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Review

Background

Colorectal cancer (CRC) is the third most common cancer 
after lung and breast cancer and the fourth leading cause 
of cancer death worldwide.1,2 CRC is a multifactorial dis-
ease caused by the interaction of genetic and environmen-
tal factors3 and it presents in 1 of 3 patterns: sporadic, 
inherited, and familial. The majority of CRC cases are 
sporadic and approximately 70% to 80% are derived from 
somatic mutations without any family history.3 The inher-
ited and familial causes (about 35%) of CRC are derived 
from germline mutations.4 Age, poor diet, and sedentary 
lifestyles are considered the main environmental contribu-
tors to the disease.5

There is considerable evidence indicating that red and 
processed meats, and alcoholic beverages are risk factors 
for CRC. However, grains, vegetables and fruits, dairy 
products, and fish and other seafood are linked with a 
decreased risk of CRC.6,7 Studies have also shown that high 
intakes of energy, saturated fatty acids (SFA) and sucrose 
are associated with increased risk of CRC; while high 
intakes of dietary fibers, calcium and long chain n-3 

polyunsaturated fatty acids (LC n-3 PUFA) contributed to 
low incidence of CRC.8-11

The onset of CRC is a complex process, and, in most 
cases, CRC starts with polyps occurring on the epithelial 
layer of the colon or rectum. These polyps may be benign 
(for example hyperplastic polyp), pre-malignant (eg, 
tubular adenoma), or malignant (eg, colorectal adenocar-
cinoma).12 Several genetic, molecular, cellular, and histo-
logical changes were found to be associated with the 
transformation of normal epithelium to adenoma and 
invasive metastatic adenocarcinoma.13,14 This usually 
takes 10 to 15 years due to the incremental accumulation 
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Colorectal cancer (CRC) is the third leading cause of cancer-related death in the world. Multiple evidence suggests that 
there is an association between excess fat consumption and the risk of CRC. The long chain n-3 polyunsaturated fatty 
acids (LC n-3 PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential for human 
health, and both in vitro and in vivo studies have shown that these fatty acids can prevent CRC development through 
various molecular mechanisms. These include the modulation of arachidonic acid (AA) derived prostaglandin synthesis, 
alteration of growth signaling pathways, arrest of the cell cycle, induction of cell apoptosis, suppression of angiogenesis and 
modulation of inflammatory response. Human clinical studies found that LC n-3 PUFA combined with chemotherapeutic 
agents can improve the efficacy of treatment and reduce the dosage of chemotherapy and associated side effects. In this 
review, we discuss comprehensively the anti-cancer effects of LC n-3 PUFA on CRC, with a main focus on the underlying 
molecular mechanisms.
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of genetic alterations.3,15 Three main causes of colorec-
tal carcinogenesis have been identified.16 The first one is 
the suppressor pathway of chromosomal instability 
(CIN) involving the accumulation of molecular altera-
tions that influence oncogene activation (KRAS) and 
inactivation of tumor suppressor genes (DCC, APC, 
SMAD4, and TP53).17 The second mechanism is the 
accumulation of errors in DNA replication as a result of 
mutations of the genes that are responsible for DNA 
repair (MSH2, MLH1, MSH6, PMS2, MLH3, MSH3, 
PISI, and Exol). This is known as the microsatellite 
instability pathway (MSI).18 The third mechanism is the 
CpG island methylator phenotype (CIMP) pathway. This 
is due to the vast hyper-methylation of promoter CpG 
island sites that silence the tumor suppressor genes.19 
The progression of CRC is commonly associated with 
multiple steps such as hyperplasia of colonic crypts, 
colonic crypt dysplasia, adenoma, adenocarcinoma, 
invasion, and distant metastasis.20

Currently available treatments for CRC are surgery, che-
motherapy, radiotherapy, and molecular–targeted ther-
apy.3,21 Surgery might be curative only when the disease is 
diagnosed at its early stages. Treatments for patients diag-
nosed at advanced stages are chemotherapy, radiotherapy, 
or a combination of both. However, these therapies are 
associated with numerous side effects leading to a signifi-
cant impact on patients’ quality of life.22 In recent years, a 
significant focus of cancer therapeutic research has been 
shifted to marine sources as they serve as a province for a 
range of bioactive compounds.23,24 Nutraceuticals that have 
little or no side effects have received considerable attention 
for the prevention and management of CRC and other inva-
sive metastatic carcinomas.25,26

There is growing evidence showing that LC n-3 PUFA 
originated from marine oils (eg, fish oil and krill oil) have 
anti-CRC properties. These fatty acids have been reported 
to exhibit multiple anti-cancer effects on various stages of 
CRC from primary to tertiary, including advanced metasta-
sis.26,27 Epidemiological studies have found that popula-
tions consuming LC n-3 PUFA-rich diets (such as fish and 
other seafood) have fewer cases of CRC compared to popu-
lations that consume diets containing less LC n-3 PUFA.28,29 
A meta-analysis reported that a 50 g increment in the daily 
consumption of fish was associated with a statistically sig-
nificant 4% reduction in CRC risk.30 A recent European 
Prospective Investigation showed that CRC incidence 
decreases with increasing proportions of red blood cell 
membrane n-3 PUFA, particularly EPA.31 Conversely, a diet 
containing a relatively high proportion of n-6 PUFA (eg, 
typical western style) was associated with an increased risk 
of inflammatory bowel disease (IBD) and colon carcino-
genesis.32,33 This review discusses the beneficial effects of 
LC n-3 PUFA, mainly eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) and their two main marine oil 
sources, fish oil and krill oil, on the initiation, progression 
and apoptosis of CRC. A particular focus is on the molecu-
lar mechanisms underlying the anti-cancer properties of 
these fatty acids and their marine sources.

Methods

The databases of PubMed, PubMed Central, MEDLINE, 
Springer Link, and Wiley Online Library were searched 
using the key words of n-3 PUFA, EPA, DHA, fish oil, krill 
oil, colorectal cancer, molecular mechanism, signaling 
pathway, cell apoptosis, cell cycle, and anti-inflammatory. 
The inclusion criteria are defined molecular targets of 
LC-n3 PUFA in colorectal cancer. As there are a large num-
ber of studies available, the title and abstract were used for 
initial screening. Full text screening was then applied for 
original research and their relevant and key citations. 
Exclusion criteria include the preprints, conference pro-
ceedings, articles with only abstract available, and articles 
were not written in English.

Polyunsaturated Fatty Acids and Their 
Effects on Colorectal Cancer

There are two major families of polyunsaturated fatty acids 
(PUFA) including omega 3 (n-3 PUFA) and omega 6 (n-6 
PUFA); and they are not metabolically interchangeable.34 
The members of n-3 and n-6 families are considered essen-
tial fatty acids for humans, since they cannot be synthesized 
de novo in the body and, therefore, must be obtained from 
dietary sources.27,34 Plant-based α-linolenic acid (ALA, 
C18:3, n-3) is known as the parent form of the LC n-3 
PUFA, eicosapentaenoic acid (EPA, C20:5, n-3), docosa-
pentaenoic acid (DPA, C22:5, n-3), and docosahexaenoic 
acid (DHA, C22:6, n-3), and it is an essential fatty acid.35 
ALA is commonly found in green leafy vegetables, nuts, 
especially in walnuts, and oils, such as flaxseed oil, soybean 
oil, and canola oil.36,37 After consumption, ALA can be uti-
lized to synthesize LC n-3 PUFA by enzymes desaturases 
(delta-6 and 5) and elongases (2 and 5) mainly in the liver. 
But this process can also take place in other organs such as 
brain, kidney, and testicles.38,39 However, the body cannot 
synthesize EPA and DHA from ALA in sufficient quanti-
ties.40 Only about 5% of the consumed ALA is converted to 
EPA in the body due to a lack of delta desaturases to cata-
lyze the addition of double bonds.41,42 Therefore, these fatty 
acids are obtained mainly from fish (especially those from 
cold-water fatty fish, such as mackerel and salmon), fish 
products, and other seafood including oysters, mussels, and 
shrimps, as well as from dietary supplements.43,44 Fish oil 
and krill oil are the two major commercially available 
sources of EPA and DHA supplements.
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The n-6 PUFA, linoleic acid (C18:2, n-6) is another 
essential fatty acid and the parental form of arachidonic 
acid (AA). Linoleic acid is mainly found in plant oils such 
as sunflower and corn oils, grains, and animal fats. Humans 
can readily metabolize linoleic acid to obtain AA via desat-
uration and elongation by the same set of enzymes as in the 
synthesis of EPA.27,39 In addition, AA can be obtained 
directly from beef, pork and eggs.39 The LC n-3 PUFA and 
AA are biologically vital for the human body, because of 
their important roles in the phospholipid cell membrane 
structure, modulation of cellular signaling, membrane flu-
idity, cellular interaction, and lipid metabolism.27,45 EPA 
and AA are released from the cell membrane by the action 
of phospholipase enzymes, especially phospholipase A2 
(PLA-2) and C (PLC) and metabolized through three main 
pathways of cyclo-oxygenase (COX), lipoxygenase 
(LOX), and cytochrome P450 (CYP450) .46 The main 
metabolites are prostaglandins (PGs) and thromboxanes by 
COX-1 and COX-2, leukotrienes (LTs) and lipoxins by 
LOX, and hydroxyeicosatetraenoic acids (HETEs) and 
dihydroxyeicosatetraenoic acids (DHETEs) by cytochrome 
P450. In general, eicosanoids derived from AA are typi-
cally involved directly in the development of inflamma-
tion. Moreover, they are also involved in a range of 
biological process and modulate diverse physiological 
responses.46-48 Prostaglandins have received more attention 
for their roles in modulating inflammation. It has been 
reported that prostaglandin-E2 (PGE-2), derived from the 
metabolism of AA, as an important pro-inflammatory 
agent, is associated with the onset and progression of sev-
eral cancers through cell proliferation, angiogenesis, 
migration, and invasion while inhibiting apoptosis.49,50 In 
addition, it plays a significant role in the early stages of 
colorectal carcinogenesis.51 LTB4, another metabolite of 
AA, apart from its pro-inflammatory action, has also been 
reported to stimulate cancer cell growth52,53

In contrast, prostaglandin-E3 (PGE-3), derived from 
EPA, is generally known for its anti-inflammatory and anti-
cancer properties54,55. It has been found that PGE-3 can 
antagonize the effects of PGE-2, although few studies have 
shown discrepant results that PGE-3 causes the similar del-
eterious effects as PGE-2 on epithelial barrier function or 
promotes the proliferation of cancer cell line.56,57

In the cells, there is a competition between n-3 and n-6 
PUFA for their metabolic process via COX enzymes. 
However, these enzymes have a higher affinity for EPA of 
n-3 PUFA rather than AA of n-6 PUFA, especially COX-2.58 
This leads to the formation of anti-tumorigenic PGE-3 and 
the reduction in the synthesis of PGE-2. In addition, LTB5 
produced by LOX from EPA has shown anti-inflammatory 
and anti-cancer properties.59-61 Furthermore, EPA and DHA 
can also produce a family of pro-resolving anti-inflamma-
tory mediators including resolvins, protectins and mares-
ins.62,63 The food sources, metabolism and functions of 
major metabolites of PUFA are summarized in Figure 1.

The main anti-cancer properties of LC n-3 PUFA involve 
the modulation of COX-2 enzymatic activity, alteration of 
the functions of cell surface receptors and membrane char-
acteristics, enhancement of cellular oxidative stress, and 
production of anti-inflammatory mediators including 
resolvins, protectins, and maresins.27,62 It has been reported 
that LC n-3 PUFA can inhibit cancer cell proliferation and 
reduce tumor growth through various mechanisms, includ-
ing the alteration of signaling pathways involved in carci-
nogenesis such as angiogenesis and cell metastasis64-67; 
regulation of cell cycle; as well as induction of cell apopto-
sis.68-70 The characteristic functions of those proposed 
molecular mechanisms are summarized in Figure 2.

LC n-3 PUFA Alter CRC Growth Signaling 
Pathways

The cellular behavior in healthy individuals is tightly con-
trolled by a complex network of signaling pathways involv-
ing growth factors, which ensure the proliferation of cells 
only when required. Dysregulation of these growth factor-
dependent cell proliferation signaling pathways is one of 
the hallmarks of cancer development and progression. One 
of the identified dysregulations of the cell signaling path-
way in CRC is the overexpression and activation of the epi-
dermal growth factor receptor (EGFR). The EGFR is a 
multifunctional member of the ErbB family of tyrosine 
kinase receptors that transmits a growth-inducing signal to 
the cell.71,72 The higher expression of EGFR has been rec-
ognized as an important player in CRC initiation and pro-
gression. The EGFR is activated through interaction with its 
ligands, epidermal growth factor (EGF), and transforming 
growth factor-alpha (TGF-α). Overexpression of the EGFR-
ligand complex plays a crucial role in cell proliferation, dif-
ferentiation, survival, adhesion, migration, tumorigenesis, 
as well as resistance to cancer therapy.72,73 The binding of 
EGFR with its corresponding ligand triggers the catalytic 
activity of its intrinsic kinase that leads to the activation of 
several downstream intracellular signaling pathways, 
including Ras/Raf/Mitogen Erk1/2, the Phosphatidylinositol 
3-Kinase (PI3K)/A Serine/Threonine-Protein Kinase (Akt)/
mammalian target of rapamycin (mTOR) and signal trans-
ducer and activator of transcription (STAT-3), PLC-
gamma-1, and c-Jun N-terminal kinase (JNK).74 The 
overexpression of these signaling pathways causes the up-
regulation of cell growth and carcinogenesis.75 The inhibi-
tion or inactivation of the EGFR complex involves signaling 
pathways that are associated with an anti-cancer mecha-
nism.65,66,70,76 Studies have shown that LC n-3 PUFA treat-
ment can inhibit the activation of EGFR and its downstream 
intracellular signaling pathways Ras/Erk and AKT.66,72 Free 
fatty acid extract of krill oil treatment was also found to 
reduce the expression of EGFR/pEGFR and their down-
stream signaling, pERK1/2 and pAKT along with the down-
regulation of programed death-ligand 1 (PD-L1).77
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It has also been found that increased expression of vas-
cular endothelial growth factor (VEGF) is associated with 
the progression of CRC; and the enhancement of VEGF sig-
naling pathways could increase cancer cell proliferation, 
metastasis, and influences survival rates of CRC patients.78 
Activation of the VEGF receptor could also lead to 

transphosphorylation, an increase in intrinsic catalytic 
activity, and the creation of receptor binding sites on tyro-
sine kinases (RTK) to recruit cytoplasmic signaling proteins 
that activate mitogen-activated protein kinase (MAPK)/
extracellular signal-regulated kinase 1/2 (ERK 1/2) and 
mTOR/AKT pathways.79 Continuous activation of MAPK 
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and mTOR due to VEGF signaling stimulates the inhibition 
of cellular apoptosis and increases cell survival through the 
up-regulation of anti-apoptotic B cell lymphoma (Bcl) reg-
ulatory proteins, Bcl-2 and Bcl-xL.80,81 Furthermore, 
COX-2 is also involved in the expression of VEGF, because 
COX-2 and PGE-2 are well-established upstream regulators 
of VEGF during angiogenesis.82,83 Some studies have 
observed that COX-2-derived PGE-2 signaling through the 
prostaglandin (EP) 4 receptor stimulates cell proliferation, 
angiogenesis, and resistance to anti-tumor immune response 
and apoptosis.84,85 Furthermore, experimental results have 

shown that nitric oxide (NO) can promote cell survival, pro-
liferation, inhibiting apoptosis,86,87 and regulate VEGF-
mediated angiogenesis.88 Studies found that LC n-3 PUFA 
treatment can reduce the expression of COX-2 and the syn-
thesis of PGE-2.82,89 Furthermore, LC n-3 PUFA induce 
apoptosis through the modulation of Bcl-2 family pro-
teins90,91 and decrease of VEGF signaling pathways65,92 
involved in cell migration, blood vessel formation, and NO 
production.93,94

The peroxisome proliferator-activated-receptors 
(PPARs) are a group of the nuclear receptor proteins.95 The 
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LC n-3 PUFA are thought to play a crucial role in upregulat-
ing the transcription factor PPAR-alpha. This regulation is 
important to reduce the activity of the transcription factor 
NF-ĸB,96-98 which is essential to mitigate inflammatory 
responses.99 It has been reported that these beneficial effects 
are associated withthe mediators of LC n-3 PUFA including 
resolvins, protectins and maresins99 In addition, the 
enhanced expression of PPARs was reported to be associ-
ated with the suppression of cellular proliferation64,100 and 
angiogenesis through the downregulation of VEGF.65 It was 
found that EPA modulates PPARs to reduce cell viability by 
inducing cellular apoptosis.64 Table 1 summarizes the in 
vitro studies that examined the effects of LC n-3 PUFA on 
the modulation of different survival signaling pathways 
involved in colorectal carcinogenesis.

LC n-3 PUFA Induce CRC Death via Apoptosis

The onset of CRC associates with uncontrolled cell prolif-
eration and a reduction in cell apoptosis. Apoptosis is a pro-
gramed process of cell death and caspases are fundamental 
for this mechanism. There are three distinct pathways 
involved in the apoptotic mechanism, including the intrinsic 
(mitochondrial), the extrinsic (through the death receptors), 
and intrinsic endoplasmic reticulum (ER) pathways.111-113

The intrinsic apoptosis pathway responds to diverse 
stress signals such as growth factor deprivation, DNA dam-
age, and reactive oxygen species (ROS). Mitochondria are 
central to this pathway, which involves pro- and anti-apop-
totic members of Bcl-2 family proteins.114,115 The pro-apop-
totic Bcl-2 proteins include Bax, Bak, Diva, Bcl-Xs, Bik, 
Bim, Bad, and cBid; and the anti-apoptotic Bcl-2 proteins 
are Bcl-2, Bcl-XL, Mcl-1, CED-9, A1, Bfl-1. These pro-
teins collectively regulate the mitochondrial membrane 
potential (MMP). An imbalance in pro- and anti-apoptotic 
proteins triggers -apoptotic events.116-118 and results in the 
release of pro-apoptotic regulators, cytochrome c, Smac/
Diablo, endonuclease G, and apoptosis-inducing factor 
(AIF) from mitochondria into the cytosol.112,119 Cytochrome 
c then triggers the formation of apoptosome complex via 
interaction with apoptotic protease activating factor 1 
(Apaf1). This complex is involved in the activation of the 
initiator caspase, caspase-9, then caspases 3 and 7, leading 
to cell apoptosis.112,120 Furthermore, Smac/Diablo promotes 
apoptosis through the inhibition of anti-apoptotic protein, 
endonuclease G, and translocation of AIF in the cell nucleus. 
This causes a large amount of DNA damage via a caspase-
independent apoptotic pathway.121,122

Cell apoptosis through the extrinsic pathway involves 
death domain receptors, such as tumor necrosis factor 
(TNF)-α, CD95 (Fas or apoptosis antigen 1), and TNF-
related apoptosis-inducing ligand (TRAIL) receptors, after 
interaction with their corresponding ligands. The activation 
of these receptor-ligand complexes causes the formation of 

death-inducing signaling complexes (DISCs), including 
TNF receptor-associated death domain (TRADD), Fas-
associated death domain (FADD), and procaspase-8/FLICE 
receptor-interacting protein kinase 1 (RIPK1).112 These 
complexes activate caspases 8 and 10, and then caspase-7 
leading to apoptotic cell death.112,123

Apart from those two caspase pathways, the intrinsic 
endoplasmic reticulum (ER) pathway is also related to 
apoptosis. The ER is a site for the synthesis, folding, modi-
fication of the cell surface proteins, and intracellular cal-
cium storage compartment. The stress of ER could be 
induced by the accumulation of unfolded and/or misfolded 
proteins in the ER lumen. This could then activate the 
unfolded protein response (UPR) signaling pathway associ-
ated with a wide variety of human diseases. Furthermore, 
the unfolded protein response and continuous ER stress 
activate the apoptosis through caspases 3 and 7, or via a 
p53-dependent pathway.124,125

Numerous studies in the last two decades suggest that 
LC-n-3 PUFA treatment prompts colorectal cancer cell 
apoptosis through intrinsic or extrinsic pathways, as sum-
marized in Table 2. LC n-3 PUFA elevate pro-apoptotic pro-
teins, and suppress anti-apoptotic proteins, in the Bcl-2 
family.126-132 Furthermore, studies also showed that LC n-3 
PUFA induce apoptosis via the activation of extrinsic path-
ways involving caspases 9 and 8.133,134 Giros et al found that 
LC n-3 PUFA induce apoptosis through both intrinsic and 
extrinsic pathways, via the release of Smac/Diablo and 
cytochrome c into the cytosol and the activation of cas-
pase-8. Their results demonstrated that extrinsic apoptosis 
is independent of death receptor activation but influenced 
by LC n-3 PUFA on FLICE-like inhibitory proteins.127

LC n-3 PUFA Alter CRC Cell Cycle

The cell cycle orchestrates precise molecular events, ensur-
ing the generation of identical cell copies. Healthy cells 
regulate growth signals activated by factors such as growth 
factors, cell-to-cell interaction molecules, and extracellular 
matrix components that affect cell growth and maintain the 
cell cycle. This helps to control the total number of cells, 
and the structure and function of normal tissues.116 However, 
some cells are progressively transferred into a neoplastic 
state (cancer) when they escape from the normal cell cycle 
and produce their own growth factors independently to pro-
liferate infinitely.116

The cell cycle consists of four sequential phases: G1 
(gap 1), S (DNA synthesis), G2 (gap 2), and M (mitosis). 
Cyclin-dependent kinase (CDK) plays a pivotal role in reg-
ulating the progression of cell cycle and preventing transi-
tions between phases.142,143 CDK activation occurs through 
the interaction with cyclins, forming a cyclin-CDK com-
plex143,144 In response to mitogen signals, CDK4 and CDK6 
activate the D-type cyclins, facilitating G1 progression and 
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activation of the transcription factors.144,145 CDK2 is subse-
quently activated by cyclin E and cyclin A, initiating DNA 
replication. The activation of cyclin B-CDK1 complex 
leads to mitosis, while cyclin-dependent kinase inhibitors 
(CKI) including INK4 and Cip/Kip families monitor and 
deactivate CDK-cyclin complexes that arrest the cell cycle. 
The INK family has four members, p15, p16, p18, and p19; 
and the Cip/Kip family comprises p21, p27, p57, p107, and 
p130.144,146,147

Several studies reported that LC n-3 PUFA inhibit cancer 
cell proliferation through the alteration of cell cycle pro-
gression. Table 3 summarizes the results of in vitro studies 
elucidating the impacts of LC n-3 PUFA on the CRC cell 
cycle. Treatment with DHA and/or EPA arrests the cell 
cycle progression in the G1 phase in CRC cells.69,126,131 
Molecular components crucial for CRC cell cycle progres-
sion, such as Cdc25c, Cdc25b, Cdc20, CDK1, CDK2, and 
cyclin D, A, and B are downregulated by LC n-3 
PUFA.69,126,131,136,148 Studies found that DHA treatment 
increases the level of p21 and reduces the level of cyclin 
D1, inducing cell cycle arrest.126,131 LC n-3 PUFA also acti-
vate the p53 pathway, causing DNA damage and modulat-
ing the p21 signaling pathway.149

Overall, a large number of in vitro studies have con-
firmed the positive impacts of LC n-3 PUFA on CRC cells, 
and several molecular signaling pathways have been sug-
gested. However, the comparative roles of EPA versus DHA 
versus total LC n-3 PUFA in the modulation of these molec-
ular pathways are not clear, given that different doses, 

treatment durations as well as cell lines were used in differ-
ent studies.

The Anti-inflammatory Effects of LC n-3 PUFA 
on CRC Cells

The relationship between chronic inflammation and cancer 
initiation and progression has been well recognized and doc-
umented for several types of cancer, including CRC.153-155 
The risk of CRC could be increased by 10 times in patients 
with a history of inflammatory bowel disease.156 The cyclic 
auto-activation process of the inflammatory signaling path-
ways increases the production of immune cells, and release 
of several pro-inflammatory cytokines (IL-1, IL-2, IL-4, 
IL-6, IL-12, IFNɤ, and TNFα), chemokines (IL-8, mono-
cyte chemo-attraction protein-1 (MCP-1/CCL2)), growth 
factors, reactive oxygen and nitrogen species, and lipid mol-
ecules (saturated fatty acids)157,158 These mediators stimulate 
signaling processes within the cells that play an important 
role in the growth and development of cancer.157

Furthermore, the soluble mediators generated by cancer 
cells also contribute to the recruitment and activation of 
immune cells and the excessive production of pro-inflam-
matory mediators. The inflammatory reaction generated by 
immune cells activates and maintains several signaling pro-
cesses. These processes continue to stimulate proliferative 
signaling, the survival of cancer cells, and extracellular 
matrix (ECM), which facilitate tumor growth by modifying 
the enzymes that enable angiogenesis and metastasis.116,159-163 

Table 3.  Summary of Studies Investigating the Effects of LC n-3 PUFA on the Cell Cycle of CRC.

LC n-3 PUFA Cell lines Effects Molecular targets References

Conjugated 
docosahexaenoic 
acid (CDHA) 1%

Colo-201
Colo-201 in 

Nude mice

Inhibits cell cycle progression.
Significantly decreases 

transplanted Colo-201 cells 
in mice

Accumulates cells in the G1 phase, 
increases p21 Cip1/Waf1, decreases 
cyclin D1, cyclin E, and nuclear cell 
proliferating antigen

Danbara et al126

DHA 20 µM HT-29 Reduces cell viability Arrests cell cycle in G1/G2 phases Hofmanová et al133

DHA 70 µM SW-620 Arrests cell cycle Increases P21 and stratifin, decreases 
Cdc25, CDK1(Cdc2), arrests cell 
cycle in both G1 and G2 phases

Slagsvold et al131

DHA 50 µM Caco-2 and 
HT-29

Reduces proliferation Arrests cell cycle at G0/G1 phase, 
reduces cyclin D1 expression and 
phosphorylation of GSK3β

Murad et al69

DHA 70 µM SW-620 Reduces cell proliferation, 
induces apoptosis

Reduces cyclin D1 and arrests cell 
cycle at G1phase

Jakobsen et al136

DHA 150 µM HT-29 Reduces cell proliferation Arrests cell cycle at G1 phase, reduces 
cyclin D1 and E

Chen and Istfan148

DHA/EPA
125 µM

COLO-205, 
WiDr

Reduces cell proliferation Arrests cell cycle at G0/G1 phase Kato et al150

DHA/EPA
35-70 µM

SW-480,
SW-620

Reduce cell proliferation Arrest cell cycle at G2/M phase, 
downregulate nSREBP1

Schønberg et al151

EPA 10-100 µM
DHA 7.5-75 µM

Caco-2 Reduce cell proliferation and 
induce apoptosis

Arrest cell cycle at G0/G1 and S phases Jordan and Stein152
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In addition, some tumor and myeloid cells, including macro-
phages, polymorphonuclear neutrophils (PMN), and 
myeloid-derived suppressor cells (MDSCs) express media-
tors of the immunosuppressive checkpoint, such as pro-
gramed death-ligand 1 (PD-L1) and ligand 2 (PD-L2) 
resulting in cellular interactions that suppress T-cell prolif-
eration and function.164,165 Studies have found that LC n-3 
PUFA have an ability to down-regulate inflammation and 
inflammatory cell infiltration of tumors.166 Furthermore, LC 
n-3 PUFA have pro-resolving effects on both innate and 
adaptive immunity through multiple mechanisms, including 
influence on various cellular phenotypes that coordinate the 
host response against tumors. Resolvins that are the metabo-
lites from LC n-3 PUFA have an endogenic pro-resolution 
activity that protects against abnormal/uncontrolled innate 
inflammatory responses.165 Altogether the inflammatory 
responses play a crucial role in tumor development at differ-
ent stages including initiation, promotion, malignant trans-
formation, invasion, and metastasis.161 Recently, the 
proliferative effects of pro-resolvin mediators on Caco-2 cell 
line have been reported.167 The proliferation of intestinal 
epithelial cells stimulated by pro-resolvin mediators was 
related to wound closure. More studies using other cell lines 
are warranted to elucidate the effect of pro-resolvin media-
tors on CRC growth. LC n-3 PUFA have shown useful anti-
inflammatory properties, due to the immunomodulatory 
effects of substances derived from these fatty acids through 
eicosanoid metabolism.168 The main anti-tumor effect of LC 
n-3 PUFA can be mediated through the downregulation of 
the synthesis of pro-inflammatory eicosanoids from n-6 
PUFA of AA.169

The phospholipid membrane normally contains more 
AA than other 20-carbon PUFA.169 AA is the molecular 

substrate causing the over-activation of some enzymatic 
pathways in CRC, such as COX and LOX.170,171 The PGE-2 
produced by COX from the metabolism of AA is typically 
pro-inflammatory,27,172 and excess PGE-2 has been found to 
be linked with the onset and progression of colorectal carci-
nogenesis through increased cell proliferation, angiogene-
sis, cell migration and invasion, as well as the inhibition of 
apoptosis.173,174

Dietary supplementation with LC n-3 PUFA signifi-
cantly decrease the concentration of AA in the cell mem-
brane, as well as its ability to displace AA as a molecular 
substrate in the COX and LOX pathways.27,175 The actions 
of metabolized derivatives of LC n-3 PUFA, such as prosta-
glandin E3 (PGE-3), on the substrate of COX and LOX are 
typically anti-inflammatory.176 Therefore, it has been found 
to reduce angiogenesis,177,178 inflammation,27,179 and exert 
anti-cancer properties.27,180 The studies on the anti-CRC 
effects of LC n-3 PUFA via modulation of the inflammatory 
response are summarized in Table 4.

LC n-3 PUFA can downregulate the Bcl-2 and inhibit the 
Nuclear factor-kB (NF-κB) pathway.181 A similar effect has 
been observed in other studies, showing that LC n-3 PUFA 
can cause the suppression of genes involved in the NF-ĸB 
pathway.94,174,180 NF-ĸB is a transcription factor that regu-
lates the expression of many genes involved with the upreg-
ulation of COX, production of inflammatory cytokines, the 
progression of the tumor cell cycle, and adhesion molecules. 
These activities play an important role in tumor invasive-
ness and provide tumors with the inflammatory microenvi-
ronment that supports tumor progression, invasion of 
surrounding tissue, angiogenesis, and metastasis.183-186 In 
addition, the experimental evidence shows that LC n-3 
PUFA can decrease the gene expression of inflammatory 

Table 4.  Summary of Studies on Anti-Inflammatory Effects of LC n-3 PUFA in CRC Cells.

LC n-3 PUFA Cell lines Effects Molecular targets References

DHA 5 µg/mL Caco-2 Reduces cell 
proliferation, induces 
apoptosis

Up-regulates p21 and p27
Downregulates iNOS, IFN, cyclic 

GMP and NFĸB

Narayanan et al94

DHA 0-100 µM LS-174T Reduces cell viability, 
suppresses AA-
induced cell viability

Significantly lowers PGE-2 
formation, downregulates COX-
2 expression

Habbel et al172

DHA 30-100 μM HCT-116 Induces apoptosis Decreases Bcl-2,
CDK-2 and CDK-4, decreases 
β- catenin expression. Inhibits 
COX-2 and activation of NF-kB

Han et al181

DHA 50-100 μM HCT-116 and 
HCT-8 CRC cells

Induces apoptosis Reduces IL-6 and IL-8 expression.
Reduces TNF-α synthesis through 

decreasing mir-21.

Fluckiger et al182

EPA 10-30 µM
DHA 10-30 µM

HT-29 Inhibit cell growth 
(both EPA and DHA)

Inhibit VEGF expression and 
reduce COX-2/PGE-2 level

Calviello et al65

EPA-FFA
12.5-200 μM

Human HCA-7 
CRC, and Mouse 
MC-26 CRC cells

Induces apoptosis Reduces COX-2 dependent PGE-
2 synthesis and increases PGE-3. 
Inactivates PGE-2-EP4 receptor

Hawcroft et al82
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molecules such as the inflammatory cytokines interleukin 
IL-1β, IL-6 and TNF-α.187,188 The anti-inflammatory prop-
erties of LC n-3 PUFA include the reduction of anti-apop-
totic genes, Bcl-2 and survivin and the increase of 
pro-apoptotic factors.172,181 More studies are warranted to 
further identify the specific interactions of LC n-3 PUFA 
and gut microbiota, and their impacts on the immune 
response in CRC.

The Anti-Cancer Effects of LC n-3 PUFA in Vivo

Animal studies have demonstrated the beneficial effects of 
LC n-3 PUFA on CRC at the early stages of carcinogenesis. 
EPA and DHA can reduce tumor growth, progression, and 
invasion by inhibiting cell proliferation and inducing cell 
apoptosis.109,189-193 The LC n-3 PUFA supplementation in 
immunosuppressed mice with human CRC cell xenografts 
significantly reduced tumor size compared to the control 
group.150,189,190,194,195 Several studies have also reported pos-
itive outcomes following supplementation with LC n-3 
PUFA-rich marine oils including fish oil and krill 
oil.178,193,195,196 In addition, these studies have reported sev-
eral molecular actions of LC n-3 PUFA in CRC tumor inhi-
bition (Table 5). For example, modulation of COX 
metabolism and reduction of PGE-2 production in tumors,180 
inhibition of EGFR and VEGF signal transduction through 
the alteration of lipid raft composition and fluidity,197 and 
downregulation of pathways associated with CRC promot-
ing signals such as AKT90,195,198 and Wnt/β-catenin.180

Kato et  al reported that DHA inhibits tumor growth 
more efficiently than EPA in athymic mice with COLO 205 
subcutaneous xenografts. The DHA treatment reduced 
tumorigenesis by inhibiting genes responsible for tumor 
angiogenesis, as well as inducing cellular apoptosis via p53 
dependent and independent pathways. These positive 
effects were found to be correlated with the increased level 
of LC n-3 PUFA in tumor tissues and the reduction of phos-
phocholine (PC) in xenografts.150 Zou et  al reported that 
the molecular mechanisms associated with the anti-cancer 
properties of LC n-3 PUFA involve the inhibition of sev-
eral genes, such as COX-2, HIF-1α, VEGF-A, COMP, 
MMP-1, MMP-9, SCP2, SDC3 in nude mice with HCT-15 
subcutaneous xenografts.194 Kansal et  al showed that 
dietary supplementation with LC n-3 PUFA-rich fish oil 
significantly suppress CRC development and increased 
apoptosis by reducing the expression of the Ras-induced 
Raf/MEK/ Erk 1/2 and Akt signaling pathways in rats 
treated with a carcinogen 1,2-dimethylhydrazine(DMH).191 
Furthermore, Huang et al found that n-3 PUFA attenuated 
MNU-induced CRC in rats by inhibiting CRC cell prolif-
eration and inducing CRC cell apoptosis via blocking 
PI3K/AKT and Bcl-2 signaling pathways.90 The role of LC 
n-3 PUFA in decreasing cell proliferation in tumor tissues 
was also found to be associated with the modulation of 

inflammatory pathways. Rosa et al discovered that a fish 
oil-enriched diet reduced interleukin-8 (IL-8) expression 
and enhanced TGF-β expression in Wister rats treated with 
DMH.200 In addition, fish oil was found to suppress the ini-
tiation of aberrant crypt foci (ACF) development in male 
Wister rats,202 reduce TNF-α production in HCT-116 xeno-
graft tumor-bearing nude mice,182 reduce the expression of 
phosphorylated ERK 1/2, lower the PGE-2 and increase 
the PGE-3 levels in Balb/c mice.106 Koppelmann et  al 
found that n-3 PUFA inhibit NF-қB/COX-2 induced pro-
duction of pro-inflammatory cytokines and inhibited cell 
apoptosis to prevent MTX-induced intestinal damage in 
male Sprague-Dawley rats.205 Fish oil diet has also been 
shown to upregulate p21, induce cell cycle arrest, and pro-
mote apoptosis of cancer cells in rats with azoxymethane 
(AOM)-induced colon cancer.204 LC n-3 PUFA rich diets 
were found to dramatically decrease cell proliferation and 
polyp formation and increase apoptosis of cancer cells 
through the downregulation of COX-2 and β catenin 
nuclear translocation in ApcMin/+ mice.203 Recently, we 
reported that dietary supplementation with krill oil reduces 
CRC tumor growth and induces cancer cell death.195 We 
also observed that the anti-cancer effects of krill oil are 
comparable with that of the clinical therapeutic agent, 
Oxaliplatin. These positive effects are associated with the 
downregulation of EGFR signaling pathways.195,196 and the 
activation of the intrinsic mitochondrial death pathway.196 
Available animal studies have confirmed some of reported 
molecular actions of LC n-3 PUFA in vitro. However, there 
are still gaps between in vitro and in vivo studies. Future in 
vivo studies focusing on those yet to be proven molecular 
signaling pathways are highly recommended.

LC n-3 PUFA as an Adjuvant Therapy for CRC

Several studies have investigated the action of LC n-3 
PUFA as a single agent or in combination with chemothera-
peutic agents in the treatment of cancer.206 A recent review 
of current clinical evidence showed that LC n-3 PUFA sup-
plementation delays cancer progression, maintains body 
weight, and improves appetite and overall quality of life in 
CRC patients. In the advanced cancer patients, supplemen-
tation also decreases pro-inflammatory cytokines and seri-
ous adverse events of chemotherapy.207 The increased level 
of LC n-3 PUFA in tumor cell membrane and production of 
lipid mediators were found to be correlated with their anti-
cancer properties. High levels of LC n-3 PUFA resulted in 
an alteration of lipid rafts leading to a range of beneficial 
events in tumor cells.105,208 The combined treatments of LC 
n-3 PUFA with chemotherapy have resulted in reducing the 
dose of chemotherapeutic agents and decreasing the side 
effects associated with higher doses of chemotherapy. The 
lower toxicity profile and nutritional benefits of LC n-3 
PUFA provide a useful adjuvant therapy for CRC.209 Fish oil 
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emulsion rich in LC n-3 PUFA has shown anti-cancer effects 
in combined treatments with standard chemotherapeutic 
agents, 5-fluorouracil (5-FU), oxaliplatin (OX), or irinote-
can (IRI) in CRC cell lines.128 Fish oil emulsion improves 
the efficacy of chemotherapeutic agents through a Bax-
dependent mitochondrial pathway.128 Vasudevan et al have 
demonstrated that treatment with EPA in combination with 
5-FU plus oxaliplatin (FuOx) reduces HT-29 and HCT-116 
cancer cell growth. It also induces apoptosis through PARP 
cleavage, and downregulation of pAKT, β-catenin, and Wnt 
signaling pathways.210 5-FU combined with fish oil emul-
sion inhibits the proliferation of Caco-2 CRC cells lines 
more significantly compared to cells treated by either agent 
alone.152 Similar findings by Calviello et  al showed that 
DHA combined with 5-FU resulted in a decrease of the 
expression of anti-apoptotic proteins Bcl-2 and Bcl-Xl and 
excessive expression of pro-apoptotic c-MYC in human 
CRC cells, with low toxicity.173 De Carlo et al also observed 
that EPA combined with standard chemotherapies, 5-fluoro-
uracil and oxaliplatin, synergistically reduces COLO 320 
CRC cell proliferation and increases their sensitivity to che-
motherapeutic drugs.211

Similar results have also been observed in several ani-
mal models of CRC. Rani et  al demonstrated that the 
administration of 5-FU combined with fish oil to mice with 
colon cancer induced by DMH and dextran sodium sulfate 
(DSS) enhances both DNA damage and an apoptotic index 
through the activation of cellular extrinsic and intrinsic 
apoptotic pathways while reducing the side effects associ-
ated with 5-FU treatment.212 It was also reported that 5-FU 
combined with fish oil treatment inhibits tumor growth and 
arrests the cell cycle in mice with DMH/DSS-induced 
colon cancer.213 Other studies have also highlighted the 
beneficial effect of LC n-3 PUFA as adjuvant therapy. Xue 
et al have found that LC n-3 PUFA supplementation com-
bined with irinotecan (CPT-11) and a 5-FU cyclical regi-
men could synergistically increase chemo-sensitivity and 
reduce body weight loss, anorexia, and muscle wasting in 
rats bearing Ward colon tumor compared to the control ani-
mals.214 Vasudevan et al have also observed that treatment 
with EPA combined with FuOx (5-FU + oxaliplatin) 
reduces the tumor size and pro-inflammatory mediators in 
SCID mice with HT-29 or HCT-116 cell-induced subcuta-
neous xenografts.210 Jeong et al found that the oxaliplatin 
and DHA combination can further reduce oxaliplatin-
induced cell viability and autophagy cell death both in vitro 
and in vivo. Moreover, the combination of oxaliplatin and 
DHA increased the expression of the stress-sensitive gene 
of SESN2 and increased ER stress.215 Our recent study has 
demonstrated that krill oil combined with ½ dose of oxali-
platin can reduce tumor growth to a similar extent as oxali-
platin, without side effects.196

Some human studies have also demonstrated the anti-can-
cer effects of LC n-3 PUFA combined with chemotherapy on 

CRC. It is found that fish oil supplementation positively 
modulates the nutritional status and reduces pro-inflamma-
tory mediates in CRC patients undertaking chemother-
apy.207 Similarly, Mocellin et  al observed that fish oil 
supplementation during chemotherapy improves C-reactive 
protein (CRP) values, CRP/albumin status, and prevents 
weight loss.216 A study of patients receiving a combination 
of fish oil and chemotherapy (5-FU and leucovorin) 
showed that fish oil can prevent the loss of blood polymor-
phonuclear cells (PMNC), mainly neutrophils, and increase 
their phagocytosis and production of hydrogen peroxide as 
well as prevent body weight loss related to chemother-
apy.217 Read et  al observed that EPA supplementation 
maintains the nutritional and inflammatory status in 
patients having chemotherapy at an advanced stage of 
CRC.218

A more recent study by Koppelmann et al has also dem-
onstrated the beneficial role of fish oil as an effective adju-
vant therapy for colon cancer.205 Their data showed that LC 
n-3 PUFA can prevent intestinal damage and stimulate 
intestinal recovery. The prospective study by Song et al has 
found that a higher intake of LC n 3-PUFA may be associ-
ated with better survival of patients with stage 3 colon 
cancer.219

Taken together, these studies demonstrate that LC n-3 
PUFA, either alone or in combination with currently used 
clinical chemotherapy, may be a useful therapy for CRC. 
This is attributed to the specific roles of these fatty acids in 
suppressing tumor growth and development via various 
molecular signaling pathways discussed in this review. The 
synergistic impact of LC n-3 PUFA and chemotherapies on 
CRC are beneficial to CRC patients. Two major sources of 
LC n-3 PUFA are fish oil and krill oil. The effects of fish oil 
on CRC have been reported. Preliminary studies have also 
shown the potential role of krill oil in CRC treatment. More 
in vivo studies and clinical trials are required to validate the 
therapeutic efficacy of krill oil.

Conclusion

The data presented in this review have shown the beneficial 
effects of LC n-3 PUFA on colorectal cancer. The results 
from several experimental studies using CRC cell lines and 
animal models provide strong evidence that LC n-3 PUFA 
supress CRC by modulating different molecular pathways 
associated with cancer development and progression. These 
include the action of LC n-3 PUFA on intracellular and 
extracellular receptors in various signaling pathways 
involved in cell proliferation, metastasis and apoptosis, as 
well as angiogenesis and inflammation. Clinical studies 
have also demonstrated that LC n-3 PUFA can enhance the 
efficacy and tolerability of chemotherapy by reducing the 
side effects and toxicity associated with conventional anti-
cancer therapies.
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eicosapentaenoic acid; EPA-FFA, eicosapentaenoic free fatty 
acids; ER, endoplasmic reticulum; ERK 1/2, extracellular signal-
regulated kinase; FFA, free fatty acid; FLIP, FLICE-inhibitory 
protein; GrB, granzyme B; GRP78, glucose related protein of 78 
kDa; GSK3β, glycogen synthase kinase 3β; HIF-1α, hypoxia-
inducible factor 1-alpha; IFN, interferon; IL-1-β, interleukin 1 
beta; IL-6, interleukin 6; IL-8, interleukin 8; iNOS, inducible 
nitric oxide synthase; FO, fish oil; LTB4, leukotrienes B4; 
MAG-EPA, monoglyceride eicosapentaenoic acid; MAPK, 
mitogen-activated protein kinase; MEK 1/2, mitogen-activated 
protein kinase 1/2; mir-21, microRNA-21; MMP, mitochondrial 
membrane potential; MMP-1/9, matrix metalloproteinase-1/9; 
mPGE-2, messenger function for prostaglandin E2; mRNA, 
messenger ribonucleic acid; mTOR, mammalian target of 
rapamycin; NF-ĸB, nuclear factor kappa-light-chian-enhancer of 
activated B cells; n-SREBP1 nuclear sterol regulatory element-
binding protein 1; P21/27, cyclin-dependent kinase inhibitor 
21/27; PERK, PER-like ER kinase; PG, prostaglandin; PGE-2, 
prostaglandin E2; PGE-2/E-3, prostaglandin E2/E3; PGE-3, 
prostaglandin E3; PPAR-γ, peroxisome proliferator-activated 
receptor-γ; PUFA, polyunsaturated fatty acids; Raf, rapidly 
accelerated fibrosarcoma; Ras, retrovirus-associated DNA 
sequences; ROS, reactive oxygen species; SCD3, syndecan 3; 
SCP2, sterol carrier protein 2; TCF, T-cell factor; TNF-α, tumor 
necrosis factor; TRAIL, tumor necrosis factor-related apoptosis 
inducing ligand; VEGF, vascular endothelial growth factor; 
VEGFR, vascular endothelial growth factor receptor; Wnt, 
Wingless-related integration site; Wtp53, wild type p53; XIAP, 
X-chromosome-linked inhibitor of apoptosis protein.
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