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ABSTRACT High Impedance Faults (HIFs) are recurring events in electrical Distribution Systems (DSs)
and occur by the contact between energized conductors and high impedance surfaces. HIFs may pose hazards
to living beings and cause bushfires. However, the HIF protection has not been completely solved due to
the small fault current and varying impedance, inhibiting traditional protection techniques from functioning
correctly. In the literature, researchers have mainly focused on detection techniques. Thus, the development
of HIF Location Methods (HIFLMs) is recent, and evidences for conclusive solutions are still lacking.
Moreover, to this date, no existing study reviews the main challenges concerning HIFLMs in DSs. This paper
proposes a systematic analysis of the common stages to design the main existing HIFLMs. The strategy is
evaluating the similar characteristics that pose a common research path regarding challenges faced in real-
world conditions. Additionally, this paper proposes a case study to assess the best input signals, metrics,
and machine learning-based decision algorithms of a new HIFLM. The results are promising, with high
identification rates, even in noisy conditions. The methodology can help to select the datasets for supervised
learning-based HIFLM.Highlighting the state-of-art of current methods and support development of HIFLMs
are this paper’s main contributions.

INDEX TERMS Distribution system, high impedance fault location, Stockwell transform, random forest.

I. INTRODUCTION

H IGH Impedance Faults (HIFs) represent 5 to 20% of
fault occurrences in Distribution Systems (DSs) [1].

They occur due to the contact between energized conductors
and high impedance surfaces, such as vegetation, asphalt,
sand, grass, or cement. They can occur when conductors
break [2] or when the conductor contacts vegetation [3]. One
of the main problems related to HIFs is the risk of exposing
humans and animals to electric shock and causing bushfires
[3]. HIFs can also cause interruption of the electricity supply
when it results in a conductor rupture.

Due to the previously mentioned issues, it is essential to
develop solutions for HIF protection on DSs. The interest

in developing studies regarding this type of fault started in
the 70s [3]. Since then, efforts have been mainly focused
on fault detection. However, a complete protection scheme
should also include the fault location, which decreases the
time needed for utility maintenance teams to identify the fault
location and restore the energy supply.

There are several constraints to the HIF location, such
as the fault’s non-linear impedance and low fault current.
Typically, in low impedance faults location techniques, the
error in estimation due to load current variation after the
fault can be ignored. However, for HIFs, this consideration is
inaccurate, as the fault current is usually lower than the load
current. Moreover, due to the nonlinearity and low amplitude
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of the HIF current, the uncertainty in the estimated distance
is considerable, increasing the chance of errors [4].

When analyzing the existing HIF Location Methods
(HIFLMs), there is no consensus regarding a new algorithm’s
tests. A wide range of metrics and decision algorithms are
used to locate the fault. In the literature, there are comprehen-
sive studies regarding HIF detection [5], [6]. These studies
also comprise a few HIFLMs, but they do not perform a
specific analysis of their challenges and development stages.
Thus, there are no previous studies concerning a critical
and comprehensive comparison of existing HIFLMs in DSs.
Hence, this paper’s extended version performs an unprece-
dented critical review of these techniques. The proposed
approach is to identify the main steps addressed to develop
each method and, by comparing them, outline the charac-
teristics that make an algorithm more appropriate to real-
world conditions. Hence, this study can contribute to establish
the state-of-the-art, also performing a review of commercial
solutions. Furthermore, to help researchers develop new and
practical HIFLM, this paper also proposes an analysis of
training and test data for a new HIFLM. The methodology
aims to establish the best approach for a supervised-learning-
based HIFLM regarding its training/testing data and noise
levels. The analysis consists of several tests, selecting the
input signals, extracting the metrics, and determining the
features. The results show high identification rates, revealing
the best solutions for a study case.

Accordingly, this paper has been organized as follows.
Section II exhibits the critical review of HIFLMs. Section III
presents the proposed analysis methodology, and Section IV
shows the results. Lastly, Section V concludes the analysis.

II. A REVIEW ON THE STAGES TO DEVELOP HIFLMs
The selected HIFLMs discussed in this paper were published
on major journals and conferences in the area. There are few
existing techniques for HIF location, as it is a recent research
field, starting in 2012. The selected papers aim at localizing
HIFs in DSs and present comprehensive tests for their real
applicability. Their main aspects are described in this paper.

After selecting the techniques, the review methodology
was addressed, identifying similar characteristics among
them. Overall, HIFLMs are developed considering the fol-
lowing stages: i) data acquisition through simulation or real
tests; ii) acquired data processing, iii) metrics extraction, and
iv) a decision algorithm using a mathematical technique or a
classifier to locate the fault [7]. Thus, this section presents an
analysis of the stages executed when developing and testing
HIFLMs. The purpose is to conduct a critical study, identi-
fying the challenges and tests required to delimit a HIFLM
application.

A. REVIEW METHODOLOGY
The first task in this study was selecting the main HIFLMs in
the literature. In the sequence, similar characteristics among
the techniques were identified. Overall, the main conclusions
regarding the similar stages of the selected HIFLMs are:

• Stage I - data acquisition: Deals with the ways to
obtain an HIF signal to test an algorithm. The first way
is by using a simulation software to model the HIF
computationally. The second one is through tests in real
situations. For both approaches, it is necessary to specify
how the fault is applied and the signal’s measurement
location.

• Stage II - data processing: Assesses the signals mea-
sured during HIFs in different situations, such as when
varying the system loading, the existence and penetra-
tion level of Distributed Generators (DGs), the number
of measurement devices, the fault location, and the noise
level. In general, these are the conditions to that new
HIFLMs can face in a practical application.

• Stage III - metrics extraction: Investigates the metrics
extracted from the signals. They are the researchers’
tools to locate the HIF in a given technique. Conse-
quently, comparing and studying them can reveal the
best approaches for new HIFLMs.

• Stage IV - decision algorithm: Defines the decision
algorithm of HIFLMs. It evaluates how the location is
estimated, the possibility of multiple estimations, and
the threshold determination method, if applicable.

The following sections analyze each stage, and present a
comprehensive comparison among different methods, which
propose HIFLMs in DSs with sufficient information to
make a fair comparison. The strategy is listing the elements
that imply safe and effective protection and summarizing
the existing HIFLMs characteristics. Hence, a critical and
detailed analysis is developed.

B. STAGE I: DATA ACQUISITION
Firstly, HIFLMs require input data. Thus, it is necessary to
acquire real signals in a field or use a software-based model
that emulates the HIFs. Performing real HIF measurements
can often be difficult, especially considering different condi-
tions, such as fault location and system loading. Nevertheless,
the HIF must be adequately modeled to assess a fault location
algorithm by using simulations.

The models must represent the HIF’s characteristics pre-
viously established in the literature. The first characteristic
is the small fault current magnitude. Also, the HIF current
is distorted due to the nonlinear electrical arc resistance and
implies in low order odd harmonics in the signals. The HIF
currents are also asymmetric, resulting in even harmonics.
Another characteristic is the build-up, given by the progres-
sive increase in current amplitude at the fault’s beginning. The
shoulder characteristic represents the periods in which the
fault current amplitude does not present significant changes
for a few cycles. There is also modulation, which is the
progressive variation of the current amplitude over time.
Moreover, HIF currents have the avalanche characteristic,
which are the periods the current amplitude keeps zero when
the voltage signal crosses zero until it reaches a sufficient
value for the current to flow. It generates high-frequency
components in HIF signals. Lastly, there is the intermittence,
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the period when the fault current extinguishes, with sub-
sequent re-ignition. It is noteworthy that all these features
occur randomly along the HIF due to the random nature of
the electric arc. All these characteristics can be seen in a
typical HIF current waveform in Figure 1 and are thoroughly
described in [8].

FIGURE 1. Main HIF characteristics.

TABLE 1. HIF representation in the tests in the literature.

Table 1 summarizes the HIF representation in the selected
HIFLMs’s tests. Only two techniques use real signals.
In some methodologies, the HIF was simulated using only
a high-value resistance. However, it may be insufficient,
as it does not provide the main HIF characteristics. Further-
more, the evaluation performed by [1] and [9] used fault
resistances from 60 � to 100 �, and 19 �, respectively.
These impedance values can be considered low for HIFs in
medium voltage DSs. Thus, their practical application may
be affected. Table 1 also shows that some techniques were
tested using a non-linear model. Despite representing resis-
tance variation and phenomena such as avalanche, buildup
and modulation, these models do not randomly vary the
characteristics (which occurs in real signals). Consequently,
it can affect the HIFLMs performance in real conditions.
In [10], the tests used both an HIFmodel and real signals. The
results revealed that the technique’s success rate decreases
when using real signals, proving that considering the actual
HIF random characteristics is crucial for evaluating HIFLMs.

Some techniques, such as [11] and [12], consider an analytic
fault model in the methods, which makes considering the HIF
randomness difficult. In this situation, using an accurate HIF
model becomes even more relevant.

C. STAGE II: DATA PROCESSING
This section presents the main issues in DSs that can affect
HIFLMs, such as the input signal, sampling frequency, elec-
trical system size, number of measurements, noise, and DGs.

1) THE INFLUENCE OF THE INPUT SIGNAL AND
SAMPLING FREQUENCY
Table 2 summarizes the signals used as input data for the
HIFLMs. Most approaches use both voltage and current sig-
nals. Current transformers might respond as low-pass filters,
resulting in the loss of part of the signal information. Thus,
this aspect can restrict the use of current signals. In contrast,
using voltage is only efficient when there is a sufficient volt-
age drop between the measurement and fault location. There-
fore, as the HIF current amplitude is small, the measured
voltage may not be affected [25]. Reference [24] proposes the
use of magnetic field for HIF location. Nevertheless, using
this signal requires specific devices for the measurements,
as it is not usual in protection schemes.

TABLE 2. The input electrical signal, sampling rate, and software
used in the tests of HIF location techniques.

Table 2 also shows different sampling frequencies used
in HIFLMs. When using a low sampling rate, only the
HIF characteristics that impact the signal’s low-frequency
components can be analyzed. Consequently, HIFLMs based
on high-frequency characteristics require a high sam-
pling rate. However, the measurement equipment becomes
more expensive, and its computational burden increases.
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In general, as seen in those papers, there is no consensus
on the optimal sampling frequency used to acquire the input
signals of HIFLMs.

Additionally, Table 2 addresses the software used for test-
ing the techniques. The purpose is to inform the reader on
the most used simulation software for testing new HIFLMs.
As shown by the table, these are transient modeling pro-
grams rather than steady state or power flow-only software.
An example is the Alternative Transients Program (ATP)
[26], which is widely employed for studying electromagnetic
transients. It is a version of the Electromagnetic Transients
Program (EMTP) [27], which is also used for this type of
analysis. Another software for this purpose is PSCAD [28],
which is used in [9]. There are also tests with the Real-Time
Digital Simulator (RTDS) [29]. It uses real-time hardware to
perform the algorithm calculation, similar to practical appli-
cations. It is worth highlighting the use of Matlab [30], as a
circuit simulator via Simulink and a tool for processing the
algorithms. Moreover, other software are the PCFLO and the
PowerWorld [31], used in [19] and [1] respectively.

2) THE INFLUENCE OF THE METERS POSITION ON
HIFLMs
Usually, DSs have measurement devices in the substation.
However, due to HIFs’ low fault current, identifying them
using a single meter becomes challenging. The current mea-
sured at the substation is the sum of the HIF and the system
load current. Also, the voltage at the fault location is dif-
ferent from the measured voltage due to the line’s voltage
drop. Thus, many techniques require using multiple meters in
different system locations. Nonetheless, tests concerning the
HIFs incidence in several areas must be conducted to delimit
the region the method can locate the fault.

Table 3 outlines the systems size and measurement devices
in HIFLMs tests. Most methods were tested on small systems
with less than thirteen nodes and a single measurement loca-
tion. The algorithms tested on large systems used more than
one measurement location. The exception is the 1436-node
system [10], which uses just one meter. However, the HIF
was simulated at a single location.

The higher the number of meters in relation to the system
size, the easier it is to locate the fault. However, the utilities
need to invest more in measurement devices, increasing the
costs. Also, the measurement allocation requires using an
optimization algorithm or a statistical analysis.

3) THE INFLUENCE OF DISTRIBUTED GENERATORS ON
HIFLMs
Usually, DSs have a radial topology. Therefore, protection
techniques’ analysis often considers a unidirectional power
flow. However, there has been an increasing connection of
DGs in distribution systems. The DGs influence the general
performance of the DSs operation, causing a bidirectional
power flow. From this perspective, the protection system
structures have to change due to the modification in the

TABLE 3. Test system size and number of meters used in HIF
location techniques in the literature.

fault current amplitude and direction [32]. Thus, it has led
to a complete revision of the methods by which DSs should
be monitored, controlled, and protected [33]. Furthermore,
inverter-based DGs can inject harmonics into the system,
which may increase the non-linearity on the current and volt-
age waveforms in DSs [34]. As there are HIFLM approaches
that rely on the signals’ frequencies (harmonics), they can be
affected by the presence of DGs.

Fault protection devices have to deal with different types
of faults, operating conditions, imbalances, load variations,
and topology modifications (which may increase with the
DGs) [7]. These phenomena affect techniques that use the
system’s power/current flow to identify the fault. Addition-
ally, since the DGs’ penetration levels can vary over time,
techniques based on decision algorithms that require train-
ing may be affected. This last aspect will be addressed in
Stage IV. Among the selected HIFLMs, just the approaches
presented in [7] and [18] consider the presence of DGs in the
system. Only [7] analyzed the influence of DG penetration
level variation on the algorithm’s operation. This analysis
becomes increasingly important for modern DSs. In these
cases, the DGs presence had little affected on the accuracy.
Nonetheless, there was no analysis involving inverter-based
energy resources.

4) THE NOISE INFLUENCE ON THE MEASUREMENTS
The signals measured in real DSs usually have noise. Thus,
it is essential to consider their influence when developing
protection techniques. The noise may impose a low impact in
approaches that use only the signal’s fundamental component
as a metric. In contrast, techniques based on high-frequency
components may be more affected by it [18]. The noise
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in DSs signals can be modeled as white Gaussian noise
(WGN). It usually has a Signal to Noise Ratio (SNR) between
50 to 60 decibels (dB) [35]. However, some HIFLMs are
tested with higher noise levels to evaluate their noise immu-
nity.

Table 4 outlines that most HIFLMs are not tested under
noisy conditions. Among the tested algorithms, there is no
consensus on the noise level. An ideal approach is accom-
plished by [24], which evaluated the techniques in a noise
range, delimiting the method applicability.

TABLE 4. Noise level in HIF location techniques’ tests.

D. STAGE III: METRICS USED IN HIFLMs
Table 5 summarizes the main metrics and tools used to extract
or measure them in the selected HIFLMs. In general, the met-
rics are based on comparing measurements among devices or
signal processing techniques.

One of the signal processing techniques used in the litera-
ture is the FT. Despite being widely employed in protection
relays, it is a frequency domain transform, which consid-
ers the signal stationary in a fixed window. The frequency
information calculated by FT is an average over the window.
Therefore, the location of a specific transient on the time
axis is unknown, as it is not related to the temporal domain
[36]. Additionally, there is no consensus regarding the size
and shape of the window used in FT-based transforms. As a
result, these issues must be addressed when using this tech-
nique in a protection algorithm. Another method used to
extract the metrics in HIFLMs is the WT. It is a time scale
domain technique that captures the instant in time of the
signal’s frequency components [25]. Signalsmeasured during
HIFs usually present discontinuities near the current’s zero-
crossing region due to the avalanche effect, which can be
identified by changes in the coefficients obtained throughWT
[36]. Despite the listed benefits, it is considered a challenge to
design a systematic protection technique based onWT due to

TABLE 5. Extraction technique and metrics used in HIF location
methods in the literature.

the narrow high-frequency support and subjective selection of
the mother wavelet. Also, there is a resolution loss since the
signal’s samples are divided by two at each decomposition
level [25], [36]. However, this problem can be solved by using
the maximal overlap discrete wavelet transform (MODWT),
for example, which does not present undersampling problems
when increasing the decomposition level [8]. Table 5 also
reveals that the zero-sequence current can be used as a metric
to locate the HIF, as the HIFs are usually a single or two-phase
event and can unbalance the system. Such methodologies
must consider tests in steady-state unbalanced systems and
the HIF incidence on end-of-branches nodes.

Table 5 shows that metrics based on the system’s power
flow are also used for HIF location. In these techniques, the
metrics are given by the system’s modeling and the variations
in the measured current and voltage signals. It is important
to carefully analyze the system and HIF modeling when
using such a strategy. Furthermore, the measurement can
be performed along the system using Phasor Measurement
Units (PMUs), Power Line Communication (PLC), and smart
meters, as in [7], [14], and [16], respectively.

The PLC-based approaches are one of the few exist-
ing active methods for HIF location. Devices are set in a
transmitter-receiver scheme, where a signal is injected at
one line point and received at another. Multiple transmitters
can be allocated in the system. Then, the fault position is
estimated by analyzing the transmission quality in different
network parts. Nevertheless, installing transmitters at every
lateral branch is not economically feasible. Thus, using the
received signal to estimate the channel (power line) char-
acteristics can be more suitable. As a fault can create a
discontinuity, it can be estimated by changes in the PLCs
channel’s characteristics. The authors of [37] elaborate on
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how this can be achieved, but no practical implementation
was found. PLCs have ongoing and established use in high-
voltage systems, but their use in medium voltage is less
frequent. Nonetheless, it has potential. The application of
PLCs can expand, which implies that higher sampling rates
are one of the most crucial factors in enhancing the DSs’
monitoring and diagnostic capabilities.

E. STAGE IV: DECISION ALGORITHMS OF HIFLMs
After extracting the metric, the techniques decide the HIF
location using a specific algorithm, which is summarized
in Table 6. Note that methods that use multiple meters can
indicate differences between the devices’ metrics to decide
the fault location. Nevertheless, there are also HIFLMs based
on machine learning techniques, which can be robust for the
HIF location. They present higher identification rates than
analytical techniques and can be promising for this difficult-
to-solve protection. However, they require training, which
demands a large database, and the HIFLMs must also con-
sider changes in the system’s topology and load variation for
their evaluation. Additionally, some methodologies indicate
the distance between the meter and the fault, and other meth-
ods assign the HIF occurrence region. Overall, the purpose is
to ensure that utility maintenance teams quickly dislocate to
the correct fault location.

TABLE 6. Decision algorithms for the determination of the region
or distance of the fault in HIF location methods.

Additionally, Table 6 reveals that most techniques use
an adaptive threshold (the threshold varies according to the
situation/system without requiring direct intervention). The
extensive use of adaptive thresholds occurs because most
techniques compare measurements in the same system to
determine the fault location. Thus, even if changes occur in
the system, by comparison among meters, the HIF location

is correctly determined. However, there is a need to establish
a methodology to determine the quantity and location of the
measurement devices. Moreover, it is important to point out
the problem of multiple estimations in the fault location.
It occurs in systems with various branches, where there may
be zones with the same electrical distance to the meter [12].
Consequently, there are methods that offer alternatives to
prevent multiple estimations, such as [12].

F. REVIEW ON COMMERCIAL SOLUTIONS
Despite being elaborate, the presented approaches are not
prevalent or part of a standard use from power utilities.
Commercial solutions are still in early development, and
most are unattractive due to their high implementation and
operational costs. Standard practices such as including more
selective relay schemes, reclose blocking, fast fuse curves,
and sensitive ground protection are considered best practices
for HIFs [38], but the fast location is still unsolved. Commer-
cial products often are in two categories: distribution level
micro-PMUs or high-frequency sensing from line sensors.
Both procedures rely on multiple measurements along the
network because the load current is lower at lateral feed-
ers, making the small HIF current more detectable. The
high-frequencies components get attenuated due to system
reactance, requiring a measurement close to the fault.

Schweitzer Engineering Laboratories (SEL) presents a
whole-system integration for addressing HIFs and locating
them [38]. However, these functionalities come with crucial
considerations. For HIF detection, SEL recommends their
proprietary Arc Sense technology based on interharmonics,
which is embedded in their recloser device [38]. The loca-
tion is proposed for the downer-conductor case with sensors
installed in lateral feeders that transmit current readings to a
receiver closer to the substation [39]. They also present an
option using private 900-MHz LTE or DNP3 wireless net-
works to achieve broken conductor detection before it touches
the ground. Nevertheless, there is evidence that not all HIF
are arcing faults presenting inter-harmonic frequencies [40],
and transmitters spacing appears to be limited to 400 meters
distance. Arguably, any sufficient distributed monitoring sys-
tems can be used for localizing HIFs if those result from
broken conductors. Fault signals are stronger close to the
fault, thus allowing a better estimation of its location. This
approach of making multiple measurements financially fea-
sible was adopted by SilverFern Power, which developed
self-powered sensors to be installed in several locations in all
phases [41]. The devices are effectively micro-PMUs that can
record waveforms and transmit system metrics through 3-5G
networks. As the devices are closer to the load, they have
a higher chance of detecting HIFs. Zero sequence currents
can also be recorded. However, given the latency of cellular
networks, it is arguable that the trip signal will not be sent
before the conductor touches the ground. Moreover, the com-
pany does not mention any technology for HIFs generated by
contact with vegetation, for example.
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Another approach is using high-frequency measurements
to find signatures created by such faults, which was adopted
by [42], through their sensor device that sits under power
lines with antennas that capture the high-frequencies compo-
nents. As high-frequency signals suffer high attenuation, such
devices must be installed every ten kilometers. The signals
are pre-processed at the edge and then sent to the cloud for
further decision-making. The main advantage is that it can be
used for other goals, such as predictive maintenance and early
fault detection. The main downside is that it cannot be used
as a tripping device due to its processing latency.

In general, the three described approaches illustrate the
state of the commercial solutions for theHIF location: devices
are in an early phase of production with standard practices
still to be objectively set.

G. OVERALL REVIEW
This section summarizes the main conclusions regarding the
performed review of HIFLMs.

The analysis revealed that most HIFLMs’ tests are not per-
formed using actual HIF signals. Consequently, HIF models
are employed to emulate the fault behavior. Additionally, the
test systems usually have a low number of buses or present
several meters spread throughout the circuit. The study also
proved the importance of considering the influence of noisy
signals, as many methodologies are based on the signal’s
frequencies extracted by signal processing techniques. More-
over, machine learning-based decision algorithms achieved
high accuracy.

Hence, the next sections aim at helping to solve some of
the issues new researchers can face when developing new
HIFLMs. The first one regards the input signal, whether
it is best to use the neutral or phase current signals when
measuring them in one location and considering different
noise levels. The second analysis focuses on establishing the
best metrics based on the signals’ frequencies to be used as
input features. Lastly, the study comprises the best use for a
machine learning-based decision algorithm.

III. PROPOSED METHODOLOGY FOR HIF LOCATION
The critical review concluded that there is no consensus
regarding the input features, metrics, and decision algo-
rithms of HIFLMs. Thus, aiming to help researchers to
develop efficient tools, this paper proposes a new method-
ology for HIF location. The approach is based on selecting
the input features that represent the HIF location and using
a machine learning algorithm to provide a robust decision
algorithm. The goal is to indicate the best input features of
a HIFLM.

Figure 2 exhibits the proposed method’s main steps. In the
analysis, considering the HIF incidence at different system
buses, the phase and neutral current measurements are kept
at the system substation. The goal is evaluating which input
signal ismore relevant toHIF location. The analysis considers
the input signals with different noise levels (as common
for real DSs). After the measurement, the harmonics of the

FIGURE 2. HIF location method main flowchart.

signals are extracted through Stockwell Transform (ST) at
each cycle. Then, the harmonics’ energy at each cycle is
calculated. The harmonics’ energies are the input features
used for the HIF location. To avoid overfitting and increase
efficiency, an analysis on a feature-selection algorithm to
select the metrics is presented. Finally, the Random Forest
algorithm (amachine learning technique) is used as a decision
algorithm for the HIF location. A study for its best use is also
accomplished.

A. HIF SIMULATION
The authors in [2] sampled real HIF currents in a medium
voltage test system specially built for testing new HIF protec-
tionmethods. Themeasurement occurred at the fault location,
and the tests consisted of the conductor rupture with subse-
quent contact with different types of soil, such as sand, gravel,
asphalt, cement, and clay, both wet and dry. The authors
made the data available, which were used in this paper’s tests.
Some of the current waveforms are illustrated in Figure 3.
Note that the currents have low amplitude, are non-linear, and
have random characteristics, inhibiting the traditional fault
location algorithms to proper functioning.

According to [43], current sources can be used to model
harmonic-producing loads. Thus, the field-recorded HIF sig-
nals were inserted into the system using current sources
controlled by Models in the ATPDraw (shown in Figure 4).
The HIF simulation model also contains a switch to simulate
the conductor breakage and another to connect the current
source to the system.

The test system used in the study is the IEEE 34-node
test system, whose single-line diagram is in Figure 5 [44].
This system was modeled through the ATP software [26].
All measurements were performed at bus 800 (the substa-
tion). The feeder has a total length of 55 km. Thus, dividing
it into regions facilitates fault location. The regions were
divided based on the electrical distance between the buses and
the substation, considering the main three-phase branch and
excluding the one-phase side branches. The main three-phase
branch has a total impedance of almost 50 �. Thus, each
region has between 5 and 10 �.
At each simulation, both phase and neutral currents

obtained in the ATP software were transferred toMATLAB to
carry out the next steps of feature extraction and HIF location
tests.
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FIGURE 3. Some of the real HIF signals used in the tests, for HIFs on (a) clay, (b) gravel and (c) sand.

FIGURE 4. Real HIF currents insertion scheme.

FIGURE 5. IEEE 34-node test system.

B. METRICS EXTRACTION
The HIF current signals present non-linear characteristics
due to the electric arc. Consequently, the frequency spectrum
content extracted from the current signals measured during
the HIF can be used to locate it. The metrics extraction
in this analysis is accomplished by using the ST, a mul-
tiresolution spectral analysis technique that presents a great
representation for time-varying harmonics [45]. It combines
WT time reference ability with the FT capability of providing
frequency information using aGaussian-shapedwindow [45].
The inputs are the current signals. As output, it provides a
matrix containing each signal sample’s amplitude and phase.
In this study, the ST is calculated at each one-cycle window,
so the matrix dimensions are the harmonic orders per signal’s
samples. In the sequence, the energy of each harmonic is
calculated at each cycle using Parseval’s Theorem [46].

C. FEATURES SELECTION ALGORITHM
As previously mentioned, this paper uses a machine learning
technique as a decision algorithm to localize the HIF, using

harmonics as input. The proposed study’s metrics are the
harmonics’ energy at each cycle. However, not all harmonic
orders may be necessary as input features to provide adequate
accuracy.

In this sense, feature selection algorithms are often used
to reduce the computation complexity and dimensionality
in machine learning applications. In this paper, the FEAST
toolbox [47] was used to select the most relevant features
(the harmonics’ energy) for theHIF location. Among the tool-
box’s feature selection algorithms, the minimal-redundancy-
maximal-relevance (mRMR) is one of the best. Proposed by
[48], this method selects the features with high relevance
while maintaining a low redundancy among the selected fea-
tures. Even though the method creates a rank of the given
features, the number of features is not defined. Nevertheless,
the features higher in rank are defined as the best ones. Hence,
the mRMR was used to select the harmonic orders that best
represent the HIF location in the system and can be used as
input features for the decision algorithm. The study analyzes
the real necessity of using the feature selection algorithm.

D. HIF LOCATION DECISION
The proposed HIFLM’s decision technique is based on the
Random Forest algorithm. It was chosen due to its posi-
tive performance after a set of tests with different machine
learning-based algorithms. Random Forest is one of the most
powerful machine learning techniques. It is based on an
ensemble of multiple individual decision trees (thus creating
a forest) [49]. Every decision tree is trained independently,
using a randomly selected part of the training dataset. After
training all the trees, the decision is given by the selec-
tive multi-voting method [49]. Its input data consists of the
selected harmonics extracted from the HIFs’ current signals.
The algorithm outputs the region of the HIF location.

IV. TESTS AND RESULTS
This paper’s tests consider the current measurements dur-
ing steady-state and the fault. In real conditions, the signals
measured in DSs are noisy, varying between 50 and 70 dB
[35]. Thus, the tests consisted of non-noisy and signals with
a WGN with an SNR of 60 dB and 50 dB.

The HIF location algorithm assumes that the fault was
previously detected. The algorithm input data consists of the
first 1 s of the HIF. The signals used in the tests were acquired
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with 128 samples per cycle (7680 Hz). Therefore, according
to the Nyquist Theorem, it is possible to obtain the up to
the 64th order. Thus, for the signals acquired in the 60 Hz
system during 1 s, 60 energy samples were obtained for each
harmonic order as the Random Forest input features.

Overall, the analysis used 33 HIF signals applied to
18 three-phase buses with three noise levels, resulting in
1782 phase and 1782 neutral current signals. When using
the energy of the amplitude of 64 harmonic orders for 1 s,
60 data samples for each harmonic result in 106,920 data
for phase and neutral currents. Then, the dataset was divided
into training and testing, which consisted of 55.55% and
44.44% of the data, respectively. HIFs on the terminal buses
of each region were used in the training dataset, while HIFs
on intermediate buses were utilized for testing. For example,
in Region 2, HIFs on buses 812 and 816 are used for training,
and buses 814 and 850 are used for testing.

The decision algorithm used in the proposed methodology
is based on using a single Random Forest to classify the
data among the five pre-defined regions (see Figure 5) or
using five independent Random Forests, each one specialist
in a region. For both approaches, the total number of deci-
sion trees was equal to 100. Furthermore, the decision algo-
rithm’s input data consists of using or not a feature selection
algorithm to indicate the harmonics that best represent the
database. As a result, the analysis is divided into four main
cases to enable a comparison study:

• Case I: Decision Algorithm- One Random Forest; Input
Data - The first 8, 16, 32, and 64 harmonic orders, with
no feature selection;

• Case II:Decision Algorithm-OneRandomForest; Input
Data - The first 8, 16, and 32 selected harmonic orders
using the mRMR algorithm;

• Case III: Decision Algorithm- Five specialist Random
Forests; Input Data -The first 8, 16, 32, and 64 harmonic
orders, with no feature selection;

• Case IV: Decision Algorithm- Five specialist Random
Forests; Input Data- The first 8, 16, and 32 selected
harmonic orders using the mRMR algorithm;

Thus, this section shows the results for each case, dividing
the phase and neutral current analyses for each noise level.

A. CASE I - ONE RANDOM FOREST WITHOUT FEATURE
SELECTION
Table 7 shows the accuracy achieved using the first 8, 16,
32, and 64 harmonic orders as input data for the single
Random Forest to classify the HIF location. It reveals that the
success rate is above 91% when training and testing with the
same noise level using all the 64 harmonic orders available.
The lowest accuracy was for the training with 50 dB noise
and testing with no noise. When analyzing the 8, 16, and
32 first harmonic orders, the best accuracy was achieved
when training with the non-noisy dataset. Using only the
first eight harmonic orders implied the worst results. Using
32 or 64 imply on similar accuracy. There was no significant
difference between the phase and neutral signals.

TABLE 7. Case I - Accuracy rate when using one Random Forest,
considering the first 8, 16, 32, and 64 harmonic orders as input
features with no feature selection.

TABLE 8. Harmonics relevance by the feature selection
algorithm.

B. CASE II - ONE RANDOM FOREST WITH FEATURE
SELECTION
This case analysis used the rank of the 32 better-classified
harmonics, shown in Table 8. It is important to consider the
delimitation of input features. For example, if three input
features are chosen, and there is no selection, the features
are the DC, fundamental, and 2nd harmonic orders. However,
if the ranking is used, the selected features are the DC, 12th,
and 13th harmonic orders.

TABLE 9. Case II - Accuracy rate when using one Random
Forest, considering the 8, 16 and 32 harmonics better ranked by
the feature selection algorithm as input.

The results in Table 9 show the accuracy independence on
the input current again. The accuracy increased compared to
Case I, mainly when using the first 32 features selected. Note
that, when training and testing with no noise, the accuracy
was higher than 99%. Hence, the recommended situation for
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real applications is training the algorithm for all noise levels
expected to be present, using 16 or more input features.

C. CASE III - SPECIALIST RANDOM FORESTS WITHOUT
FEATURE SELECTION
Table 10 shows the algorithm accuracy when using five
independent Random Forests, each specialist in a region.
This case used the first 8, 16, 32, and 64 harmonic orders
as input without selecting their relevance. Overall, the best
results were achieved using the first 16 harmonic orders as
input data, presenting high accuracy even in noisy conditions.
This shows that overfitting can occur in machine learning
techniques when using a large number of inputs, decreasing
their generalization capability. Similar to cases I and II, there
is no relevant difference between the accuracy of the neutral
and phase currents. This analysis showed that the best results
were achieved when training and testing with the same noise
levels as in the previous cases.

TABLE 10. Case III - Accuracy rate when using specialists
Random Forest algorithms, considering the first 8, 16, 32, and
64 harmonics as inputs with no feature selection.

D. CASE IV - SPECIALIST RANDOM FORESTS WITH
FEATURE SELECTION
The last case evaluates the HIF location using five indepen-
dent Random Forests and the mRMR to select the input data
(Table 8). This case resulted in higher accuracy than Case III,
indicating that using the feature selection algorithm improved
the performance. However, the results were still inferior to
Case II, showing that using a single Random Forest presented
more promising results. Also, there is still no evident differ-
ence when comparing the phase and neutral currents. The
highest accuracy was achieved using the 32 best-classified
harmonics listed in the mRMR ranking.

E. RESULTS SUMMARY
Table 12 summarizes the best accuracy achieved in the eval-
uated cases for the phase current, as the neutral had similar
results. To analyze this table, take Case I as an example.When
considering the tests with signals without noise, the best

TABLE 11. Case IV - Accuracy rate when using five specialists
Random Forest algorithms, selecting the input features.

TABLE 12. Best results and overall performance.

training occurs when using the 32 harmonics extracted from
the non-noisy signals as input data, achieving an accuracy of
98.90%. However, when considering the overall tests, which
means training with a single dataset and testing with all
noise levels (no noise, 60 dB, and 50 dB), the best solution
would be to train the data without noise considering the
first 16 harmonic orders, achieving an average accuracy of
93.75%. The highest success rate is achieved when training
the Random Forest for the same noise level included in the
tests. In this situation, the Case II conditions imply the best
result. Nevertheless, if only one dataset is used for training,
the conditions of Case I are the best. Cases III and IV hold
the lowest accuracy.

The results are still promising even if the accuracy
decreases in some cases because real HIF signals were used in
the tests. Additionally, there is still no consolidated solution
for the HIF location. The accuracy achieved using the neutral
and phase currents was similar in all cases. Thus, if there is
access to the substation transformer’s neutral, this measure-
ment would be a good choice because it does not need three
measurement devices. Nonetheless, using the phase currents
would be recommended if the transformer’s neutral is not
accessible.

V. CONCLUSION
HIF location is an issue without evidence of a conclusive
solution in DSs, and there is no thorough existing analysis of
it. This paper addresses this gap by proposing a critical review
on the existing methods. The critical review revealed that
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most tests of HIFLMs consider HIF models and not actual
signals. The test systems are usually short or present several
meters spread, and noisy signals and DGs are frequently not
considered. Also, the review indicated that most HIFLMs
could be divided into three approaches. The first approach
uses the signal’s frequencies. The second one utilizes mea-
surement devices along with the system. The third approach
considers the systemmodeling and the signals’ measurement.
The presented analysis summarized these approaches. They
estimate the distance between the measurement and the fault
or the fault region. In summary, the strategies are based
on comparing metrics (expected and measured signals) or
machine learning techniques.

Additionally, this paper presented the analysis of input
features and different uses of a new HIF location method
using the Random Forest algorithm. The results revealed that
when using a feature selection algorithm, besides decreasing
the computational complexity of the method, it improves the
method’s accuracy when training and testing with a specific
noise level. In contrast, when considering a single dataset for
training, the overall accuracy when using a feature selection
algorithm decreased, showing a loss of generalization. The
analysis also proved that using a single Random Forest to
classify the HIFs among different locations implies a higher
accuracy than using specialist Random Forests. The use of
phase and neutral currents implied similar results.

The authors hope that the critical review and study casewill
support researchers and industry personnel to establish their
tests and inform decisions that must be considered in different
situations when developing increasingly efficient HIFLMs.
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