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Abstract: In this article, we establish Hermite-Hadamard-type inequalities for the two classes of functions
X (Q) = {f € C¥HQ) : Af £ Af = 0}, where A > 0 and Q is an open subset of R2 We also obtain a characteriza-
tion of the set X_3(Q). Notice that in the one-dimensional case, if @ = I (an open interval of R) and A = p?, p > 0,
then X;(Q) (resp. X-»(Q)) reduces to the class of functions f € C*(I) such that f is trigonometrically p-convex
(resp. hyperbolic p-convex) on I.
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1 Introduction

Convex functions are widely used in various branches of mathematics, such as functional analysis, optimiza-
tion theory, and numerical analysis. One of the important inequalities related to convex functions is the (right-
side) Hermite-Hadamard inequality [1,2] that can be stated as follows: Let g; < g, and f: [0y, 03] = R be
a convex function. Then
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Inequality (1.1) has been refined and generalized in various directions. For more details, we refer to the
monograph [3] collecting many results in that direction.

In [4], among other results, the first author extended inequality (1.1) to the class of convex functions on
a disk. Namely, he proved that, if f: B(C,R) - R is convex, then
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where B(C, R) is the open ball of R? with center C € R? and radius R > 0, dB(C, R) is the boundary of B(C, R)
and B(C,R) is the closure of B(C,R). For further results related to Hermite-Hadamard-type inequalities
in higher dimensions, see [5-11] and the references therein.

Letp > 0and f: I » R, where I is an interval of R. We say that f is a trigonometrically p-convex function

onI[12],ifforalla,belwith0<b—a<%,wehave

sin[p(b - x)] sin[p(x - a)]

T = Gt = @ ¥ sinfpto = a)f @ @=X=D

In [13], the first author proved (among many other results) that, if f: I —» R is a trigonometrically p-convex
function on I, then for alla,b € I with0 < b - a < %, we have

f(a) + f(b) taln[P(b -a)
p 2

b
Jf(x)dx <

For other results related to trigonometrically p-convex functions, see [14-17] and the references therein.
Let p > 0 and f: I — R. Assume that for all a, b € I with a < b, we have

sinh[p(b - x)] sinh[p(x - a)]

TOO= Gnnipto - of @ sinnfp - ) &> =X =P

In this case, the function f is said to be a hyperbolic p-convex function on I [18]. The first author in [19]
established that if f: I —» R is a hyperbolic p-convex function on I, then for all a, b € I with a < b, we have

f(a) + f(b) tanhlp(b - a)
p 2

b
If(x)dx <

We also refer to [20,21] for further results related to hyperbolic p-convex functions.
On the other hand, it was shown in [12] that f € C%(I) is trigonometrically p-convex on I if and only if
f satisfies the second-order differential inequality:

7+ p¥20 inl (1.3)

In [18], it was proven that f € C*(I) is hyperbolic p-convex on I if and only if f satisfies the second-order
differential inequality:

f” -p¥=20 in I (14

In this article, motivated by the aforementioned cited works, we establish Hermite-Hadamard-type
inequalities for the two classes of functions

Xu(Q) = {f€ CAQ) : Bf £ Af 2 0},

where A > 0, Q is an open subset of R%, and 4 denotes, as usual, the Laplacian operator. Moreover, we prove
a characterization of the set X_5(?). Remark that in the one-dimensional case, by (1.3), if @ = I and A = p?,
p > 0, then X;(Q) reduces to the class of functions f € C2(I) such that f is trigonometrically p-convex on I.
Similarly, in the one-dimensional case, by (1.4), if @ = I and A = p%, p > 0, then X_;(Q) reduces to the class
of functions f € C2(I), such that f is hyperbolic p-convex on I.

The structure of the rest of the article is as follows. In Section 2, we study some properties of the sets
X:7(Q). In Section 3, we derive Hermite-Hadamard-type inequalities for both classes of functions X.;(Q).
Finally, in Section 5, we establish a characterization of the set X_3(Q).
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2 The classes of functions X,;(Q)

Throughout this article, by Q, we mean an open subset of R2 For A > 0, let
X(Q) = {f€ CHQ) : Af + Af = O}
We also consider the class of functions
Xo(Q) = {f € CXQ) : Af = 0}

In this section, we provide some properties of the above classes of functions.

Proposition 2.1. Let A > 0 and 0 < 6 < 1. The following properties hold:
(@) ny>0X+y(Q) c XO(Q)-
(i) FEX)(Q),f20 = fE€ NuoXiu(Q).
(i) fE€X(R),f20 = fE MuaXiu(Q).
(V) fFEXA(Q),a20(a@a€ER) = af € X (Q).
W) f,g €Xa(Q) = f+ g€ X
W) fE€XnQ), 8 € Xa-0(R),f20,820,Vf-Vg =0 = fg € X.x(Q), whereV is the gradient operator and - is
the inner product in R,

Proof. We only prove (i) and (vi). The other properties are immediate, so we omit the details.
() Let f € NysoX+u(Q). If z € Q is fixed, then for all u > 0, we have

B (2) + uf (2) 2 .

Passing to the limit as u — 0%, we obtain Af(z) = 0, which shows that f € Xy(Q).
(vi) Let fE Xp(Q) and ge X(l_g)A(Q) be such that

fz0,g20,Vf-Vg=0.
By the property
A(fg) = fbg + gbf + 2Vf Vg,
we obtain
A(fg) + Mg = A(fg) + A0fg + (1 - O)Afg = f(Ag + (1 - B)Ag) + g(Af + A6f) + 2Vf -Vg 2 0,
which shows that fg € X.,(Q). g

Similarly, we have the following properties.

Proposition 2.2. Let A > 0 and 0 < 0 < 1. The following properties hold:
(@ Nu>0X-u(R) C Xo(Q).

(i) fE€Xo(R),f<0 = fENuoXu(Q).

(@) fE€X2(Q),f20 = fE NogusaXsu(Q).

(v) feX(Q),az0(@eR) = af € X(Q).

W) f,§ €XAQ) = f+g€X V.

W) fFEX (R), 8 EXa-0n(R),f20,g20,Vf-Vg=20 = fgeX,(Q).
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3 Hermite-Hadamard-type inequalities on a disk

In this section, we are concerned with the extension of inequality (1.2) to the classes of functions X;,(Q). We
need to recall some properties related to Bessel functions. For more details about such functions, we refer
to [22].

3.1 Some preliminaries

For alln € N (n is a natural number), let J, be the Bessel function of the first kind of order n. This function can

be written as an infinite power series as follows:
© (_1)1 n+2t

X)=) ———
VALY Z t(n+ 1)

=0

X

2

Let j, , be the first positive zero of J,.

Lemma 3.1. Let n € N. We have the following properties:
() The function J, satisfies the Bessel differential equation:

XY () + X2 (x) + (2 = nd)], () = 0.
@ J;00 = oy 00 + 3 L 00
wymm~%in

2

as x — 0.

(iv) The function J, is decreasing in the interval [0, j, ;]

Similarly, for all n € N, let I, be the modified Bessel function of the first kind of order n. This function can
be written as an infinite power series as follows:

X' o 1 x2)
L) = 5| 2 —=|~|
00 =3 gou(nﬂ)! 4

Lemma 3.2. Let n € N. We have the following properties:
(i) The function I, satisfies the modified Bessel differential equation:

X2 (x) + XL (x) = (X% + n)L(x) = 0.

@@ I(x) = h(x).

(i) T ~ %[g] as x = 0.

3.2 The class of functions X.;(R)

The following result is an extension of inequality (1.2) to the class of functions X,(Q).

Theorem 3.3. Let A > 0 and f € X,,(Q). Assume that there exist C € Q and R € [0, % such that B(C,R) C Q.
Then, the following inequality holds:

L(JAR)
[ ranzs TR

B(C,R)

_[ Faly). (€H))

0B(C,R)
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Proof.letC € Q and R € [0, %1] be such that B(C, R) C Q. We introduce the function

| h(Alz - clD
A ]0(\/7 R)

We first establish some properties of the above function. Since 0 < R < f’ then ]0(\/_ R) # 0, and the function

¢ is well defined. Taking ||z - C|| = R in (3.2), we obtain

£z)=0, z€0dB(C,R). 3.3)

- 1], z€B(C,R). (3.2)

On the other hand, from the property (iv) in Lemma 3.1, we deduce that for all z € B(C, R),
Iz = €l < ,(VAR),
which shows that
£2z)20, z€<€BG,R). 3.4)

Forall 0 < r <R, let

- 1 pGAn
0= A[JOMR) 1"

Since € is a radial function, that is,
&2)=&m),r=1z-q|,
then for all z € B(C, R), we have

M@ = T'0) + ~E0). 35)
Furthermore, we have
_ 1 Jj(Jar)
r)y=— (3.6)
¢ VA J,(NAR)
and
sy L T GAD)
JAR)
which imply by (3.5) that

Jo”(ﬁr) 1 JjNAr)
JOMR) JAr AR [(A R)(f Ar)2

Then, from the property (i) in Lemma 3.1, we deduce that

AE(z) = (VAT (NAT) + AT (JAT).

AS(z) = (~(NAr ()

1
Jo(NAR)WATY?
Jo(NAT)
Jo(NAR)
e [Jomr) _1]
Jo(NAR)
=-1-2@r)
=-1- A(2),
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that is,
Ae(z) + Aé(z) = -1, z € B(C,R).

We now use (3.7) to obtain

[ r@az=- [ s@f@iz-1 | f@i@uz.

B(C,R) B(C,R) B(C,R)

Moreover, thanks to Green’s formula, we have

- | sey@iz= | v@rvi@az-E® [ o).

B(C,R) B(C,R) 8B(C,R)

By using again Green’s formula together with (3.3), we obtain

- | y@E@iz= [ vr@rve@z
B(C,R) B(C,R)
Then, it follows from (3.8), (3.9), and (3.10) that
[ r@dz=-g@ [ roae - [ or@ +r@Eedz
B(C,R) 8B(C,R) B(C,R)

We also have by (3.6) and the property (i) of Lemma 3.1 that

=, 08 i]l(ﬁR)
s = VA Jy(NAR)Y

Therefore, it holds that

1 jl(ﬁR)
dz = —
| s G

B(C,R)

0B(C,R) B(C,R)

On the other hand, due to (3.4) and since f € X,;(Q), we have

[ @@ + a @iz > o.

B(C,R)

Finally, (3.1) follows from (3.11) and (3.12).

Remark 3.4. By the property (iii) in Lemma 3.1, one has

fl(ﬁR) _ R

zhf&m_ 2

Hence, if A = 0%, (3.1) reduces to (1.2).

3.3 The class of functions X_;(Q)

The following result is an extension of inequality (1.2) to the class of functions X_;()

[ rodi - | @@ + sené@z

DE GRUYTER

(3.7

(3.8)

(3.9)

(3.10)

(3.11)

(312)

Theorem 3.5. Let A > 0 and f € X_3(Q). Then, for all C € Q and R > 0 with B(C,R) C Q, we have

L(JAR
[ s % [ roag).

B(C,R) 9B(C,R)

(3.13)
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Proof. Let C € Q and R > 0 be such that B(C, R) C Q. We consider the function

1, _ Lh(NAllz - €D s
=1-——F—|, € B(C, R). 314
(@)=~ ) z € B(C,R) (3.14)
Taking ||z - C|| = R in (3.14), we obtain
{(z)=0, z€dB(C,R). (3.15)

On the other hand, from the property (ii) in Lemma 3.2, the function I is nondecreasing in the interval [0, +oo].
Hence, for all z € B(C, R), we have

LAz - CI)) < I(VAR),

which shows that
{(z)20, ze€B(CR). (3.16)

Forall 0 < r <R, let

{(r)=

1f, _ b(An
A I(VAR)

Since ( is a radial function, that is,
{()={m), r=lz-C|,
then for all z € B(C, R), we have
M) = T7(r) + %E’(r). (317)
Furthermore, we have

s iIo’(x/xr)

/ = — 3.18
= T LR 19

and

=0 IgGAD)
OB

which imply by (3.17) that

FGAD 1 KAD

MO WaR I bR
o1 21/ ,
R A AT AT

Then, from the property (i) in Lemma 3.2, we deduce that
- 1 2
A (2) = TR ﬁr)z((ﬁ r(NAT))
__ L(JAr)
I(vAR)
_ _ I(\Ar)
T [1 I(VAR)
=-1+A0()

=-1+A{(2),
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that is,
A(z) - A(z) = -1, z € B(C,R). (3.19)
Then, in view of (3.19), we have
[ r@az=- [ s@f@dz+ 1 | i@ (320)
B(C,R) B(C,R) B(C,R)

On the other hand, by Green’s formula and (3.15), we have

- | s@f@iz=- | s@i@dz-T® | o). (3.21)
B(C,R) B(C,R) 9B(C,R)
Combining (3.20) with (3.21), we obtain
[ r@az=-t@® [ roam - [ of@ - sexed. (322)
B(C,R) 9B(C,R) B(C,R)

Making use of (3.18) and the property (ii) in Lemma 3.2, we obtain

=0 _ 1 L(AR)
N T}

which implies together with (3.22) that

L(JAR
[ @z - ﬁ [ roam - [ @ - y@@ae.
B(C,R) I(NAR) 3B(C,R) B(C,R)
Finally, since f € X_;(R) and { > 0 by (3.16), the aforementioned inequality yields (3.13). O

Remark 3.6. By the property (iii) in Lemma 3.2, one has

L(AR) _ R

b TRGAR) 2
Hence, if A — 0%, (3.13) reduces to (1.2).
Let Q;, i = 1, 2, be two open subsets of R2. For A = (A, &) € R? with A; > 0, i = 1, 2, we consider the class
of functions
X ua)(Q@1 % Q) = {f=f(x,y) € CH(Q1 x Q) 1 A f - A f2 0,4, f - hf 20},
where for all x = (x, x2) € Q1 and y = (y;,¥,) € Q,

92 9%
B fx,y) = a—xfz(x,w + a_f;("’”

and

o o

A, f(x,y) = Elz(XJ) + EZZ(X:)’)-

Remark that f= f(x,y) € X, 1,(®1 X Q) means that for all (x,y) € Q; x Q,
f(': )’) € X—/h(gl) and f(X, ) € X—AZ(QZ)a
where

fG,y):Q3x~f(x,y)ER and f(x,"):Q 3y~ f(x,y) ER.
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From Theorem 3.5, we deduce the following Hermite-Hadamard-type inequalities for the class of func-
tions X—(Al,Az)(Ql x Qo).

Corollary 3.7. Let Q;, i=1,2, be two open subsets of R? and A= (A, %) €R? with 4 >0, i=1,2.
If f € X_(3,0)(Q1 % Qp), then for all (C,, C;) € Q; x Q; and Ry, R, > 0 with B(C;, R;)) C Q;,1 =1, 2, we have

L(NA1R)
fOoy)dxdy € ————— fQy,y)dy|di(y)
B(cl,RJx[B(cz,Rz) 2VA D (VA1) aB(?:[,Ro B<5[Rz>
L(NA,Ry) (3.23)
+ —— ,0)dx|dl :
Zﬁzlo(ﬁsz) aB(Cz,RZ)[B(C{le(X o) @
BB oRe) [ ro.oamd).

<
Ak (NARDI(VA2Ry) OB(CLR)XOB(Cy Ry)

Proof. Let R; > 0 be such that B(C;, R) C Q;,i=1,2. Let y € Q, be fixed. Since f(:, y) € X5, (Q,), then by
Theorem 3.5 we have

L(VA1R)
) dX = T = =
I J o y)x < V(AR

B(C1,Ry)

[ ro.yaw.

0B(C1,Ry)
Integrating the aforementioned inequality over y € B((,, R;), we obtain

L(VA1R)
,ydxdy £ ————+F—-—
fo y)dxdy < VAL (VAR

B(C1,R1)*B(C2,R)

[ ro.yaylai. (3:24)

OB(C1,R)\B(Cy,Rz)

Similarly, for a fixed x € Q, since f(x, ) € X_),(Q2), then by Theorem 3.5, we have

L(NA,Ry)
) d = T = =
'[ )y < VA2Iy(VARy)

B(C,Ry)

j F(x, a)dl(a).

0B(Cy,Ry)

Integrating the aforementioned inequality over x € B(Cy, R;), we obtain

L(JA,R
_[ £(x, y)dxdy < ﬁl(fijﬁq j J’ F(x, 0)dx |di(@). 3.25)
B(Cy,R)*B(Cy,Ry) 20(NA2R) oy 2, o\ Gy
By summing (3.24) and (3.25), we obtain
L(VA4R
[ oy s 2O [ [ pgyalao)
B(C1.R)*B(C1.Ry) o (VALRY) 52, ol B
+7#£%2_ [ 1] rocoax,
2N A (NALR) oyt | iy

which proves the first inequality in (3.23). On the other hand, since for all y € dB(C;, Ry), the function
f, -) € X,(Qy), then by Theorem 3.5, we have

L(VA3Ry)
| roays 2= [ ro o)

B(Cy,Ry) 0B(Cy,Rr)
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Integrating the aforementioned inequality over y € dB(Cy, R;), we obtain

J

9B(Cy,Ry)

L(NA,R) J’

dl(y) < TrolVTaR) f(y, o)di(y)di(a). (3.26)
240 249

0B(Cy,Ry)*3B(Cy, Ry)

[ ro.yay

B(Cy,Rp)

Similarly, since for all o € 8B(C,, R,), the function f(-, o) € X_,(Q1), then by Theorem 3.5, we have

L(VA1R)
J roons AR [ r o),

B(Cy,R) 0B(C1,Ry)

which implies after integration over g € dB((,, R,) that

L(NAR,
I j Fx, a)dx|di(o) < ﬁl(l‘/——j{; j £, )dl()dl(o). 3.27)
OB(C.R)|B(CL.R1) (VAR g0, ryxamcc, my
Then, it follows from (3.26) and (3.27) that
L(VA1R) [ J L(NARy)
TR Fydy|diy) + [ £ oyaxaico)
2N I(VA1Ry) oB(CLR) B Co k) 2VAal(N22R) OB(C R\ B(C1.RY)
< Aﬁ(ﬁﬁﬂl(ﬁﬁ) [ foodmdo),
VAA Io(NA1R)I(N A 2 Ry) OB(CLLRYXOB(CoRy)
which proves the second inequality in (3.23). (I

4 Characterization of the class of functions X_;(L)

In this section, we show that inequality (3.13) provides a characterization of the class of functions X_;(Q).
Namely, we have the following result.

Theorem 4.1. Let f€ CXQ) and A > 0. Assume that for all C € Q and R > 0 with B(C,R) C Q, (3.13) holds.
Then f € X_(Q).

Proof. Let C € Q and € > 0 small enough so that B(C, €) C Q. Let

1f, _ B
A L(V2e)

G(2) = G(r) = ] z€B(C e),r=|z-Cl.

From the proof of Theorem 3.5, we have

:(z)=0, z€0B(C,¢), 4.1

G(z)20, z€B(Q,e), 4.2

AL(z) - A(z) = -1, z € B(C, ¢), 4.3)
1 K(Je)

(4.4)

“E = T e
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Making use of (5.1), (5.3), (5.4), and using two times Green’s formula, we obtain

[ r@az=- [ sc@f@iz+a | f@a@nz

B(C,e) B(C,e) B(C,e)
= [ @ - ¥@)a@dz - T | o)
B(C,e) 9B(C,¢)
== B(L)(Af (2) = A (2))(2)dz + %03({’8)}" MA@y,
that is,
[ r@az- % [t =- | &f@ - w@naeaz
B(C,e) 0 3B(C,e) B(C.e)

Then, from (3.13) with R = ¢, we deduce that

- [ &r@ - ¥ @)z < 0.

B(C,¢)
Since ¢; = 0 by (5.2), we deduce the existence of z; € B(C, €) so that
B (ze) - M (z) = 0.
Furthermore, since f € C%Q), passing to the limit as € — 0* in the aforementioned inequality, we obtain
Af(C) - Af(C) 2 0.
Since C is an arbitrary point of ©, it holds that Af - Af > 0 in Q, which shows that f € X_3(Q). O

5 Characterization of the class of functions X_;(Q)

In this section, we show that inequality (3.13) provides a characterization of the class of functions X_,(Q).
Namely, we have the following result.

Theorem 5.1. Let f € CXQ) and A > 0. Assume that for all C € Q and R > 0 with B(C,R) C Q, (3.13) holds.
Then f € X_x(Q).

Proof. Let C € Q and € > 0 small enough so that B(C, €) C Q. Let

1[1 _ L(An

Ge(2) = &(r) = ] (ﬁg)” z€B(C,¢e),r= |z~ (.
0

From the proof of Theorem 3.5, we have

((z)=0, z€dB(C,e¢e), (5.1)

G(z2)20, ze€B(,¢), (5:2)

Ale(z) = A8e(2) = -1, z € B(C, &), (5.3)
1 K(2e)

(5.4)

(8/(8) = _\/7 Io(ﬁg)-
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Making use of (5.1), (5.3), (5.4), and using two times Green’s formula, we obtain

[ r@az=- [ sc@f@iz+a | f@a@az

B(Ce) B(Ce) B(Ce)
== [ @@ - ¥@)a@iz- T | rom
B(C,¢) 9B(C,¢)
== B('L)(Af (2) - M (2))(2)dz + %(ﬂ{@f (NAiQy),
that is,
[ r@az- % [ty =- | /@ - @)@z
B(C.e) 0 3B(C,e) B(C,¢)

Then, from (3.13) with R = &, we deduce that

- I (Af(2) = M (2))¢(2)dz < 0.

B(C,e)
Since {; = 0 by (5.2), we deduce the existence of z. € B(C, ¢) so that
A (ze) — Af(ze) 2 0.
Furthermore, since f € C¥Q), passing to the limit as € — 0* in the above inequality, we obtain
Af(C) - Af(C) =z 0.
Since C is an arbitrary point of Q, it holds that Af — Af = 0 in @, which shows that f € X_3(Q). O

From Theorems 3.5 and 5.1, we deduce the following characterization.

Corollary 5.2. Let f € C%(Q) and A > 0. The following statements are equivalent:
) f€XAQ.
(i) For allC € Q and R > 0 with B(C,R) C Q, (3.13) holds.

6 Conclusion

We considered the two classes of functions X.;(Q), where Q is an open subset of R? and A > 0. We extended
inequality (1.2) to functions f € X;,(Q) (Theorems 3.3 and 3.5). We also obtained a characterization of the class
of functions X_;(Q) (Corollary 5.2). In this article, only the two-dimensional case is considered. It will be
interesting to extend the obtained results to the N-dimensional case (i.e., Q is an open subset of RV). It will
be also interesting to extend the obtained results to the more general classes of functions

Xi2o(Q) = {f € CXHQ) : div(aVf) + Af 2 0},

where a € CY(Q). Here, div is the divergence operator. Notice that, if a = 1, then X, o(Q) = X (Q).
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