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Abstract
The growing need for data publication and the escalating concerns regarding data privacy have
led to a surge in interest in Privacy-PreservingData Publishing (PPDP) across research, indus-
try, and government sectors. Despite its significance, PPDP remains a challenging NP-hard
problem, particularly when dealing with complex datasets, often rendering traditional traver-
sal search methods inefficient. Evolutionary Algorithms (EAs) have emerged as a promising
approach in response to this challenge, but their effectiveness, efficiency, and robustness
in PPDP applications still need to be improved. This paper presents a novel Hierarchical
Adaptive Evolution Framework (HAEF) that aims to optimize t-closeness anonymization
through attribute generalization and record suppression using Genetic Algorithm (GA) and
Differential Evolution (DE). To balance GA and DE, the first hierarchy of HAEF employs
a GA-prioritized adaptive strategy enhancing exploration search. This combination aims
to strike a balance between exploration and exploitation. The second hierarchy employs a
random-prioritized adaptive strategy to select distinct mutation strategies, thus leveraging
the advantages of various mutation strategies. Performance bencmark tests demonstrate the
effectiveness and efficiency of the proposed technique. In 16 test instances, HAEF signif-
icantly outperforms traditional depth-first traversal search and exceeds the performance of
previous state-of-the-art EAs on most datasets. In terms of overall performance, under the
three privacy constraints tested, HAEF outperforms the conventional DFS search by an aver-
age of 47.78%, the state-of-the-art GA-based ID-DGA method by an average of 37.38%,
and the hybrid GA-DE method by an average of 8.35% in TLEF. Furthermore, ablation
experiments confirm the effectiveness of the various strategies within the framework. These
findings enhance the efficiency of the data publishing process, ensuring privacy and security
and maximizing data availability.

Keywords Privacy-preserving data publishing · t-closeness anonymization · Genetic
algorithm · Differential evolution · Adaptive strategy
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1 Introduction

In today’s digital age, data plays a crucial role in driving innovation and decision-making,
while the issue of privacy has become increasingly pertinent [1–5]. Privacy-Preserving Data
Publishing (PPDP) has emerged as a paramount need, seeking to strike a delicate balance
between sharing valuable information and safeguarding individuals’ sensitive data [6–9].
This practice entails the dissemination of datasets that have been carefully anonymized or
transformed to protect the privacy of individuals while still allowing researchers and orga-
nizations to extract meaningful insights [10–13]. Due to a heightened awareness of privacy
risks, stricter regulations related to data protection, and an understanding of the necessity of
responsible data processing, the popularity of privacy-protected data is on the rise [14–16].

Preserving data privacy while maintaining data utility is indeed a challenging task, and
it remains one of the most pressing and complex challenges in the field [2, 17–19]. Various
approaches have emerged to address this challenge, including data anonymization, differen-
tial privacy, secure multiparty computation, and homomorphic encryption [20–23]. Among
these techniques, data anonymization is widely adopted. It involves modifying or remov-
ing identifying information from a dataset to protect individual privacy. Techniques such
as generalization, suppression, perturbation, or data synthesis are employed to mitigate the
risk of re-identification while ensuring the usefulness of the analyzed data [24, 25]. How-
ever, despite its widespread adoption and effectiveness in enhancing privacy protection, data
anonymization also faces significant computational challenges due to NP-hardness restric-
tions on optimization [26], making it often impractical to find an exact solution within a
reasonable time frame.

Some studies have introduced Evolutionary Algorithms (EAs), a common solution to
NP-hard problems [27], to optimize data anonymization schemes. Among EAs, Differential
Evolution (DE) and Genetic Algorithm (GA) are popular choices [28]. These algorithms
find wide applications in fields such as engineering, machine learning, and bioinformatics,
providing flexible and powerful optimizationmethods [25, 29]. DE uses differential mutation
and crossover to evolve populations, emphasizing exploration. On the other hand, GAmodels
natural selection and genetics, focusing more on exploitation. Both methods have shown
effectiveness in solving complex optimization problems. This paper leverages an innovative
framework that combines GA and DEs (including DE variants) for better performance and
robustness in PPDP.

Previous academic studies have delved into using GA and DE algorithms for data
anonymization. However, it is important to note that both GA and DE have multiple variants,
and the efficacy of these variants, when applied to this problem, has yet to be thoroughly
tested and evaluated. The performance of these different variants on data anonymization
problems can vary significantly and needs to be explored experimentally. This exploration
can help identify the most effective algorithm variants for optimizing data anonymization
schemes. Additionally, the performance of different algorithms on different datasets can be
uneven. Therefore, there is an urgent need for the development of more robust and effective
algorithms.

This paper aims to enable a more practical application of EA in data anonymization
processing, by improving the performance and robustness of the algorithm. We develop an
effective adaptive strategy that dynamically combines the strengths of GA and DE mutation
strategies, resulting in improved algorithm performance. Furthermore, we design a GA prior-
ity strategy and a random-based-DE priority strategy, which use GA and random-based-DE
with greater probability in the early stage of evolution to enhance the population diversity
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and explorative search. In the later stages of evolution, best-based-DE is predominantly uti-
lized to expedite the convergence of the search process and explorative search. This paper
contributes to PPDP in the following ways.

• This paper introduces an innovative Hierarchical Adaptive Evolutionary Framework
(HAEF), seamlessly integrating GA, DE, and variants of DE. In contrast to previous
algorithms utilizing solely GA or both GA and DE with a single mutation strategy [30–
32], HAEF integrates a richer array of evolutionary strategies. As a result, it offers more
outstanding performance and stronger robustness anonymization algorithm for PPDP.

• In addition, this paper develops a novel adaptive strategy that intelligently leverages
the unique characteristics of GA and various DE mutation strategies. Compared with
the previous approach that mechanically alternated between GA and DE strategies [32],
our method selects the subsequent evolution strategy based on the historical success
probability of each strategy.

• Furthermore, we design a GA-prioritized strategy and a random-prioritized strategy. The
GA-prioritized strategy utilizes GA and random-based-DE strategies more in the early
to middle stages of the evolution process, enhancing the algorithm’s robustness. The
best-based-DE strategies are utilized more in the middle to late stages, improving the
algorithm’s convergence speed.

• To validate the effectiveness of our proposed method, we conduct comprehensive exper-
iments. Comparative experiments with previous methods confirm the superiority of our
framework. Ablation experiments further demonstrate the effectiveness of this strategy.

The paper is structured in the followingmanner: Section 2 offers an overview of the current
literature in the field. Section 3 delves into a detailed definition of the optimal anonymization
problem of t-closeness. Section 4 elucidates the HAEF approach that has been proposed.
The experimental setup is specified in Section 5, and the experimental results are analyzed
in Section 6. Section 7 discusses the limitations of this work and its potential real-world
applications. Lastly, Section 8 concludes the paper by summarizing the essential findings
and contributions.

2 Related work

Data anonymization is a crucial method for PPDP. Various privacy assessment models have
beenproposed to ensure the privacy and confidentiality of sensitive data,with someof themost
classic models including k-anonymity, l-diversity, and t-closeness [33–35]. k-anonymity
ensures that each record in a dataset is not distinguishable from at least k-1 other records,
thereby protecting individual identities [33]. On the other hand, l-diversity prevents attribute
leakage by requiring that each equivalence class contains at least l distinct sensitive attribute
values [34]. t-closeness, an important model, requires that the distribution of a sensitive
attribute in any equivalence class be very similar to the distribution of that attribute in the
whole dataset. This approach enhances privacy guarantees by ensuring that sensitive attributes
are not overly concentrated in certain equivalence classes [35].

There has been considerable research on finding the optimal way to anonymize data for
k-anonymity. However, more research is needed to find optimal techniques for t-closeness
anonymization. A study by Liang et al. [26] has proven that finding the optimal t-closeness
anonymization solution is NP-hard. The limited number of studies addressing this issue
underscores the need for further research.
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Traditional search methods for finding the best anonymization scheme rely on depth-first
or breadth-first traversal methods, supplemented by search space optimization techniques.
For instance, Kohlmayer et al. [36] proposed the Flash algorithm, which uses a depth-first
traversal search to achieve the best k-anonymity.While thismethod can guarantee the optimal
solution for simple datasets, it may not be effective for complex datasets.

EAs have emerged as powerful tools for solving the NP-hard problem of data anonymiza-
tion, particularly for complex datasets [1]. These algorithms combine evolutionary principles
with optimization techniques to search for high-quality solutions efficiently. Ge et al. pro-
posed the Information-Driven Genetic Algorithm (IDGA) [30] and the Information-Driven
Distributed Genetic Algorithm (ID-DGA) [31], which use GA-based approaches to optimize
k-anonymity. TheTwo-Layer Evolutionary Framework (TLEF), introduced byYou et al. [32],
is a notable improvement to EAs for optimizing data anonymization schemes. By integrat-
ing GA and DE, TLEF delivers enhanced performance. However, the simplicity of TLEF’s
hybrid strategy suggests that further refinement is possible.

In the domain of EAs, research has explored the adaptation of different strategies, par-
ticularly within DE [37, 38]. One such example is the Self-adaptive Differential Evolution
algorithm (SaDE) [38], which introduces a novel approach where the learning strategy and
control parameters need not be pre-specified. This adaptability enables SaDE to adjust its
strategy dynamically during optimization, potentially resulting in even better performance.

3 Problem formulation

3.1 Data anonymization

When publishing data, it is common practice to anonymize it using various techniques (such
as generalization and suppression) to convert the original dataset D into an anonymous
dataset T . The original dataset, often in table format, typically contains explicit identifiers,
quasi identifiers, sensitive attributes, and non-sensitive attributes.

• Explicit Identifiers: These are attributes that directly identify record owners. Examples
include names, social security numbers, and email addresses.

• Quasi Identifiers (QI D): These attributes can potentially reveal the identity of individuals
when combined with other information. Examples include zip codes, birth dates, and
gender.

• Sensitive Attributes (SA): These attributes contain private or sensitive information that
needs to be protected. Examples include medical conditions, sexual orientation, and
financial status.

• Non-SensitiveAttributes: These attributes include other information that is not considered
sensitive. Examples include job titles, educational background, and hobbies.

When it comes to anonymizing data, the primary goal is to transform the QI Ds within the
table into anonymized QI D

′
s to eliminate the risk of data re-identification. Explicit iden-

tifiers, which directly identify individuals, are typically removed from the table altogether.
Non-sensitive attributes, which lack sensitive information, do not require special handling
and may remain unchanged. However, SAs contain essential information analysts need and
are therefore retained.

The process of anonymizing data, known as M, typically involves implementing tech-
niques such as generalization, suppression, perturbation, data synthesis, etc. This paper
adheres to the framework of IDGA [30] and ID-DGA [31], employing the strategies of
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Health Service Area Facility Name Age Zip Code Gender Race Diagnosis of Cancer 
of bronchus or lung

New York City Metropolitan Hospital Center 72 11355 Male Other Race FALSE

New York City Maimonides Medical Center 81 11323 Male Other Race FALSE

New York City New York Hospital Medical Center of Queens 75 11326 Female White FALSE

Finger Lakes Highland Hospital 29 14611 Female White FALSE

New York City New York Hospital Medical Center of Queens 71 11315 Male Other Race TRUE

New York City Montefiore Medical Center-Wakefield Hospital 42 10459 Male Black/African American FALSE

Long Island North Shore University Hospital 73 14645 Male White TRUE

Long Island Catskill Regional Medical Center 75 14615 Male White FALSE

Figure 1 An example of original dataset with the generalization and suppression operations

generalization and suppression to achieve data anonymization, denoted as M{G, S}. Gen-
eralization (G) entails substituting particular attribute values with broader or less precise
ones, reducing the likelihood of re-identification, whereas Suppression (S) involves entirely
removing specific records to prevent the disclosure of sensitive information. An example of
an anonymized table is shown in Figure 3, which hides part information and makes privacy
more difficult to be exposed.

D{QI D, SA} M{G,S}−−−−−→ T {QI D
′
, SA} (1)

For example, the original table in Figure 1 initially contains six QI Ds, one SA, and r
records. To protect privacy, the table is anonymized using generalization (G) and suppression
(S) techniques. As shown in Figure 3, the G operator is a sequence of natural numbers with a
length of n, which designates the necessary level of generalization for each QI D. Typically,
G is used alongside a generalization hierarchy (illustrated in Figure 2), where each value

Health Service Area

Level 1 Level 2

New York City *

Finger Lakes *

Long Island *

Facility Name

Level 1 Level 2

Metropolitan Hospital Center *

Maimonides Medical Center *

New York Hospital Medical Center of Queens *

Highland Hospital *

Montefiore Medical Center-Wakefield Hospital *

North Shore University Hospital *

Catskill Regional Medical Center *

Age

Level 1 Level 2 Level 3

0,1, 2,…,17 0 to 17 *

18,19,20,…,29 18 to 29 *

30,31,32,…,49 30 to 49 *

50,51,52,…,69 50 to 69 *

70,71,72,…
70 or older *

Zip Code

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

5 digits 4 digits 3 digits 2 digits 1 digit *

Gender

Level 1 Level 2

Male *

Female *

Race

Level 1 Level 2

Black/African American *

White *

Other Race *

Figure 2 An example of generalization hierarchies
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corresponds to a generalization level in the taxonomy tree [11]. Another operator, S, is a
sequence consisting of 0s and 1s with a length of 8 (the same as the number of records in the
original table), where zero indicates a record to be deleted, and one suggests a record to be
retained (Figure 3).

3.2 Privacy model

In PPDP, data to be released must first undergo a privacy assessment to ensure proper
anonymization before it can be released. Only anonymized data that meets privacy require-
ments is considered qualified for release. This paper employs the t-closeness privacy model
for analysis, which aims to establish a certain level of similarity between the distributions of
sensitive attributes in both the original and anonymized datasets. Please refer to Definition 1
for a more detailed explanation.

Definition 1 (The t-closeness Principle). An equivalence class is said to have t-closeness if
the distance between the distribution of a sensitive attribute in this class and the distribution
of the attribute in the whole table is no more than a threshold t. A table is said to have
t-closeness if all equivalence classes have t-closeness.

Given a distribution of equivalence class S = (s1, s2, · · · , sm), and the distribution of the
whole table Q = (q1, q2, . . . , qm), one well-known way to define the distance between the
distribution is Euclidean distance:

D[S, Q] =
√

(s1 − q1)2 + (s2 − q2)2 + · · · + (sm − qm)2 (2)

where (s1, s2, · · · , sm) and (q1, q2, · · · , qm) represent the proportion of a sensitive attribute
in the corresponding class and the whole table.

It is noteworthy that regardless of whether the original data contains one single or multiple
sensitive attributes, the calculation for t-closeness of a dataset remains consistent. In the case
of a single sensitive attribute, the proportional distribution of each value within the sensitive
attribute can be directly computed. In scenarios involving multiple attributes, it becomes
necessary to calculate the proportional distribution of combinations of values across all
sensitive attributes.

QID1 QID2 QID3 QID4 QID5 QID6 SA

Health Service Area Facility Name Age Group Zip Code Gender Race Diagnosis of Cancer 
of bronchus or lung

R1 New York City * 70 or Older 113** Male Other Race FALSE 1

R2 New York City * 70 or Older 113** Male Other Race FALSE 1

R3 * * * * * * * 0

R4 Finger Lakes * 18 to 29 146** Female White FALSE 1

R5 New York City * 70 or Older 113** Male Other Race TRUE 1

R6 * * * * * * * 0

R7 Long Island * 70 or Older 146** Male White TRUE 1

R8 Long Island * 70 or Older 146** Male White FALSE 1

1 2 2 3 1 1

S

G

Figure 3 An example of anonymized dataset

123

49 Page 6 of 27



World Wide Web (2024) 27:49

For an anonymized dataset (T ) containing l equivalent classes, its Anonymity Degree
AD(T ) is defined by the furthest class, as shown in (3).

AD(T ) = Max(D[S1, Q], D[S2, Q], . . . , D[Sl , Q]) (3)

Therefore, according to Definition 1, if an anonymized dataset has t-closeness , then:

AD(T ) ≤ t (4)

3.3 Utility metrics

The utility of dataset T is calculated according to its Transparency Degree (T D) [11], which
implication is how much useful information remains in the released data after suppression
and generalization:

T D(T ) =
∑
r ′∈T

∑
vg∈r ′

1∣∣vg
∣∣ (5)

where r ′ indicates records remained in T after the suppression process; vg is the generalized
value in record r ′;

∣∣vg
∣∣ is the number of domain values that are descendants of vg .

3.4 Optimal anonymization

Optimal anonymization describes the solution that results inminimal information loss accord-
ing to a given metric [36, 39]. In the specific context of this paper, it is defined as follows.

Definition 2 (Optimal anonymization). For anonymized dataset T , the optimal anonymiza-
tion solution can satisfy the privacy requirement AD(T ) ≤ t and achieves the highest utility
degree Max(T D(T )).

As the study [26] demonstrated, for every constant t , this is an NP-hard problem. In other
words, finding the optimal solution is computationally expensive or impossible. A second
best approach is to find a relatively optimal solution within limited computational time
(maxEvaluationT ime).

Therefore, the optimization problem to be solved in this paper is to find the most
efficient combination of suppression and generalization solutions M{G, S} within the
maxEvaluationT ime to maximize the data utility metric T D(T )within a given t-closeness
threshold t . ⎧

⎪⎨
⎪⎩

Max(T D(T ))

AD(T ) ≤ t

EvaluationT ime ≤ maxEvaluationT ime

(6)

4 Hierarchical adaptive evolution framework

The HAEF algorithm utilizes a two-hierarchical adaptive architecture that combines the
benefits of GA and DE variant algorithms. GA utilizes natural selection and genetics to
generate promising solutions, while DEs offer potent search mechanisms and exploration
capabilities. By harnessing the power of both techniques, HAEF can effectively navigate the
solution space and uncover optimal solutions that enhance optimization. Furthermore, the
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innovative adaptive strategy of HAEF prioritizes using GA and random-based-DE mutation
strategies during the early stages of iteration to broaden the search space. Later, it utilizes
best-based-DE strategies to approach the global optimum, resulting in a more efficient and
effective optimization process.

4.1 Workflow of HAEF

The overall process of HAEF is illustrated in Figure 4. It is a method that anonymizes original
data using two technique s: generalization and suppression. As mentioned in Section 3.1, the
generalization operator is a list of natural numbers signifying the levels of the generalization
hierarchy (Figure 2) to which the values of QID should be mapped. The suppression operator
is represented as a binary sequence of values (0 and 1) equal in length to the number of
records in the dataset. ‘0’ indicates the removal of the data in the corresponding row, while
‘1’ denotes the retention of data in the respective record.

Given a G and an S, a table D’s anonymization method is established. By calculating
the AD and T D of the anonymized table T , the effectiveness of this anonymization scheme
can be evaluated. Taking the M{G, S} in Figure 3 as an example, the anonymized table

Health Service Area Facility Name Age Zip Code Gender Race Diagnosis of Cancer 
of bronchus or lung

New York City Metropolitan Hospital Center 72 11355 Male Other Race FALSE

New York City Maimonides Medical Center 81 11323 Male Other Race FALSE

New York City New York Hospital Medical Center of Queens 75 11326 Female White FALSE

Finger Lakes Highland Hospital 29 14611 Female White FALSE

New York City New York Hospital Medical Center of Queens 71 11315 Male Other Race TRUE

New York City Montefiore Medical Center-Wakefield Hospital 42 10459 Male Black/African American FALSE

Long Island North Shore University Hospital 73 14645 Male White TRUE

Long Island Catskill Regional Medical Center 75 14615 Male White FALSE

QID1 QID2 QID3 QID4 QID5 QID6 SA

Health Service Area Facility Name Age Group Zip Code Gender Race Diagnosis of Cancer 
of bronchus or lung

R1 New York City * 70 or Older 113** Male Other Race FALSE 1

R2 New York City * 70 or Older 113** Male Other Race FALSE 1

R3 * * * * * * * 0

R4 Finger Lakes * 18 to 29 146** Female White FALSE 1

R5 New York City * 70 or Older 113** Male Other Race TRUE 1

R6 * * * * * * * 0

R7 Long Island * 70 or Older 146** Male White TRUE 1

R8 Long Island * 70 or Older 146** Male White FALSE 1

1 2 2 3 1 1

S

G

Figure 4 The overall work process of HAEF
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contains 6 records. After generalizing the QIDs, these records are grouped into three groups:
(R1, R2, R5); (R4); (R7, R8).

As long as the anonymized table T meets the privacy constraints (4), scheme M satisfies
PPDP. However, the optimal anonymization not only needs to satisfy the privacy constraints
but also requires finding a scheme that maximizes T D.

In order to seek the optimal solution, HAEF employs a hybrid approach combining
EA and DE. Initially, the algorithm generates an initial population comprising two sub-
populations: population a represents schemes for generalization (G), while population b
represents schemes for suppression (S). The size of the population is denoted by NP, indicat-
ing the number of individuals within the population. Subsequently, it is imperative to compute
and validate the privacy and data transparency of each anonymized table generated by every
individual in the population. Following the attainment of fitness values, a selection process is
conducted among the individuals within the population. This selection method adheres to the
criteria proposed in IDGA [30] and ID-DGA [31]. The best-performing individual selected
is then utilized for subsequent evolution or is directly outputted as the determined optimal
anonymization scheme.

The algorithm iteratively searches for the optimal solutionwithin the predefinedmaximum
validation iteration range. HAEF incorporates a dual-layer adaptive scheme, intelligently
leveraging the advantages of GA, DE, and the variants of DE. In the hierarchy of GA-DE
adaptation, HAEF employs a probabilistic approach to randomly select either the GA or DE
method for the evolution of the new generation. The probability of selecting GA or DE is
determined by the ratio of successful offspring generated by GA and DE in previous genera-
tions, which proceed to the subsequent round of evolution. Additionally, HAEF incorporates
a GA-prioritized strategy, wherein GA is given higher probability usage during the initial
stages of evolution, and DE is favored with higher probability towards the later stages.

Upon selecting GA, two individuals are randomly chosen from the population to serve
as parents. These parents then undergo crossover, wherein segments of their genetic mate-
rial are exchanged, generating offspring. Subsequently, the mutation is applied to randomly
alter portions of the genetic makeup of some newly generated individuals, forming a new
generation of individuals. Through validation and selection of the new individuals, those that
outperform their parent individuals are retained, while those that do not meet the criteria are
eliminated. This process results in the formation of the next generation of the population.

When DE is selected, HAEF incorporates an adaptation layer, intelligently choosing the
mutation strategy for the DE layer based on probabilities. The selection probabilities of all
mutation strategies are determined by the ratio of successful offspring generated by each
mutation strategy in past generations to the total number of offspring generated by DE.
Furthermore, HAEF implements a random-prioritized strategy, favoring the use of random-
based DE mutation strategies in the initial stages of evolution and shifting towards the use
of best-based-DE mutation strategies in the later stages.

Once one of the six mutation strategies is selected, each individual in the original pop-
ulation will generate a new individual accordingly. Subsequently, this new individual will
exchange portions of its elements with the original individual through crossover. The fitness
of each new individual is then validated, and these individuals are compared with the original
individuals. If a new individual outperforms the original individual, it replaces the original
individual; otherwise, it is discarded. This process forms a new population generated by DE
for the next generation.

When themaximumvalidation iteration is reached, theHAEF ends and outputs the current
best anonymization scheme.
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4.2 GA-DE adaptation hierarchy

As shown in Algorithm 1, the HAEF follows the general procedure of an EA. Firstly, in Step
2, a Population P0{Xi,0|i = 1, 2, · · · , N P} contains N P Individuals is initialized. Each
I ndividual includes two parts: Xa

i,0 is for method of generalization M{G} and Xb
i,0 is for

method of suppression M{S}.

Xa
i,0 = (xa1,i,0, x

a
2,i,0, · · · , xaj,i,0)|i = 1, 2, · · · , N P (7)

Xa
i,0 is a list contains j natural numbers which elements are randomly generated according

to a uniform distribution 0 ≤ xaj,i,0 ≤ xupj , where xupj is the highest generalization hierarchy
level of the j th attribute. For M{G}, j = 1, 2, · · · , n, where n is the number of QI D
attributes.

Xb
i,0 = (xb1,i,0, x

b
2,i,0, · · · , xbj,i,0)|i = 1, 2, · · · , N P (8)

Xb
i,0 is randomly generated list according to a uniform distribution xbj,i,0 ∈ {0, 1}. For

M{S}, j = 1, 2, · · · , r , where r is the number of entries recorded in table D.
In the following Step 3, HAEF calculate the AD(T ) and T D(T ) of each I ndividual

in P0 with (3) and (5). Then, following the selection criteria introduced in [30], the best
I ndividual in P0 (Xbest,0) is selected in Step 4 for the later process.

From Steps 6 to 16, HAEF enters a while loop for evolutionary operations. In the loop,
firstly, HAEF performs the first adaptation hierarchy deciding either GA or DE evolutionary
strategy will be applied to update the current population Pg{Xa

i,g, X
b
i,g} (shown in Step 9).

HAEF randomly selects GA or DE according to its corresponding probabilities pga and pde
(Step 9). If GA is selected, HAEF will perform Algorithm 2 (Steps 10-11). Otherwise, DE
is selected and Algorithm 3 will work (Steps 12-13).

The value of g representing the current generation will increase by 1 each time through
the loop. The loop will be broken when g ≤ γ where γ is the pre-defined max generation.

Algorithm 1 Outline of HAEF.
1: Input: N P, γ, CRde, F, CRga, MRga
2: Initialize population P0{Xa

i,0, X
b
i,0} with size N P

3: Evaluate fitness for each I ndividual in P0 according to (3) and (5)
4: Select the Xbest,0 in P0
5: Set generation counter g = 0
6: while g < γ do
7: Update pga and pde every UpdateInterval generation according to (9) and

(10)
8: Update p1de,p

2
de,p

3
de,p

4
de,p

5
de,p

6
de every UpdateInterval generation

9: Select EA according probability pga and pde
10: if SelectedE A = GA then
11: Update Pg{Xa

i,g,X
b
i,g} with Algorithm 2

12: else
13: Update Pg{Xa

i,g,X
b
i,g} with Algorithm 3

14: end if
15: g = g + 1
16: end while
17: Output: the best anonymization solution Xbest,γ found in Pγ
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4.2.1 GA-prioritized adaptation

GAandDEare commonlyutilized, eachwith distinct advantages anddrawbacks.GAexcels at
preserving a varied population during optimization, efficiently exploring the search space and
minimizing the risk of local optima. It achieves this through a crossover operation that blends
information frommultiple candidate solutions to generate novel solutions, therebyuncovering
new areas of the search space and potentially discovering superior solutions. While DE may
struggle to balance exploration and exploitation, GA tackles these challenges adeptly with
its crossover operations. Additionally, DE can prematurely converge to suboptimal solutions
in complex multimodal optimization problems.

Hence, this paper designs a GA-DE adaptation hierarchy to dynamically combine GA
and DE, predominantly employed in the early stages of evolution to preserve population
diversity and avoid premature convergence to the local optimum. Conversely, DE dominates
the middle and late stages of evolution to approach the global optimum quickly.

In the GA-DE adaptation hierarchy, HAEF adopts a GA-prioritized adaptation strategy.
For the first evolution, the EA strategy is chosen according to the initial probability p0ga = 1

and p0de = 0. Then pga and pde are updated every UpdateInterval generations according
to (9) and (10) (shown in Step 7), where UpdateInterval is a pre-defined parameter.

pde = 1

2
(

nsde · (ns + n fga)

nsga · (nsde + n fde) + nsde · (nsga + n fga)
+ g

γ
) (9)

pga = 1

2
(

nsga · (nsde + n fde)

nsga · (nsde + n fde) + nsde · (nsga + n fga)
+ 1 − g

γ
) (10)

where nsde and nsga are, respectively, the counts of successful trial vectors generated by the
DE and GA during theUpdateInterval generation. Correspondingly, n fde and n fga are the
count of discarded trial vectors generated by DE and GA.

The algorithm stops when it reaches the maximum number of generations. The best
anonymization solution, labeled as Xbest,γ , is determined from the population Pγ . This
solution is the most effective configuration found by the HAEF and provides optimal
anonymization for the given dataset.

4.2.2 GA

This paper presents an implementation of a basic GA, detailed in Algorithm 2. The algorithm
iterates through each pair of parents in the parental population using a f or loop (from Step 2
to Step 9). For each pair, the algorithm performs a crossover operation between the f ather
and mother , producing an offspring that inherits traits from both parents (Step 3). The
crossover rate is regulated by CRga . Then, in Step 4, the offspring undergoes a mutation
operator that introduces small, random changes to its genetic composition. The proportion of
random changes is controlled by MRga . In Step 5, the offspring’s AD and T D are evaluated
based on (3) and (5). If an offspring is deemed more competitive than any parent individual,
that parent is replaced by the offspring (Steps 6-8). This process repeats until all parent
individuals are considered. Once GA evolution is completed, the updated population Pg+1

and the best individual I ndividualbest,g+1 of this round are returned to the mainstream.
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Algorithm 2 Pseudo-code of GA.

1: Input: Pg{Xa
i,g,X

b
i,g}, MRga, CRga, Xbest,g

2: for each two parent individuals in Pg do
3: Perform crossover operator on two individuals and generate offspring

4: Execute mutation operator on offspring
5: Evaluate offspring according to (3) and (5)
6: if offspring is more competitive than one parent individual then
7: Replace the parent individual with offspring
8: end if
9: end for
10: Output: Updated population Pg+1{Xa

i,g+1,X
b
i,g+1} and Xbest,g+1

4.3 DEs adaptation hierarchy

As shown in Algorithm 3, DE uses varying mutation strategies during execution. As shown
in Steps 2-20, through the f or loop, each input individual of the previous generation enters
a cycle of DE: mutation, crossover , and selection.

Algorithm 3 DEs Adaptation hierarchy.

1: Input: Pg{Xa
i,g ,X

b
i,g}, CRde , F , Xbest,g

2: for each individual in Pg do
3: Select DE mutation strategy according to p1de,p

2
de,p

3
de,p

4
de,p

5
de,p

6
de

4: if SelectedDE = DE/rand/1 then
5: Generate mutant vectors Va

i,g, Vb
i,g according to (14)

6: else if SelectedDE = DE/best/1 then
7: Generate mutant vectors Va

i,g, Vb
i,g according to (15)

8: else if SelectedDE = DE/rand/2 then
9: Generate mutant vectors Va

i,g, Vb
i,g according to (16)

10: else if SelectedDE = DE/best/2 then
11: Generate mutant vectors Va

i,g, Vb
i,g according to (17)

12: else if SelectedDE = DE/current − to − rand/1 then
13: Generate mutant vectors Va

i,g, Vb
i,g according to (18)

14: else
15: Generate mutant vectors Va

i,g, Vb
i,g according to (19)

16: end if
17: Crossover ui and xi according to (20)
18: Evaluate fitness for vi according to (3) and (5)
19: Perform selection operation according to (21)
20: end for
21: Output: Updated population Pg+1{Xa

i,g+1,X
b
i,g+1}, Xbest,g+1

4.3.1 Random-prioritized adaptation

In DE, the mutation strategy plays a crucial role in exploring the search space and reach-
ing the optimal solution. Random-based mutation strategies (e.g., DE/rand/1, DE/rand/2,
DE/current-to-rand/1) and best-related mutation strategies (e.g., DE/best/1, DE/best/2,
DE/current-to-best/1) differ in how they select candidate solutions for mutation.

The random-based mutation strategies facilitate the search space exploration by selecting
random solutions from the population for mutation. This can help to escape from local
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optima and find diversified solutions. This approach is generally more robust to noise and
disturbances in the objective function since it relies on various mutation candidate solutions.
However, the convergence rate of these strategies may be slower than that of best-based
strategies, especially in optimization problems where exploiting the best solution is crucial
for convergence.

Best-based strategies focus on exploiting the best solutions in the population, leading to
faster convergence to the optimal solution. These strategies tend to produce higher-quality
solutions since they prioritize the best solution for mutation. However, the best-based strate-
giesmay prematurely converge to a sub-optimal solution, especially in problemswhere search
space exploration is crucial.

In summary, DEmutation strategies should be chosen based on the optimization problem’s
requirements for exploration and exploitation. Random-based strategies are better for explor-
ing extensive search spaces, while best-based strategies are better for converging toward the
best solution. Therefore, this paper uses an adaptive hierarchy to select the DE mutation
strategy dynamically. Random-based mutation strategies tend to be used more frequently in
the early stage of the evolution process. In contrast, best-based mutation strategies tend to be
used more regularly in the middle and late stages of evolution.

When updating the population with DE, each individual has the opportunity to select a
predefined mutation strategy based on the corresponding probability (Step 3). In the first
round, this probability is given by the initialization state. The subsequent probability pδ

de is
renewed every UpdateInterval generations by the (11), (13) and (12) in the mainstream.

smδ
de = nsδ

de

(nsδ
de + n f δ

de) + ε
+ ε (11)

where δ = 1, 2, · · · , 6 represents a corresponding mutation strategy in (14)-(19). nsδ
de and

n f δ
de are, respectively, the counts of successful and failed trial vectors corresponding to δ

during UpdateInterval generations.
This paper presents different evolutionary probability updatingmethods for random-based

and best-based mutation strategies. The aim is to increase the usage of the ‘random’ strategy
in the early stages of evolution and the ‘best’ strategy in the middle and late stages. There
are three types of “random" based mutation strategy (refer to (14), (16), and (18)), and the
corresponding probability of evolution pδ

DE |δ = 1, 3, 5 is updated using (12). Similarly,
there are three types of “best" based mutation strategies (refer to (15), (17), and (19)), and
the corresponding probability of evolution pδ

DE |δ = 2, 4, 6 is updated using (13).

pδ
de = 1

4
(

smδ
de

sm1
de + sm2

de + sm3
de + sm4

de + sm5
de + sm6

de

+ 1 − g

γ
)|δ = 1, 3, 5 (12)

pδ
de = 1

4
(

smδ
de

sm1
de + sm2

de + sm3
de + sm4

de + sm5
de + sm6

de

+ g

γ
)|δ = 2, 4, 6 (13)

4.3.2 Mutation operation

At generation g, DE employs the mutation and crossover operations to produce a trial
vector Ui,g for each individual vector Xi,g , also called target vector, in the current population.

For each target vector Xi,g in generation g, an associated mutant vector Vi,g ={
v1i,g, v2i,g , ..., vni,g

}
can usually be generated by using one of the following 6 strategies:

“DE/rand/1”:
Vi,g = Xr1,g + F · (

Xr2,g − Xr3,g
)
. (14)
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“DE/best/1”:
Vi,g = Xbest,g + F · (

Xr1,g − Xr2,g
)
. (15)

“DE/rand/2”:

Vi,g = Xr1,g + F · (
Xr2,g − Xr3,g

) + F · (
Xr4,g − Xr5,g

)
. (16)

“DE/best/2”:

Vi,g = Xbest,g + F · (
Xr1,g − Xr2,g

) + F · (
Xr3,g − Xr4,g

)
. (17)

“DE/current − to − rand/1”:

Vi,g = Xi,g + F · (
Xr1,g − Xi,g

) + F · (
Xr2,g − Xr3,g

)
. (18)

“DE/current − to − best/1”:

Vi,g = Xi,g + F · (
Xbest,g − Xi,g

) + F · (
Xr1,g − Xr2,g

)
. (19)

where indices r1, r2, r3, r4, r5 are random and mutually different integers generated in the
range [1, N P], which should also be different from the current trial vector’s index i . F is a
factor in (0, 2] for scaling differential vectors, and Xbest,g is the individual vector with the
best fitness value in the population at generation g.

If the value of some elements in the newly generated mutant vector exceeds the corre-
sponding upper and lower bounds, we deal it with the following rules. For population a, if
vaj,i,g < 0, replace its value with 0; if vaj,i,g > xupj , replace its value with a random integer in

(0, xupj ]. For population b, if vbj,i,g < 0, randomly replace its value with 0 or 1; if vbj,i,g > 1,

replace its value with1; if 0 ≤ vbj,i,g ≤ 1, then randomly and uniformly replace its value with

0 or 1 with probability vbj,i,g .

4.3.3 Crossover operation

Subsequently, the “binominal” crossover operation is performed between the generated
mutant vector Vi .g and its corresponding target vector Xi,g , resulting in a trial vector Ui,g =(
u1i,g, u2i,g, ..., uni,g

)
.

u j,i,g =
{
v j,i,g, i f (rand j [0, 1] ≤ CRde)or j = jrand)
x j,i,g, otherwise

(20)

where CRde is a user-specified crossover constant in the range [0, 1) and jrand is a randomly
chosen integer in the range [1, N P] to guarantee that the trial vector Ui,g will differ from
its corresponding target vector Xi,g by at least one element. For population a, j takes on the
values of 1 to n, and for population b, j ranges from 1 to r .

4.3.4 Selection operation

Next, the trial vectors’ fitness values are evaluated using (3) and (5). Then, a selection
operation similar to the one described in [30] is performed. If neither the trial vector nor it’s
corresponding target vector meet the privacy preservation requirement, the I ndividual with
a higher AD is considered more competitive. If only the trial vector meets the requirement, it
is considered more competitive. Finally, if both the trial vector and its corresponding target
vector meet the privacy preservation requirements, the I ndividual with a higher T D value
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replaces the target vector and enters the population of the next generation. The mathematical
expression of this operation is as follows:

Xi,g+1 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Ui,g, if AD(T (Xi,g)) > AD(T (Ui,g)) > t

Ui,g, if AD(T (Ui,g)) ≤ t, AD(T (Xi,g)) > t

Ui,g, if AD(T (Ui,g))≤ t, AD(T (Xi,g))≤ t, T D(T (Ui,g))>T D(T (Ui,g))

Xi,g, otherwise
(21)

This process continues until all target vectors in Pg{Xa
i,g, X

a
i,g} have been considered.

Finally, the updated population Pg+1 and Xbest,g+1 is output as the result of the algorithm,
capturing the improvements made through the iteration process.

5 Experimental setup

This section describes the experimental setup we used in our study, including the dataset,
hardware, software configurations, and specific steps taken to ensure reproducible and reliable
results.

5.1 Dataset and test cases

This study employs the Hospital Inpatient Discharges 2015 database1, which is an official
database provided by the New York State Department of Health. The database consists of 34
attributes, including Health Service Area, Facility Name, Age Group, Zip Code, and more,
and contains over two million records.

This paper extracted four datasets from the original database to validate the proposed
approach. Each dataset has different characteristics in QIDs and SA. These datasets involve
sensitive attributes such as whether a patient is at high risk for emergency hospitalization,
diagnosed with a mental disorder, an HIV-infected individual, or diagnosed with bronchial
or lung cancer.

Considering the potential impact of varying the number of QIDs, record counts, and the
balance of sensitive attribute values on model performance, we randomly construct four test
cases based on each dataset. These test cases differ in terms of the number of QIDs, record
counts, and the proportion of classes for the sensitive attributes. For specific details, please
refer to Table 1 to explore the number of sensitive attributes (nSA), the number of QIDs
(nQID), and the record count (nR).

In Figure 5, we present an analysis of the balance/imbalance about sensitive attributes
across each dataset. We examine diverse proportions of Class0 and Class1 for sensitive
attributes: spanning from roughly balanced (D9, D10, D11, D12) to extremely imbalanced
situations (D13, D14, D15, D16). Additionally, intermediate states are explored within the
spectrum of D1 to D8.

5.2 Algorithm implementation

The algorithms in our study, including HAEF and the compared algorithms, are implemented
in Python and executed on a local workstation running Windows 10 Pro. The workstation

1 https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/82xm-y6g8
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Table 1 Properties of 16 test
cases

Dataset Test case nQI D nSA nR

Dataset 1 D1 6 1 300

D2 6 1 600

D3 10 1 300

D4 10 1 600

Dataset 2 D5 6 1 300

D6 6 1 600

D7 10 1 300

D8 10 1 600

Dataset 3 D9 5 1 300

D10 5 1 600

D11 9 1 300

D12 9 1 600

Dataset 4 D13 6 1 300

D14 6 1 600

D15 10 1 300

D16 10 1 600

features an AMD Ryzen Threadripper PRO 3995WX CPU with 64 cores and a clock speed
of 2.70 GHz, along with 256 GB RAM, providing ample computational resources for the
experiments.

6 Experimental result

6.1 Comparison with existing approaches

Toassess the efficacyof the proposedHAEFalgorithm in achieving t-closeness,we conducted
a series of experiments comparing it to three existing algorithms: DFS [36], ID-DGA [31],

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16
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Figure 5 Proportion of Class0 and Class1 in the sensitive attribute of each test case
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and TLEF [32]. DFS uses a traditional depth-first traversal search method, while ID-DGA
and TLEF are advanced EAs developed for data anonymization.

The experiments included three different t-closeness thresholds: 0.1, 0.2, and 0.3. By
testing the performance of each algorithm under varying thresholds, we are able to gain
valuable insights into the effectiveness of the proposed method and how it compares to
existing techniques.

6.1.1 Parameter settings

The experiments set the maximum fitness evaluation number as ten times the product of the
number of quasi-identifiers and the number of records (10 × nQI D × nR) for the above
four methods. Please note that we do not care whether DFS has traversed all solutions; we
only define its maximum number of evaluations to facilitate fair comparison with EA-based
methods (ID-DGA, TLEF and HAEF). Therefore, the solution finally obtained by DFS may
or may not be optimal.

The population size (N P) for all three EAs is set to 30. For ID-DGA, TLEF and HAEF,
the GA related parameters crossover rate CRga was set to 0.5, while the mutation rate MRga

was set to 0.2. For TLEF and HAEF, the DE-related parameters scaling factor (F) is set
to 1.3, and the crossover rate (CRde) is set to 0.3. In addition, parameter UpdateInterval
related to the update frequency of the HAEF adaptive strategy is set to be updated every ten
generations. These parameter settings provided a standardized framework for evaluating the
performance and behavior of each algorithm in our experiment.

6.1.2 TD comparison

The experimental results are summarized in Tables 2, 3, and 4, which showcase the per-
formance of different algorithms for a specific number of evolutions. The T D values are
achieved at t-closeness thresholds of 0.1, 0.2, and 0.3, respectively. Each table displays the
average (Avg) and standard deviation (Std) of T D based on 25 independent runs for ID-
DGA, TLEF and HAEF on 16 test datasets. The DFS only needs to be run once, and its single
Result is listed.

In the tables, bold text highlights the maximum T D mean for datasets. The † symbol
indicates statistical significance test results using the Wilcoxon rank-sum test with a 0.05
level. Based on the results presented in the three tables, it is evident that the proposed HAEF
algorithm has significant advantages under various privacy constraints.

Compared to the baseline algorithms DFS, ID-DGA, and TLEF, the proposed HAEF
method demonstrates significant advantages under various privacy constraints. At t = 0.1,
except for D5, D7, D9, and D11, HAEF achieves the highest average TD on 12 out of 16
test datasets. Additionally, HAEF statistically outperforms the control group in 9 of these
test datasets (excluding D3, D6, and D15). At t = 0.2, the HAEF algorithm achieves the
highest average TD on 14 of 16 test datasets, except for D5 and D9. From a significance
testing perspective, HAEF performs better than the baseline in 13 test datasets (excluding
D3). At t = 0.3, HAEF attains the highest TD mean on most test datasets (excluding D5
and D14) and exhibits significant advantages in 11 datasets (excluding D1, D3, D9 and D11).
This underscores the substantial impact of HAEF’s performance in the majority of the test
datasets.

Figure 6 shows the overall performance (comparing the sum of TD values across 16 test
cases) improvement of HAEF compared to the other three algorithms at different t values.
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Table 2 T D comparison when t=0.1

Case DFS [36] ID-DGA [31] TLEF [32] HAEF
Result Avg Std Avg Std Avg Std

D1 5.32E+02 5.32E+02 0.00E+00 6.66E+02 1.42E+00 6.67E+02† 1.25E+00

D2 9.12E+02 9.26E+02 4.10E+01 1.20E+03 1.40E+02 1.26E+03† 1.26E+02

D3 5.94E+02 6.16E+02 0.00E+00 6.44E+02 4.89E+01 6.65E+02 6.43E+01

D4 1.06E+03 1.10E+03 0.00E+00 1.27E+03 4.39E+01 1.32E+03† 6.17E+01

D5 3.84E+02 3.85E+02 6.64E-01 4.42E+02† 3.23E+01 4.03E+02 2.12E+01

D6 9.19E+02 9.19E+02 0.00E+00 9.17E+02 1.32E+01 9.27E+02 1.41E+01

D7 4.82E+02 5.04E+02 0.00E+00 7.37E+02† 2.63E+01 7.34E+02 3.24E+01

D8 1.19E+03 1.23E+03 0.00E+00 1.38E+03 1.22E+02 1.44E+03† 8.71E+01

D9 5.65E+02 5.65E+02 0.00E+00 7.04E+02† 9.38E-01 6.91E+02 2.54E+01

D10 1.13E+03 1.15E+03 8.07E+01 1.42E+03 3.38E+00 1.43E+03† 2.16E+01

D11 5.55E+02 5.79E+02 0.00E+00 7.91E+02 2.89E+01 7.88E+02 3.30E+01

D12 1.12E+03 1.17E+03 0.00E+00 1.34E+03 8.93E+01 1.42E+03† 1.01E+02

D13 7.95E+02 7.95E+02 0.00E+00 1.04E+03 2.42E+02 1.16E+03† 1.98E+02

D14 1.51E+03 1.52E+03 4.84E+01 2.08E+03 1.38E+02 2.29E+03† 1.08E+02

D15 1.01E+03 1.03E+03 1.47E+01 2.69E+03 4.34E+02 2.83E+03 1.96E+00

D16 1.71E+03 2.14E+03 9.22E+00 2.80E+03 6.17E+02 4.46E+03† 1.33E+03

When t = 0.1, HAEF outperforms DFS, ID-DGA, and TLEF by 55.41%, 48.31%, and
11.75%, respectively; when t = 0.2, the improvements are 43.14%, 37.38%, and 7.91%,
respectively; and when t = 0.3, HAEF increases 44.79%, 37.59%, and 5.39% respectively.

Table 3 T D comparison when t=0.2

Case DFS [36] ID-DGA [31] TLEF [32] HAEF
Result Avg Std Avg Std Avg Std

D1 5.70E+02 5.74E+02 2.21E+01 6.83E+02 1.18E+01 6.89E+02† 1.34E+01

D2 1.14E+03 1.14E+03 0.00E+00 1.34E+03 6.50E+01 1.35E+03† 2.48E+00

D3 5.96E+02 6.54E+02 0.00E+00 6.66E+02 4.35E+01 7.02E+02 5.93E+01

D4 1.18E+03 1.30E+03 0.00E+00 1.57E+03 6.13E+01 1.58E+03† 4.70E+01

D5 5.32E+02 5.32E+02 0.00E+00 5.64E+02 3.43E+01 5.46E+02 1.51E+01

D6 9.89E+02 9.90E+02 2.09E+00 1.19E+03 8.18E+01 1.27E+03† 6.11E+01

D7 6.32E+02 6.54E+02 0.00E+00 7.57E+02 1.94E+01 7.68E+02† 1.44E+01

D8 1.49E+03 1.53E+03† 0.00E+00 1.52E+03 1.78E+01 1.53E+03† 3.43E+00

D9 7.15E+02 7.15E+02† 0.00E+00 7.05E+02 3.08E+01 7.14E+02 1.65E+00

D10 1.13E+03 1.23E+03 1.34E+02 1.52E+03 6.74E+01 1.56E+03† 2.85E+01

D11 6.30E+02 6.54E+02 0.00E+00 7.99E+02 3.85E+00 8.02E+02† 3.70E+00

D12 1.56E+03 1.61E+03 0.00E+00 1.67E+03 6.88E+01 1.73E+03† 3.48E+01

D13 8.32E+02 8.36E+02 2.14E+01 1.00E+03 1.46E+02 1.14E+03† 1.56E+02

D14 1.66E+03 1.66E+03 1.79E+01 2.28E+03 1.32E+02 2.36E+03† 5.52E+01

D15 1.08E+03 1.08E+03 3.39E+01 2.69E+03 4.28E+02 2.83E+03† 1.96E+00

D16 2.01E+03 2.29E+03 0.00E+00 3.26E+03 7.60E+02 4.40E+03† 1.19E+03
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Table 4 T D comparison when t=0.3

Case DFS [36] ID-DGA [31] TLEF [32] HAEF
Result Avg Std Avg Std Avg Std

D1 5.72E+02 5.76E+02 2.16E+01 6.82E+02 2.67E+01 6.84E+02 8.21E+00

D2 1.14E+03 1.14E+03 0.00E+00 1.40E+03 3.52E+01 1.42E+03† 2.01E+01

D3 5.96E+02 6.54E+02 0.00E+00 6.59E+02 3.72E+01 7.04E+02 6.30E+01

D4 1.33E+03 1.37E+03 1.78E+01 1.57E+03 6.79E+01 1.59E+03† 2.81E+00

D5 6.45E+02 6.45E+02† 0.00E+00 6.23E+02 3.31E+01 5.86E+02 4.52E+01

D6 1.14E+03 1.14E+03 0.00E+00 1.37E+03† 1.37E+01 1.37E+03† 1.61E+01

D7 6.32E+02 6.51E+02 8.90E+00 7.91E+02 6.45E+01 8.44E+02† 7.17E+01

D8 1.49E+03 1.54E+03 0.00E+00 1.56E+03 5.55E+01 1.61E+03† 5.85E+01

D9 7.15E+02 7.15E+02 0.00E+00 7.15E+02 1.16E+01 7.18E+02 1.77E+01

D10 1.43E+03 1.43E+03 0.00E+00 1.61E+03 1.26E+02 1.68E+03† 1.35E+02

D11 7.80E+02 8.04E+02 0.00E+00 8.07E+02 1.28E+01 8.07E+02 4.13E+00

D12 1.57E+03 1.61E+03 0.00E+00 1.77E+03 9.06E+01 1.81E+03† 1.00E+02

D13 8.32E+02 8.49E+02 4.24E+01 1.15E+03 1.30E+02 1.24E+03† 1.27E+02

D14 1.67E+03 1.70E+03 6.11E+01 2.40E+03† 1.01E+02 2.38E+03 2.80E+00

D15 1.08E+03 1.14E+03 2.25E+01 2.83E+03† 4.49E+00 2.83E+03† 1.96E+00

D16 2.02E+03 2.60E+03 6.98E+00 4.30E+03 8.96E+02 5.27E+03† 7.85E+02

Under the three privacy constraints,HAEF’s overall performance compared toDFS, ID-DGA,
and TLEF increased by an average of 47.78%, 41.09%, and 8.35%, respectively.

Looking at the overall trend, as t increases, the advantage of HAEF is diminished, espe-
cially when compared to TLEF. This is because a larger t value implies looser privacy
constraints and lower optimization complexity. Both HAEF and TLEF use the same evo-
lutionary methods, namely GA and DE. However, TLEF combines GA and DE using a
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Figure 6 The overall performance improvement of HAEF over the other three baseline models at different t
values
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mechanical parity-interleaved approach, while HAEF intelligently selects the evolutionary
path.

6.1.3 Convergence curves

This subsection presents convergence curves of DFS, ID-DGA, TLEF and HAEF at t = 0.2
in Figures 7 and 8. These curves offer valuable insights into the algorithms’ performance and
visually illustrate how the algorithms advance iteratively, giving us a better understanding of
their convergence behavior and optimization capabilities.

As shown in Figures 7 and 8, each sub-figure features a legend in the lower right corner,
showcasing the algorithms through distinct symbols and varying colors. The horizontal axis
denotes the number of fitness evaluations (NFEs), while the vertical axis corresponds to the
value of T D.

The convergence curves displayed inFigure 7demonstratemultiple instanceswhereHAEF
outperforms other algorithms, such as D4, D6, D7, D8, D10, D12, D13, D14 and D15. In most
cases, the results of HAEF and TLEF are significantly superior to DFS and ID-DGA, with
HAEF displaying exceptional performance overall, particularly in D6, D12, D13, and D15.
We also observe that HAEF lags significantly behind other algorithms in the initial iteration
phase. For example, compared to TLEF, which uses GA and DE in a balanced manner at each
stage, the convergence speed of HAEF is not dominant in the beginning stage of evolution.
This may be due to the intensive updating of GA at the beginning of its evolution. While this
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Figure 7 Comparison of the convergence curves of HAEF and comparison algorithms on the 9 test cases that
achieve the maximum T D mean
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Figure 8 Comparison of the convergence curves of HAEF and comparison algorithms on three test cases that
did not achieve the maximum T D mean

may slow the convergence rate, the overall algorithm is better suited to finding the global
optimal solution, thanks to the GA algorithm’s development capabilities.

In Figure 7, DFS shows fewer results in some subfigures (e.g., b, e, h). This is because
DFS has traversed all solutions within the maximum number of evaluations to obtain the
optimal solution.

Figure 8 shows the algorithm performance of HAEF on the datasets that did not achieve
the maximum T D mean (D5, D9) or the significant best (D3). It can be seen that although
HAEF did not achieve the maximum value, it provided a final result comparable to other
methods that achieved the maximum T D mean. This shows the robustness of the HAEF.

6.1.4 Population diversity

To further analyze the changes in the population diversity of the HAEF method during the
evolution process, this section uses Euclidean distance and Hamming distance to represent
the diversity of the G population and S population, respectively. A larger Euclidean distance
or Hamming distance between two individuals of the population means that the difference
between two individuals is more significant, and vice versa [40]. The sum of the Euclidean
distance or Hamming distance between each pair of individuals in the population indicates
the diversity of the population.

This paper calculates the changing trend of the diversity of the G and S populations of
HAEF and the compared EAs (ID-DGA and TLEF) on each test set when t=0.2 as the number
of fitness evaluations increases. As shown in Figure 9, three typical changing trends (D3,
D6 and D16) of each algorithm are listed. The subgraphs a, b, and c respectively represent
the Euclidean distance of the G population of each algorithm on the test set D3, D6, and
D16, and the subgraphs d, e, and f represent the Hamming distance of the corresponding S
population. As can be seen from the figure, regardless of population G or population S, the
HAEF proposed in this paper can maintain higher population diversity than the compared
EAs in the early and middle stages of evolution. A higher population diversity can enhance
exploratory search and help identify promising search regions.

6.2 Ablation test

This subsection examines the efficacy of various strategies employed in HAEF using ablation
experiments. Three comparison algorithmswere obtained by partially preventing the relevant
strategies from taking effect, whose performance is shown in Table 5. In the table, the bold
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Figure 9 Comparison of the population diversity curves of HAEF and compared algorithms on three typical
test cases

text highlights the maximum TD mean for datasets and the symbol † indicates the statistical
significance test results using the Wilcoxon rank-sum test at the 0.05 level.

Among them, the ‘without priority strategy’ approach halts the GA-prioritized adaptation
strategy in theGA-DE adaptation hierarchy and theRandom-prioritized adaptation in theDEs
adaptation hierarchy. The ‘without GA-DE adaptation’ scheme employs only 6DEs for adap-
tivemodifications. Finally, the ‘withoutDEs adaptation’ approach discards the other five vari-
ant DEs and solely utilizes the ‘DE/best/1’ mutation strategy and GA adaptive evolution.

In the ablation test, HAEF achieved the highest average TD on 13 out of 16 test sets
and had a significant advantage on 11. When comparing ‘without GA-DE adaptation’ and
‘without DEs adaptation’, both had advantages and disadvantages, but DEs are found to have
more advantages than GA in solving problems of optimal t-closeness. Combining GA and
DEs with a two-hierarchy adaptive strategy, the ‘without priority strategy’ scheme performed
better on more datasets than the ‘without GA-DE adaptation’ scheme (which only uses DEs
adaptation) and the ‘without DEs adaptation’ scheme. It achieved the optimal value and was
the second most competitive solution. When comparing the first two sets of data in Table
5, HAEF performed better than ‘without priority strategy’ on most sets, indicating that the
GA-prioritized and random-prioritized adaptation strategies proposed in the paper further
improved the performance of the algorithm.

7 Implication and limitation

The implication of this paper is significant from both academic and industry perspectives.
From the academic standpoint, the paper proposes a high-performance hierarchical adaptive
evolution framework. Given its advantages in optimization performance and versatility, it is
worth utilizing in other data-driven scenarios. Additionally, the proposed adaptive strategies
can be embedded into existing state-of-the-art evolutionary algorithms for further improve-
ment. For the industry, this paper showcases a practical and outstanding application of
evolutionary computation in data anonymization, leading to the potential utilization of exist-
ing data publishing systems.
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While the proposed HAEF method in this paper has made significant progress compared
to the baseline algorithms, one limitation is that it only considers the static privacy release of
data, making it inapplicable in dynamic data publishing scenarios. A potential future work
could be to adapt the proposed HAEF method to dynamic data systems.

8 Conclusion

In conclusion, the increasing demand for data release and the simultaneous need for privacy
protection have emphasized the importance of PPDP. This problem remains challeng-
ing, especially with complex datasets with ineffective traditional traversal search methods.
Although EAs show promise in tackling this challenge, they require refinement when applied
to PPDP. This study introduces a new approach, the HAEF, which optimizes the t-closeness
anonymitymethod by utilizing attribute generalization and record suppression.HAEF’s inno-
vative two-layered design, consisting of a GA-prioritized adaptive strategy in the first layer
and a ‘random’ prioritized adaptive strategy in the second layer, enhances exploration and
search capabilities. Benchmark tests demonstrate HAEF’s superiority over traditional depth-
first traversal search algorithms and the outperformance of existing algorithms like ID-DGA
and TLEF on most datasets. Ablation experiments further confirm the effectiveness of var-
ious strategies within the framework. The proposed framework significantly improves data
release efficiency, ensuring privacy, security, andmaximumavailability. Future research could
explore extending HAEF’s application to other privacy-preserving techniques and evaluating
its scalability to larger datasets.
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