prior research on the effectiveness of
machine learning in user and entity behaviour analytics (UEBA), the paper em-
ploys a public insider threat dataset. It achieves promising accuracy results for
both detection methods.

In [I02], the authors investigated using machine learning to detect insider
threats through email analysis. They analysed emails from the TWOS dataset
containing regular user activity and simulated malicious insider actions to train
supervised machine learning models like AdaBoost and naive Bayes. The authors
preprocessed the data by removing noise and converting it into a format suitable
for the models. Their findings achieved high accuracy in identifying malicious
emails, highlighting the importance of insider threat detection and the challenge

insiders pose due to their authorised access.
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The approach proposed in [103] addresses the challenge of detecting insider
threats by introducing an online unsupervised deep learning system for struc-
tured cybersecurity data streams. The approach utilises deep neural networks
and LSTM models to learn and adapt to real-time data continuously. It identifies
anomalous user behaviour patterns that might indicate potential insider threats.
The system also prioritizes interpretability, providing analysts with clear explana-
tions for flagged anomalies. Performance evaluations against standard anomaly
detection techniques demonstrate the superiority of the DNN and LSTM mod-
els in detecting insider threats. Ultimately, the approach aims to streamline the
identification of insider threats by leveraging advanced deep-learning techniques
for efficient and effective cybersecurity monitoring.

In [TI04], the authors proposed a novel approach for insider threat detection
using a hierarchical neural temporal point process model. Unlike traditional
methods which focus solely on activity types or timestamps, this model considers
both aspects by combining temporal point processes and RNNs. The model’s key
feature is its hierarchical structure: a two-level architecture allows for capturing
fine-grained details (intra-session activity) and broader patterns (inter-session
behaviour) through separate LSTMs. This comprehensive information modelling
considers activity times, types, session durations, and intervals, providing a richer
picture of user behaviour. Trained on standard user activity sequences, the model
can effectively identify deviations that might indicate malicious insider actions.

Le et al. [105] proposed a user-centric approach based on four supervised ma-
chine learning algorithms. The paper explores the effect of different data granu-
larity levels on the accuracy of insider threat detection using machine learning.
The authors investigated the use of different feature sets at different levels of gran-
ularity, such as user, session, and activity levels, and evaluated their performance
using different classifiers.

A recent study proposed a novel method for insider threat detection that
combines deep learning with the Dempster-Shafer theory [106]. This approach
utilises attention-LSTM classifiers and multi-head attention mechanisms to iden-
tify anomalous network behaviour patterns in real time effectively. The experi-
ment results show that the proposed method surpasses traditional perimeter secu-

rity mechanisms in effectiveness. Future research aims to improve the method’s
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efficiency and scalability by incorporating user and content metadata, leading
to more robust defence strategies. Backed by research grants and building on
existing work in data leakage prevention and machine learning cybersecurity ap-
plications, the study presents a cutting-edge solution for insider threat detection,
paving the way for further advancements in the field.

Anju et al.[I07] investigated unsupervised machine learning techniques, specif-
ically anomaly detection with deep learning, to identify insider threats within
organizations. The study detects unusual user behaviour that could indicate ma-
licious activity. They introduced novel data representations for these algorithms
and explored the effectiveness of combining different strategies to improve perfor-
mance. The paper also discusses key points such as the importance of accuracy
and precision metrics for evaluating models in insider threat detection, the use
of specific techniques like one-class classification (OCC) and SVMs for anomaly
detection, and the challenges of interpretability faced by complex deep learn-
ing models despite their power. Finally, the paper highlights the importance of
feature extraction, model description, and deep learning-based insider threat de-
tection training. Overall, the research underscores the potential of deep learning
and anomaly detection for improved insider threat detection and the need for
continuous development in this critical cybersecurity area.

Lu et al. [54] proposed a framework called Insider Catcher based on the deep
learning technique, the LSTM model, to represent the system logs structured
sequence. In [I08], a deep learning model consisting of CNN and LSTM models
was proposed based on the users’ behaviours and character embeddings.

In [T09], the proposed insider threat detection framework integrates statistical
and sequential analysis using three steps and four core modules. These modules
encompass log file merging, parallel processing for the statistical and sequential
analysis of user behaviours, and a decision-making module for identifying a threat
framework, which utilises CNNs and a transformer model, proving to be effective
and robust in detecting insider threats and malicious scenarios using the CERT
dataset.

A significant approach to predicting insider threats utilizes LSTM models on
system logs. Ma et al. [I10]investigated the methodology, treating log data as

sequential sequences of user activities. They modelled system logs as natural
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language sequences to capture long-term dependencies and patterns. Organized
sequences are then organized into action workflows, with deviations from estab-
lished patterns, indicating potential threats. The LSTM models are trained to
detect anomalous behaviour and classify threats using the CERT insider threat
dataset. The method, which involves the sequential analysis of system logs,
is highly successful, achieving a remarkable 93% accuracy in predicting insider
threats. This success can be attributed to its ability to examine temporal re-
lationships and dependencies within the log data thoroughly. This related work
underscores the importance of leveraging LSTM models for effective insider threat

prediction within the cybersecurity domain.

2.2.5 Survey and Review

This section presents a comprehensive review of the existing literature on insider
threat detection methods to establish a strong foundation for the research pre-
sented later. It summarizes the key findings, limitations, and research trends in
insider threats.

The survey conducted in [57] investigated the dangers of authorized users
within organizations turning malicious. These insider threats pose a significant
risk to sensitive data and systems. To mitigate these threats, the survey proposed
a layered approach. The first layer focuses on detection through techniques like
user behaviour monitoring, anomaly detection, and network traffic analysis to
identify suspicious activity. Deviations from regular user patterns, such as un-
usual access attempts or data transfers, might indicate malicious intent. Early
identification allows organizations to prevent further damage. The second layer
emphasizes prevention through access controls. Organizations follow the princi-
ple of least privilege, only granting users the access level necessary for them to
perform their job. Additionally, data encryption safeguards sensitive information
even if unauthorized individuals access it. Finally, security awareness training
programs educate employees about cybersecurity best practices and the potential
consequences of insider threats. This layered approach offers a comprehensive

strategy for organizations to combat insider threats.
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Sabir et al. [IT1] investigated ML to combat data exfiltration, where attack-
ers steal sensitive information. Analyzing 92 research papers, they identified two
main ML approaches: data-driven (focusing on the content being transferred)
and behaviour-driven (analysing how data is accessed /transferred). Feature en-
gineering trains the ML models by selecting relevant data points, such as user
behaviour or transfer patterns. The study explores how researchers assess these
models’ effectiveness using simulated data, real-world datasets, and various met-
rics. Finally, the researchers recommended future research directions, such as
combining these approaches, developing better evaluation methods, and making
ML models more resistant to attacker manipulation. This research highlights the
potential of ML as a powerful weapon in the fight against data exfiltration.

Audit data encompasses the documented computer-related activities performed
within an organization. Organization administrators closely monitor these records
to formulate strategies for mitigating potential insider threats. Traditional ap-
proaches to user profiling-based detection rely on three primary categories of
audit data sources: host, network, and contextual [112].

Alsowail and Al-Shehari’s study [I13] tackled insider threats, where autho-
rized users act maliciously. They proposed a layered prevention approach. The
base is formed by robust access controls with minimum privileges (enforced by
RBAC). DLP tools monitor and restrict data transfer, hindering exfiltration.
UAM systems track user actions to detect suspicious behaviour. Beyond tech-
nical measures, security awareness training educates employees to identify and
report suspicious activity. Finally, a well-defined incident response plan ensures
a swift and effective response to contain damage and investigate the incident.
This combination of preventative measures helps organizations significantly re-
duce the risk of insider threats.

Homoliak et al. [114] conducted a critical survey of insider threats in IT
systems, a pressing security concern where authorized users pose a significant
risk. Their work is a comprehensive resource, examining the issue from various
angles. The survey explores different taxonomies for classifying insider threats
that consider motivations and methods. Additionally, the paper examines the
analysis techniques used to identify and assess these threats, exploring techniques

like user behavior analytics and anomaly detection in detail. Furthermore, the
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survey delves into methods for modelling insider behaviour. These models predict
potential threats by analyzing user activity patterns. Finally, the paper explores
various countermeasures organizations can implement to mitigate insider threats.
These countermeasures include stricter access controls, employee monitoring, and

security awareness training.

2.2.6 Other Approaches

Yuan et al. [I15] proposed an attention-based LSTM model for more effective
insider threat detection. Traditional methods miss subtle anomalies in user be-
haviour. This approach addresses this by leveraging LSTMs which are adept at
capturing long-term patterns in sequential user actions. The model further in-
corporates an attention mechanism to prioritize the most relevant parts of these
actions, focusing on those indicative of potential threats. This ability to capture
long-term patterns and focus on crucial actions could better improve accuracy
compared to traditional methods.

Rashid et al. [56] employed HMMs to model users’ weekly activity sequences
and identify potential insider assaults from small variations in weekly user activi-
ties, as indicated by HMM probabilities (of user sequences) below a predetermined
threshold.

Yilmaz and Can [I16] explored the potential of artificial intelligence (AI)
for improved insider threat detection. Traditional methods often struggle with
complex or evolving threats. The paper highlights Al’s ability to analyze vast
amounts of user data (network activity, logs, emails) to identify subtle anomalies
and patterns in user behaviour that might indicate malicious intent. AI mod-
els can even be trained for predictive analytics. This approach offers potential
benefits such as improved accuracy, proactive threat identification, and reduced
reliance on manual analysis by security professionals. The paper delves into dif-
ferent Al techniques suitable for insider threat detection tasks, along with the
challenges and limitations.

Brdiczka et al. [117] investigated a proactive approach for insider threat detec-

tion that combines social network analysis and psychology. To identify potential
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threats before they cause harm, the approach utilizes structural anomaly detec-
tion (SA) to find unusual patterns in user interactions and information networks.
Psychological profiling (PP) is also used to build dynamic user profiles based
on the five-factor personality model to identify deviations from established be-
havioural patterns. This combination of social network analysis and individual
behavioural assessment offers a more comprehensive approach to insider threat
detection with the potential for proactive risk identification.

The NIST Model for Role-Based Access Control (RBAC) addresses the his-
torical lack of a unified standard in access control [I1§]. It incorporates con-
cepts from existing models, commercial products, and research prototypes. This
approach establishes a foundational standard and categorizes RBAC into four
levels with progressively more advanced features (offering greater granularity of
control). The model acknowledges traditional group-based access control by em-
phasizing flexible user assignment. While emphasizing a foundation built on areas
of consensus within the RBAC community, it also recognizes aspects that require
further standardization. Various applications have since been implemented using
RBAC methods [45] 46, [47].

The work in [119] addresses the challenge of balancing privacy requirements
with the utility of threat detection systems. The authors proposed a risk-based
approach to access control, where each access request is evaluated based on its
potential privacy risk and the user’s trustworthiness. When the privacy risk
exceeds a threshold, adaptive adjustments such as data obfuscation or enforceable
obligations are applied. This framework effectively balances privacy needs with
utility requirements and is implemented in an industrial threat detection solution.
Overall, it provides a dynamic and context-aware approach to access control,

making it well-suited for threat detection systems.

2.3 Summary

Chapter [2] sets the stage for the primary research. It defines insider threats,
explores their types and detection challenges, and examines the motivations and

activities of malicious insiders 2.1, The chapter then reviews existing methods
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for insider threat detection [2.2] highlighting their key findings and limitations.
Existing methods often struggle with two main issues: imbalanced datasets, where
malicious activities are rare compared to normal behaviour, and limitations in
capturing the sequential nature of user actions. This can lead to missing subtle
anomalies indicative of threats. By establishing this context and highlighting the
limitations of current methods, the background and related work chapter paves

the way for the main research and its potential contribution.

41



Chapter 3

Classic Learning Algorithms and

Datasets

This chapter describes the classical learning algorithms and datasets employed
in the thesis. The chapter encompasses machine learning and deep learning al-
gorithms, which play pivotal roles in subsequent chapters which focus on in-
sider threat detection and prediction. These algorithms form the foundation for
comprehensive analyses, enabling the identification and anticipation of insider
threats. Furthermore, we delve into the nuances of their application and effec-
tiveness within cybersecurity, providing a thorough understanding for the reader.
Firstly, we summarize the machine learning algorithms followed by deep learning

algorithms and the datasets.

3.1 Learning Algorithms

In relation to machine learning, this section unveils a comprehensive exploration
of algorithms essential to our insider threat detection and prediction thesis. These
machine learning algorithms serve as the cornerstone for rigorous analyses, offer-
ing a nuanced understanding of their application to cybersecurity. In subsequent
sections, we delve into the intricacies of these algorithms, unravelling their func-

tionalities and impact on enhancing cybersecurity measures.
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3.1.1 RF

Random forest (RF), categorized as an ensemble learning method, combines mul-
tiple models, primarily decision trees, to enhance overall performance [120]. De-
cision trees, fundamental in supervised learning, serve dual purposes for classifi-
cation and regression tasks. Operating through recursive data splitting based on
input feature values, decision trees refine subsets until each contains a singular
class (for classification) or a solitary value (for regression) [121].

Random forest is a popular machine-learning algorithm that uses an ensemble
of decision trees to make predictions. The algorithm constructs multiple decision
trees by randomly selecting a subset of features and a subset of observations to
train each tree. Such a methodology aids in mitigating overfitting and enhancing
generalization performance. The final prediction is made by aggregating the
predictions of all the individual trees. For regression tasks, the final prediction
is typically the average of the predictions from all the individual trees in the
forest. For classification tasks, the final prediction is based on the majority class
predicted by the individual trees [122] 123].

The random forest algorithm is a powerful machine learning method that can
handle high-dimensional data and nonlinear relationships between variables. It is
known for its accuracy, robustness, and ability to handle missing data. The algo-
rithm also provides variable importance measures, which can be used to identify
the most important features for making predictions. The random forest algo-
rithm is a versatile and effective machine-learning method that can be applied to
various prediction problems.

The equation for a random forest is an aggregation of the predictions from
individual trees. For regression tasks, the final prediction is the average of the
predictions from all the individual trees in the forest. Mathematically, this can

be represented as:

1 &
Y=< g fi(X) (3.1)

where Y is the predicted value, N is the number of trees in the forest, f;(X)
is the prediction of the ith tree for input X.

43



For classification tasks, the final prediction is based on the majority class

predicted by the individual trees.

3.1.2 XGB

Extreme Gradient Boosting (XGBoost) has emerged as a leading machine learn-
ing framework due to its scalability, efficiency, and effectiveness in handling large-
scale datasets. It consistently achieves state-of-the-art results in diverse machine
learning challenges [124]. TIts remarkable scalability is a standout feature, run-
ning more than ten times faster than existing solutions on a single machine and
effortlessly scaling to handle vast datasets in distributed or memory-limited set-
tings. Innovative systems and algorithmic enhancements underpin the scalabil-
ity. These include a specialized tree learning algorithm for sparse data, a the-
oretically justified weighted quantile sketch procedure accommodating instance
weights in approximate tree learning, and efficient parallel and distributed com-
puting, streamlining the learning process for quicker model exploration.

In supervised learning, XGBoost excels in regression and classification tasks,
offering a versatile solution for predicting target variables based on input fea-
tures. Trained on labeled datasets where the target variable is known for each
example, the algorithm optimizes a loss function to learn the intricate mapping
from input features to the target variable. Once trained, the model proves adept
at predicting target variables for new, unseen examples. Its widespread adoption
in supervised learning scenarios is driven by its exceptional scalability, speed, and
accuracy. XGBoost’s success extends across various applications, ranging from
store sales prediction to ad click-through rate prediction, as validated by its con-
sistent dominance in machine learning competitions, where it often outperforms

competitors and holds its ground against ensemble methods[125].

3.1.3 DT

Decision Trees (DT) are fundamental in machine learning and data mining, pro-
viding a hierarchical representation of decision-making processes. They are used

for classification and predictive modeling, where the data is recursively split into
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subsets based on attribute values to make decisions about class labels. This hier-
archical structure consists of nodes representing decision points and connections
representing possible outcomes, allowing for an intuitive and interpretable model.
Decision trees are versatile, capable of handling both categorical and numerical
data, and are known for their ease of use and ability to handle noisy or missing
data [126 127].

However, decision trees are susceptible to overfitting, where the model fits
the training data too closely and performs poorly on new data. Techniques such
as pruning and ensemble methods have been developed to improve their gener-
alization performance. Despite this limitation, decision trees remain a powerful
and widely used tool in various fields, providing valuable insights and practical
solutions for classification and predictive modeling tasks. The goal is to create a
model that predicts the class of a new instance by traversing the tree from the
root to a leaf node [128].

3.1.4 GNB

The Gaussian naive bayes (GNB) algorithm is a supervised learning method de-
signed explicitly for classification tasks. It is a popular classification algorithm
grounded in Bayes’ theorem, operating under the assumption that features are
conditionally independent given the class. The algorithm calculates the proba-
bility of a data point belonging to a particular class based on the distribution
of features in that class. It assigns the class label with the highest probability.
Additionally, it calculates the probabilities of each attribute belonging to each
class and uses these probabilities to make predictions. It assumes that the proba-
bility of each attribute belonging to a given class value is independent of all other
attributes. It is particularly well-suited for situations where the attributes follow
a Gaussian (normal) distribution [129] 130} [131].

One of the key advantages of the GNB algorithm is its simplicity and efficiency,
especially for high-dimensional data. It requires a small amount of training data
to estimate the parameters necessary for classification, making it particularly

useful when available training data is limited. The GNB algorithm’s ability to
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handle continuous data and its efficiency in training and classification makes it a

valuable tool in various real-world applications.

N|M) - P(M)
P(N)
Equation 3.2 represents the conditional probability of event M given event N.

PNy = 2 (3.2)

In the context of GNB, this equation is used to calculate the probability of a class
value (M) given the observed attribute values (). Here, P(N|M) represents
the conditional probability of the observed attribute values given the class value,
P(M) is the prior probability of the class value, and P(INV) is the probability of
the observed attribute values. By calculating this conditional probability for each
class, GNB selects the class with the highest probability as the predicted class
for the given attribute values[132].

3.1.5 KNN

K-Nearest Neighbors (KNN) is a versatile machine-learning algorithm for clas-
sification and regression tasks. It operates on the principle of proximity, where
the prediction for a new data point is based on the majority label or value of
its K-nearest neighbors in the feature space. KNN is non-parametric, meaning
it does not assume any specific form for the underlying data distribution, mak-
ing it suitable for various applications. It is particularly effective for small to
medium-sized datasets and can handle numerical and categorical data.

One of the strengths of KNN is its simplicity and ease of implementation. It
does not require training or model fitting, making it a straightforward choice for
the quick prototyping and exploration of datasets. However, KNN’s performance
can be impacted by the curse of dimensionality, especially in high-dimensional fea-
ture spaces, and it may be computationally expensive for large datasets. Various
KNN variants, such as distance-weighted KNN and semi-supervised KNN, have
been developed to address these challenges, aiming to enhance the algorithm’s

efficiency and accuracy in different scenarios [133] [134].
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3.1.6 QDA

Quadratic discriminant analysis (QDA) is a classification algorithm used in ma-
chine learning and statistics to classify data into multiple classes based on their
features. QDA is a supervised learning method requiring labeled training data to
learn the relationships between features and classes. QDA aims to find a decision
boundary that best separates the classes in the feature space [135].

In QDA, it is assumed that the data for each class follows a multivariate
normal (Gaussian) distribution. It also implies that the features of each class
are assumed to be normally distributed and that the covariance matrix can dif-
fer between classes. The decision boundary is determined by fitting a quadratic
surface to the data, allowing for more complex decision boundaries compared to
linear classifiers such as linear discriminant analysis (LDA). The essential com-
ponents of QDA include the mean vector and the covariance matrix for each
class. The mean vector represents the average value of each feature for a given
class, while the covariance matrix describes the spread and relationships between
the features within each class. These parameters are estimated using maximum
likelihood estimation or Bayesian estimation from the training data.

To classify a new data point, QDA calculates the probability of the data point
belonging to each class based on the class-specific multivariate normal distribu-
tions. The decision rule assigns the data point to the class with the highest
probability.

The equation gives the probability density function (PDF) of the multivariate

normal distribution:

1
COZEPIEE

where - x represents the feature vector, - p is the mean vector, - ¥ is the

flzlp, B) = e~ ) (3.3)

covariance matrix, - p is the number of dimensions.
The decision boundary in QDA is determined by fitting a quadratic surface

to the data. It can be expressed as the following quadratic equation:

2T Ar+ BTr +C =0 (3.4)
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where - A is a symmetric matrix of coefficients, - B is a vector of coefficients, -
C' is a constant.

To classify a new data point, QDA calculates the probability of the data point
belonging to each class based on the class-specific multivariate normal distribu-
tions. The decision rule assigns the data point to the class with the highest
probability, which can be expressed using Bayes’ theorem and the PDF of the
multivariate normal distribution.

The classification rule for QDA can be expressed as:

1 1
) = arg ke{rlr}g)fﬂ} {log =g log |2k | — 5(35 — )T (o — uk)} (3.5)

where
— ¢y is the predicted class label,
— 7 is the prior probability of class k,
— pg is the mean vector for class k,
— X is the covariance matrix for class k,

— x is the feature vector of the new data point.

QDA has several advantages over linear classifiers such as LDA, including its
ability to handle non-linear decision boundaries and its flexibility in modeling
the relationships between features and classes. However, QDA requires more
parameters to estimate compared to LDA, which can lead to overfitting when the

number of features is large relative to the number of training samples[136].

3.1.7 AdB

AdaBoost (AdB), introduced in 1995 by Freund and Schapire, is a popular ensem-
ble learning algorithm that combines the predictions of multiple weak classifiers
to create a robust classifier. The algorithm is designed to iteratively train a se-

quence of weak classifiers on weighted versions of the training data, where the
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weights are adjusted at each iteration to focus on the examples misclassified in

the previous iterations. By giving more emphasis to the problematic examples,

AdaBoost aims to improve the overall performance of the ensemble [137, 13§].
The fundamental idea behind AdaBoost is to minimize the exponential loss

function, which is defined as follows:

L(y, F(x)) = exp(—y - F(x)) (3.6)
where y is the true label of the example  and F(z) is the weighted sum of
the weak classifiers’ predictions on z.

The AdaBoost algorithm determines the weights of the weak classifiers during
training.

The algorithm starts by assigning equal weights to all training examples and
then trains a weak classifier on this weighted data, such as a decision stump.
After each iteration, it increases the weights of the misclassified examples while
decreasing the weights of the correctly classified examples. Subsequent weak clas-
sifiers then train on the updated weighted data, with each classifier focusing on
the examples that were previously misclassified. The final robust classifier is con-
structed by combining the individual weak classifiers based on their performance,
with more accurate classifiers being given higher influence in the ensemble. The

equation for the final classifier is:
H(z) = sign(F(x)) (3.7)

where sign is the sign function and F(x) is the weighted sum of the weak
classifiers’ predictions on z.

One of the strengths of AdaBoost is its ability to adapt to complex decision
boundaries and handle noisy data. AdaBoost can effectively learn from difficult
instances and improve its generalization performance by focusing on the chal-
lenging examples to classify. AdaBoost is less prone to overfitting than other
machine learning algorithms, making it suitable for various applications. How-
ever, AdaBoost is sensitive to outliers and noisy data, as it may excessively focus
on misclassified examples, leading to decreased performance. Furthermore, the
algorithm’s performance can be affected by the choice of weak classifiers and the

quality of the training data.

49



3.1.8 MLP

The multilayer perceptron (MLP) is a fundamental type of artificial neural net-
work (ANN) that has gained widespread popularity due to its ability to learn
and model complex relationships in data [I39]. It is a feedforward neural net-
work (FNN), meaning that the flow of information moves in one direction, from
the input layer through one or more hidden layers to the output layer. Intercon-
nected nodes, or neurons, comprise each layer, and the training process adjusts the
weights associated with the connections between neurons. The MLP’s versatility
allows it to apply to various tasks, including pattern recognition, classification,
regression, and function approximation [129] [140].

The structure of an MLP typically includes an input layer, one or more hidden
layers, and an output layer. The input layer receives the initial data, which is
then processed through the hidden layers, and the output layer produces the final
result. Neurons in the MLP use activation functions to introduce non-linearity
into the network, allowing it to learn and model complex relationships in the data.
Common activation functions include the sigmoid function for hidden layers and
the softmax function for the output layer in classification problems.

In training an MLP, one adjusts the weights and biases of the network to
minimize the difference between the predicted and actual output. Typically,
achieving this involves employing the backpropagation algorithm, a supervised
learning method. The network iteratively adjusts its weights and biases during
training based on the error between the predicted and actual output. The back-
propagation algorithm calculates the error gradient to the network’s weights and
biases. It uses this information to update the network parameters in a direction
that minimizes the error [141], [142].

In an MLP, the learning process entails iteratively optimizing the network’s
parameters to minimize a predefined loss function, such as the mean squared error
for regression tasks or the cross-entropy loss for classification tasks. Typically,
gradient-based optimization algorithms like stochastic gradient descent (SGD) or
its variants are employed for this optimization, adjusting the weights and biases

in the direction that reduces the error.
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The equations used in training MLP are fundamental to its learning process.
During training, the backpropagation algorithm is employed to adjust the weights
and biases of the network based on the error between the predicted and actual
outputs.

The weight update equation for a connection between neuron k in layer 1-1

and neuron j in layer 1 is given by:

Awék =—n- 5;. . y,(clfl) + - Awék (3.8)

° Awé-k represents the change in weight for the connection between neuron k

in layer [ — 1 and neuron j in layer [,
e 7 is the learning rate, which controls the step size of the weight updates,

° 55- is the error term for neuron j in layer [ representing the contribution of

neuron j to the overall error,

° yg_l) is the output of neuron £ in layer [ — 1,

e o is the momentum term, which influences the impact of the previous weight

update on the current update.

These equations are fundamental in the iterative process of adjusting the
network’s weights and biases during training, enabling the MLP to learn and

model complex patterns and relationships in the data.

3.1.9 LR

Logistic regression (LR) is a statistical method that models the relationship be-
tween a binary outcome variable and one or more independent variables. Widely
employed in various fields, including medical research, economics, and social sci-
ences, LR is particularly valuable when the outcome of interest is dichotomous,
such as the presence/absence of a disease, success/failure of a treatment, or yes/no
responses [143], [144], [145].
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The fundamental concept of LR involves estimating the probability of the bi-
nary outcome based on a linear combination of the independent variables, trans-
formed using the logistic function. The logistic function ensures that the predicted
probabilities fall within the range of 0 to 1, making it suitable for modeling binary
outcomes. LR allows for assessing the impact of each independent variable on
the likelihood of the outcome while controlling for the effects of other variables.

One of the key advantages of LR is its ability to handle continuous and categor-
ical independent variables. LR provides insights into the direction and strength
of the relationships between the independent variables and the probability of the
outcome. Additionally, LR can be extended to include interactions and higher-
order terms, allowing complex relationships to be explored. However, LR does
have limitations. It assumes a linear relationship between the independent vari-
ables and the log-odds of the outcome, which may not always hold. Furthermore,
LR assumes that the observations are independent, which may not be the case in
clustered or correlated data.

We now delve into the logistic regression equation. The logistic regression
equation is expressed as:

1

P(Y =1|X) = 1 + e—(botbi X1+bs Xot .. +b,X;)

(3.9)
Explanation:

e P(Y = 1]|X) represents the probability of the outcome variable (Y) taking

the value 1 given the values of the independent variables (X).
e ¢ is the base of the natural logarithm.

e b, is the intercept, indicating the log-odds when all independent variables

are zero.

e by, by,..., b; are the coefficients associated with the independent variables
X1, Xo,..., X;, representing the change in the log-odds of the outcome
variable for a one-unit increase in the corresponding independent variable,

holding all other variables constant.
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This equation forms the core of logistic regression modelling. It enables the es-
timation of the binary outcome’s probability based on the independent variables’

values and their associated coeflicients.

3.1.10 RNN

A recurrent neural network (RNN) is an artificial neural network for processing
sequential data. Unlike traditional FNNs that handle input data in a single pass,
RNNs excel at managing sequential information by maintaining an internal state
that captures dependencies and patterns across time. In contrast to FNNs, which
process each input independently through hidden layers without considering the
order or context of other inputs, RNNs are more effective in handling sequential
data. They are well-suited for sequential data tasks, such as time series analysis,
natural language processing, and speech recognition [146].

At the core of RNNs is the concept of recurrence, where the network’s internal
state undergoes updates at each time step based on current and past inputs. This
unique feature empowers the network to retain a memory of preceding inputs,
influencing its present output and enabling the capture of temporal dependencies
in the data. The ability to capture temporal dependencies is a key strength
of RNNs, allowing them to effectively model and analyse sequential patterns.
Centered around the processing of sequential data, RNNs distinguish themselves
from traditional FNNS. With their internal memory, RNNs maintain a state that
encapsulates information about previous inputs, facilitating dynamic temporal
behaviour. The recurrent nature of RNNs makes them particularly well-suited
for a range of tasks involving sequences, such as predicting the next word in a
sentence, generating music, or analyzing stock market trends [147].

The RNN architecture is generally built upon recurrent connections that form
a loop, allowing information to persist over time. At each time step, the network
receives an input, produces an output, and updates its internal state based on
the current and previous input. This recurrent nature enables RNNs to capture
dependencies and patterns in sequential data, making them powerful tools for

modeling and understanding time-varying phenomena.
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One of the crucial components of an RNN is the hidden state, functioning as
the network’s internal memory. At each time step, the hidden state undergoes
updates based on the current input and the previous hidden state. This process
dynamically incorporates information from past inputs, effectively encoding the
network’s memory. The recurrent updating mechanism empowers RNNs to cap-
ture long-range dependencies in sequential data, a capability distinguishing them
from traditional FNNs lacking this memory aspect. Fig|3.1|shows the architecture
of the RNN.

An RNN’s architecture typically consists of three main components: an input
layer, a hidden layer, and an output layer. However, unlike FNNs, the hidden
layer in RNNs has a feedback connection to itself, allowing the network to main-
tain a memory of previous inputs.

The architecture of an RNN can be represented as follows:

- Input layer: The input layer receives the input sequence, a sequence of words,
images, or any other type of sequential data. Each element in the sequence is fed
into the network one at a time.

- Hidden layer: The recurrent connections are located in the hidden layer.
The hidden state at each time step is computed based on the current input and
the previous hidden state. This allows the network to maintain a memory of
previous inputs and capture temporal dependencies in the sequence.

- Output layer: The output layer produces the output sequence, a sequence of
predicted words, images, or any other sequential data type. The output at each
time step is computed based on the current hidden state.

RNNs can be represented using the following equations:

The hidden state at time step t:

he = f(Winhi—1 + Wany + bp) (3.10)
The output at time step t:

Yr = g(Whyhy + by) (3.11)

where
-h; is the hidden state at time step ¢
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Fig. 3.1. RNN Architecture

-f is the activation function for the hidden state

-Whp is the weight matrix for the hidden state

-h;_1 is the hidden state at the previous time step

-Won is the weight matrix for the input

-x; is the input at time step ¢

-b;, is the bias for the hidden state

-y, is the output at time step ¢

-g is the activation function for the output

-Why is the weight matrix for the output

-b, is the bias for the output

These equations describe RNNs’ recurrent nature, where the hidden state at
each time step depends on the current input and the previous hidden state. This

allows RNNs to capture temporal dependencies in sequential data.

3.1.11 SVM

Support vector machines (SVMs) are powerful supervised machine learning algo-

rithms that excel in classification and regression tasks. They work by finding an
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optimal hyperplane in the feature space, essentially a multidimensional dividing
line separating different classes [I48]. The core principle maximises the mar-
gin—the distance between the hyperplane and the closest data points (support
vectors) from each class. A wider margin translates to a more robust separation,
leading to better performance on unseen data.

One key strength of SVMs is their ability to handle high-dimensional data
efficiently. Even when the number of features (characteristics) exceeds the number
of samples (data points), SVMs can still deliver accurate and generalizable results.
This makes them well-suited for tasks involving complex and multifaceted data,
such as bioinformatics, image recognition, and text classification.

SVMs can handle both linear and nonlinear classification problems. Linear
SVMs use a straight line as the decision boundary. In contrast, nonlinear SVMs
employ a kernel function to map the data into a higher-dimensional space where
a linear boundary can be found. This flexibility allows SVMs to tackle complex
decision boundaries and capture intricate patterns in the data.

Training an SVM model involves finding the optimal parameters (weights and
bias) that define the hyperplane. This optimization process balances minimiz-
ing classification errors with maintaining model complexity to avoid overfitting
(failing to generalize to new data). Regularization techniques are often used to
prevent this.

Feature selection is crucial in SVMs, and the importance of each feature is
reflected in its weight. By focusing on informative features, SVMs can improve
classification accuracy and efficiency. Additionally, SVMs are robust to outliers,
as the decision boundary is primarily determined by the support vectors closest to
the hyperplane. By excelling in high dimensions and offering linear and non-linear
solutions, SVMs solidify their place as powerful tools for diverse machine-learning

challenges.

3.1.12 LSTM

RNNs are powerful tools for handling sequential data, where information like sen-
tences or stock prices unfolds over time. However, their ability to remember past

information diminishes as they process longer sequences. This fading memory,
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known as the vanishing gradient problem, hinders their ability to learn long-term
dependencies. For example, when trying to predict the next word in a sentence,
it may be necessary to recall a word mentioned much earlier to make an accurate
guess [149].

LSTM networks (LSTMs) address this limitation head-on. Unlike RNNs,
LSTMs boast a sophisticated memory mechanism that excels at handling se-
quences of varying lengths. This makes them particularly well-suited for tasks
like network traffic analysis, where data packets arrive at different times and can
be of different sizes.

The key to LSTMs’ success lies in special "gates” that act like memory filters.
These gates control the flow of information, allowing LSTMs to remember or for-
get crucial details from past data points selectively. In network traffic analysis,
for example, the gates would focus on relevant information within each packet.
This selective memory empowers LSTMs to identify complex patterns and rela-
tionships within sequential data, even when the order and timing of elements are
critical.

By overcoming the vanishing gradient problem, LSTMs have become power-
ful tools for various tasks that require remembering information over extended
periods. This improvement marks a significant advancement in RNN technology.

But LSTMs offer more than just superior memory. They are adept at handling
noise and inconsistencies often present in real-world data. Additionally, LSTMs
can effectively process complex data representations where information is spread
across multiple elements, a crucial capability for tasks like natural language pro-
cessing. Unlike RNNs; which are limited to discrete categories, LSTMs can also
excel at handling continuous values. Finally, LSTMs don’t require a pre-defined
number of states like Hidden Markov Models (HMMs), allowing them to learn
from past data more flexibly. LSTMs also offer a wider range of parameters for
fine-tuning, providing greater control over model behaviour.

An LSTM unit, the core building block of LSTMs, can be considered a smart
memory cell. Four interconnected layers work together to manage information
flow and memory. Unlike regular neural network layers, these layers have full
connections, meaning every neuron is linked to all others in the layer. Figure |3.2
represents the single LSTM cell [150].
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Fig. 3.2. Structure of LSTM Cell

Cell State (C*): This acts like the LSTM’s central memory, a long-term storage
unit that can retain information for extended periods across sequences. At each
time step, the cell state can be updated with new data, cleared of old information,
or accessed for use.

Hidden State (h'): This layer intermediates between the cell state (storage)
and the external world. It retrieves information from the cell state, remembering
or forgetting details as needed based on the forget and input gate outputs. The
hidden state ultimately produces the final output at each time step.

Input Gate (i*): This gate controls the flow of new information entering the cell
state. Imagine it as a security checkpoint deciding whether to allow incoming data
based on relevance. The input gate can selectively accept or reject information
based on the current input (X;) and the previous hidden state h;_;.

Forget Gate (f*): This gate acts like a clean-up crew, sifting through the
information stored in the cell state ¢;_; from the previous time step. It decides
what information to keep and what to discard. This allows the LSTM to forget
irrelevant details and free up space for important information.

Output Gate (o'): This gate functions like a product selection gate at the

LSTM’s exit. It controls what information from the cell state ¢’ is ultimately
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released as the output h'. Based on the current input (X;) and the previous
hidden state h;_q, it decides which parts of the stored information are most
valuable for the external world.

The following equations represent the core calculations within an LSTM unit
at each time step (¢). They control the flow of information through gates and

update the cell state, ultimately influencing the hidden state output.

fr=0Wy [z, by, cia] + by) (3.12)

Equation [3.12] calculates the forget gate’s activation value f; at time ¢. It uses
a sigmoid function (o) to determine how much information to forget from the
previous cell state (¢;—1) based on the current input (z;) and the previous hidden
state (hy_1).

it = G(Wz : [.Tt, ht—h Ct—l] + bz) (313)

Equation 3.13 calculates the input gate’s activation value 7; at time ¢. Similar
to the forget gate, it uses a sigmoid function (o) to decide how much of the new
information from the current input (x;) is allowed to enter the cell state (¢;),

considering the context provided by the previous hidden state (h;_1).

O; = tanh(Wc . [l‘t, ht—l] -+ bc) (314)

Equation 3.14 calculates the candidate memory (Cj) at time ¢. It represents
the potential new information that could be added to the cell state. The hyper-
bolic tangent function (tanh) captures the range of this information between -1
and 1. The weight matrix (W.) and bias vector (b.) determine how the current

input (z;) and previous hidden state (h;—1) contribute to this candidate memory.

a=fOca+i 00 (3.15)

Equation 3.15 updates the cell state (¢;) at time ¢ by combining information
from the forget gate (f;), the input gate (i;), the previous cell state (¢;—1), and
the candidate memory (C}). Element-wise multiplication (®) allows the forget
and input gate values to selectively influence the information retained from the

past and the new information added.

99



Or = U(Wo . [ﬂft, h’t—17 Ct] + bo) (316)

Equation 3.16 calculates the activation value (o) of the output gate at time
t. Tt uses a sigmoid function (o) to determine how much information from the
current cell state (¢;) is used to create the final hidden state output (k). The
weight matrix (W,) and bias vector (b,) influence the importance of different
elements in the current input (z;), previous hidden state (h;_1), and current cell

state (¢;) for this decision.

hy = oy ® tanh(c;) (3.17)
Equation 3.17 calculates the hidden state (h;) at time ¢. It uses the output

gate activation (o;) to control how much information from the current cell state
(¢;) is passed on as the final output. The hyperbolic tangent function (tanh)
ensures the hidden state values are between -1 and 1.

LSTMs overcome the limitations of traditional RNNs by incorporating forget
gates, input gates, and output gates that control information flow within the
network. These gates allow LSTMs to learn long-term dependencies in sequences
and effectively capture temporal information. As a result, LSTMs are well-suited
for various tasks involving sequential data, such as speech recognition, machine

translation, time series forecasting, and video analysis.

3.1.13 Bi-directional LSTM

LSTM networks have revolutionized deep learning by enabling effective processing
of sequential data. However, traditional LSTMs process information only in a
forward direction, potentially missing valuable context from previous elements
in the sequence. Bidirectional LSTMs (Bi-LSTMs) have emerged as a powerful
technique that leverages information from past and future elements within a
sequence to address this limitation. This section delves into Bi-LSTMs, exploring
their architecture, advantages, and applications [I51].

In LSTM, gates work together to selectively update the cell and hidden states
at each time step, enabling LSTMs to learn long-term dependencies within se-

quences. Bi-LSTMs utilise two separate LSTMs working in tandem:
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e Forward Pass: The first LSTM processes the sequence in the forward
direction (left to right), capturing context from past elements. This forward
LSTM’s hidden states are H} for each time step t.

e Backward Pass: The second LSTM processes the reversed sequence in the
backward direction (right to left), capturing context from future elements.
The hidden states this backward LSTM generates are H{ for each time step
t.

A core aspect of Bi-LSTMs lies in how they combine the hidden states from
both LSTMs. A common approach is a concatenation, where the forward hidden
states H} and backward hidden states Hy are joined at each time step to create

a richer representation a richer representation (H;) of the sequence:
H, = [H}, H]] (3.18)

This concatenated hidden state, (H;), incorporates information from past and
future elements, providing a more comprehensive understanding of the sequence’s
context.

By processing information bidirectionally, Bi-LSTMs offer several advantages
over standard LSTMs:

e Improved Context Capture: They can effectively capture long-term
dependencies within sequences, even when the relevant information is scat-
tered throughout the sequence (e.g., understanding pronouns based on their

antecedents).

e Enhanced Performance: In tasks where understanding the full context
is crucial, Bi-LSTMs often perform better than standard LSTMs. This is
particularly true in natural language processing (NLP) tasks like sentiment

analysis, machine translation, and speech recognition.

Bi-LSTMs can incorporate peephole connections. These connections allow the
hidden state of the previous time step to influence the current time step directly’s

forget gate, input gate, and output gate. This can improve the model’s ability
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to learn long-term dependencies by providing additional context to the gating
mechanisms.

Applications of Bi-LSTMs:

Bi-LSTMs find applications in various domains that involve processing se-

quential data:

e Sentiment Analysis: Classifying the sentiment (positive, negative, or

neutral) of text data such as reviews or social media posts.

e Machine Translation: Translating text from one language to another

while preserving meaning and context.

e Text Summarization: Generating concise summaries of lengthy docu-

ments by capturing the most important points.

e Speech Recognition: Converting spoken language into text by capturing

the sequence of sounds and their context.

e Financial Time Series Forecasting: Predicting future stock prices or
other financial metrics based on historical data by analyzing the temporal

relationships within the data.

e Video Analysis: Recognizing objects and activities within videos by pro-

cessing the sequence of frames and their visual features.

Limitations of Bi-LSTMs:
While Bi-LSTMs offer significant advantages, they also have limitations:

e Training complexity: Bi-LSTMs typically require more data compared to
standard LSTMs due to the increased number of parameters. Techniques
like dropout and careful weight initialization are crucial to prevent overfit-

ting.

e Computational cost: Training and running Bi-LSTMs can be computation-

ally expensive, especially with deeper architectures.
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Table 3.1: Datasets for insider threat detection

Dataset Threat types Description
RUU [152] (2009) Masquerader 14 masqueraders and 34 normal
users
Enron [153] (2015) Traitor 500,000 emails from 150 employ-
ees
Substituted )
Schonlau [154] (2001) 50 users’ Unix shell commands
Masquerader

Greenberg [I55] (1988) | Authentication | 50 users’ Unix C shell commands

TWOS [I56] (2017) Malicious 12 masqueraders users, 5 traitor

sessions, and 24 users

CERT (2013) Malicious 5 insiders and 3995 normal users

3.2 Datasets

This section details the datasets categorized into five groups based on the type
of insider activity: masquerader-based, traitor-based, malicious, substituted mas-
queraders, and authentication-based. Table[3.1]describes the insider threat datasets.

3.2.1 Masquerader-based Datasets

RUU dataset [I52] consists of host-based events from 34 regular users, with the
help of 14 volunteers who act as masqueraders to look for information with a fi-
nancial value. RUU is a masquerader-based dataset. Salem and Stolfo introduced
the RUU dataset in 2009 and 2011.

Enron dataset [153] comprises 500,000 emails from 150 Enron Corporation
employees over the course of five years. It is a traitor-based dataset.

Schonlau dataset [I54] comprises 50 users in a substituted masquerader
dataset. Each user produces 15,000 Unix shell commands. In a masquerade

session, random commands from unknown users are injected.

63



Greenberg dataset [I55] provides complete Unix C shell commands from
168 users in an authentication-based dataset. In contrast to the Schonlau dataset,
Greenberg’s dataset contains arguments and time stamps in command instances.

TWOS dataset [156] includes a variety of data, both traitors and masquer-
aders. The dataset comprises behaviours from 24 users over five days that were
gathered using a multiplayer game that simulates 12 masquerader sessions and
five traitor sessions.

CERT datasetﬂ is a synthetic dataset that contains system logs labeled as
involving an insider threat. The dataset contains logon, email, http, device, and

file access details.

3.2.2 TWOS Dataset

TWOS is a malicious insider threat behaviour dataset based on a gamified com-
petition. A team of researchers from the ST Electronics-SUTD Cyber Security
Laboratory at the Singapore University of Technology and Design created the
dataset. The competition’s goal was to obtain a dataset containing realistic in-
stances of insider threats, a major concern for organisations of all sizes. The
TWOS dataset is unique in that it contains data labeled as malicious that was
logged as a result of spontaneous user interactions with the workstation.

The TWOS dataset was collected over two years from 24 employees using
Microsoft Word on a Macintosh operating system. It contains 74,783 commands
corresponding to 11,334 sessions. The data was collected from several host-based
heterogeneous data sources, such as mouse, keyboard, processes, and file system.
The dataset contains a mixture of normal and malicious activities designed to
simulate real-world scenarios.

The gamified competition format was used to improve the quality of the
TWOS dataset. The competition was designed to be engaging and fun, encour-
aging participants to behave more naturally and realistically. It was divided into
several rounds, each with a different scenario. Participants were given a set of

tasks to complete, and their behaviour was monitored and logged. The scenarios

thttps://kilthub.cmu.edu/articles/dataset /Insider Threat_Test_Dataset/12841247/1
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were designed to simulate real-world insider threats, such as stealing sensitive
data or sabotaging systems.

The TWOS dataset has several potential applications in the field of cyber-
security. It can be used to develop and test new insider threat detection and
prevention tools and techniques. The dataset can also be used to train machine
learning algorithms to detect and prevent insider threats. The TWOS dataset is
unique in that it contains data labeled as malicious and logged due to sponta-
neous user interactions with the workstation. This makes it a valuable resource

for researchers and practitioners interested in insider threats.

3.2.3 ENRON Email

The Enron email dataset is widely used in machine learning and data analysis.
It contains approximately 500,000 emails from the Enron Corporation, which
went bankrupt in 2001 due to fraudulent business practices. The Federal Energy
Regulatory Commission (FERC) initially released the dataset while investigating
the company’s practices. The Enron email dataset is considered a hallmark for
insider threats, counter-terrorism, and fraud detection research.

The Enron email dataset is a valuable resource for researchers because it
contains real-world data that can be used to test and validate machine learning
models. The dataset includes emails from various sources, including executives,
employees, and outside parties. The emails cover a time window of four years,
from 2000 to 2002, and provide a rich source of information for analysing email
contents to detect insider threat involving collaborating traitors. The Enron email
dataset has been used in numerous studies to develop and test machine learning
models for identifying insider threats.

Despite its usefulness, the Enron email dataset has some limitations. One of
the main challenges is the lack of ground truth labels for the emails. Researchers
must rely on unsupervised or semi-supervised machine learning techniques to
classify the emails. Another challenge is the sensitive nature of the data, which
contains personal and confidential information. To address these challenges, re-

searchers must take appropriate measures to ensure the privacy and security of

65



the data, such as anonymising the data and obtaining appropriate permissions

for its use.

3.2.4 Other Datasets

The Computer Usage Activities Log dataset serves as a cornerstone for research
in insider threat detection. Encompassing diverse computer activities like logins,
file access, and messaging, it captures user actions in a business environment
(often collected via tools like SureView). Researchers leverage this data to iden-
tify malicious behaviours (destruction, misuse, etc.) by analyzing known insider
attack patterns. The dataset’s rich features enable user behaviour profiling and
anomaly detection, crucial for identifying potential insider threats. By studying
this data, researchers can develop and evaluate algorithms that bolster organiza-
tional security against insider attacks [97, [I57]. Notably, research by Senator et
al. and Gavai et al. exemplifies that these types of datasets are used to develop
effective insider threat detection methods.

Another dataset considers attacks on relational database management systems
(RDBMS) as a major security concern due to their stealth [I58]. Mathew et
al. propose a method to identify abnormal access patterns by analyzing query
semantics, a more reliable indicator than syntax. Their approach hinges on a
historical dataset of queries and their corresponding results. This data allows
them to define "normal” access patterns based on the statistical properties of

past queries and their outcomes.

3.2.5 CERT Dataset

Data collection is an essential step in cybersecurity. Many publicly available data
sources are available to assess insider threat detection models. Although many
datasets are available, we use the CERT publicly available dataset. The CERT
dataset is “free of privacy and restriction limitations”. The insider dataset was
proposed by CERT Division, in partnership with ExactData, LLC, and under
sponsorship from DARPA 120 E] The institute provided ten unique test datasets

Thttps://kilthub.cmu.edu/articles/dataset/Insider Threat TestDataset /12841247
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(rl, r2, r3.1,r3.2, r4.1, r4.2, r5.1, r5.2, 6.1, r 6.2) that include synthetic data for
regular and malicious activity. The databases, including user logs on computers,
organisational structure, and user data in a directory, simulate corporate environ-
ments. The user activity logs include logons, device activity, emails, https, files,
and psychometric scores for users. Similarly, the organizational structure and
user data directory as in the shape of the lightweight directory access protocol
(LDAP). The CERT dataset is generated to closely resemble real-world situa-
tions, reflecting the characteristics of user logs. The dataset includes a total of

five insider threat scenarios.

1. A user who has not previously used removable drives or work after hours
begins logging in after hours, using a removable drive and uploading data

to wikileaks.org. Leaves the organization shortly thereafter.

2. A user begins surfing job websites and soliciting employment from a com-
petitor. Before leaving the company, they use a thumb drive (at markedly

higher rates than their previous activity) to steal data.

3. A system administrator becomes disgruntled. Downloads a keylogger and
uses a thumb drive to transfer it to his supervisor’s machine. The next
day, he uses the collected keylogs to log in as his supervisor and sends out
an alarming mass email, causing panic in the organization. He leaves the

organization immediately.

4. A user logs into another user’s machine and searches for interesting files,
emailing these to their home email account. This behaviour occurs more

and more frequently over a 3-month period.

5. A member of a group decimated by layoffs uploads documents to Dropbox,

planning to use them for personal gain.

Multiple insider threat datasets exist, with versions denoted by release time.
The most common ones are r4.2 and r6.2. Table [3.2] summarizes their key char-
acteristics. In simpler terms, r4.2 is a "dense” dataset containing a significant

number of insider profiles and malicious activities. In contrast, r6.2 is a ”sparse”
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Table 3.2: Comparison for CERT r4.2 and 6.2

No of No of No of Malicious
No of Insiders
Employees Activities Activities
4.2 1000 70 32,770,227 7323
6.2 4,000 5 135,117,169 470

dataset focusing on 5 identified insiders and activity data for 3,995 regular users
between January 2010 and June 2011. Each user record in r6.2 includes roughly
40,000 activity entries.

In this research, we have chosen the CERT r4.2 dataset due to the scarcity
of scenario instances in most datasets, where each occurred only once. Dataset
4.2, in contrast, was characterized as a ”"dense needle” dataset with many cases
for each scenario, making it a valuable choice for analysis or modeling tasks
that benefit from increased scenario density. The CERT r4.2 dataset has over
20 GB of system log files of 1,000 users, 70 malicious users over 500 days, and
both normal and malicious behaviour. The dataset only has 0.03% anomalous
incidents and 99.7% normal ones. The r4.2 dataset comprises 930 normal users
and 70 malicious insiders. The dataset used in our study consists of several CSV
files, each containing specific information related to user activities and attributes.
The following are the key CSV files included in the dataset:

1. Device- This file records connecting and disconnecting external devices,
specifically USB drives. It contains the date, user, PC, activity (connec-

t /disconnect)

2. Logon- The logon file contains user login and logout times information.
The features included in the logon are the date, user, PC, and activity

(logon/logoff).

3. File- This file contains logs of user activity on files, such as opening, writing,
copying, and deleting files. The file contains features such as the date, user,

PC, filename, and content.
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4. Email- This file logs employee communication, specifically email exchanges.
The email.csv file includes features such as the date, user, PC, To, Cc, Bec,

from, size, attachments, and content.

5. HTTP- The HTTP file captures the user’s browsing activity, including the
URLs visited. The http.csv contains date, user, PC, URL, and content

features.

6. Lightweight Directory Access Protocol (LDAP): The LDAP file contains
user information and their job roles. The LDAP file includes features such
as Employee_Name, User_Id, Email, Role, Business_Unit, Functional Unit,

Department, Team, and Supervisor.

7. Psychometric - The psychometric file includes information on user person-
ality attributes, specifically the OCEAN model, which stands for openness,
conscientiousness, extraversion, agreeableness, and neuroticism. The file
includes features such as Employee_Name, User_Id, and personality traits
O (Openness), C(Conscientiousness), E (Extraversion), A (Agreeableness),

and N (Neuroticism).

3.3 Performance Metrics

Evaluating the performance of ML and DL models in insider threat detection
requires a set of comprehensive performance metrics. These metrics evaluate the
model’s capacity to discern malicious activities from typical user behaviour. This
section examines several commonly employed performance metrics for ML and

DL methodologies within this research.

3.3.1 Confusion Matrix

The confusion matrix is fundamental for understanding a classification model’s
performance [159]. It clearly shows the model’s ability to identify positive and

negative cases correctly.
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Table 3.3: Summary of CERT r4.2 dataset

[tem Count
Duration 500 days
Users 1000
Scenarios 3

Logon 854,860
Device 405,381
Email 2,629,980
HTTP 28,434,424
File 445,582
Total Events 32,770,227
Total Threat Events | 7,323

TP (True Positive): This refers to the number of malicious samples the
model correctly classified as malicious. In insider threat detection, these would
be the actual insider threat activities that the model successfully identified.

FN (False Negative): This represents the number of malicious samples the
model incorrectly classified as normal. These are the missed detections, where
the model failed to identify actual insider threats.

TN (True Negative): This indicates the number of normal data samples
the model correctly classified as normal. These are the true negatives, where the
model didn’t mistakenly flag normal activity as a threat.

FP (False Positive): This represents the number of normal data samples
the model incorrectly classified as malicious. These are the false alarms, where

the model identified normal activity as a potential threat.
3.3.2 Accuracy

Accuracy is a common way to measure a machine learning model’s performance,

especially in classification tasks. It essentially indicates how often the model
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Table 3.4: Confusion Matrix

Predicted

Confusion Matrix
Positive Negative

Positive | True Positive (TP) | False Negative (FN)
Negative | False Positive (FP) | True Negative (TN)

Actual

makes the correct prediction.

TP +TN
A = 3.19
Y = TP I TN+ FP + FN (3.19)

A higher accuracy value (closer to 100%) indicates that the model is mak-

ing many correct predictions, both in identifying insider threats and classifying
normal behaviour. However, accuracy alone can be misleading, especially in sit-
uations with imbalanced data. Therefore, accuracy should be used along with
other performance metrics that provide more nuanced insights into the model’s

strengths and weaknesses.

3.3.3 Precision

Precision is a valuable metric used in ML & DL, particularly for classification
tasks, to assess the quality of positive predictions.
TP
Precision = TP FP (3.20)
A high precision score (closer to 1) indicates that the model identifies real
threats and minimises false alarms. Precision focuses on the positives (flagged
threats) and their accuracy, not the overall number of correct predictions (like

accuracy). It is a valuable metric, especially when the cost of false positives is

high. However, precision is often used in conjunction with other metrics.
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3.3.4 Recall

Recall focuses on a model’s ability to comprehensively detect positive samples,
ensuring it catches most of the actual threats present in the data.
TP

S 21
Recall TP L EN (3.21)

A high recall score (closer to 1) indicates the model excels at capturing most

actual threats, minimizing missed threats.

3.3.5 Fl-score

In evaluating a model’s performance for insider threat detection, it is crucial
to consider its ability to identify real threats and minimize false alarms. The
F1-score is a metric that balances these two objectives well.

2 % Precision x Recall

F1— = 3.22
seore Precision + Recall ( )

A high Fl-score (near 1) indicates the model effectively balances identifying
actual threats and avoiding unnecessary alerts. When dealing with imbalanced
data, where real threats are rare compared to normal activities, the Fl-score

provides a more informative performance measure than accuracy alone.

3.4 Summary

This chapter explores the critical security concern of insider threats. It defines
various types of insider threats and their activities and motivations. Additionally,
it reviews the existing literature on insider threat detection. In the detection field,
extensive research has already been conducted on behaviour-based, graph-based,
and anomaly detection techniques and more. Even though much research has
been done in this field over the past few decades, the research methods and
results are still not satisfactory. Moreover, this field can benefit significantly
from incorporating recent advancements in machine learning and deep learning,

particularly techniques like graph representation and sequential modelling.
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Chapter 4

Insider Threat Detection using

Supervised Machine Learning

Insider threats pose a constant and critical challenge to organisational security.
Unlike external attackers who attempt to breach systems, insider threats lurk
within, wielding the privileges granted for their jobs. This inherent trust and
access make them particularly dangerous. Recent years have seen a surge in
research on machine and deep learning techniques for insider threat detection.
This focus is due, in part, to the unique capabilities of insiders.

Many insider threats originate from individuals with substantial technical ex-
pertise. This allows them to exploit vulnerabilities and bypass traditional security
measures unseen [130), 131, 160]. Insiders know intimately about the organisa-
tion’s internal networks and security protocols. This knowledge gives them a
strategic advantage, allowing them to target specific assets and evade detection
[161], 162, 163, 164].

The limitations of traditional security methods in addressing insider threats
highlight the need for more sophisticated solutions. Machine learning and deep
learning methodologies have emerged as powerful tools in the cybersecurity do-
main. These techniques are not only effective in identifying insider threats but

also in predicting cyberattacks more broadly [45, [46] 47, 48] 149].
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Comparing the effectiveness of different algorithms for insider threat detec-
tion is a complex task. Existing research utilizes diverse datasets and problem
settings, making clear comparisons difficult. Furthermore, the nature of insider
threat data itself presents unique challenges. These datasets are inherently imbal-
anced, with a vast majority representing normal user activity and a tiny fraction
reflecting malicious insider actions. This imbalance significantly impacts model
performance. Traditional classification algorithms favor the majority class (nor-
mal data), decreasing the ability to detect the minority class (insider threats).

Despite these challenges, organisations increasingly use supervised machine
learning techniques for insider threat detection. These techniques offer several
advantages. Supervised learning can analyse complex patterns in employee be-
haviour, identifying potential insider threats before they escalate. Additionally,
they enable real-time monitoring, allowing organisations to adapt security mea-
sures in dynamic I'T environments. To address these challenges, this chapter aims
to: (i) Evaluate and compare the performance of various supervised learning algo-
rithms within a controlled setting. (ii) analyse the impact of different imbalanced
dataset ratios on supervised learning algorithms.

The chapter is organised as follows: Section {4.1| presents the related work.
Section [4.2|employs the Methodology for detecting insider threats, and Section 4.3
outlines the details of the Experimental settings and results. Following in section
[.4] explains the discussion of the findings, and finally, Section concludes the
chapter.

4.1 Related Work

Recognizing the inherent difficulty posed by authorized users’ access and the chal-
lenge of discerning malicious actions from legitimate ones, insider threat detection
has progressively turned to machine learning to confront the complexities arising
from malicious insiders who misuse their authorized access.

In [I65], this paper contributed by proposing a user-centered approach with

supervised learning algorithms to identify new malicious insiders. The system
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analysed user activity logs and organisational structure to extract relevant fea-
tures and train classifiers. Evaluation using a public dataset demonstrated the
effectiveness of this user-centred approach with high accuracy in detecting novel
insider threats. This research aligned with existing work on insider threat detec-
tion using machine learning, but it emphasized user-centricity and limited data
scenarios.

Haq et al. [I66] proposed a hybrid model combining deep learning (GLoVel.-
STM, Word2vecLSTM) and machine learning (XGBoost, AdaBoost, Random
Forest, KNN, and Logistic Regression). Their study emphasized the importance
of insider threat detection due to the high cost associated with insider attacks
compared to external threats. The research leveraged a dataset from Enron con-
taining emails and financial information for analysis. They employed pre-trained
NLP models (Word2Vec and GLoVe) for word embedding and achieved an accu-
racy of 92% using XGBoost for insider threat detection. The paper also discussed
ethical considerations, data volume, and lack of evaluation frameworks.

Le et al. [167] proposed a user-centered system that leveraged both unsuper-
vised and supervised learning approaches to assist analysts. By learning from
limited data on user behaviour, the system aimed to identify previously unseen
malicious insiders. Supervised learning helped refine detections with higher pre-
cision and lower false alarms. User feedback on alerts further improved perfor-
mance. The system prioritized user-based reporting to manage analyst workload,
considering long-term user behaviour for a comprehensive view.

Yi et al. [I68] proposed an approach that leveraged unsupervised outlier scor-
ing functions to identify anomalies and hidden patterns in user data. These outlier
scores were then used to create new features, aiding in distinguishing malicious
behaviour. This method expanded on previous work by incorporating various
unsupervised outlier detection functions and utilizing XGBoost to handle imbal-
anced datasets, a common challenge in insider threat detection. Additionally,
the approach analysed outlier scores at different data granularities and employed

Principal component analysis (PCA) to prevent model overfitting.

75



Logon csv
Device.csv
File.csv
Email csv
HTTP.csv
LDAP.csv

CERTr4.2
e, PR . ——— = -
T [ R i
U > Data Pre-Processing >

Vo ) v

Feature Extraction

% s
\> Leaming Algorithms
A RF. XG Boost, DT, GNB,
KNN, QDA, AdB, MLP

L3S =
[ 1. Encoded data
Raw D 2. Removing Null 3 Samoti
e values £. Sampung
—_— ‘ Train Data ‘
Insider Threat </ Model Training & 1 L — /,/'] J .
Detection S Evaluation < (:\ ¥,

~N PR, N

‘ Test Data ‘

Fig. 4.1. Insider threat detection framework

4.2 Methodology

The evaluation in this approach encompasses eight supervised ML algorithms
using the balanced CERT r4.2 dataset. Additionally, various hyperparameters
for the KNN, RF, and AdB algorithms within this balanced dataset are explored.
Furthermore, the effectiveness of different supervised ML techniques in handling
imbalanced datasets is assessed. Specifically, these methods are evaluated under
varying degrees of class imbalance, ranging from 40% to 0.5% of insiders. Figure
(4.1 outlines the approach.

The CERT r4.2 dataset comprises several CSV files, including device logs,
logon details, email activity, HI'TP logs, file activity, and LDAP data. Each file
contains raw data for every user, which were combined into a master file. From
this aggregated master file, a feature set was extracted that includes both text
strings and integers. These values need to be properly encoded to be used as input
for our proposed approach. The psychometric.csv file is not selected for features,
and its ID is not included. Firstly, all the CSV files are merged to create a master
CSV file. As the dataset comprises malicious internal attacks, each malicious
event was labeled ”1”, while normal events were assigned a tag of ”0”. Each

row describes a particular event, including the user’s name, role, event 1D, date,
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Table 4.1: List of features and their possible values

Features Values
Day 0-6
Time 1-24
User_Id 1-1000
Role 1-42

Functional unit | 1-6

Department 1-7
pPC Unique number
Activity 1-7

PC ID, type of activity, specific operation details, and attribute details (such as
sender, recipient, and email content). Data cleaning removes inconsistencies like
null values and duplicates in the pre-processing stage, creating a more reliable
master file. This includes imputing missing numerical values using the estimated
mean of the relevant feature.

The selected features from various CSV files contain both string and numerical
values. However, our algorithm can only process numerical values. Therefore, the
input values, such as Day, Time, User_Id, PC, User_Role, User_Functional _Unit,
User_Department, and activity features, need to be encoded properly for accurate
predictions. A feature’s presence is indicated by “1”, while its absence is indicated
by “0”. In terms of data labeling, a user-day is classified as an insider threat if
the user has carried out at least one malicious activity on that day. Each day of
the week is assigned a number from “0” for Monday to “6” for Sunday.

Logon activity is labeled as “1”, and logoff activity is denoted as “2”. Sim-
ilarly, the device connection and disconnection are labeled as “3” and “4”, re-
spectively. Email and file activities are represented by “5” and “6”, respectively.
Finally, HTTP (URL) activity is labeled as “7”. Each user has a specific position
within the organisation. Table [4.1] mentions the feature values of the dataset.
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4.2.1 Handling Imbalanced Datasets

The encoded data is imbalanced, and since it is a large dataset, the downsampling
technique is used to address the imbalanced dataset problem. In downsampling,
the number of samples is reduced by deleting some of them to achieve a balanced
dataset for training the model. The downsampling technique is employed for
various levels of class imbalance, such as 40%, 30%, 20%, 10%, 1%, and 0.5%
of insiders, to assess the effectiveness of different supervised machine learning

techniques in handling imbalanced data using standard evaluation metrics.

4.3 Experiments and Evaluation

This section presents the experimental settings and results. Initially, the balanced
CERT r4.2 dataset was employed to assess the performance of machine learning
algorithms including RF, XGBoost, KNN, GNB, DT, MLP, AdB, and QDA.
Subsequently, the hyperparameters of KNN, DT, and XGBoost were compared to
enhance performance. Finally, the performance of various imbalanced CERT r4.2
datasets with status levels of 0.5%, 1%, 10%, 20%, 30%, and 40% was evaluated.
The experiments were conducted using Python programming language and Sci-kit

learn library. All the experiments were executed on Google Colaboratory.

4.3.1 Experiments on the Balanced Dataset

This experiment compares the performance of several supervised machine learning
algorithms, including RF, XG Boost, KNN, GNB, DT, MLP, AdB, and QDA on
the balanced CERT r 4.2 dataset. The dataset contains 32,770,227 events, includ-
ing 7,323 malicious instances. The performance of these classification algorithms
on pre-processed data is evaluated.

For the experiments, the dataset was split into a training dataset comprising
70% of the data and a test dataset containing the remaining 30%. The training
dataset was used to train the machine learning models, while the test dataset was

employed to evaluate their performance. The balanced dataset was split into a
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Table 4.2: Classifiers and their parameters

Classifier | Parameters

RF n_jobs = -1, n_estimators=100, criterion="gini’,

max_depth=None, random_state=None

XGB n_neighbors=>5, metric=‘minkowski’ ,p=2,

max_depth=3, loss=‘log_loss’, learning_rate=0.1

KNN n_jobs=None, n_neighbors=5,

p=2, metric="minkowski’, algorithm="‘auto’

GNB priors=None, var_smoothing=1e-09

DT max_depth=>50, max_features=None, random _state

=None,max_leaf nodes=None, criterion="‘gini’

MLP random_state=1, max_iter=300, activation="‘relu’,

solver=‘adam’, batch_size=‘auto’

AdB base_estimator=DT, n_estimators=9,

learning rate=1.0, random_state=None

QDA priors=None, reg_param=0.0

70:30 ratio, resulting in a training dataset of 10,252 samples and a test dataset
of 4,394 samples.

Precisions and recalls are equally important in a balanced dataset since both
classes are equally represented. Therefore, in such cases, the F1 score becomes
a valuable metric for evaluating the overall performance of a classifier. A high
F1 score indicates that the model balances precision and recall, meaning it can
accurately identify positive and negative instances. The F'1 score provides a way
to compare the performance of different models when both precision and recall
are essential.

This experiment utilised the following supervised learning classifiers and their
parameters in the balanced CERT r4.2 dataset, as illustrated in Table The

overall performance of the test data was used in this experiment.
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Table 4.3: Classification performance comparison on a balanced dataset

Classifier | Accuracy | Fl-score | Precision | Recall
RF 0.959 0.959 0.9598 | 0.959
XGB 0.9106 0.9103 0.916 0.9106
KNN 0.8393 0.8383 0.848 0.8393
GNB 0.5956 0.5956 0.5956 | 0.5956
DT 0.9506 0.9506 0.9506 | 0.9506
MLP 0.8209 0.8204 0.8245 | 0.8209
AdB 0.9554 0.9554 0.9556 | 0.9554
QDA 0.6475 0.6453 0.6512 | 0.6475

Table presents the results of eight supervised machine learning classifiers
evaluated for insider threat detection on a balanced dataset. The RF classi-
fier achieved the highest accuracy score of 0.959, indicating that it accurately
predicted 95.9% of the data points. The Fl-score, which measures the balance
between precision and recall, is also 0.959 for RF, suggesting high accuracy in
both precision and recall. The precision score of RF is 0.9598, indicating that
when it makes a positive prediction, it is correct 95.98% of the time. The recall
score of RF is 0.959, indicating that it correctly identifies 95.9% of all positive
instances. AdB also performs well, with an accuracy of 0.9554, a similar F'1-score,
and recall. Meanwhile, DT achieved both accuracy and F1-score at 0.9506.

On the other hand, the GNB classifier appears to have performed the worst,
with an accuracy, F1l-score, precision, and recall score of 0.5956. The QDA clas-
sifier also performed relatively poorly, with an accuracy of 0.6475 and a lower
F1-score value of 0.6453, precision, and recall scores compared to other classifiers
in Table[4.3] Overall, Figure. [4.2]shows that RF and AdB are the top-performing,
while KNN, GNB, and QDA had lower performance than the other classifiers on
the CERT r4.2 balanced dataset.
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4.3.2 Hyperparameter Impact Analysis for AdB, KNN,
and DT

This section demonstrates the results of the different hyperparameters for AdB,
KNN, and DT on the balanced CERT r4.2 dataset. This experiment utilised
the balanced dataset containing 10,252 samples for the training dataset and 4394

samples for the test dataset.

4.3.2.1 AdB Model Results

AdB is a boosting ensemble technique that turns several weak classifiers into
robust classifiers. This experiment used various values of the hyperparameter
‘n_estimator’ ranging from 10 to 50 and the base estimator as DT on a balanced
CERT insider threat dataset. The accuracy measures the proportion of correctly
classified instances from the total number of instances in the dataset.

The AdB hyperparameter in Table demonstrates that the performance of
the AdB classifier increases significantly as the number of estimators increases.
AdB 30 achieved the maximum accuracy score of 0.9609. The F1-score measures
the balance between precision and recall by taking the harmonic mean of both.
The Fl-score values for the AdB classifier are consistently high, ranging from
0.9581 to 0.9609 for different values of n_estimator. Figure [4.3| shows that as the
value of n_estimator increases, the Fl-score and precision values decrease. AdB
40 has an F1l-score and recall value of 0.9602.

4.3.2.2 KNN Model Results

This experiment used a balanced CERT insider threat dataset with k n_neighbours
ranging from 1 to 11 and metric="minkowski’, p=2 as the classifier parameters.
Table presents the performance metrics of the KNN classifier on the dataset.
Initially, the accuracy value is 0.8682 while k=1. As the number of neighbors
increased, the accuracy values decreased from 0.8505 to 0.8211.

The F1-score values also decreased from 0.8680 for KNN1 to 0.8196 for KNN11.
The precision values show a similar trend, with KNN1 having the highest preci-
sion value of 0.8713 and KNN11 having the lowest precision value of 0.8322. On
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Table 4.4: Performance comparison with different hyperparameters

Classifier | Accuracy | Fl-score | Precision | Recall

AdB hyperparameters
AdB10 0.9581 0.9581 0.9581 0.9581
AdB20 0.959 0.959 0.9591 0.959
AdB30 0.9609 | 0.9609 0.961 | 0.9609
AdB40 0.9602 0.9602 0.9602 0.9602
AdB50 0.9593 0.9593 0.9593 0.9593

KNN hyperparameters

KNN1 0.8682 | 0.8680 | 0.8713 | 0.8682
KNN3 0.8505 0.8498 0.8566 0.8505
KNNb 0.8391 0.8381 0.8478 0.8391
KNN7 0.8336 0.8324 0.8439 0.8336
KNN9 0.8289 0.8275 0.8399 0.8289
KNN11 0.8211 0.8196 0.8322 0.8211

DT hyperparameters
DT5 0.7745 0.7699 0.798 0.7745
DT10 0.9176 0.9173 0.9235 0.9176
DT20 0.9529 | 0.9529 | 0.9529 | 0.9529
DT30 0.9504 0.9504 0.9504 0.9504
DT40 0.9506 0.9506 0.9506 0.9506
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the other hand, recall values are relatively consistent across all classifiers, with
KNN1 having the highest value of 0.8682 and KNN11 having the lowest value
of 0.8211. As the number of k increases, the accuracy, Fl-score, precision, and
recall decrease. The results in Figure show that the performance decreases
when k=11 with an accuracy of 0.8211, F1-score of 0.8196, and recall of 0.8211.

4.3.2.3 DT Model Results

Table [4.4] provides the performance evaluation of the DT classifier using vari-
ous maximum depths ranging from 5 to 40. The hyperparameters represent the
decision tree’s maximum depth, which determines the model’s level of complexity.

Table reveals that the decision tree with a maximum depth of 20 achieved
the highest Fl-score of 0.9529, indicating good overall performance. In contrast,
the decision tree with a maximum depth of 5 had a significantly lower F1-score
of 0.7699. The F1 scores for the decision trees with maximum depths of 10, 30,
and 40 were all around 0.95, indicating that the performance of these models is

not significantly different
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The models’ accuracy scores, ranging from 0.7745 for DT5 to 0.9529 for DT20
and DT30, indicate they are effective at classifying the data points.

All models have high precision, indicating that they effectively recognize pos-
itive events. As shown in Figure the DT10 model correctly predicted 92.35%
of all occurrences to be positive, with a precision of 0.9235. Regarding recall, all
hyperparameters perform equally well, scoring 0.9504 or 0.9506. DT20 performs

well in accuracy, precision, recall, and F'1 score.

4.3.3 Experiments on Various Imbalanced Datasets

This section examines the effectiveness of various supervised machine learning
approaches for handling imbalanced datasets, which are common in many real-
world scenarios. Table illustrates the levels of data imbalance in the pre-
processed CERT r4.2 dataset, with 30% of the data used for testing and 70% for
training. The extremely unbalanced dataset with only 0.50% positive instances

has 1,025,219 training samples.

Table 4.5: Sample size details of imbalanced datasets

50% | 40% | 30% | 20% | 10% 1% 0.50%
Training data | 10252 | 12814 | 17085 | 25630 | 51261 | 512609 | 1025219
Test data 4394 | 5493 | 7323 | 10985 | 21969 | 219691 | 306932

4.3.3.1 Accuracy for Various Imbalanced data

The accuracy values of different machine learning methods are shown in Table
for different data imbalance levels, from a balanced dataset to highly unbalanced
datasets with only 0.50% of positive samples. Accuracy is a measure of the overall
performance of a classification model, representing the proportion of correctly
classified instances out of the total number of instances in the dataset.

Table [4.6|shows that RF consistently demonstrated high accuracy, with values
ranging from 0.9590 for a balanced dataset to 0.9933 for the imbalanced dataset
of only 0.50% positive samples. XGB and KNN established good accuracy for
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Table 4.6: Accuracy comparison of various algorithms on imbalanced data

Balanced | 40% 30% 20% 10% 1% 0.50%
RF 0.9590 0.9598 | 0.9537 | 0.9496 | 0.9598 | 0.9903 | 0.9933
XGB | 0.9106 0.9359 | 0.8914 | 0.8858 | 0.9188 | 0.9902 | 0.9928
KNN | 0.8393 0.8529 | 0.8655 | 0.8859 | 0.9221 | 0.9874 | 0.9900
GNB | 0.5956 0.6080 | 0.7038 | 0.8002 | 0.9000 | 0.9900 | 0.9928
DT 0.9506 0.9481 | 0.9478 | 0.9445 | 0.9577 | 0.9906 | 0.9934
MLP | 0.8209 0.8358 | 0.8581 | 0.8751 | 0.9210 | 0.9900 | 0.9928
AdB | 0.9554 0.9552 | 0.9504 | 0.9476 | 0.9590 | 0.9906 | 0.9934
QDA | 0.6475 0.6738 | 0.7156 | 0.8025 | 0.8985 | 0.9900 | 0.9928

moderately imbalanced datasets but struggled with highly imbalanced datasets
with only 1% or 0.50% positive samples. GNB and QDA demonstrated poor
accuracy for moderately to highly imbalanced datasets, with values ranging from
0.5956 to 0.8985.

For all levels of data imbalance, DT and AdB showed consistently good accu-
racy, with values ranging from 0.9476 to 0.9577 and 0.9504 to 0.9590, respectively.
Employing moderately imbalanced datasets, MLP demonstrated great accuracy
but struggled with highly imbalanced datasets. Figure illustrates the accu-
racy for the different imbalanced datasets. The findings in the experiment show
that DT, AdB, and RF are suitable for classification tasks using the CERT r4.2

imbalanced datasets.

4.3.3.2 F1l-score for Various Imbalanced data

F1 score combines both precision and recall into a single metric. F1 scores range
from 0 to 1, with 1 signifying perfect precision and recall and 0 signifying poor
precision and recall. A high F1 score implies that the model is performing well
in precision and recall, whereas a low F1 score suggests that the model is not

performing well in either precision or recall.
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Fig. 4.6. Accuracy comparison of various algorithms on imbalanced data

Table 4.7: F1 score comparison of various algorithms on imbalanced data

F1 Balanced | 40% 30% 20% 10% 1% 0.50%
RF 0.9590 0.9507 | 0.9240 | 0.8782 | 0.8040 | 0.3654 | 0.2926
XGB | 0.9103 0.9234 | 0.8031 | 0.6511 | 0.3764 | 0.0521 | 0.0009
KNN | 0.8383 0.8281 | 0.7864 | 0.7221 | 0.6050 | 0.2745 | 0.2279
GNB | 0.5956 0.1872 | 0.0339 | 0.0018 | 0.0000 | 0.0000 | 0.0000
DT 0.9506 0.9349 | 0.9129 | 0.8619 | 0.7843 | 0.3655 | 0.3010
MLP | 0.8204 0.7959 | 0.7627 | 0.6729 | 0.4807 | 0.0135 | 0.0027
AdB | 0.9554 0.9450 | 0.9175 | 0.8694 | 0.7933 | 0.3695 | 0.2934
QDA | 0.6453 0.5203 | 0.2461 | 0.0936 | 0.0355 | 0.0000 | 0.0000
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Table displays the F1 scores for different classifiers at multiple levels of
imbalance, from datasets with a balanced to datasets with just 0.50% of the
minority class. With values ranging from 0.9590 to 0.2926, the RF model has the
highest F1 score across all imbalance levels.DT has F'1 scores that are consistently
high across all levels of imbalance, with the range of 0.9506 to 0.3010 but not as
high as RF. In datasets with only 0.50% of the minority class, DT achieves the
highest F'1 score across all algorithms, while still maintaining consistently high
scores across all levels of imbalance, ranging from 0.9506 to 0.3010, although not
as high as RF

Conversely, the QDA model, with values ranging from 0.6453 to 0, has the
lowest F'1 scores across all imbalance levels. Figure[4.7]shows that the QDA model
cannot perform well in terms of both precision and recall in highly imbalanced
data. Similarly, KNN performs relatively better on imbalanced datasets as the
level of imbalance increases. On the other hand, XGB has an F1 score of 0.9103
on the balanced dataset, but only 0.0009 for the highly imbalanced dataset. This

suggests that as the level of imbalance increases, the F'1 score drops significantly.
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With the lowest F1 scores across all imbalanced levels, GNB is unsuitable
for imbalanced datasets. When the level of imbalance rises, MLP’s F1 scores
decline, showing that it performs poorly on imbalanced datasets. Overall, the
RF classifier was most effective in accurately identifying the samples, whereas
the GNB and QDA classifiers performed the least effectively.

4.3.3.3 Precision for Various Imbalanced data

Precision is a measure used to assess the accuracy of a binary classification algo-
rithm. Out of all the positive examples it detects, precision indicates how well a
classifier can identify true positive cases. Table 4.8 shows the precision values for
each classifier at different levels of class imbalance, ranging from 0.5% to 40% of
the minority class.

The RF and AdB models show the best precision values across all imbalance
ratios, demonstrating that these models are more accurate at identifying true
positives and minimizing false positives. On the other hand, the GNB classifier
has extremely low precision scores, particularly at high degrees of imbalance. The
low precision score indicates that it is ineffective in identifying positive cases; it

either correctly identified all negative cases or failed to identify any positive ones.

At the higher imbalance ratios (40% and 30%), the XGB model also performs
well, with high precision values. Compared to the top-performing models, the
precision values for the KNN and MLP models are considerably lower at 0.2546
and 0.3750, respectively, as shown in Figure §.8. Low precision levels show a lack
of ability to recognize true positives and a propensity to classify negative events

as positive mistakenly.

4.3.3.4 Recall for Various Imbalanced data

The performance of a binary classification model is measured using recall, also
referred to as sensitivity or true positive rate. It measures the proportion of
actual positive samples that the model correctly identifies. A high recall score

indicates that the model can correctly identify most positive cases.
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Table 4.8: Precision comparison of various algorithms on imbalanced data

Precision | Balanced | 40% 30% 20% 10% 1% 0.50%
RF 0.9598 0.9318 | 0.9103 | 0.8494 | 0.7847 | 0.5327 | 0.5958
XGB 0.9160 0.8849 | 0.8810 | 0.8364 | 0.8127 | 0.8676 | 1.0000
KNN 0.8480 0.7775 | 0.7510 | 0.7042 | 0.6135 | 0.3250 | 0.2546
GNB 0.5956 0.5487 | 0.7917 | 1.0000 | 0.0000 | 0.0000 | 0.0000
DT 0.9506 0.9381 | 0.9150 | 0.8576 | 0.7995 | 0.5602 | 0.6181
MLP 0.8245 0.7913 | 0.7654 | 0.7066 | 0.7019 | 0.5172 | 0.3750
AdB 0.9556 0.9288 | 0.9164 | 0.8662 | 0.8006 | 0.5558 | 0.6166
QDA 0.6512 0.6316 | 0.6007 | 0.5685 | 0.3596 | 0.0000 | 0.0000
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Fig. 4.8. Precision comparison of various algorithms on imbalanced data
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Table 4.9: Recall comparison of various algorithms on imbalanced data

recall | Balanced | 40% 30% 20% 10% 1% 0.50%
RF 0.9590 0.9704 | 0.9381 | 0.9090 | 0.8243 | 0.2781 | 0.1939
XGB | 0.9106 0.9654 | 0.7378 | 0.5330 | 0.2449 | 0.0269 | 0.0005
KNN | 0.8393 0.8858 | 0.8252 | 0.7410 | 0.5967 | 0.2376 | 0.2062
GNB | 0.5956 0.1129 | 0.0173 | 0.0009 | 0.0000 | 0.0000 | 0.0000
DT 0.9506 0.9317 | 0.9108 | 0.8662 | 0.7697 | 0.2713 | 0.1989
MLP | 0.8209 0.8006 | 0.7601 | 0.6422 | 0.3655 | 0.0068 | 0.0014
AdB | 0.9554 0.9618 | 0.9185 | 0.8726 | 0.7861 | 0.2767 | 0.1925
QDA | 0.6475 0.4424 | 0.1548 | 0.0510 | 0.0187 | 0.0000 | 0.0000
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Fig. 4.9. Recall comparison of various algorithms on imbalanced data
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The accompanying Table reports recall scores for each model at various
thresholds, ranging from 0.5% to 50%. The RF and AdB models show significant
recall scores across all thresholds, demonstrating their ability to identify a sig-
nificant portion of positive data accurately in Table At a 40% level of class
imbalance, the RF model has a recall score of 0.9704, showing that it correctly
identified 97.04% of all actual positive cases in the dataset.

However, the recall scores for QDA and GNB models are comparatively low,
especially at higher thresholds, and these models may have difficulty appropri-
ately identifying positive samples. Figure[d.9shows that, at a 1% imbalance level,
DT has a recall score of 0.2713, whereas MLP has a recall score of 0.0068. As
the level of class imbalance increases, the recall scores generally decrease for all
supervised models, as it becomes more challenging to recognize the relatively few

positive instances from the vast majority of negative cases.

4.4 Comparison with Existing work

In Table[4.10] a comparison of existing work with the results of the proposed work
is presented using performance evaluation metrics, including accuracy, precision,
True Negative Rate, Area Under Curve, and False Positive Rate. These results are
then compared with those of four established approaches: DNN [169], OCSVM
based on DBN [170], LSTM Autoencoder [7], and User behaviour Analysis [171].
The results demonstrate that supervised learning with a balanced dataset in RF
achieves the highest accuracy and Fl-score of 95.9% compared to the existing
works.

Furthermore, it’s important to note that, to the best of our knowledge, no
existing work has conducted a comprehensive analysis of the impact of hyperpa-
rameters on the performance of AdB, KNN, and DT algorithms. Additionally, no
extensive research currently investigates the effects of imbalanced datasets with
varying class distribution percentages, including 40%, 30%, 20%, 10%, 1%, and

0.5%, on the performance of diverse supervised machine learning algorithms.
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Table 4.10: Comparison with Existing work Abbreviations: S-Supervised, U-

Unsupervised, M-Method, DV-Dataset Version, A-Accuracy, P- Precision, R-
Recall, TNR- True Negative Rate, AUC- Area Under Curve, FPR- False Positive

Rate
F1
Approach DV | A P R TNR | AUC | FPR
score
DNN [I169] 42 |NJA | N/JA | N/A | N/A | N/A | 0.944 | N/A
OCSVM
based on 42 | 8779 | N/JA |81.04 | N/JA | N/A | N/A | 12.18
DBN [170]
LSTM
) 4.2 190.17 | N/A 91.03 | N/A | 90.15 | N/A | 9.84
Autoencoder [7]
User Behaviour
) 4.2 | 87.3 | 84.9 81.7 | 819 | N/A |0.89 | N/A
Analysis [171]
Our Approach 42 1959 | 9598 | 959 | 959 | N/A | N/JA | N/A
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4.5 Summary

This chapter explored the application of supervised machine learning algorithms
for insider threat detection. The study evaluated various CERT r4.2 balanced
dataset algorithms, including KNN, DT, AdB, and others. It investigated the
impact of hyperparameter tuning on the performance of KNN, DT, and AdB.
The results showed significant improvements with adjustments like modifying
the number of neighbors in KNN or the number of estimators in AdB. The chap-
ter then delved into the challenges of imbalanced datasets, which are common in
real-world insider threat scenarios. The performance of the algorithms was eval-
uated on datasets with varying levels of class imbalance, ranging from balanced
to a severe imbalance with only 0.5% insider data. The findings demonstrated
that Random Forest consistently achieved the best overall performance across all
metrics. XG Boost and AdB also performed well, while KNN and MLP struggled
with recall scores. Notably, GNB and QDA exhibited poor performance, sug-
gesting they may not be suitable for highly imbalanced datasets like CERT r4.2.
In conclusion, this chapter highlighted the importance of considering hyperpa-
rameter tuning and class imbalance when applying supervised machine learning
algorithms for insider threat detection. Random Forest emerged as the most ro-
bust performer across balanced and imbalanced datasets, while other algorithms

like KNN and DT exhibited sensitivity to hyperparameter adjustments.
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Chapter 5

Bilateral Insider Threat
Detection: Harnessing
Standalone and Sequential

Activities with Recurrent Neural

Networks

Insider threat refers to the potential danger posed by employees or individuals
within an organisation with access to sensitive information and resources. It is
a severe concern for organisations of all sizes and sectors. Insider threats can be
intentional or unintentional and may result in data breaches, theft of intellectual
property, and damage to an organisation’s reputation [I72, 173]. The complexity
of insider threat lies in the fact that those with authorized access can cause sig-
nificant security risks. Insider threat is one of the most sophisticated information
security threats, and organisations must establish a process for tracking unusual
behaviour or potential incidents [10, 126, 174 [175].

analysing user device and application operation logs has emerged as a promi-

nent method in recent research to detect internal threats. This approach is cur-
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rently considered the primary method for uncovering potential insider threats
[176]. analysing user behaviour patterns allows for detecting deviations that may
indicate malicious intent or policy violations. By comparing current behaviour to
established normal patterns, it becomes possible to identify and address potential
internal threats [I73]. Similarly, a supervised machine-learning-based approach
was presented in Chapter [4f However, the supervised learning approach has a
drawback. The approach used manual or standalone activities only to detect the
insider threat detection. To eliminate the issues, this chapter aims to: propose
a novel approach named Bilateral Insider Threat Detection for standalone and
sequential activities.

The primary aims of this chapter can be outlined as follows:

A bilateral insider threat detection framework was proposed. It combines
both standalone activities and sequential activities to enhance the perfor-

mance of insider threat detection.

e A feature extraction method based on RNNs and LSTM was developed to

extract the sequential features of the data.

e Experiments were conducted on the CERT r4.2 dataset to compare the
performance of bilateral features using different classifiers, including KNN,
MLP, LR, and SVM classifiers. Additionally, the performance of RNN and
LSTM feature extractors was compared using the same classifiers, namely
KNN, MLP, LR, and SVM.

e Comparing the performance of the proposed bilateral framework against

previous insider threat detection methods.

This chapter is organised as follows: Section |5.1] delves into the related work.
Section 5.2 applies the methodology to detect insider threats, and section [5.3
delineates the implementation process. In Section [5.4] the experiments are elab-

orated upon, and subsequently, Section draws the chapter to a summary.
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5.1 Related Work

Many ideas have been explored, and researchers have proposed numerous tech-
niques to address insider threats [141] 177, (178 [179].

In [I80], they have proposed a trust-aware, unsupervised learning approach
for Insider Threat Detection. The approach focused on extracting relevant fea-
tures from system logs and utilizing unsupervised learning algorithms to identify
potential insider threats. Additionally, a trust score is assigned to each user based
on their anomaly score, taking into account their psychometric score. The study
also explored the impact of different system log structures on the effectiveness of
the approach.

The paper [I81] serves as a tutorial that explains the fundamental concepts
of LSTMs and RNNs. It describes the derivation of the conventional RNN for-
mulation from differential equations and discusses the challenges encountered in
training conventional RNNs. The article also presents the equations related to
the LSTM system and explores ways to further improve it, highlighting new op-
portunities in the field.

Meng et al. [I82] presented a comprehensive framework using LSTM-RNNs
for insider threat detection based on attribute classification. The method outper-
formed KNN, IF, SVM, and PCA-based techniques on the CERT insider threat
dataset v6.2. Optimized hyperparameters improve detection rates and reduce
false alarm rates.

The authors proposed a multilayer framework for insider threat detection
that combines misuse and anomaly detection methods [I76]. The framework is
evaluated using performance metrics and computation time to effectively detect
both known and unknown insider threats.

This paper [I83] proposed a novel approach for insider threat detection that
leveraged the power of deep learning. The system utilized an ensemble of stacked
LSTM and Gated Recurrent Unit (GRU) models with attention mechanisms.
These models were trained on user activity sequences and categorized into 282
distinct actions for improved detection performance. To capture the intricacies of
user behaviour, the approach employed stacked ensemble models for feature ex-

traction, resulting in a richer representation. Furthermore, the system addressed
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the challenge of data imbalance by introducing an equally weighted random sam-
pling technique, ensuring that both normal and malicious activities contributed
equally to the training process.

Building upon these prior works, this chapter proposes a novel bilateral ap-
proach that combines standalone and sequential features. This combined model
leverages the strengths of both architectures for improved feature extraction and

detection of insider threats using user activity data.

5.2 Methodology

In this section, we recognize that user behaviours can change over time, with
a malicious user often appearing harmless on most days and only showing ab-
normal behaviour occasionally. As a result, we adopt the standard practice of
analyzing user behaviours on a user-day. This section presents a comprehensive
demonstration of the complete workflow of the proposed bilateral insider threat
detection framework, which aims to detect insider threats.

In Section [5.3 we will delve into the detailed extraction of standalone and
sequential activity features, providing a thorough exploration of the methodol-
ogy. Malicious users exhibit distinct behavioural patterns compared to benign
users, which are reflected in their daily activities, such as login frequency, email
contacts, files and removable devices. To detect insider threats effectively, we
extract standalone activity features from user behavioural log files. The detailed
method for extracting these behavioural features is provided in Subsection [5.3.2]

Domain knowledge guides the selection of features for standalone activities on
a per user-day basis. The standalone feature matrix, denoted as X,,, is extracted
from the daily behaviours of isolated user-days, as depicted in Figure [5.1} This
matrix is derived from the daily behaviours of isolated user-days, where X,, €
R™*4m  Here, m represents the total number of user-days and d,, represents the
dimension of the manual features extracted from standalone activities. For each

(m) <

i

individual user-day, the extracted feature vector can be represented as x
R where i € {1,2,...,n}
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To handle sequential activities, deep learning models that specialized in pro-
cessing sequences are designed to extract relevant features through a supervised
training procedure. After training, the output for all user-days is used as the
feature matrix for sequential activities. Since those features are generated from
the daily activity sequence, we denote them as Hj, where H, € R™ % with n
representing the total number of user-days, and d; denoting the dimension of se-
quential features. For each user-day, the sequential feature vector can be denoted

as xz(»s) € R%, where i € {1,2,...,n}.
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Fig. 5.1. Proposed Framework

The features extracted from the standalone and sequential methods are con-

catenated to form the final behavioural feature matrix, as illustrated in equation

0.2
X = concatenate(X,,, H) (5.2)

where, the final user-day feature matrix for insider threat detection is denoted as

X € R*(dmtds) ywhere the dimension of the final feature is equal to d,, + ds.
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5.3 Implementation

5.3.1 Dataset and Pre-processing

In this chapter, we use the CERT r4.2 dataset. Due to the severe class imbal-
ance in the original dataset, we opted to create a smaller, balanced dataset by
downsampling the normal users [13]. The resulting dataset was then divided
into a training set comprising 70% of the data and a testing set comprising the

remaining 30%.

5.3.2 Feature Extraction

To provide a practical example of the proposed solution, we applied it to the
CERT r4.2 dataset for insider threat research [I84]. This dataset is synthetic,
which helps address privacy concerns. We created a balanced sample dataset
using the down-sampling technique. This section provides detailed information on
the construction of the feature engineering and the execution of the classification
task.

5.3.2.1 Manual Features

This paper utilizes two activity files, device.csv, and logon.csv, to extract five
behavioural features from users’ daily routines. Regarding data labeling, if a user
engages in at least one malicious activity on a particular user-day, that user-day
is labeled as an insider threat incident. The behavioural features are represented
as F1, F2, F3, F4, and F5. For each user-day sample, the following are the five

standalone behavioural features listed:

e F'1 represents the feature ”First logon time,” which is extracted from the
logon.csv file by mapping the timestamp of the initial login activity to the

range of [0, 1] based on a 24-hour basis.

e F2 corresponds to the feature ” Last logoff time,” derived from the logon.csv
file by mapping the timestamp of the final logoff activity to the range of [0,

1] on a 24-hour basis.
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e The third behavioural feature, denoted as "F3” or ”First device activity
time,” is obtained from the device.csv file. It involves mapping the times-
tamp of the initial device activity (connect or disconnect) to a range of [0,

1], considering a 24-hour basis.

e The fourth behavioural feature, "F4” or ”Last device activity time,” is
derived from the device.csv file. It entails mapping the timestamp of the
final device activity (connect or disconnect) to a range of [0, 1], considering

a 24-hour basis.

e The fifth behavioural feature, denoted as "F5” or "Number of off-hour de-
vice activities,” is obtained from the device.csv file. It involves counting
the occurrences of device activities (connect or disconnect) that transpire

during off-hour time. Off-hour time is defined as the period between 18:00
PM and 8:00 AM.

In manual feature engineering, the selection of potential indicators heavily

relies on domain knowledge.

5.3.2.2 Sequential Features

To automate the feature engineering process, the first step is to encode the daily
activities by assigning each activity a specific numerical representation or code.
Once encoded, the activities are arranged into a sequence according to their time
of occurrence. This sequential representation preserves the temporal order of the
activities, facilitating subsequent analysis and modeling. The approach described
in the referenced paper [58] was followed to perform the activities encoding.

We analysed activity logs contained in files such as file.csv, logon.csv, de-
vice.csv, and email.csv. Each activity was assigned a specific code based on
predefined rules, provided in detail in Table for reference. Our study encom-
passed 12 distinct activity types, and to enhance granularity, we further catego-
rized them based on whether they occurred during working or off hours, resulting
in 24 activity types. Each activity type was assigned a unique numerical identifier

ranging from 1 to 24.
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Table 5.1: Sequential activities Encoding

Nature of the activity Code for on-duty hours | Code for non-working hours
Logon a pc 1 13
Logoff a pc 2 14
Connect a usb drive 3 15
Disconnect a usb drive 4 16
Open a .doc file 5 17
Open a .exe file 6 18
Open a .jpg file 7 19
Open a .pdf file 8 20
Open a .text file 9 21
Open a .zip file 10 22
Send an email to internal address 11 23
Send an email to external address 12 24

Our sample dataset identified the longest daily activity sequence consisting of
74 activities. Consequently, we selected a sequence length of 74 when training the
sequential feature extraction model for feature engineering. The output of this
model is a two-dimensional representation, which will serve as the new feature

for the sequence of activities.

5.4 Experiments

To evaluate the performance of the proposed bilateral framework, we performed
comparative experiments in Section between the bilateral framework and
the standalone activities, and in Section [5.4.2] we compared feature extraction
power between RNN and LSTM model. A brief analysis of our work and previous
similar work is presented in Section [5.4.3]

All experiments are conducted using the Python programming language. The
scikit-learn library was used to implement the binary classifiers. Default parame-
ter settings are adopted for SVM, LR, KNN, and MLP classifiers unless specified
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Table 5.2: Performance improvements with bilateral features across classifiers

Classifier | Features Acc |Pre |Rec |F1 AAcc|APre| ARec|AF1
Manual 87.59(84.32190.30|87.21

KNN 3.15 4.21 1.87 | 3.10
Manual4+RnnSeq | 90.73 | 88.53 192.16 | 90.31
Manual 89.51(85.14 194.03 | 89.36

MLP 297 | 5.19 | 0.00 | 2.78
Manual4+RnnSeq | 92.48 | 90.32 [ 94.03 | 92.14
Manual 90.03|86.51 [93.28 | 89.77

LR 297 | 480 | 0.75 | 2.88
Manual4+RnnSeq | 93.01|91.30 |94.03 | 92.65
Manual 90.21{86.55193.66 | 89.96

SVM 2.10 | 3.16 | 0.75 | 2.04

Manual4+RnnSeq | 92.31|89.72 94.40 | 92.00

otherwise [16], T85] [186].

5.4.1 Comparison between standalone activities and bi-
lateral for different classifiers

To verify the impact of sequential features in our bilateral insider threat detec-
tion, we conducted binary classification using four popular classifiers: kNN, MLP,
SVM, and LR. By comparing the performance of these classifiers when utilizing
manual features versus incorporating sequential features extracted from a plain
RNN model, our aim was to assess the improvement achieved by incorporating
daily activity sequence in the domain of bilateral insider threat detection, consid-
ering its classifier-independent nature [I87]. The comparison results between bi-
lateral features and the standalone or manual features in detecting insider threats
are presented in Table [5.2]

Table presents the performance comparison of different classifiers using
various sets of features, including Accuracy (Acc), Precision (Pre), Recall (Rec),
and Fl-score (F1). The table highlights the effectiveness of these approaches
in detecting insider threats. Additionally, it showcases the differences (A) in

these metrics between using manual features and incorporating the features ex-
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Fig. 5.2. ROC comparison between manual feature and bilateral feature for dif-

ferent classifiers
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tracted from daily activity sequences using a simple RNN model (referred to as
”RnnSeq”).

The results demonstrate a significant improvement in performance for each
tested classifier when incorporating the Manual+RNNseq features together com-
pared to using manual features alone. The comparison results reveal significant
improvements in precision and accuracy when incorporating the Manual4+RnnSeq
features for all tested classifiers. Specifically, precision has increased by 4.21% |,
5.19%, 4.80%, and 3.16% for KNN, MLP, LR and SVM, respectively. Similarly,
accuracy has increased by 3.15% , 2.97% , 2.97% , and 2.10%, respectively, for
KNN, MLP, LR and SVM.

The F1 score, a widely used metric in classification tasks, offers a balanced
evaluation of a classifier’s performance, taking into account both precision and re-
call. By combining these measures into a single value, it enables a comprehensive
assessment of the classifier’s effectiveness.

Adding RnnSeq features into the classifiers’ feature sets leads to a significant
improvement in the F1 score. Specifically, when combining Manual+RnnSeq fea-
tures, the KNN classifier demonstrates a 3.10% increase in F1 score compared
to using Manual features alone. Similarly, the MLP classifier shows a 2.78% in-
crease, the LR classifier exhibits a 2.88% increase, and the SVM classifier achieves
a 2.04% increase in F1 score. These findings indicate that incorporating RnnSeq
features enhances the classifiers’ performance, as evident from the higher accu-
racy, precision, recall, and F1 score achieved when compared to using manual
features alone.

Figure presents the receiver operating characteristic (ROC) curves for
all classifiers. The results demonstrate that combining manual features with
RNN sequential features (Manual features+RNN seq) outperforms using manual
features alone. The area under the ROC curve (AUC) values, which represent
the classifiers’ overall discriminative power, are provided in Figure [5.2]

For instance, in the case of KNN, incorporating Manual features+RNN se-
quential features leads to an improvement in the AUC from 0.916 to 0.940. Sim-
ilarly, for SVM, the AUC increases from 0.914 to 0.966. These results highlight

the effectiveness of integrating RNN sequential features with manual features, as
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demonstrated by the improved discriminative performance reflected in the ROC

curves and AUC values.

5.4.2 Comparison between RNN and LSTM features ex-
tractor

In the previous section, we could observe the performance improvement by im-
plementing a simple sequence data-oriented model, which naturally leads to fur-
ther exploration for better performance with the sophisticated model. We thus
compare the LSTM and RNN model’s sequential feature extraction power, as
presented in the table [5.3]

The table illustrates the accuracy differences between the RNN and LSTM
feature extractors for different classifiers. Specifically, the KNN classifier’s ac-
curacy improved by 4.37% when utilizing the LSTM feature extractor compared
to the RNN feature extractor. Similarly, MLP, LR, and SVM have increased
by 2.97%, 2.97%, and 3.32%, respectively. According to precision, the KNN
classifier exhibited a 6.92% improvement when utilizing the LSTM feature ex-
tractor instead of the RNN feature extractor. Similarly, the LR classifier showed
a precision improvement of 5.63% with the LSTM feature extractor. The SVM
classifier demonstrated an increase of 6.13% in precision, and the MLP classifier
also experienced a 6.13% increase in precision.

Figure [5.3| illustrates the F1l-score performance. Comparing the KNN clas-
sifier, there was a 4.43% improvement in the Fl-score when using the LSTM
feature extractor instead of the RNN feature extractor. For the LR classifier, the
Fl-score showed a 3.01% improvement with the LSTM feature extractor. The
SVM classifier exhibited a 3.31% increase in the Fl-score, and the MLP classifier
demonstrated a 2.99% increase when utilizing the LSTM feature extractor. These
results indicate the effectiveness of the LSTM feature extractor in enhancing the

F1-score performance across different classifiers.
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Table 5.3: Performance comparison between RNN and LSTM feature extractors

Classifier | Feature Extractor| Acc | Pre | Rec | F1 |AAcc|APre|ARec|AF1
RNN 90.73188.53192.1690.31

KNN 4.37 | 6.92 | 1.87 |4.43
LSTM 95.10]95.45(94.03|94.74
RNN 92.48190.32194.03192.14

MLP 2.97 | 5.17 | 0.75 | 2.99
LSTM 95.45195.49194.78195.13
RNN 93.01]91.30]94.03|92.65

LR 2.97 | 5.63 | 0.37 | 3.01
LSTM 95.98196.93194.40|95.65
RNN 92.31189.72194.40192.00

SVM 3.32 | 6.13 | 0.37 | 3.31
LSTM 95.63195.85[94.78|95.31

6%
—8— AF1 score I RNN

B LST™M

95.13%

92.65% 3%

F1l score
AF1 score

0%
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Classifiers

Fig. 5.3. Fl-score comparison between RNN and LSTM

5.4.3 Comparison with previous similar work

In insider threat detection research, a challenge arises when comparing previous
works fairly. This is mainly due to the complexity of user behaviours and the
absence of widely recognized problem settings.

As presented in Table [5.4] we provide a comparison with the most relevant
work regarding problem setting. Both studies use a supervised training approach

to detect insider users on a user-day basis. Although other classifiers were tested
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Table 5.4: Comparison with previous similar work

Classifier | Paper Feature status |Acc |Pre |Rec |F1
Previous work
bi-channel 91.26 | 88.9392.91 | 90.88
(Wei, H. et al.)
LR
Manual4+RnnSeq |93.01[91.30(94.03|92.65
Our work
Manual+LstmSeq | 95.98|96.93 |94.40 | 95.65
Previous work
bi-channel 91.61]89.01|93.66 |91.27
(Wei, H. et al.)
SVM

Manual4+RnnSeq |92.31(89.72(94.40|92.00
Manual+LstmSeq | 95.63|95.85|94.78 | 95.31

Our work

in each work, we specifically compared the performance of LR and SVM as the
final detection stage classifiers.

In the work conducted by Wei et al., they employ a more complex feature
extraction method based on graph neural networks (GNN). However, considering
the complexity of graph construction and the GNN model, the performance gain
from their approach appears to be overshadowed. As shown in the table, even
with our inferior feature extractor (RNN), our work performs better than the
comparative study.

It is worth mentioning that Wei et al. improved without introducing new user
activity information, attributing it to discovering hidden connections within an
organisation. In contrast, our work adopts a comprehensive feature engineering
process that leverages the characteristics of daily activity sequences. Therefore,

we consider our approach more practical and focused on detection performance.

5.5 Summary

This chapter proposed a bilateral insider threat detection approach that incor-
porates both standalone and sequential activities to enhance the performance of

insider threat detection. Experimental results on the open-accessed CERT 4.2
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dataset demonstrate that our Bilateral approach outperforms algorithms that
rely solely on features extracted from standalone activities. The experiments also
show that combining manual and sequential features improves the overall perfor-
mance compared to using manual features alone. Furthermore, when comparing
the performance of the RNN and LSTM feature extractors, it is observed that
LSTM achieves better results than RNN. However, it is important to acknowl-
edge the limitations of the study, which can be addressed in future research. One
such limitation is the imbalanced learning challenge in detecting insider threats,
as real-world scenarios often have a higher proportion of benign user-days. To
address this, a balanced dataset was created by randomly downsampling the ma-

jority class for the experimental evaluation.
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Chapter 6

Optimising Insider Threat
Prediction: Exploring BiLSTM
Networks and Sequential

Features

The evolving threat landscape of cybersecurity demands a paradigm shift. As
technology advances and malicious actors become more sophisticated, insider
threats are poised to become even more complex and challenging to detect. A
recent report from the Ponemon Institute underscores this critical need. Accord-
ing to their 2023 Cost of Insider Risks Global Report, the total average cost
of insider threat incidents skyrocketed by 95% between 2018 and 2023. These
figures highlight a troubling trend and emphasize the growing financial burden
of insider threats on organisations. In previous chapters [5] [] discussed insider
threat detection under various features and imbalanced dataset ratios. However,
relying on techniques that primarily focus on detecting threats after they occur
may result in delays in corrections, particularly for large or critical organisations,
posing significant risks.

In the past few years, various approaches and techniques have been suggested
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to identify and address insider threats. In [55 50, 57, [188], machine learning-
based insider threat detection techniques have been proposed to identify insider
threats. Similarly, [58] 59, 60] proposed user behaviour-based insider threat de-
tection techniques. Generally, most academic researchers have primarily con-
centrated on finding and identifying threats that have already occurred. They
usually start by examining the recorded actions of users, extracting important
information, and then using a detection model to differentiate between harm-
ful actions and those that are normal. Therefore, a proactive approach should
be advocated, emphasising prevention over mere detection. To overcome the
drawbacks, this chapter objective is to propose a nowvel, standalone, sequential
approach to insider threat prediction based on users’ daily activities. To ensure
accurate threat prediction, include the day’s ground truth (whether there was
malicious activity or not) as a feature in our model. This approach leverages a
BiLSTM architecture to analyse a user’s behavioural patterns in the days leading
up to a specific day, allowing us to predict potential malicious behaviour on that
particular day.

The main objectives of this chapter can be summarized as follows:

e Introduce a comprehensive framework for insider threat prediction that
leverages user activity features, including the ground truth of each day.
This framework addresses the challenge of accurately identifying potential
insider threats by considering both standalone and sequential user activity

data from previous days.

e Conduct a systematic evaluation to assess the impact of integrating stan-
dalone features Xm, sequential features Xs, and the ground truth for a
specific day Xg on insider threat prediction accuracy. This comprehen-
sive assessment involves a comparative analysis of the performance of three
distinct models: RNN, LSTM, and Bi-LSTM on Xm||Xs|| Xg.

e Investigate the impact of varying predictive lengths on Bi-LSTM’s ability to
predict threats. Our goal is to identify the optimal length that maximises
Bi-LSTM’s efficiency in threat prediction. It is achieved by comparing its
performance with other models (KNN, LR, AdB, GNB) across different
predictive lengths.
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e Additionally, explore the impact of various embedding sizes (16, 32, 64, and
128) on a BiLSTM architecture with a fixed sequence predictive length (e.g.,
5). All models are evaluated using the combined feature set Xm|| X s||Xg).

The chapter is structured as follows: Section discusses related work on
prediction-based insider threats. Following that, Section outlines the method-
ology employed in this study. The implementation and discussion of the proposed
methodology are detailed in Section [6.3] Section showcases the experimental
results on insider threat prediction, and the chapter concludes with a summary
in Section [6.5l

6.1 Related Work

Insider threat prediction has garnered significant attention recently as organisa-
tions strive to safeguard sensitive information from malicious activities within
their ranks. In this context, numerous studies have delved into various aspects
of insider threat detection, employing multiple methodologies and techniques to
address the unique challenges posed by individuals with legitimate access to an
organisation’s systems and information. This section provides an overview of pre-
vious studies on bilateral insider threat detection, highlighting both conventional
approaches and some previous methods for insider threat prediction.
Manoharan et al. [61] introduced a novel framework for insider threat de-
tection called a ”bilateral” approach. This framework combined standalone and
sequential activities using RNNs to improve insider threat detection by leverag-
ing insights from user behaviours. It extracted behavioural traits from log files
representing standalone activities and utilised RNN models to capture features
of sequential activities. Features from both methods were then concatenated to
form a final behavioural feature matrix, allowing for a comprehensive analysis
for improved security measures. Experiments on the CERT 4.2 dataset demon-
strated the effectiveness of this bilateral approach in detecting insider threats. It
outperformed traditional methods that focused solely on standalone or sequential

activities.
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The proposed approach in [I89] focuses on developing an Insider Threat Pre-
diction Model that combines user taxonomy, psychological profiling, real-time
usage data analysis, and decision algorithms to identify potentially dangerous
users within an organisation. The model collects user characteristics and usage
information from the IT components of the system to assess the risk level posed
by each user. By categorizing users based on system roles (Novice, Advanced,
Administrator) and analysing their behaviour patterns, stress levels, and predis-
position to malicious actions, the model aims to predict insider threats effectively.

The paper [190] introduces a novel problem setting in insider threat research,
shifting the focus from detecting threats to predicting them based on historical
behaviour. By analysing user behaviour in the days leading up to a specific day,
the goal is to forecast potential malicious activities in advance. The study uti-
lized the CERT 4.2 dataset and tested various machine learning and deep learning
models, finding that deep learning models did not consistently outperform ma-
chine learning models for this task.

Wei et al. [191] propose a proactive insider threat detection method using
unsupervised anomaly detection. Unlike traditional methods that identify threats
after they occur, this approach focuses on predicting potential insider threats by
analysing user activity data. The system identifies deviations from normal user
behaviour through a cascaded autoencoder model, flagging anomalies for further
investigation.

Our comprehensive literature review reveals a critical gap in research concern-
ing BiLSTM models for insider threat prediction. Specifically, no prior studies
have investigated BiLSTM models that leverage a combination of manual fea-
tures, sequential features, and ground truth labels for daily activity in insider

threat prediction.

6.2 Methodology

This section details the methodology employed in our study. We begin by for-
mally defining the problem setting in subsection and introducing the overall
framework in subsection utilised for our insider threat prediction analysis.
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Subsequently, we delve into the process of sequential feature embedding based
on the BiLSTM subsection in |6.2.3] Finally, we discussed the various learning

algorithms employed in this chapter are mentioned in Chapter [3]

6.2.1 Problem Setting

Traditionally, insider threat research has focused on identifying potential threats
by analysing past user behaviour. This involves meticulously examining the char-
acteristics of activities associated with specific users [10, 61]. For instance, be-
cause employees typically follow workload patterns aligned with the calendar day,
researchers define the insider threat detection task as identifying days where a
user might exhibit malicious behaviour. Researchers scrutinise these past be-
haviours to uncover patterns that might indicate malicious intent. Such analysis
contributes to a comprehensive understanding of potential insider threats within
organisations.

For example, the detection system might classify such activity as potentially
malicious if a user’s login duration is significantly longer than in previous days.
An additional instance occurs when a user accesses a website significantly differ-
ent from those frequented by colleagues; in such cases, the detection system may
likewise flag it as a potential insider threat. As these detection tasks hinge on
actions that have already occurred, their implementation is relatively straightfor-
ward but offers limited practical significance.

Our initial research explores a new approach that suggests a strong correlation
between a user’s recent behavioural patterns and the possibility of malicious

activity on a specific day. This hypothesis is based on two key observations:

1. Specific previous user actions can serve as warning signs for potential mali-
cious activities in the present day. For instance, consider a scenario where
employees are subjected to continuous overtime demands or workplace hos-
tility. Such stress could manifest as retaliatory actions that the system
might flag as malicious. Similarly, if abnormal access attempts compromise
the system’s security in the previous days, the risk of further misuse on the

current day becomes significantly increased.
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2. Some past activities involve laying the groundwork for malicious actions
in the present. Hackers often face difficulties in directly stealing sensitive
data. To overcome this, they may conduct reconnaissance to access accounts
with high privileges beforehand. However, these seemingly innocuous activ-
ities, such as meticulously mapping the network, identifying vulnerabilities,
and creating a hidden access point (backdoor), wouldn’t necessarily trigger
alarms alone. By analysing a user’s past behaviour for these patterns, our

system can predict an increased risk of a future attack.

Therefore, our proposed approach can predict malicious intent by analysing a
user’s behavioural patterns over the past few days. This analysis includes login
times, device usage patterns, and deviations from normal behaviour.

Since many organisational employees follow routine work patterns, and the
risk of malicious activity can vary daily, we utilise a "user-day” approach similar
to the one presented in [10, [61]. Our system then aims to predict the likelihood
of a specific user engaging in malicious activity on a particular day by analysing

their daily activity logs for the past few days.

6.2.2 Framework

In Figure[6.1], the illustrated framework outlines the user-day based insider threat
prediction approach. Initially, behavioural logs were categorised based on various
activities, including device, logon, file, etc. However, our new approach shifts the
organisation of behavioural logs, emphasising the day for improved threat predic-
tion. This modification entails forecasting whether a user could partake in ma-
licious activities on a particular day, emphasising the pivotal role of behavioural
logs in this predictive process. By analysing user behaviour daily, the framework
offers a proactive approach to identifying and mitigating insider threats before
they materialise.

In the initial stage of our proposed method, we begin by pre-processing the
entire dataset. The comprehensive dataset, including all activities, was restruc-
tured during this crucial phase. Specifically, all user activities are systematically

reorganised into daily activity logs for each user-day. After pre-processing, we
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Fig. 6.1. Prediction Framework

extract the manual features Xm, sequential features Xs, and ground truth of the
day Xg.

We retrieve activity features from log files that record user behaviour, and the
detailed procedure for extracting these behavioural features is outlined in Section
0.0l

The standalone feature matrix, denoted as Xm, is derived from the daily
behaviours of individual user-days, where each row corresponds to one user-day,
and the columns signify various manual features extracted from standalone ac-
tivities. The dimensions of X'm are ¢ X d,,,, with ¢ representing the total number
of user-days and d,, indicating the dimension of the manual features obtained
from standalone activities. Each row Xm¢ captures the manual feature values
for a specific user-day, forming a sequence Xm¢ 1 Xme 2 . . Xm¢ This
sequence delineates the temporal evolution of manual features leading up to and
including the target day t¢.

We use all user-days to obtain a sequential feature matrix from the activities
within the daily sequence. Since these features are derived from this sequence,

we label them as X's. The matrix X's has dimensions ¢ x dg, where ¢ signifies
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the total number of user-days, and dg represents the dimension of the sequential
features. Similar to the manual features, each row Xs¢ signifies the sequential
feature values for a specific user-day, forming a sequence Xs¢~ 1 Xge=t+2
X s¢ that illustrates the temporal evolution of sequential features.

X g encompasses the ground truth corresponding to a user-day. This feature
sequence, represented as X g°, spans the total number of days denoted by c. For
a given user-day labeled with ¢, the associated ground truth values progress from
Xge 1t Xget*2 . X¢° Here, i is an index representing the temporal distance
from the user-day labelled ¢, taking values from ¢ to 0. Consequently, X ¢“~* refers
to the ground truth value for the specific day ¢ units in the past relative to the
target user-day. Each element in this sequence, X ¢, where i ranges from ¢ to
0, signifies the actual outcome for the respective day, forming an essential basis
for evaluating and training predictive models.

Upon acquiring the reconstructed sequential features X's, they are fed into the
BiLSTM model. The output of the BiLSTM model is represented as Xs_emb.
This will be explained in Section [6.2.3

After receiving the reconstructed data, all the features extracted from stan-
dalone activities, sequential activities, and ground truth of the day approaches
are joined to construct the ultimate behavioural feature matrix X as in equation
0. 11

X = concatenate(Xm, Xs_emb, Xg) (6.1)

Ultimately, a binary classifier serves as the insider threat detector, and the

predicted values of the detector are determined by equation [6.2

Y = f.(X,0,) (6.2)

The equation [6.2] represents the predicted outcomes, indicating whether a
user-day is malicious. The equation Y represents the predicted labels, f. denotes
the mapping function of the selected classifier, and ©,. corresponds to the train-
able parameters of the classifier. Optimisation of these parameters, O., can be
achieved on the training set by comparing the predicted results Y with the actual

labels Y and minimising the loss function.
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6.2.3 Sequential Feature Embedding based on BiLSTM

BiLSTMs facilitate understanding sequential data X s by analysing sequences, like
user actions, based on their activities. However, preparing the sequential data
X s for BiLSTMs requires careful consideration. Traditionally, one-hot encoding
has been the go-to method. This method transforms each unique activity in
the sequence into a high-dimensional binary vector. We also performed one-hot
encoding for the 24 activity types listed in Table before feeding them into the
BiLLSTM.

One-hot encoding treats all activities as completely isolated entities, failing
to capture any inherent relationships between them. It assigns a unique binary
vector to each activity in Xs. The vector’s dimensionality matches the total
number of activities. In this vector, only one element is set to 1 (representing
the active element), while all others are 0. As the number of unique activities
increases, the one-hot encoded vectors become very high-dimensional, which can
lead to overfitting.

To overcome these drawbacks, the embedding layer emerges as a powerful tool.
The embedding layer aims to transform the one-hot encoded vectors into denser,
lower-dimensional representations called embeddings. This layer acts as a trans-
lator between one-hot encoded vectors and a more meaningful representation,
converting the activity vectors into embeddings.

These embeddings hold the key to unlocking the hidden relationships between
activities. Unlike one-hot encoding, which indicates presence or absence, embed-
dings encode the semantic meaning of an activity and its connection to others in
the sequence. With these embeddings, the BiLSTM can more effectively grasp
the context and relationships within the sequence. This deeper understanding
improves performance, allowing the BiILSTM to learn more effectively and gener-
alise its knowledge to unseen data. The embedding layer bridges the gap between
one-hot encoding’s simplicity and the BiLSTM’s need for meaningful represen-
tations, paving the way for a more robust and insightful analysis of sequential
data.

After processing the sequential data Xs through the embedding layer, the
BiLSTM takes over. The BiLSTM'’s output, representing the learned contextual
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features of the sequence, is then denoted as X s_emb.

6.3 Implementation

To implement the proposed BiLSTM-based insider threat prediction system,
we leverage the open-source CERT r4.2 dataset. This section details the pre-
processing steps, which involve preparing the data for the BiLSTM model. We
extract manual features Xm, sequential features Xs, and ground truth of the
day Xg.

6.3.1 Datasets and Data Pre-processing

In this research, we conducted all experiments on the CERT r4.2 dataset, which is
recognised as the most comprehensive dataset H All the descriptions on the CERT
r4.2 dataset are described in Chapter 3. Due to the class imbalance in the original
dataset (70 insider threat instances out of 1000 users), we performed additional
downsampling on a balanced dataset. This involved pairing each malicious user-
day with a benign counterpart, resulting in a downsampled dataset with a size of
1908. The resulting dataset was divided into a 70% training set and a 30% testing
set for model evaluation. The paper [61] proposed a standalone and sequential-
based insider threat detection method for daily user activity. This chapter adopts

the same methodology to extract the daily activities of the user.

6.3.2 Manual Features

This section describes the process of extracting manual features from the CERT
r4.2 dataset. We leverage two activity files, device.csv and logon.csv, to derive
five features that capture different aspects of users’ daily routines. These features
are specifically chosen to capture behaviours and patterns in users’ daily routines

that might indicate potential insider threats within an organisation. In data

Thttps://kilthub.cmu.edu/articles/dataset /Insider_Threat_Test_Dataset/12841247/1

120



Table 6.1: Description of Manual Features

Manual Features Description Content
) ) In logon.csv, map initial login
ml First logon time
timestamp to [0, 1] within 24h.
) In logon.csv, map the final logoff
m2 Last logoff time
timestamp to [0, 1] on a 24-h.
5 First device In device.csv, map the initial device
m
activity time | activity timestamp to [0, 1] over 24h.
A Last device In device.csv, map the final device
m
activity time | activity timestamp to [0, 1] in 24h.
Number of From device.csv, count device
md off-hour activities (connect/disconnect)
device activities | between 18:00 and 8:00.

labelling, a user-day is classified as an insider threat incident if the user engages
in at least one malicious activity on that day.

These features, denoted as m1, m2, m3, m4, and mb5, provide insights into
potential insider threats by capturing various behavioural patterns. The specific
details of these features are listed in Table 6.1l

6.3.3 Sequential Features

To automate feature engineering, we first encode daily activities. Each unique
activity is assigned a numerical code. These encoded activities are then arranged
into sequences based on their chronological order within a user’s day. This sequen-
tial format preserves the temporal information of user actions, enabling effective
analysis and modelling by the BiLSTM.

The activity encoding approach used in this study is derived from the method-

ologies described in the referenced papers [10, 58]. We examine activity logs from
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various files, including file.csv, logon.csv, device.csv, and email.csv. Each ac-
tivity is assigned a unique numerical identifier (1-24) based on predefined rules.
These rules consider the activity type and whether it occurs during working or
off-hours, resulting in 24 unique codes. Table [6.2] shows the detailed mapping

between sequential activities and their corresponding codes.

6.3.4 Ground Truth of the Day

This section describes the Ground truth of the day Xg feature, which is incor-
porated to enhance the prediction accuracy. This feature identifies the specific
day users transition from regular activity to confirmed insider behaviour. Unlike
other features that capture user actions, the ground truth of the day provides a
more precise indicator of malicious behaviour onset through a timestamp.

We leverage timestamps associated with historical data for users identified as
insiders. By analysing these timestamps, potentially including individual times-
tamps for each day within an activity log, we can pinpoint the exact day the user
transitioned to insider activity. This specific day is then assigned as the ground
truth of the day feature. The ground truth of the day captures the date a user’s
behaviour deviates from normal patterns, transitioning from regular users to con-
firmed insiders. This feature is represented as a binary value: 1 for confirmed

insider activity and 0 for normal user behaviour.

6.4 Experiments

This section details the experiments conducted in Python’s Jupyter Notebook en-
vironment to evaluate the effectiveness of the proposed insider threat prediction
framework. We perform comparative analyses using various feature combina-
tions: standalone features Xm, sequential features X's, standalone features with
ground truth X'm|| X g, and all features combined Xm/| X s|| X g- details in section
[6.4.1] Furthermore, section [6.4.2] explores the framework’s performance using
various RNN models with the combined features Xm| Xs||Xg. Furthermore,
section explores the framework’s performance using various RNN models
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Table 6.2: Sequential activities Encoding

Nature of the

Code for

Code for

activity working hours | off-duty hours
Logging onto PC 1 13
Logging off from PC 2 14
Connecting a USB drive 3 15
Disconnecting a USB drive 4 16
Opening a .doc file 5 17
Opening a .exe file 6 18
Opening a .jpg file 7 19
Opening a .pdf file 8 20
Opening a .text file 9 21
Opening a .zip file 10 22
Sending an email to an internal address 11 23
Sending an email to an external address 12 24
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Fig. 6.2. Performance of various sequential features on supervised learning algo-

rithms

with the combined features Xm|| X s||Xg. Section investigates the influence
of predictive length on performance, identifying the optimal length for improved
BiLSTM results. Section explores the effect of different embedding sizes on
BiLLSTM performance, using a predictive length of 5 and the combined features
Xm|Xs||Xg.

6.4.1 Comparison of Insider Threat Prediction Models on
Various Feature Configurations

Table compares various supervised learning algorithms for insider threat pre-
diction using different feature configurations. The evaluated supervised learning
algorithms include KNN, LR, AdB, and GNB. Five distinct feature sets are con-
sidered: standalone features Xm, sequential features Xs, ground truth of the day
Xm, standalone with ground truth of the day Xm/| X g, and a combination of all
features Xm|| X s||Xg. The assessed metrics include Accuracy (Acc), Precision
(Pre), Recall (Rec), and the F1 score.

The KNN model achieved its most robust performance (F1 score: 0.8730)

by utilising all three feature sets of Xm/| X s||X g, which includes individual user
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actions X'm, sequential activity patterns Xs, and explicit ground truth informa-
tion Xg. This combination yielded the highest accuracy (Acc: 0.8766) and F1
score. Even standalone features Xm provided a baseline for prediction (F1 score
0.5240), demonstrating the model’s ability to identify potential threats based on
user actions alone. Adding sequential features X's further improved performance
(F1 score 0.5702), highlighting the importance of considering the order of activ-
ities. Furthermore, X g achieved an F1 score of 0.8221. Notably, incorporating
ground truth information for specific days X'm|| X g significantly boosted perfor-
mance (F1 score 0.8391), underlining the value of such information for accurate
prediction.

Similarly, focusing exclusively on X'm in the LR model results in an F1 score
of 0.5257. Adding Xs improves performance, yielding an F1 score of 0.6159.
Furthermore, Xg achieved a significantly higher F1 score of 0.8403. Including
ground truth information for specific days, Xm|| X g, significantly improves LR’s
predictive capabilities, achieving an F1 score of 0.8578. The most resilient per-
formance is achieved when LR integrates all the features Xm| X s||Xg, yielding
the peak F1 score of 0.9084.

For AdB, relying solely on X'm leads to an accuracy of 0.4961 and an F1 score
of 0.4935. However, incorporating X s or utilising only the ground truth of the day
Xml|/Xg enhances AdB’s performance, resulting in improvement, although Xg
is higher than these features. AdB demonstrates its most resilient performance
when using a combination of standalone, sequential, and ground truth features
Xm|| X s||Xg, achieving an accuracy of 0.8425 and an F1 score of 0.8394.

Likewise, GNB’s Xm produces an F1 score of 0.5182 and an accuracy of
0.5433. When combining sequential features X s or standalone with ground truth
of the day Xm|/Xg, GNB exhibits enhanced accuracy and F1 score, with F1
score values of 0.6039 for Xs and 0.8096 for Xm| Xg. However, Xg achieved a
significantly higher F1 score of 0.8210. The combination of standalone, sequential,
and ground truth features Xm/| Xs||X g delivers the best results; GNB achieves
an accuracy of 0.8504 and an F'1 score of 0.8484.

In Table [6.3] the feature Xm||X g was introduced in [190]. When comparing
our proposed work X'm|| X s|| X ¢ to existing approaches, our method achieves su-

perior accuracy and F'1 score in insider threat prediction. Figure [6.2] shows that
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Table 6.3: Performance of various sequential features on supervised learning al-

gorithms

Classifier | Features Acc Pre Rec F1 score
Xm 0.5276 | 0.5255 | 0.5260 | 0.5240
Xs 0.5932 | 0.5781 | 0.5717 | 0.5702

KNN
Xg 0.8241 | 0.8207 | 0.8262 | 0.8221
Xm||Xg 0.8425 | 0.8392 | 0.8392 | 0.8392
Xm|Xs|Xg | 0.8766 | 0.8766 | 0.8705 | 0.8731
Xm 0.5879 | 0.5694 | 0.5470 | 0.5257
Xs 0.6457 | 0.6396 | 0.6184 | 0.6159

LR Xg 0.8451 | 0.8446 | 0.8375 | 0.8403
Xm||Xg 0.8609 | 0.8581 | 0.8575 | 0.8578
Xm|Xs||Xg | 0.9108 | 0.9108 | 0.9065 | 0.9084
Xm 0.4961 | 0.4963 | 0.4962 | 0.4935

AdB Xs 0.5512 | 0.5453 | 0.5459 | 0.5451
Xg 0.8294 | 0.8258 | 0.8253 | 0.8256
Xm|Xg 0.8058 | 0.8034 | 0.8094 | 0.8041
Xm|Xs||Xg | 0.8425 | 0.8389 | 0.8399 | 0.8394
Xm 0.5433 | 0.6357 | 0.5885 | 0.5182
Xs 0.6115 | 0.6037 | 0.6041 | 0.6039

GNB
Xg 0.8241 | 0.8200 | 0.8223 | 0.8210
Xm||Xg 0.8110 | 0.8092 | 0.8155 | 0.8096
Xm|Xs||[Xg | 0.8504 | 0.8467 | 0.8515 | 0.8484

overall, LR outperforms other models in the performance comparison, achiev-
ing the highest accuracy of 0.9108 and an F1 score of 0.9084 when utilising a

combination of standalone, sequential, and ground truth features Xm/| Xs|| Xg.
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6.4.2 Performance of Various RNNs

This section presents KNN, LR, AdB, and GNB performance metrics across vari-
ous RNN models, including RNN, LSTM, and BiLSTM, focusing on Xm|| Xs||Xg¢

configurations.

Table 6.4: F1 score of various RNN on Xm||Xs||Xg

Model | Architecture | Acc Pre Rec | F1 score
RNN 0.8425 | 0.8392 | 0.8392 | 0.8392
KNN LSTM 0.8661 | 0.8706 | 0.8559 | 0.8609
BiLSTM | 0.8766 | 0.8766 | 0.8705 | 0.8731

RNN 0.8609 | 0.8581 | 0.8575 | 0.8578

LR LSTM 0.9081 | 0.9093 | 0.9027 | 0.9055
BiLSTM 0.9108 | 0.9108 | 0.9065 | 0.9084

RNN 0.7795 | 0.7755 | 0.7795 | 0.7767

AdB LSTM 0.8241 | 0.8203 | 0.8247 | 0.8218
BiLSTM 0.8530 | 0.8494 | 0.8514 | 0.8503

RNN 0.8163 | 0.8135 | 0.8193 | 0.8145

GNB LSTM 0.7375 | 0.7556 | 0.7544 | 0.7375
BiLSTM 0.8504 | 0.8467 | 0.8515 | 0.8484

Table |6.4] shows that the BiLSTM architecture proves most effective for KNN,
achieving the highest accuracy (0.87664) and surpassing both RNN (0.8425) and
LSTM (0.8661). Similarly, BILSTM achieves the best F1 score (0.8730) within
the X'm|| X s|| X g feature setting. For LR, accuracy increases from 0.8609 (RNN)
to 0.9081 (LSTM), and the F1 score improves from 0.8578 to 0.9055. Finally,
BiLSTM achieves the highest accuracy (0.9108) and F1 score (0.9084).

Similarly, the AdB model, under the RNN architecture, attains an accuracy
of 0.7795 and an F1 score of 0.7767. Switching to LSTM improves the F1 score
to 0.8218, followed by BiLSTM with an F1 score of 0.8503. This emphasises

the effectiveness of AdaBoost in capturing temporal features. GNB achieves an

127



RNN
LSTM
BiLSTM
0.90540.9084
o 0 86080'873
2 . 0.8578
S 0.8503
G| 08391 0.8483
b, 0.8217 0.8145
0.7766
0.7375
KNN LR AdB GNB

Classifier

Fig. 6.3. Performance of various RNN on Xm/| Xs||Xg

accuracy of 0.8163 and an F1 score of 0.8145 under RNN. Shifting to LSTM
architecture slightly decreases GNB’s performance (accuracy: 0.7375, F1 score:
0.7375), suggesting challenges in capturing long-term dependencies. However,
the BiLSTM model revitalises GNB’s effectiveness, resulting in an accuracy of
0.8504 and an F'1 score of 0.8484, demonstrating the model’s ability to leverage
bidirectional information for improved predictive capabilities.

The Figure indicates that the performance in the BiLSTM architecture
consistently outperforms others, yielding the highest F'1 scores across various su-
pervised learning algorithms. Specifically, under the BiLSTM setting, LR and
AdB exhibit F1 scores of 0.9084 and 0.8503, respectively, underscoring the effec-
tiveness of bidirectional long short-term memory in achieving a balance between
precision and recall. In contrast, the GNB model demonstrates relatively lower
F1 scores, particularly under the LSTM configuration, with an F1 score of 0.7375.
Overall, the BILSTM architecture stands out for insider threat prediction because

it understands complicated patterns and relationships over time in user activities.

6.4.3 F1 Score of Various Predictive Length on Bi-LSTM

This section comprehensively overviews the Bi-LSTM model’s performance under

various predictive lengths. This experiment evaluated four KNN, LR, AdB, and

128



Table 6.5: F1 score of various predictive lengths on Bi-LSTM

Model| 1 2 3 4 5 6 7 8
KNN ]0.8806|0.9086 | 0.8895 |0.8520| 0.8731 | 0.8522{0.86300.8602

LR ]0.8689|0.9138| 0.8898 |0.8869 | 0.9084 |0.8662|0.8843|0.8606
AdB |0.8269| 0.8697 [0.8850 (0.7949| 0.8503 |0.8116 |0.8308|0.7959
GNB [0.6154| 0.7017 | 0.7682 |0.8054 | 0.8484 | 0.7937 | 0.8030 | 0.7740

GNB algorithms across eight predictive lengths. This allows for exploring their
performance in diverse temporal contexts with the Xm|| X s|| X g feature combi-
nation.

The presented Table illustrates the F1 scores of various predictive lengths
on the Bi-LSTM model, with each model denoted as 1 to 8. In the KNN model,
it consistently performs well across all predictive lengths. Notably, the predictive
lengths of 2, 5, and 6 yield high F1 scores above 0.9, showcasing the robustness of
KNN in various prediction scenarios. Similarly, LR exhibits strong performance,
particularly at predictive lengths 2 and 5, with F1 score values of 0.9138 and
0.9084, respectively.

On the other hand, AdB shows a moderate performance, with scores ranging
from 0.7949 to 0.8850. Fluctuating scores suggest limitations in handling se-
quences of different lengths. Furthermore, GNB consistently lags, with F'1 scores
from 0.6154 to 0.8484, implying challenges with the complexities of predictive
lengths.

Figure demonstrates that KNN and LR emerge as robust choices, display-
ing consistent high performance across various predictive lengths. AdB, while
effective in a specific length of 3, shows sensitivity to changes in sequence length,
and GNB appears less suitable for this particular task based on the observed
F1 scores. Predictive length 2 is more suitable than other predictive lengths for

achieving effective results in this experiment.
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Fig. 6.4. Performance on various predictive lengths on Bi-LSTM

6.4.4 Impact of BILSTM Embedding Size on Performance

In this experiment delves into the impact of various embedding sizes (16, 32, 64,
and 128) on the performance of a BILSTM architecture with a fixed sequence pre-
dictive length of 5. The input features for the BILSTM model are a combination
of Xm, Xs, and Xg, likely representing different data modalities that contribute
to the overall prediction task.

The evaluation employs diverse machine learning algorithms: KNN, LR, AdB,
and GNB. This allows us to compare the effectiveness of different learning paradigms
when dealing with the interplay between embedding size and BiLSTM perfor-
mance.

The results in Table [6.6] demonstrate a clear trend for most models. As the
embedding size increases, so does the F1 score, indicating improved performance.
For instance, KNN’s F1 score steadily climbs from 0.8392 on an embedding size
16 to 0.8731 on an embedding size 128. Similarly, LR exhibits a consistent rise
in F1 score with larger embedding sizes, achieving its peak performance at 128.

LR outperforms all other models for all embedding sizes except 16, where KNN
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Table 6.6: Performance various embeded_size on BiLSTM

Model 16 32 64 128
KNN | 0.8392 | 0.8499 | 0.8555 | 0.8731
LR | 0.8578 | 0.8731 | 0.8787 | 0.9084
AdB | 0.8019 | 0.8048 | 0.8580 | 0.8394
GNB | 0.8096 | 0.8176 | 0.8186 | 0.8484
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takes a slight lead.

In contrast, AdB presents a contrasting pattern, reaching its peak F1 score
at an embedding size of 64 before declining at 128. This suggests that for AdB,
a sweet spot exists where a larger embedding size might introduce unnecessary
complexity. GNB, on the other hand, follows the prevailing trend, attaining its
highest performance with an embedding size of 128. These findings highlight
the significance of selecting an optimal embedding size to maximise the BiLSTM
model’s effectiveness. While Figure visually confirms the generally positive
impact of larger embedding sizes, the extent of this influence varies across different

machine learning algorithms.

6.5 Summary

This chapter tackles the critical issue of predicting insider threats to minimize
damage to an organisation’s sensitive assets. It proposes a novel approach us-
ing a BILSTM model to proactively identify potential threats before they occur.
This method analyses past user behaviour, considering both individual actions
and sequences of actions, along with information about the current day. The
researchers conducted experiments on the CERT r4.2 dataset, comparing the
BiLSTM model’s performance across different feature combinations (standalone,
sequential, and combined) and against other RNN architectures. They also eval-
uated the BiLSTM’s effectiveness with a specific feature set and its performance
under various prediction horizons (1-8 days) and embedding layer dimensions.
To ensure a comprehensive understanding, the chapter compared the BiLLSTM
model with various machine learning algorithms. These comparisons confirmed
that the BILSTM with the combined features achieved superior results in terms of
F'1 score across all prediction horizons and embedding sizes tested, outperforming

other feature combinations and RNN architectures.
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Chapter 7

Conclusion & Future Work

This chapter concludes the thesis by highlighting the study’s main contributions,
discussing its limitations, and exploring promising directions for future investiga-

tion.

7.1 Summary of Contributions

Insider threats, a growing worldwide problem, pose a significant risk as autho-
rized users leverage their access for malicious or negligent purposes. Stolen data,
sabotage, and difficulty detecting trusted insiders with legitimate access can cause
financial loss, reputational damage, and operational disruptions. The global busi-
ness landscape further intensifies the issue, with remote workforces and diverse
locations challenging consistent security protocols. As reliance on technology in-
creases and economic pressures fluctuate, organisations must prioritize measures
such as employee screening, access control, data encryption, and incident response
plans to mitigate these ever-present threats.

While conventional research on insider threats has primarily concentrated on
developing detection algorithms, there has been a recent trend towards exploring
the human aspect. Nowadays, cybersecurity experts are increasingly focusing on
identifying behavioural patterns and motivations that might predict malicious

intent. Additionally, research expands beyond technical solutions, exploring or-
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ganisational culture, access control policies, and employee training programs as
potential deterrents.

This holistic approach promises a more comprehensive understanding of in-
sider threats, leading to more effective prevention and mitigation strategies. Many
types of research are proposed to detect and predict insider threats, such as
anomaly-based and behaviour-based. The findings of this research will contribute
to the detection and prediction of insider threats with better performance. The
first challenge in evaluating insider threat detection algorithms is the absence of
standardized datasets and problem settings. Each detection approach uses differ-
ent datasets and different feature extraction methods. This inconsistency hinders
the comparison of different approaches, making it challenging to provide clear
recommendations for decision makers.

The second challenge is that many existing works only use standalone activi-
ties or sequential activities. The third challenge lies in the limitations of existing
research. While previous efforts have focused on identifying malicious insider ac-
tivities after they occur, they offer minimal assistance in preventing these very
risks. Based on the identified limitations of existing research, this study seeks to

achieve the following objectives:

e to evaluate and conduct a comparative analysis of supervised machine learn-
ing algorithms to assess their suitability for insider threat detection in the

same settings.

e to propose a novel method: bilateral insider threat detection to detect ma-
licious insiders. This approach leverages RNNs to analyse both individual

activities and their sequences, enhancing overall detection accuracy.

e to propose a novel method for predicting potential insider threats. The
approach utilizes bidirectional LSTM networks to capture and analyse in-
dividual user actions and the sequences in which they occur. This focus on
sequential patterns allows the model to predict the likelihood of an individ-

ual transitioning into a malicious insider.

This thesis presents a corresponding solution for each to address the aforemen-

tioned objectives. Machine learning and deep learning techniques have emerged
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as promising tools for detecting insider threats. Additionally, various monitor-
ing systems such as SIEM and UAM are crucial in user activity surveillance.
However, current approaches to insider threat detection face two key challenges:
imbalanced datasets, where malicious activities are far less frequent than normal
behaviour, and limitations in capturing the sequential nature of user actions.

This thesis proposed a comparative analysis of supervised machine learning
algorithms to assess their suitability for insider threat detection within a stan-
dardized experimental setting in Chapter 4 Many existing research studies anal-
yse and compare different supervised learning algorithms with various feature
extraction methods using diverse datasets. However, this lack of standardization
in datasets and evaluation metrics makes it difficult to compare the effectiveness
of these approaches and draw definitive conclusions about which method per-
forms best. To address this issue, a comparative analysis of various supervised
machine learning algorithms, including RF, XG Boost, KNN, GNB, DT, MLP,
AdB, and QDA, was conducted. This analysis is performed using the balanced
CERT r4.2 dataset. This technique utilizes the CERT r4.2 dataset and extracts
features containing both text and numerical data.

To prepare these features for the machine learning algorithm, text features
are converted into numerical values, with 71”7 representing the presence of a fea-
ture and 70”7 representing its absence. Moreover, no existing work researches
the impact of hyperparameters in ML algorithms. This chapter compares the im-
pact of hyperparameter modifications on the performance of the machine learning
models KNN, DT, and AdB in the balanced dataset. Similarly, existing in its
exploration of the impact of varying imbalanced dataset ratios. This study in-
vestigates the performance of various supervised machine learning methods in
handling imbalanced datasets, a common challenge in real-world scenarios. We
specifically examine how these methods perform under different levels of class im-
balance, ranging from a high imbalance of 0.5% insider representation to a more
balanced 40% insider representation. Compared with existing works, the results
demonstrate a similar trend: performance degradation for all algorithms as the
class imbalance level increases. However, this study uniquely identifies random

forest as the most resilient algorithm across all imbalanced scenarios.
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The aforementioned approaches only use standalone features. Similarly, tra-
ditional insider threat detection involves analysing user logs and developing clas-
sifiers to categorize individuals as malicious or not. However, these methods only
consider individual activities or sequences. A more comprehensive approach is
needed to capture the complex and nuanced nature of insider threats. To address
the limitations of existing methods, Chapter [5| proposed a novel bilateral insider
threat detection framework. This approach leverages both individual user activi-
ties and their sequential patterns, leading to a more comprehensive understanding
of user behaviour and improved detection of malicious insiders. To capture these
sequential patterns, the chapter employed a feature extraction method based on
RNNs. RNNs extract sequential features from data, making them well-suited
for extracting sequential data. Experiments on the CERT r4.2 insider threat
detection benchmark evaluated the performance of various RNNs with differing
capabilities for handling sequential data. The experiment compared a standard
RNN, an LSTM network adept at learning long-term dependencies, and a Bil-
STM that analyses data in both directions for richer context. This evaluation
aimed to identify the model best suited to capture the sequential patterns in user
activities indicative of malicious insider threats. In this approach, the feature
extraction process involved two main steps. First, manual feature engineering
extracted five behavioural features from the user activity data in ”device.csv”
and "logon.csv” files. These features capture daily activity patterns and rely
on domain knowledge about suspicious behaviours. The second step focused
on extracting sequential features. This step involved transforming user activity
sequences into numerical representations suitable for learning algorithms. The
experiments on the CERT 4.2 dataset yielded positive results for the proposed
bilateral approach. This approach, which analyses both individual user activi-
ties and their sequential patterns, significantly outperformed algorithms that rely
solely on standalone features. This highlights the importance of considering the
order and context of user actions in identifying insider threats.

The aforementioned existing research is constrained by limitations that im-
pede proactive prevention efforts. Previous investigations have predominantly fo-
cused on identifying insider threats post-occurrence, providing limited assistance

in preemptively thwarting such incidents. To solve this issue, chapter [6] proposed

136



a comprehensive framework for insider threat prediction, leveraging user activity
features, including the ground truth of each day. This framework addresses the
challenge of accurately identifying potential insider threats by considering both
standalone and sequential user activity data from previous days. Moreover, a
systematic evaluation is conducted to assess the impact of integrating standalone
features Xm, sequential features X's, and the ground truth for a specific day Xg
on insider threat prediction accuracy. This comprehensive assessment involves a
comparative analysis of the performance of three different models: RNN, LSTM,
and BiLSTM on X'm||Xs|[Xg. Furthermore, the investigation delved into the
impact of varying predictive lengths on BiLSTM’s ability to predict threats. Ad-
ditionally, exploration was undertaken on the impact of various embedding sizes
(16, 32, 64, and 128) on a BiLSTM architecture with a fixed sequence predic-
tive length (e.g., 5). All models were evaluated using the combined feature set
Xm||Xs||Xg. In this chapter, the feature extraction process is divided into three
parts: manual features, sequential features, and ground truth of the day. Man-
ual features are extracted from device.csv and logon.csv files in the CERT r4.2
dataset. Five features (m1-mb) are derived to capture the user’s daily routines.
Sequential features capture the order of user activities in a day. Each unique
activity is assigned a numerical code based on activity type and working/off-
hour occurrence. These encoded activities are then arranged chronologically into
sequences. Ground truth of the day Xg is a binary feature indicating a user’s
transition to insider activity. It is derived from timestamps of confirmed in-
sider historical data and captures the specific day the user’s behaviour deviates
from normal patterns. The experiment results show that combining all features
Xm, Xs, Xg with a BILSTM model proved the most effective. This approach
achieved the highest F1 scores across various testing conditions, consistently out-

performing other feature sets and model types.
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7.2 Study Limitations

7.2.1 Imbalanced Data

In insider threat detection, a significant hurdle is the class imbalance problem.
This arises because most user activity represents legitimate actions (normal class).
This creates a lopsided dataset to train detection models. These models inher-
ently prioritize identifying the dominant class (normal activity), making them
susceptible to overlooking rare instances of malicious insider activity (minority
class). This can lead to a situation where the models perform well at identifying
normal behaviour but fail to detect the crucial yet infrequent signs of malicious
intent. The models become overly focused on the common and miss the rare,
critical threats. Addressing this class imbalance is crucial for building effective

insider threat detection systems.

7.2.2 High False Alarm

Insider threat detection systems are plagued by high false alarm rates when config-
ured with excessive sensitivity. This oversensitivity leads to many false positives,
where innocent activities are mistakenly flagged as malicious. Security teams be-
come inundated with these false alarms, diverting their focus and resources from
investigating genuine threats. The challenge lies in calibrating the system to

effectively detect malicious activity without generating overwhelming false alerts.

7.2.3 Lack of Real-world Data

The lack of real-world data hinders the building of strong detection models for
insider threats. While helpful, public datasets like CERT are often synthetically
generated, creating a gap between simulated and real-world scenarios. These syn-
thetic datasets might contain randomly generated activities that lack the com-
plexity of true insider attacks. This dearth of real-world data makes it challenging
to train models that can effectively handle the full range and intricacy of insider

threats in the real world.
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7.3 Future Work Directions

7.3.1 Imbalanced data

Insider threat detection remains challenging due to the inherent imbalance in
available data. Future research should focus on improved data collection strate-
gies. Furthermore, exploring machine learning algorithms suitable for imbal-
anced data, alongside deep learning and unsupervised learning techniques, holds
promise. Human expertise will remain crucial, so integrating machine learning
with human analysis and fostering explainable Al is vital. Finally, considering
adversarial learning and broader behavioural analysis will be essential to stay

ahead of evolving insider threats.

7.3.2 Dataset

The future of insider threat detection hinges on leveraging a wider range of data
sources, each with its strengths and limitations. System logs offer a detailed his-
tory, but future systems need to glean context from user activity data (keystrokes,
mouse movements) while addressing privacy concerns and storage costs. Network
traffic analysis will require advanced algorithms to pinpoint unusual data trans-
fers amidst the ever-growing volume. Content analysis, though valuable, needs
anonymization techniques to ensure data privacy. Finally, exploring psychological
data (surveys, biometrics) holds promise, but ethical considerations necessitate
careful interpretation and validation methods. By overcoming these limitations
and harnessing the power of diverse data, future insider threat detection can

become more robust and proactive.

7.3.3 New Theories

Moving beyond traditional methods, exploring new theoretical approaches like
hybrid techniques holds immense promise for insider threat detection. These
techniques combine the strengths of different approaches to address the limita-

tions of individual methods. Hybrid techniques offer the following advantages:
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Combining Supervised and Unsupervised Learning: Supervised learn-
ing excels at identifying known threats, while unsupervised learning excels at
detecting anomalies. Combining them allows for leveraging pre-defined threat
indicators while also adapting to novel insider tactics.

Enhancing Anomaly Detection with Context: Traditional anomaly de-
tection in system logs might miss insider threats with subtle behavioural changes.
Hybrid approaches can integrate user context (department, access level) and psy-
chological data to understand suspicious activities better.

Leveraging Content Analysis with Network Traffic Data: analysing
content alone might miss exfiltration attempts via network channels. Hybrid
approaches that combine content analysis with network traffic data can provide

a more comprehensive picture of potential insider activities.

7.3.4 Federated Learning for Decentralized Training

Federated learning offers a promising approach to address the challenge of siloed
and sensitive insider threat data within organisations. Traditional methods often
require centralizing this data, raising privacy concerns. Federated learning allows
training deep learning models directly on decentralized datasets across different
departments. Each department trains a local model on its own data and only
shares model updates, not the raw data. This collaborative approach leverages
the collective power of the organisation’s data for improved threat detection while

maintaining departmental data privacy.

7.3.5 Practical Evaluation Metrics

Insider threat detection suffers because common evaluation metrics like accuracy
don’t account for the rarity of insider incidents. To address this, future research
should explore the use of cumulative recall (CR-k) which considers a daily budget
for investigating suspicious activities. CR-k prioritizes catching real threats even
if they mean some false alarms, which better reflects the true cost of missing an

insider attack.
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