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Abstract

Waste fiber reinforced concrete is gaining recognition as a high-performance con-

struction material, offering notable load-bearing capacity, corrosion resistance,

and enhanced durability features. As the building and construction industry

focuses on sustainable practices, fibers derived from waste materials create an

opportunity to be utilized further in composite designs. This study explores the

tensile, compressive, and flexural behaviors of cardboard fibers (kraft fibers) and

textile polyester fibers in concrete materials. The composite microstructure is also

investigated using a scanning electron microscope (SEM) to measure the bonding

performance of the fibers within the cementitious matrix. Four mix designs were

created using 2.5% textile fibers as a reinforcement agent and 5% silica fume modi-

fied kraft fibers (SFKFs) as a partial cement replacement. The combination of

fibers achieved 44 MPa compressive strength, equaling the control. Tensile

strength was enhanced by 5% when using the combination of the two fibers,

achieving 3.58 MPa in comparison to 3.41 MPa. However, flexural strength was

reduced among all fibrous concrete materials. SEM images distinguished the natu-

ral and synthetic characteristics associated with the two fibers within the cementi-

tious matrix. Namely, demonstrating the chemical bonding of SFKFs in

comparison with the physical bonding properties of the textile fibers. This study

serves as a valuable resource for future investigations and the broader adoption of

binary waste fiber composite designs in cementitious composite applications.
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1 | INTRODUCTION AND
RESEARCH SIGNIFICANCE

The building and construction industry is experiencing
continuous development, driven by constant innovations
and advancements in technologies. A crucial area of

these advancements is the use of novel materials to
enhance the sustainability of common construction
methods. The integration of waste materials and addi-
tives in cement manufacturing is one strategy aimed at
reducing the damaging environmental impact of the
industry. Ordinary Portland Cement (OPC) production is
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known to contribute 5%–8% annually of total carbon diox-
ide (CO2) emissions globally.1 By incorporating waste mate-
rials and additives, researchers hope to reduce the amount
of cement needed in concrete production, thereby reducing
carbon emissions.2–5 Integrating waste fiber materials, such
as textile and cardboard waste in concrete can offer several
benefits. Firstly, these fiber materials can enhance the per-
formance of concrete by reducing crack propagation,
increasing tensile, and toughness capacity.6–8 This is partic-
ularly valuable as concrete is known for its low tensile
strength.9 The incorporation of fibers can improve the over-
all durability and structural integrity of concrete. This is
shown by researchers reducing crack propagation to miti-
gate degradation caused by induced moisture content.10

Moreover, the use of waste fibrous materials in concrete
contributes to sustainable practices within the building and
construction industry. This can be shown by reducing the
overall quantity of steel reinforcement, thereby the negative
impacts associated with steel extraction and production can
also be minimized.11 This assists in the conservation of nat-
ural resources and can reduce carbon emissions.

Incorporating waste materials in concrete can partly
address the issue of waste accumulation in landfill areas.
For example, diverting textile and cardboard waste from
landfill and utilizing them in concrete and mortar mate-
rials, can reduce the amount of waste sent for disposal,
leading to a more sustainable waste management
approach. It is worth noting that the utilization of various
fiber types such as steel, plastics, textiles, and glass in
cementitious composites has been observed globally,
indicating the potential of waste fiber materials in con-
crete applications.12–15 However, research studies have
focused on utilizing one fibrous material per mix design.
Therefore, research is required to demonstrate the use of
a multiple fibers within a composite design to address the
issues of both cement and steel requirements. Addition-
ally, there are limitations to consider with waste mate-
rials, such as the availability and cost-related concerns of
waste products. Ensuring a consistent and sufficient sup-
ply of textile and cardboard waste may require effective
waste management systems and collaborations between
industries and waste management authorities.

Annually, the textile industry consumes around 98 mil-
lion tons of non-renewable resources, including oil, raw
materials for fertilizers, and treatment chemicals.16 This
results in a significant carbon footprint, with the textile
industry accounting for 1.2 billion tons of CO2 emissions,
equivalent to 8% of the global total.17 Globally, the produc-
tion of garments reaches a staggering 100 billion units per
year, with a substantial portion of 92 million tons ending
up in landfills.18 This waste issue is primarily driven by con-
sumers' economic feasibility in purchasing new clothing.
Moreover, mass production of textile materials has resulted

with reduced material costs due to over-supply. This addi-
tionally creates an abundance mentality with consumers
and ultimately creates more waste textiles. The recycling of
textile products requires substantial energy and economic
resources, leading to significant challenges in repurposing.
Consequently, a large volume of textiles ends up in landfills,
necessitating the development of alternative recycling solu-
tions. The United States Environmental Protection Agency
(EPA) estimates that approximately 26 billion pounds of
textiles are disposed of in landfills each year.19 Similarly,
Australia discards approximately 501 million kilograms of
textiles annually.20 As the global population is projected to
reach 8.5 billion by 2030, the accumulation of textile waste
will continue to escalate.21 This population growth
amplifies waste generation across all sectors, particularly in
the case of cardboard materials. Textile materials are
becoming a prominent reinforcing method in cementitious
composite materials.22 Islam et al.,23 have integrated carbon
fiber textile grids and short textile fibers within concrete
materials to improve the mechanical behavior. Their find-
ings demonstrated that shorter fibers improved the plastic
behavior of concrete. Moreover, findings from Islam et al.,23

highlighted the use of a double layered carbon textile grid
improved the flexural load capacity by 2% and the tensile
capacity by 30%. Other research focused on the binding
properties of textile materials in concrete.24 Preinstorfer
et al.,24 findings demonstrated that the textile fiber type is
critical to enhance bonding when the composite is under
applied load. This is shown with the geometric properties of
the fiber strands. A tricot-binding pattern was beneficial in
the warp direction of plain textiles as it creates a rough sur-
face area. This enables an interlocking mechanism sur-
rounding the textiles in the concrete and ultimately reduces
crack propagation. However, the previous research investi-
gates longer fiber lengths which can be difficult to procure
from recycled sources. However, Ibrahim et al.,25 investi-
gated the use of both carbon textile grids and short carbon
fibers in concrete. The findings demonstrated that short car-
bon fibers contributed to more flexural strength in a con-
crete slab than they do in a hybrid textile grid and short
fiber systems. Moreover, Ibrahim et al.,25 demonstrated that
short carbon fibers can improve both the load-deflection
and load-concrete strain behavior. This is primarily due to
the random dispersion of fibers that reduce the number of
cracks originating in the composite.

Another potential solution that has often been over-
looked is the utilization of cardboard waste materials in
concrete. However, challenges arise from its natural
material origin. In 2021, Australia achieved a resource
recovery rate of 61.2% for cardboard waste, recycling 55%
and directing 6.2% toward energy recovery. Despite these
efforts, a significant amount of 2.2 million tons (Mt) of
cardboard waste still ended in landfill.26 This figure is
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noteworthy, considering that one ton of cardboard waste
occupies a volumetric size of 1.6 m3. Cardboard is exten-
sively used across various industries, and the demand for
cardboard packaging for households has risen by 40%
since the onset of the COVID-19 pandemic.27 Therefore, to
sustain future advancements in composite designs, it is
crucial to explore customized approaches that maximize
the utilization of these materials. Moreover, comprehend-
ing the mechanical behavior of textile and cardboard
waste in concrete is essential for promoting their use as
alternative reinforcement and cement substitute methods
in composite designs. The integration of cardboard waste
in concrete and cementitious materials has been explored
in research.28 The constituent material in cardboard is
kraft fibers (KFs), which is a natural material derived from
plants and trees.29 However, the successful integration of
this material in cementitious composites requires addi-
tional fiber and matrix modifications.30 A key challenge is
that the cellulose chains of KFs degrade significantly when
exposed to high alkaline environments.31 In an experimen-
tal investigation by Khorami et al.,32 waste cardboard was
studied by integrating 1%–14% KFs within fiber cement
boards. The research findings revealed that the flexural
strength improved by 250% when 8% KF was combined
with 10% limestone powder and 3% nano-silica fume.
These additional additives reduced fiber wall degradation
by reducing the amount of OPC used. Another experimen-
tal study conducted by Booya et al.,33 focused on the dura-
bility of KF integration in concrete. The results
demonstrated that the incorporation of 2% mechanically
and chemically treated fibers can enhance the durability
properties of concrete composites. Other research efforts
have examined the thermal performance, microstructural
characteristics, surface fatigue, and processing effects of
KFs when integrated into cementitious composites.34–37

However, these studies primarily aimed at achieving
mechanical objectives when using the material as a rein-
forcement agent. Other research has been conducted uti-
lizing silica fume (SF) as a fiber modification technique to
reduce the amount of OPC required in concrete.38 The
findings demonstrated the potential to supplement 5%
OPC with silica fume modified KFs (SFKF)s. Moreover,
the mechanical investigations demonstrated a 20%, 10%,
and 26% reduction in compressive, tensile, and flexural
strength. However, the use of the material was primarily
focused on reducing the OPC requirement, rather than the
reduction of reinforcement materials. Further studies have
focused on the utilization of waste cardboard fibers to
reduce economic and environmental concerns.39 The find-
ings demonstrated a reduction in GHG emissions when
integrating waste materials as a raw material in concrete.

This study will focus on the use of two waste fiber
materials to investigate two alternative solutions. Firstly,

textile materials will be utilized to act as a reinforcing
agent in concrete and secondly, KFs will be integrated as
a partial cement substitute. The novelty of this research
is the use of two fibrous materials that will have two dif-
ferent purposes. Moreover, the use of both textile and
KFs in concrete has been seldom considered. To encour-
age the incorporation of textile and cardboard waste
fibers in concrete, this study will comprehensively ana-
lyze the mechanical and microstructure of the composite
materials. The creation of the novel composites can assist
to better understand the potential benefits and challenges
associated with using these materials as a binary fiber
blend in concrete and mortar materials.

2 | EXPERIMENTAL PROCEDURE
AND METHODOLOGY

2.1 | Materials and preparation

Textile materials were sourced from pre-used high vis
construction vests. The fibers derived from the vests were
polyester materials. The vests were shredded and trans-
formed into a fibrous material, ready for laboratory
exploration. The primary materials used to reduce the
OPC content in the mix designs are waste corrugated
cardboard and metakaolin (MK). Waste cardboard was
transformed into a fibrous material through the integra-
tion of SF, which acts as a fiber modification technique.
The process begins by reducing the waste cardboard to a
pulp material using water immersion and rotating mixing
methods. SF slurry is then applied to the cardboard
fibers, resulting in Silica Fume Kraft Fibers (SFKFs).
SFKFs undergo a moisture removal process and are
mixed in a rotating mixer, creating a fibrous material.
The SF applied to the waste cardboard (KFs) adheres to
the Australian Standard AS/NZS 3582.340 specification
for silica fume used in cementitious materials. The MK,
used as a partial substitute for cement, conforms to the
ASTM C-61841 Class N specification for natural and cal-
cined pozzolans. OPC, conforming to AS/NZS 3972,42 is
included in the mix design as the primary component for
pozzolanic reactivity. Table 1 details the various chemical
components of SF, MK and OPC. The use of locally avail-
able (Melbourne, Australia) 20 mm Coarse and 0.6 mm
fine aggregates, are used in accordance with AS/NZS
1141.6.243 and AS/NZS 1141.5,44 respectively. Regular
potable tap water was used in the preparation of the spec-
imen designs.

Sample preparation is conducted using a mortar
mixer following the guidelines of AS/NZS 1012.2.45 The
materials are dry mixed for 5 min. Subsequently, water is
added and mixed for an additional 5 min to complete the

HAIGH ET AL. 4035

 17517648, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/suco.202301148 by V

ictoria U
niversitaet, W

iley O
nline L

ibrary on [04/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



sample preparation. Once ready, the concrete materials
are added to the molds in three layers. Each layer is com-
pressed 20 times using a steel rod before the subsequent
layers are added. The molds are kept at a room tempera-
ture of approximately 20�C for 24 h before being placed
in curing baths. Slump tests are performed following the
procedures outlined in AS/NZS 1012.3.1.46 As shown in
Figure 1, the methodology framework consists of both
mechanical and microstructure investigations.

2.2 | Mix designs

The desired compressive strength for all concrete
specimens was 40 MPa. The experimental mechanical
analysis included five different mix designs. The first
design served as the control without any fiber inte-
gration. The second design incorporated 2.5% textile
(T2.5) materials to act as reinforcement. The third
design involved 5% SFKFs (SFKF5) to supplement 5%
cement. The fourth mix design (MKT) combined 5%
MK and 5% SFKFs to partially supplement cement
with 2.5% textiles as reinforcement. Lastly, the
fifth mix design combined 2.5% textiles as a rein-
forcement with 5% SFKFs to partially supplement
cement (KFT).

The specific formulations of the mix designs can be
found in Table 2. The density of the fiber materials
needed to be adjusted based on the purpose of the mate-
rials. For example, to supplement cement with KFs, the
weight of KFs needed to be adjusted based on the density
of the cement. This is similar to the textile materials to
act as a reinforcing agent based on the density of the con-
crete. The water content, as well as the ratios of fine and
coarse aggregates, remained consistent with the control
design. Regardless of fiber integration, the workability of
the fiber concrete remained satisfactory during the mix-
ing process.

TABLE 1 Chemical composition of

pozzolanic materials.
Chemical

Material component %

MK SF OPC

SiO2 54–56 ≥75 to <100 19–23

Al2O3 40–42 2.5–6

Fe2 O3 <1.4

TiO2 <3.0

SO4 <0.05

P2O5 <0.2

CaO <0.1 61–67

MgO <0.1

Na2O <0.05

K2O <0.4

L.O.I. <1.0

Silica, amorphous, fumed, cryst. free ≥0.3 to <1

CaSO4.2H2O 3–8

CaCO3 0–7.5

Fe2O3 0–6

SO3 1.5–4.5

Abbreviations: MK, metakaolin; OPC, ordinary Portland cement; SF, silica fume.

FIGURE 1 Research methodology.
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2.3 | Testing procedure

Following the concrete testing methods outlined in
AS/NZS 1012.8.2,47 both compressive and tensile tests
were performed on cylindrical specimens measuring
100 � 200 mm. The compressive load rate was set at
20 MPa/min, as specified by AS 1012.9.48 Indirect tensile
testing was conducted with a load rate of 1.5 MPa/min,
in accordance with AS 1012.10.49 The flexural strength
properties were determined on the concrete beams by
conducting a four-point bending test. The size of the
specimens was 100 � 100 � 350 mm with a load rating
of 1 MPa/min in accordance with AS 1012.11.50 For each
specimen, three samples were measured at aging inter-
vals of 24 h, 7, 14, and 28 days. The average values and
standard deviation measurements were recorded. The
mechanical tests were carried out using the Matest
C088-11N Servo-Plus evolution testing machine and the
Cyber-Plus evolution data acquisition system. To exam-
ine the microstructure of the samples, scanning electron
microscope (SEM) and energy-dispersive X-ray spectros-
copy (EDS) were employed. The microstructure observa-
tions were performed using the Phenom XL G2 Desktop
SEM. To prepare the samples, a diamond cutting saw was
used to create specimens with a height of 2–4 mm and a
diameter of 4–6 mm.

3 | RESULTS AND DISCUSSION

3.1 | Microstructure

The microstructure of the composites was investigated
for each mix design. Figure 2 illustrates the waste fibers
used in the concrete materials. As shown in Figure 2a,
SFKFs demonstrate a larger surface area compared to the
textile fibers. The length of the SFKFs varies greatly
between 10 and 36 μm. This is due to the process of
acquiring and producing cellulose fibers use in the
manufacturing of cardboard materials. Raw cellulose
fibers undergo intricate chemical and thermal treatments
to wood pulp. Caustic acid and sodium sulfate is
employed to cook the wood pulp, breaking down the
fiber bonds. Consequently, this method eliminates lignin
from the fibers, enhancing both random fiber dispersion
and size.51 Moreover, SFKFs then demonstrate a rough
surface area due to this process. SFKFs are susceptible for
dimensional changes due to moisture absorption when
applied in the composite materials. However, the rough
surface area can aid toward the anchoring system within
the concrete matrix. This anchorage point is critical to
enable the fiber to endure elevated axial loads within the
composite, thereby enhancing the total bearing capacity
of the material.

TABLE 2 Mix design ratios (kg/m3).

Mix design Fiber Cement Metakaolin Coarse aggregate Fine aggregate Water

Control 424 1241 587 195

T2.5 4.16 424 1241 587 195

SFKF5 3.3 402.8 1241 587 195

MKT 7.46 381.6 21.2 1241 587 195

KFT 7.46 402.8 1241 587 195

FIGURE 2 Fiber materials.

HAIGH ET AL. 4037
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The synthetic production of the textile fibers as
shown in Figure 2b, have a unified formation. Despite
the recycling process of the textile materials, the fibers
remain smooth and unhindered from the shredding pro-
cess. The length of the textile fibers are between 7 and
12 μm. The smooth texture increases the effective disper-
sion rate during the mixing process, as the fibers are less
likely to clump together. Moreover, this enables the fibers
to penetrate voids and gaps within the microstructure
during the formation and agglomeration of the concrete
materials. Increasing the fibers presence among the
matrix of the materials increases the ability of the fiber to
act as a reinforcement agent during the application of
mechanical stresses.

Figure 3 illustrates both fibers in the various concrete
mix designs. As can be observed in Figure 3a, SFKFs
have an attachment of cement products on the fiber
walls. This attachment can reduce the durability and ser-
vice life of the fiber. Moreover, various components such
as calcium hydroxide (Ca(OH)2) that have high alkalinity
can weaken the fiber. The outer lumen of the natural
fibers can degrade significantly rendering the fiber sus-
ceptible to fiber snapping. However, the integration of SF
on the KFs appear to reduce the attachment of cement
products along the entire fiber. SF consumes Ca(OH)2
and creates additional calcium silicate hydrate (C–S–H)

gels among the composite material. Moreover, the use of
SF on the fibers creates additional durability benefits
because the interfacial zone between the fiber and the
matrix is improved with the creation of additional C–S–H
gels. Figure 3b illustrates textile fibers within T2.5. As
shown, the structural integrity of the textile fibers
remains mostly unhindered from the attachment of
cement products. The chemical composition of polyester
fibers lacks chemical affinity within cementitious mate-
rials. Therefore, the use of polyester fibers in concrete
materials are predominantly used for their physical attri-
butes and cannot be relied upon for their chemical bond-
ing in cementitious matrices. For this reason, polyester
fibers are primarily used in composites so assist in the
reduction of crack propagation and improve the overall
mechanical performance. The lack of chemical affinity
between the fibers and the matrix prevents the formation
of strong bonds. However, as can be observed fiber snap-
ping appears to have occurred to the textile fibers in the
composite. This demonstrates a sufficient bond between
both the fiber and the matrix which has allowed the fiber
to absorb excessive stress until failure has occurred. This
is critical to observe as to fiber pull-out typically occurs
when using polyester fibers in cementitious composites.

Figure 3c illustrates the use of both fiber types in the
MKT mix design. As shown, there significant crowding

FIGURE 3 SEM images of fibers in various mix designs. SEM, scanning electron microscope.
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among the dispersion of both fibers in this localized area.
The textile fibers appear to have clumped together, with
a similar occurrence among both fiber types in the com-
posite. Similar observations can be seen among the vari-
ous composites using textiles, with little to no
degradation occurring. This image demonstrates the sig-
nificantly larger surface area of SFKFs compared to tex-
tiles. The increased surface area can aid toward the
mechanical function of the composite when a larger sur-
face area is exposed to the axial forces. However, it
appears there is a higher rate of dispersion with the tex-
tile fibers that has filled the various voids and gaps in the
microstructure of the composite. A higher rate of disper-
sion allows the fibers to act as a reinforcement agent as
there is a higher chance the fibers will receive the
mechanical loading applied to the composite. It is impor-
tant to note that the SFKFs are predominantly used as a
partial cement replacement and therefore the higher rate
of dispersion of textile fibers was to be expected.
Figure 3d demonstrates petrification has occurred to the
SFKFs. As can be observed, cement products have
attached to the outer fiber. This occurrence can result in
the fiber becoming brittle and reduce the elongation of
the fiber when mechanical forces are applied. Although
this is one demonstrated occurrence, it is important to
note that other SFKFs in the same region do not contain
similar patterns of petrification.

3.2 | Compressive strength

Figure 4 illustrates the variation in compressive
strength among the different concrete samples with vari-
ous fiber types and compositions. The standard deviation
in concrete strength between the samples is shown via
error bars. The control measured 12, 30, 34, and 44 MPa
at 24 h, 7-, 14-, and 28-day intervals, respectively. The

target compressive strength was 40 MPa. Samples T2.5,
MKT and SFKF5 achieved a compressive strength of
42, 38, and 33 MPa, respectively. However, KFT equally
reached a strength of 44 MPa at 28 days. KFT demon-
strated a higher range in strength volatility in comparison
with the control. This is shown with an increased range
of upper and lower limits of the samples between 1 and
2 MPa. Although this amount is marginal, it does demon-
strate the variables associated with fiber integration in
concrete.

The smaller surface area of the shredded textile mate-
rials enabled the material to fill voids in the concrete
matrix. This is shown when analyzing the strength differ-
ences between T2.5, SFKF5, and KFT. SFKF5 had the
lowest value of compressive strength with 33 MPa at
28 days. However, T2.5 had the second highest compres-
sive strength with 42 MPa at 28 days. Although the
cement content varied, this demonstrates the ability of
the fine fibrous textile materials to fill any voids by con-
taining a high compressive strength. It is important to
note that SFKF5 reduced the cement content by 5% with
the integration of SFKFs as a partial substitute. However,
when textile fibers are combined with KFs, there is a
11 MPa increase. As shown with the sample KFT. This
further demonstrates that a key factor in high compres-
sive strength correlates to the packing density of the con-
crete matrix. The early ages of T2.5 showed an increased
compressive strength compared to all samples. For exam-
ple, 24 h, 7- and 14-day intervals demonstrated 14, 36,
and 35 MPa, respectively. However, the control had
12, 30, and 34 MPa within the same age range. As the
concrete cures, the hydration process causes the cement
particles to react with the water molecules, forming a
crystalline structure known as C–S–H gel. This gel binds
the various components of the concrete mix, increasing
the strength and durability. Additionally, the formation
of other compounds, such as Ca(OH)2 and ettringite also
contribute to the strength development.52 This is shown
with researchers utilizing basalt textile grids in concrete.
Their findings revealed that a cementitious binder out-
performed the geopolymer binder in terms of compres-
sive and tensile strength.53 Their results exhibited
compressive and tensile strength increased by 25.56% and
10.6%, respectively. This study further exemplifies the
chemical composition of the fiber is a critical element
toward the mechanical effect of the composite material.
When the fibers integrity is not hindered due to the
chemical components of cement, it can increase
the strength qualities.

The development of Ca(OH)2 over time can contrib-
ute to the reduction in strength within cementitious fiber
composites. This is shown with T2.5 and SFKF5 where
the high strength levels are shown in early ages of the

FIGURE 4 Compressive strength results.
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concrete development but reduced at the final 28-day
interval. Ca(OH)2 has been shown to reduce the durability
of fibers due to the degradation caused on the fiber walls.54

Fibers can become weak and brittle due to the attachment
of cement particles on the fiber wall, this is also known as
petrification. When the surface area of the fibers are petri-
fied, fiber snapping is more likely to occur due to the
reduced flexibility of the crystalline materials. This is one
phenomenon of mechanical failure of fibers in composite
materials. However, the application of SF on the KF walls
reduces the accumulation of Ca(OH)2 on the fiber walls,
thus reducing petrification. This is due to the high silicon
dioxide (SiO2) content of SF reacting with the Ca(OH)2 to
form additional C–S–H gels, consuming Ca(OH)2. More-
over, the consumption of Ca(OH)2 via the pozzolanic reac-
tion of SF reduces the alkalinity within the concrete
materials. This reduction of alkalinity additionally reduces
the degradation on fibrous materials. This is highlighted
by the mechanical strength variation of KFs used within
concrete without SF fiber modification.55 Haigh et al.,55

demonstrated the addition of SF coating strengthened the
compressive strength and enhanced the durability of the
fibers despite the amount of KFs used. This was shown
with 15% raw KFs exhibiting 10 MPa whilst 20% SF modi-
fied fibers demonstrated 11 MPa. A 5% fiber increase can
be detrimental toward the compressive strength of com-
posite materials however, as shown, the integration of SF
reduced the negative mechanical effects often associated
with high volume fiber concrete.

3.3 | Tensile strength

Figure 5 illustrates the variation in tensile strength among
the different concrete samples with various fiber types and
compositions. The standard deviation in concrete strength
between the samples is shown via error bars. The tensile
strength of the concrete increased with fiber integration.

This is shown with KFT demonstrating 3.58 MPa at
28 days compared to the control which achieved 3.41 MPa
at the same aged interval. However, MKT also achieved
similar results with a total of 3.38 MPa at 28 days. It is
important to note that MKT demonstrated the highest ten-
sile strength results at 24 h, 7- and 14-day aged intervals.
The chemical composition of MK within the concrete mix
has shown to influence the tensile strength. This is via sev-
eral factors such as the pozzolanic reactivity, microstruc-
ture features and the synergy between the fibers. MK
contains amorphous silica and alumina which is highly
reactive within cementitious materials. Its pozzolanic reac-
tivity with Ca(OH)2 forms additional C–S–H gels which
can enhance the bonding between the fibers and the
matrix.56 Enhancing the fiber bonding capacity improves
tensile strength by effectively transferring stress between
the two materials, thus reducing the formation of micro-
cracks.57 Moreover, the addition of C–S–H gels contributes
to a denser concrete matrix and reduces porosity. This cre-
ates a more compact and homogenous matrix, which pro-
vides improved support for the fibers against tensile
forces.58 Additionally, MK influences the microstructure
via the reduction in the pore structure and ultimately
improves particle packing. However, it is important to
note that reducing 5% cement with MK does not eradicate
the total development of Ca(OH)2. For this reason, degrad-
ability can still occur on the fibers within the matrix as
shown with the marginally reduced tensile strength of
MKT at the 28-day aged interval. Alan Strauss Rambo
et al.,59 improved the tensile and bonding of sisal textile
fibers in concrete via nano-silica treatment. It is important
to note that the control demonstrated higher tensile
strength however, the fiber modification technique was
improved compared to raw fiber integration. This was fur-
ther exhibited by the reduction in crack formation, which
aided toward the increase of tensile strength.

SFKF5 achieved the lowest tensile strength among the
samples with an 11% strength reduction occurring between
14- and 28-day intervals. This can be attributed to the deg-
radation of the fiber within the matrix. There is a progres-
sive development of degradation that occurs to natural
fibers in cementitious materials when compared with their
synthetic fiber counterparts. Natural fibers absorb moisture
within the concrete matrix, this leads to dimensional
changes and weakening of the fibers. This absorption and
release of moisture can create a physical degradation,
reduced strength, and loss of structural integrity. Moreover,
natural fibers are more prevalent to alkali attacks in a
cementitious matrix. Thus, weaking the fiber structure and
subsequent degradation. However, it is important to note
that there is a significant strength increase when SFKFs
are paired with textile fibers. As discussed, the fine surface
area of textile fibers has created a denser matrix by

FIGURE 5 Tensile strength results.
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reducing the porosity of the composite. Li et al.,60 utilized
polyethylene (PE) fibers and carbon fiber textile grids in
concrete. Their findings demonstrated that increasing the
PE content and carbon fiber textiles can improve the prop-
erties of the tensile specimens after the initial cracking.
This was shown with an increased tensile load capacity
and hardening modulus of the samples. Additionally, short
and dispersed fibers improved the bonding properties
between the textiles and the matrix. In this study, when
both fibers are integrated, the transference of applied load
can alternate within the matrix between fiber types. This
creates a stronger composite by minimizing the accumula-
tion of forces upon one fiber type. The optimal amount
of cement replacement in this mix design is 5%, as shown
in KFT. However, this is only when the addition of textile
fibers are integrated within the mix design. T2.5 demon-
strated an incline of tensile strength at each aged interval.
T2.5 achieved the highest tensile strength at 24 h but then
showed the lowest strength improvement between 24 h-
and 7-day aged interval. Although T2.5 maintained a high
tensile strength across each aged interval, the fine surface
area of the textile material did not allow the transference of
significant load to occur between fibers.

Figure 6 graphically illustrates the tensile stress ver-
sus strain curve of the various mix designs. It is impor-
tant to note the numerical values presented are from one
of the three samples tested. The variation of maximum
strength are shown via the peak curves. As demonstrated,
KFT had a higher stress yield that the other composite
materials. However, the control exhibited a much longer
strain duration compared to the other mix designs. This
is shown with the control achieving the maximum stress
load later than the other composite samples. MKT exhib-
ited the highest strength increase followed by the shortest
strain duration. SFKF5 demonstrated the sharpest

strength decline following the highest strength yield for
that composite. The variation of curves indicates different
tensile capacities of the materials. For example, a steeper
decline can exhibit fiber snapping occurring in the com-
posites matrix. Additionally, the longer incline of the ten-
sile strain can demonstrate the sufficient bonding
between the fiber and the matrix. Moreover, when load is
applied to the composite, a load path is created through-
out the matrix. When the fiber has sufficient bonding
and strength in the composite, the fiber can withstand
the load that is being applied. Therefore, when there is
an increased strain capacity of the composite, there is a
mechanical benefit from the fiber integration. Alterna-
tively, the increased strain on the control shows the suffi-
cient agglomeration of all constituent materials.

3.4 | Flexural strength

Figure 7 illustrates the variation in flexural strength among
the different concrete samples with various fiber types and

FIGURE 6 Tensile stress versus

strain.

FIGURE 7 Flexural strength results.
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compositions. The standard deviation in concrete strength
between the samples is shown via error bars. As illustrated,
the control had the highest flexural strength of 2.87 MPa at
the 28-day interval. This was a 9%, 17%, 14%, and 17%
decrease in flexural strength compared to T2.5, MKT,
SFKF5, and KFT, respectively. The reduced strength across
all fiber composite materials demonstrates that fiber pull
out has occurred. This is the second phenomenon of fiber
mechanical failure in composite materials. Fiber pull-out is
the debonding of fibers in their respective environment
under applied loads.61 This can occur due to inadequate
bonding between the fiber and the matrix, namely weak
interfacial adhesion. Smooth surface areas of the fiber can
allow the fiber to have less friction resistance when the
load is applied, thus enhancing the fiber to pull-out of the
localized area.62 Therefore, when integrating fibers in com-
posite materials it is critical to ensure the interaction
between the fiber and the matrix is investigated. Fernandez
Ruiz et al.,63 integrated macro-synthetic fibers (MSFs)
within concrete partition walls. Their findings demon-
strated the fibers stabilized the formation of cracks when
under implied flexural stress. Similar to the textile fibers
used in this study, the MSFs were randomly dispersed, ulti-
mately reducing crack formation. Minimizing crack propa-
gation can increase the durability of the composite
materials, improving physical and mechanical properties.
If there is insufficient compatibility between the fibers and
the matrix it can create weakened stress transfers. A lack of
efficient stress transfer causes localized failure at the fiber
and matrix interface. Moreover, as the flexural load is
applied to the fiber composite, the formation of crack prop-
agation occurs. When cracks form around the fibers, it
weakens the bond between those fibers and the matrix,
thus promoting fiber pull-out to occur.

As demonstrated in Figure 7, the higher content of fiber
in the concrete matrix reduces the flexural strength. This is
shown with MKT and KFT that achieved the lowest

strength of 2.38 MPa at 28 days. T2.5 achieved 2.62 MPa
which was the highest strength for the fiber composites.
Whereas SFKF5 achieved 2.46 MPa at the 28-day interval.
Similar results were shown with Li et al.,64 whom utilized
natural fibers derived from bamboo in concrete. Their find-
ings demonstrated the water absorption characteristics of
the fiber increased the crack pattern of the materials. How-
ever, optimizing the number of fibers to 1.2% increased the
mid-span deflection by 25.5%. It is important to note that
the fibers were placed longitudinally for this increase to
occur. The control has a higher flexural strength due to
several factors including, homogenous structure, improved
workability, optimal mix design, and reduced mechanical
variabilities.65 Concrete without fibers typically have a
more uniform and homogenous structure. This allows the
applied load to transfer throughout the whole matrix as
one single unit. Moreover, reducing the number of raw
materials in concrete will also reduce the variables associ-
ated with additional materials. When the concrete mix
design is optimized between cement, water, fine and coarse
aggregates, the workability can remain consistent. With the
addition of fibers in concrete, the mixing process must
remain uniform otherwise further variabilities will be asso-
ciated with the results. However, as demonstrated with the
tensile and compressive strength results, fiber integration
can be beneficial. Although flexural strength is reduced,
this is primarily associated with the fiber pull-out phenom-
enon. The four-point bending apparatus used to determine
the flexural strength entails four points of applied pressure.
This creates excessive loading on the four points of load
transference between the matrix and the fibers. As the load
increases on the concrete beams, the formulation of micro-
cracks develops and crack propagation occurs. The
increased dimensional changes of those cracks within the
matrix creates additional voids and subsequently a porous
microstructure surrounding the fiber is created. This deter-
mines the mechanical failure of the fibers in the concrete

FIGURE 8 Flexural stress versus

strain.
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from this load application. Therefore, to enhance flexural
strength in fiber concrete materials, increasing the dimen-
sions of fibers and placing the fibers alongside the applied
load can mitigate a reduction in composite strength.

Figure 8 graphically illustrates the flexural stress vs
strain curve of the various mix designs. It is important to
note the numerical values presented are from one of the
three samples tested. The variation of maximum strength
are shown via the peak curves. The flexural resistance of
the control exhibited the highest strength and longest
strain of the composites. MKT demonstrated mechanical
failure at the shortest strain interval, whereas KFT exhib-
ited the lowest strength but at a later load strain period.
All samples had severe failure rating when the compos-
ites could not withstand the applied load. T2.5 demon-
strated superior flexural resistance compared to the other
fibrous composites. This could be due to the small surface
areas of the fiber and the ability to agglomerate within all
voids during the mixing process. T2.5 and SFKF5 main-
tained a similar strength incline as the control. However,
the fiber composites peaked at a deflection rate of 60.75
and 51.75 mm, respectively.

4 | CONCLUSION AND FUTURE
RESEARCH

This study demonstrated the mechanical and microstruc-
tural investigations of the novel concrete composites using
textile and cardboard waste fibers. Microstructural analysis
showed distinct differences in the surface area and behavior
of SFKFs and textile fibers within the concrete matrices.
These differences affected physical properties such as
anchorage points, moisture absorption, petrification, and
fiber–matrix interaction, thereby influencing the mechani-
cal behavior of the composite. The experimental investiga-
tion provides valuable insights into optimizing fiber
content, mix designs, and material properties to enhance
composite performance. Future research studies could focus
toward the economic and environmental implications when
using the waste fibers in cementitious materials. Addition-
ally, physical properties of the composite such as shrinkage,
and various loading types could be further researched. The
integration of the waste fiber materials in concrete presents
a promising avenue to address sustainability challenges in
the building and construction industry. The most important
outcomes of this study are summarized as follows.

• The combination of textile and SFKFs can achieve a
compressive strength of 44 MPa, which is the same as
the control.

• Tensile strength is improved by 4.74% when using the
combination of textile and SFKFs.

• Flexural strength is reduced by 8.71%, 17%, 14.28%,
and 17% when integrating T2.5, MKT, SFKF5, and
KFT, respectively.

• The use of MK can improve the mechanical stability of
waste fibers in concrete via the minimization of degra-
dation on the fiber walls.

• 5% cement replacement with SFKFs exhibited a 25%
reduction in compressive strength.

• Petrification occurs at a higher rate when using natural
fibers in comparison to synthetic textile materials.

• Polyester textile fibers physically bond in the concrete
matrix rather than chemical bonding.

• The use of SF can enhance the durability of natural
fibers in concrete by reducing the attachment of
cement products in the composite matrix.
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