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Featured Application: The machine learning model predicts Minimum Foot Clearance heights
to prevent tripping falls. Integrated into exoskeletons or other assistive devices, it offers real-
time interventions for vulnerable populations, enhancing safety with quick and accurate foot
clearance adjustments.

Abstract: Tripping is the largest cause of falls, and low swing foot ground clearance during the
mid-swing phase, particularly at the critical gait event known as Minimum Foot Clearance (MFC), is
the major risk factor for tripping-related falls. Intervention strategies to increase MFC height can be
effective if applied in real-time based on feed-forward prediction. The current study investigated
the capability of machine learning models to classify the MFC into various categories using toe-off
kinematics data. Specifically, three MFC sub-categories (less than 1.5 cm, between 1.5 and 2.0 cm, and
higher than 2.0 cm) were predicted to apply machine learning approaches. A total of 18,490 swing
phase gait cycles’ data were extracted from six healthy young adults, each walking for 5 min at a
constant speed of 4 km/h on a motorized treadmill. K-Nearest Neighbor (KNN), Random Forest,
and XGBoost were utilized for prediction based on the data from toe-off for five consecutive frames
(0.025 s duration). Foot kinematics data were obtained from an inertial measurement unit attached to
the mid-foot, recording tri-axial linear accelerations and angular velocities of the local coordinate.
KNN, Random Forest, and XGBoost achieved 84%, 86%, and 75% accuracy, respectively, in classifying
MFC into the three sub-categories with run times of 0.39 s, 13.98 s, and 170.98 s, respectively. The
KNN-based model was found to be more effective if incorporated into an active exoskeleton as the
intelligent system to control MFC based on the preceding gait event, i.e., toe-off, due to its quicker
computation time. The machine learning-based prediction model shows promise for the prediction
of critical MFC data, indicating higher tripping risk.

Keywords: minimum foot clearance (MFC); tripping prevention; falls prevention; machine learning;
gait prediction

1. Introduction

Falls are the critical issue among vulnerable populations, including older adults, stroke
survivors, Parkinson’s patients, and individuals with other neurological disorders [1–7]. For
example, up to one in three older adults falls at least once a year, while this figure is 40–58%
for post-stroke individuals (within 1 year of their stroke) and 45–68% for people with
Parkinsonism [8–14]. Due to slower reaction speeds and lower bone mineral density [15],
these frail populations are prone to severe injuries that can lead to death or constant
nursing care with large costs that can impact both individuals and national social security
systems [15–17]. Falls prevention should be thus prioritized, especially for vulnerable
populations. Among various causes, tripping has been detected as the leading cause,
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accounting for more than half of the entire fall’s incidences [18,19]. Prevention of tripping
is thus of critical importance in reducing the overall incidence of fall-related injuries.

Tripping can be defined as the unintentional swing foot’s contact with the walking
surface or an object on it with sufficient momentum that destabilizes the walker. During
the swing phase of the gait cycle, the critical event in relation to tripping risk is Minimum
Foot Clearance (MFC), determined at the minimum swing toe height in the mid-swing
phase [20,21]. Tripping at MFC has the high risk of forward balance loss and an associated
fall due to the following factors: (i) low vertical clearance increases the likelihood of swing
foot contact; (ii) swing foot travels at near-maximum speed, generating the large impact in
the case of tripping at MFC; and (iii) both feet stance does not provide the ideal supporting
base against balance loss [21–24]. MFC detection should ideally be based on the local
minimum displacement; however, our previous study used maximum horizontal velocity
for analyzing atypical MFC patterns.

Essentially, tripping prevention can be achieved if sufficient vertical displacement
is provided at MFC [25]. There are various intervention techniques aiming to increase
MFC height, such as use of the special shoe insole, biofeedback training, and exercise
intervention. However, to our knowledge, there has been no intelligent device that predicts
dangerous swing foot clearance and intervenes in real-time to increase MFC for tripping
prevention. Therefore, the primary aim of this study is to develop and validate a machine
learning model that predicts MFC heights in advance, facilitating its integration into
assistive devices. The focus of our current research is, therefore, to predict MFC heights in
advance so that this can be incorporated into assistive devices (e.g., active exoskeletons) for
actuation assistance when necessary [26–29]. For development of such technology, MFC
height estimation should be based on wearable sensors such as inertial measurement units
(IMUs) [30–35] and undertaken well in advance for the mechanical device to take action in
a relatively short timeframe. Our previous machine learning approach was first to show
that MFC timing can be predicted based on toe-off kinematics with a small mean absolute
error (i.e., 0.07 s) [36]. As the machine learning approach was effective for the temporal
aspect of MFC (i.e., event detection and prediction), the aim of our research was to identify
low MFC by applying a similar approach.

Recently, increased attention has been given to wearable sensors as practical gait
assessment tools due to portability and practicality outside the laboratory environment.
IMUs are among the most popular wearable sensors that have been utilized in biome-
chanical research [37]. Limited to the application in gait analysis, research efforts have
been devoted into IMUs to become an alternative for optical motion capture systems and
measure various gait data in everyday environments. IMUs application in this regard can
be divided into event detection and spatial data measurement. Event detection has been
attempted by redefining gold standard gait events only utilizing data obtained by IMUs
such as linear accelerations and angular velocities in three dimensions. Prasanth et al. [37]
provided a thorough review on gait event detection by IMUs, finding that heel contact
and toe-off are the two major gait events on focus while other measures such as swing
and stance phases can be determined secondary from the gait events. For example, heel
contact accompanies foot contact impact that can be recorded by force plates, but IMUs
measure accelerations that are affected by foot contact impact with the walking surface.
Kim et al. [38] installed a single IMU inside the shoe insole to detect both heel contact
and toe-off by characterizing particular acceleration patterns identified by time frequency
analysis. MFC is more complicated to characterize its distinctive features because it takes
place during the mid-swing phase without foot–ground interaction. MFC events can still
be effectively detected by characterizing specific foot angles, maximum horizontal velocity
(i.e., the transition to zero horizontal acceleration from a positive value), or zero vertical
velocity at the lowest swing foot height (i.e., the transition to zero vertical acceleration from
a negative value).

In addition to gait event detection, measurements of spatial data were undertaken by
the application of IMUs. While temporal data can be highly associated with event detection
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techniques, direct spatial data measurement requires completely different approaches.
Double integration is one of the main principles to estimate spatial displacement. Despite
proneness to errors due to ‘drift’, accelerations (m/s2) can derive velocities (m/s) and
then displacements (m). Köse et al. [39], for example, applied a single IMU on the pelvis
to estimate step length with 2–3% errors, utilizing the Kalman filter in combination with
double integration. In contrast to displacement estimation in the horizontal plane (i.e.,
step length), the previous study attempted the MFC height measurement by applying a
regression model that incorporates fifteen features from IMUs [32]. Accurate measurement
outside the laboratory environment is important, but if assistive devices are to be designed
to increase MFC height in real-time to prevent tripping, ‘predictability’ is necessary. Instead
of precise MFC height measurement, hazardous swing foot clearance should be classified
in advance so that active actuation can take place in time to assist a wearer with providing
further foot clearance to avoid tripping. It is, therefore, meaningful to take a classification
approach instead of precise measurement for practical application.

The use of machine learning to study MFC height focuses mainly on predictive
measurements. For example, Santhiranayagam et al. [40] used a generalized regression
neural network (GRNN) to estimate MFC height using data from an IMU sensor. The
GRNN-based MFC height predictions demonstrated a root mean square error (RMSE) of
6.6 mm with nine optimum features during treadmill walking. Miyake et al. [41] predicted
minimum and maximum toe clearance height with radial basis function network (RBFN);
accuracies in both cases still constituted a drawback. Instead, a recent idea was to study
gait features by applying deep neural networks to heel contact and toe-off trajectories to
predict other gait parameters [42]. Similar studies by Lee et al. [43] used deep convolution
neural networks (DCNNs) to predict different types of gaits, which also precluded critical
information on MFC heights. A classification of MFC height into categories is necessary
to provide the required insight for technological intervention. The goal of this paper is to
investigate the use of machine learning to classify MFC heights into categories so that a risky
swing foot clearance, if determined in advance, will activate an actuator in time to assist a
wearer. Thus, the required algorithm should be capable of quick computation for device
actuation. In our current study, we have applied IMUs to record toe-off characteristics
described by three-axial accelerations and angular velocities. The objective is to find out
whether kinematics data following toe-off could be utilized for the classification of MFC
heights into categories (e.g., high, medium, and low). Using the MFC characteristics
in [20], the current study attempted to classify MFC into the following three sub-categories:
(i) lower than normal (MFC < 1.5 cm), (ii) safe range (1.5 cm < MFC < 2 cm), and (iii) well
above the safety requirement (MFC > 2 cm). The outcomes of this research might help
to predict risky (low MFC) swing foot clearance following the toe-off event utilizing a
single IMU. The objective of the current study was to establish machine learning models to
classify MFC data into different risk categories. Once a preliminary model is successfully
developed, its prediction accuracy can be improved and generalized by feeding further
data. Actuation to prevent tripping is an important consideration for active wearables such
as exoskeletons and footwear. Development of such assistive devices could be an effective
solution for minimizing tripping if such risks (low MFC) could be detected earlier in the
swing phase, i.e., following toe-off.

Machine learning algorithms can extract and recognize features using mathematical
relationships between different variables in the sample space [44]. A collection of mathemat-
ically related feature variables in a sample space forms the sample data for the development
of training and testing algorithms. Machine learning applications in gait and neurological
studies have created intrinsic understanding in previously underdiscovered areas, giv-
ing rise to wider applications involving neurological processes relating human gait from
recognition of intention to physical locomotion [45–47]. In the current study, a range of
supervised machine learning algorithms was used to build a classifier to make predictions
on new unlabeled data points. The K-Nearest Neighbor (KNN) uses distance measures
(e.g., Euclidean distance function) between every two data points to classify the points to
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find the K-Nearest Neighbor. Random Forest and XGBoost use the decision tree ensemble
for model representation and inference, but XGBoost uses a different training algorithm.
XGBoost training is more complex than Random Forest because different computational
kernels require specific optimization techniques. For example, XGBoost uses gradient
boosting to train decision trees and focuses on minimizing the loss function, while Random
Forest uses bagging to train decision trees and focuses on optimizing the hyperparameters
in the parameter space. XGBoost is also a more complex and flexible model, which requires
more parameter tuning, while Random Forest is simpler and more interpretable [48]. Since
low MFC is associated with tripping falls [20], our work in this sense is to use machine
learning algorithms to classify MFC heights into lower than normal, safe range, and above
safe range categories. In addition to striving for accurate measurements as seen in other
studies, our approach incorporates multiple classification layers to categorize tripping risks,
therefore enhancing our ability to identify and mitigate them effectively.

2. Data Collection
2.1. Participants and Protocols

Six healthy young adults (age 23.5 ± 1.5 yrs.; height 172.0 ± 7.8 cm; body mass
79.5 ± 15.5 kg) were recruited for the current research from the university volunteers. To
be included in this study, participants were required to be healthy, capable of walking
on the treadmill for 30 min without a break, free from injuries that affect their walking
patterns, and have no previous history of injurious falls for at least the past two years. The
entire experimental protocol was explained by the researchers, and an informed consent
form approved and mandated by the Victoria University Research Ethics Committee was
voluntarily signed by the participants prior to participation.

Gait testing was conducted on the treadmill (AMTI) for 5 min at 4 km/h, which
was considered to be the reasonable preferred pace for healthy young individuals [49].
The Vicon Bonita system (Nexus 2.12.1) with 10 cameras was utilized to track reflective
markers at 200 Hz, attached to the heel (the proximal end of the shoe) and the toe (the
most anterior superior surface of the shoe). Utilising the analytic software (i.e., Visual 3D,
C-motion, Oakville, ON, Canada, https://c-motion.com/), a low-pass Butterworth filter
(6 Hz) was applied to the obtained position data prior to analysis. Based on the kinematic
conventions [50], toe-off and heel contact were first computed to define the swing phase.
MFC was identified as the local minimum height of the toe during the mid-swing phase, but
when the clear local minimum was absent, the alternative definition was applied utilizing
the maximum horizontal velocity of the swing toe [51].

As illustrated in Figure 1, IMU (Nexus, Trident) was attached to the mid-foot section
to record various foot-segment-based kinematic data (200 Hz), but for the current study,
tri-axial linear accelerations (AccX, AccY, and AccZ) and angular velocities (GyroX, GyroY,
and GyroZ) were obtained for machine learning applications. The overall goal of this study
was to predict in which category (Table 1) upcoming MFC would be classified based on
the five consecutive frames from toe-off comprising 0.025 s kinematic information from
toe-off. In other words, algorithms were developed for a single Inertial Measurement Unit
(IMU) (see Figure 1) to predict the upcoming MFC height category, as established by the
3D motion capture system. MFC categories employed in the current study are described in
Table 1, determined by the previous studies indicating the average MFC for young adults
to be about 1.5 cm (R1), slightly above the average up to 2 cm (R2), and minimum risk of
tripping (R3) as above 2 cm [20,21,52].

https://c-motion.com/
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Figure 1. IMU (Nexus, Trident) attached to the mid-foot; tri-axial linear accelerations and angular
velocities are indicated by arrows. X is the anterior–posterior axis, Y is the medio-lateral axis, and Z
is the vertical axis.

Table 1. MFC categories describing the three subclasses (R1, R2, and R3) or targets for ML training.

R1 R2 R3

Below average Safe Well-above safety limit

MFC < 1.5 cm 1.5 cm < MFC < 2 cm MFC > 2.0 cm

2.2. Data Exploration

The selected features (i.e., tri-axial linear accelerations, angular velocities) were plotted
with a Seaborne pair plot [53] and showed non-linearly separable classes. The average
values are indicated in Table 2.

Table 2. Data from the IMU sensor showing mean and standard deviation (five frames from toe-
off; 0.025 s) of feature variables and number of counts per category of the 18,490 datasets collected.
STD = standard deviation; Acc = linear acceleration; Gyro = angular velocity; x, y, z = three dimensions
and rotational axes.

Category Average Value of Corresponding Feature Variables Total

AccX
(m/s2)

AccY
(m/s2)

AccZ
(m/s2)

GyroX
(rad/s)

GyroY
(rad/s)

GyroZ
(rad/s)

R1
Mean 10.54 −3.85 4.18 0.02 −1.64 0.55

7235
STD 5.92 5.81 4.79 2.75 1.91 2.11

R2
Mean 9.89 −2.00 0.16 0.09 −0.69 0.10

3738
STD 4.40 5.34 4.08 1.51 1.12 1.84

R3
Mean 8.43 −0.23 8.09 2.34 −3.22 1.83

7517
STD 7.06 3.94 7.28 2.00 2.10 2.01

The zoomed Z-axis component of the acceleration and angular velocity on the three
categories of the MFC heights shows distinctive patterns illustrated in Figure 2a,b, and
argues the range of our classification.
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Figure 2. (a) Zoomed Z-axis of linear acceleration on the target sets R1, R2, and R3 graphically
compared. The graph represents tri-axial frames of the acceleration on the Z-axis for all tagged
targets of our MFC categories. (b) Zoomed Z-axis of angular velocity on R1, R2, and R3 graphically
compared. The graph shows the characteristic tri-axial angular acceleration frames on the three MFC
height categories.
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2.3. Model Selection and Algorithm Design

As shown in Figure 3, the dataset features are non-linearly separable, and character-
istic attributes of each data point form a category that is assigned to a class. To address
this classification task, this study used K-Nearest Neighbor (KNN), Random Forest, and
XGBoost supervised machine learning methods.
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These methods have proven success in several use cases in gait classification and
identification [54,55]. Additionally, given the focus of this study, all three methods were
sourced from prior studies, where these algorithms were used with IMU-sourced data,
particularly using KNN (e.g., [56,57]), Random Forest (e.g., [58]), and XGBoost (e.g., [59]).
The choice of classification approaches was supported by [60], where KNN and RF were
identified among the top-performing algorithms for classification of human motion data
using IMUs. Further consideration of the selection was the characteristics of the data used
in this study, namely assumptions about data distribution, robustness to non-linear relation-
ships, and the potential to leverage multiple algorithms and yield better performance while
maintaining some interpretability with further applications [61]. The selection of these
classical machine learning algorithms also allowed benchmarking with similar studies,
where Random Forest and boosting approaches (such as XGBoost) were shown to achieve
higher classification accuracy in similar settings [58,59].
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Using KNN, Random Forest, and XGBoost allowed us to leverage the stronger points
of each of the algorithms. Compared to Random Forest and XGBoost, K-Nearest Neighbor
(KNN) uses distance measures (e.g., Euclidean distance function) between every two data
points to classify the points to find K-Nearest Neighbor. Given the relatively small number
of features in the model, training time for KNN was not a concern, while XGBoost was
expected to perform well with low-variance features. Comparing the performance of KNN
to Random Forest and XGBoost would allow us to avoid overfitting concerns as well as
leverage KNN results for their interpretability.

KNN is one of the main supervised learning algorithms with a relatively simple
structure that can be used in both classification and regression tasks. In KNN, each instance
is categorized as a vector of numbers in an n-dimensional Euclidean space. To find the
class to which an unknown data point is a neighbor, the Euclidean distance was measured.
All instances, therefore, correspond to points in an n-dimensional Euclidian space, and the
distance between instances d(p,q) is as follows:

d(p, q) =
√
(q1 − p1)

2 + (q2 − p2)
2 + . . . + (qn − pn)

2

=

√
n
∑

i=1
(qi − pi)

2

Given K-Nearest Neighbor, the optimum value is picked for the best prediction of
either the R1, R2, or R3 MFC height category.

On the other hand, Random Forest and XGBoost algorithms offer a different approach
by using ensemble learning for supervised machine learning tasks.

In Random Forest, an ensemble of many decision trees is designed to overcome
overfitting problems associated with decision trees by bootstrap aggregation or bagging.
Given a Random Forest tree Tb (for b = 1 to B) to the bootstrap sample Z* of size N from
training data, a prediction at a new point x is made using the following classification:

ĈB
r f (x) = majority vote ˆ{Cb (x)}B

1

where
Ĉb(x) is the class of prediction of the bth Random Forest.
This study used the Gini impurity as a measure to quantify the purity of a node in a

decision tree. This study used tuning to test the number of trees, the minimum number of
data points in a node that were required for the node to be split further, and the number of
predictors that was randomly sampled at each split when creating the tree models.

Compared to Random Forest, XGBoost uses gradient boosting with regularization,
i.e., the algorithm uses decision tree ensemble but optimizes performance by redefining
boosting with the objective to minimize losses by adding weak learners using gradient
descent [48]. The results of testing with KNN, Random Forest, and XGBoost are presented
and analyzed (e.g., Table 3).

Table 3. Performance summary of KNN, Random Forest, and XGBoost.

Algorithm Accuracy Score (%) Weighted Average (%) Model Training Time

KNN 84 83 0.39 s at K = 12

Random Forest 86 86 13.98 s, 800 estimators, and max depth = 8

XGBoost 75 74
170.98 s
(n_estimators = 2, max_depth = 2, learning_rate = 1,
objective = ‘multi: softprob’, num_round = 25)



Appl. Sci. 2024, 14, 6705 9 of 19

Data Splitting, Hyperparameter Tuning, and Optimizing

At the initial stage, the data were split, with 70% allocated for testing and 30% for
training. The stratified splitting technique was applied to ensure the same frequency
distribution of the outcome in the analysis and assessment sets. Cross-validation was
implemented with 5k folds and later confirmed with 10k folds and 5 repeats, where the
data were split into 10 parts with different random shuffles of the data each time. Since
every part is used as the test set only once, this provides more stable and reliable estimates
of model performance because it averages the results over more splits/shuffles of the data.
Additionally, this approach was used to provide a better bias–variance trade-off. Input
variables were normalized (Table 2) using RobustScaler. Using this approach, the data
were transformed by removing the median and scaling according to the quantile range (i.e.,
between the 25th and 75th quantiles). Such an approach ensured robustness to outliers
and non-reliance on distributional assumptions, which were particularly important for
employed ML algorithms (e.g., KNN).

GridSearch cross-validation was used to determine the optimal list of parameters for
machine learning models. The overfitting concerns were addressed by repeating the grid
search via racing with ANOVA models [62]. Such racing methods in combination with
parallel processing have shown faster performance compared to sequential grid search
approaches. Fitting 5 folds and iterating for 28 candidates, totaling 140 fits, the best param-
eters for KNN were tested with 7 neighbors, 2 distances, 2 weights, and 5 cross-validations,
and the best parameters proposed were ({‘n_neighbors’: 13, ‘p’: 2, ‘weights’: ‘distance’}).
Similarly, Random Forest’s best parameter suggestion with GridSearch was ({‘criterion’:
‘gini’, ‘max_depth’: 8, ‘max_features’: ‘sqrt’, ‘n_estimators’: 400, ‘random_state’: 42}).

Feature importance using permutation analysis was completed for the developed
models and presented graphically. The importance of a feature was measured by calculating
the increase in the model’s prediction error after permuting the feature. The importance
was defined if the shuffling feature’s values increased the model error [63].

The feature variables (accelerometer and angular velocity) were separately investi-
gated to determine individual contributions to the prediction of the MFC heights. The
results are shown in Table 4a,b.

Table 4. (a) Comparison of prediction accuracies using linear acceleration and angular velocity as
separate features on KNN, Random Forest, and XGBoost. (b) Comparison of individual axial features
(acceleration and angular velocity) on prediction with KNN, Random Forest, and XGBoost.

(a)

Training Features
KNN Random Forest XGBoost

(% Accuracy) (% Accuracy) (% Accuracy)

Acceleration (X, Y, Z) 65 67 60

Gyro meter (X, Y, Z) 74 75 64

Combined Acceleration
and Gyro meter (X, Y, Z) 84 86 75

(b)

ML Algorithm Percentage Accuracies of Individual Features for Predicting MFC Height

AccX (%) AccY (%) AccZ (%) GyroX (%) GyroY (%) GyroZ (%)

KNN 41 45 55 56 51 55

Random Forest 40 43 51 51 46 48

XGBoost 46 53 56 58 56 60
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3. Results

Figure 2a,b depict a clear difference on the Z-axis variables of the critical MFC heights.
MFC height in the range of the critical threshold based on the young population’s lower
end of the normal range (i.e., mean−SD) indicated the Z-axis component of the kinematic
variable is highly unstable with increased tripping risk. Figure 3 is the correlation plot that
helped us visualize the relationship between the variables and the target.

This study followed best practices and employed a range of classical performance
metrics for classification, including confusion matrix, classification accuracy, precision,
recall, F1-score, and the ROC AUC [64]. A combination of the metrics was used where high
accuracy referred to the model’s high level of overall correctness, with high recall showing
the proportion of actual positive cases and precision indicating the proportion of positive
identifications made by the model that were actually correct. The F1-score is used to show
the balance of precision and recall, and the ROC AUC score shows the ability of the model
to discriminate between classes.

Figure 4a–c represent the classification results derived from the confusion matrix for
KNN, Random Forest, and XGBoost with close-matched accuracies in KNN and Random
Forest. Higher accuracies are prioritized in ML modeling, while precision and recall rate
gave further insight on the overall performance of the model. For example, high recall
signifies good coverage, i.e., the percentage of positive tags the classifier predicted correctly
out of all the positive tags available in the sample, while precision is indicative of the
proportion of actually positive classes out of all the classes predicted as positive [65]. The
F1-score measures recall and precision at the same time using harmonic means. It implies
the model’s balanced ability to both capture true positive cases (recall) and be accurate
with the cases it does capture (precision). Both precision and recall are represented in
the three categories supported by the F1-scores. In the KNN model, a particular MFC
height is predictable with 84 percent accuracy. Recall and precision are 92 and 96 percent,
respectively, on R3 (when MFC heights are above safety limits). At the same time, the
F1-score on R3 is 94 percent but decreased in the R1 and R2 categories. Similarly, in the
Random Forest model, recall, precision, and F1-scores have the same value at above safety
regions (R3) with an overall model performance of 86 percent. Random Forest was more
sensitive than KNN and XGBoost at lower MFC height categories. At best, XGBoost has an
average performance of 75 percent throughout. Like KNN and Random Forest, XGBoost
optimal prediction was above safety limits (R3) and performed the least at below safety
(R1) and safety categories (R2). XGBoost had a nearly 50–50 chance of predicting positive
cases of safety MFC heights with an F1-score of 56 percent and 10 percent higher when the
MFC height is below average. These are regions which measure very low MFC heights.
The model training time for KNN was much quicker at 0.39 s compared to 13.98 s with
Random Forest and 170.98 s with XGBoost, as shown in Table 3.

The bar chart shows that the KNN parameters developed in this model are good at
predicting positive cases of MFC height that are well above the safety limit. It performed
better in accurately classifying MFC heights at the safety and well-above safety limits than
when MFC height is below average.

There is a near-equitable distribution of the metric with an overall accuracy of 86%.
Recall and precision of MFC heights below average (R1) are lower than observed at safety
and well-above safety MFC heights. Precision, recall, and F1-score of Random Forest and
KNN have similar performance indexes in well-above safety regions.

In summary, the performance result with Random Forest is similar to the KNN algo-
rithm, with a slight improvement in overall accuracy and recall and a higher training time.
Random Forest randomly selects a subset of features that are used as candidates at each
split. This protocol automatically prevents the multitude of decision trees from relying
on the same set of features, solving problems of overestimated correlations by avoiding
a correlation of the individual trees. Each tree then draws a random sample of data from
the training dataset when generating its splits, which further introduces an element of
randomness and prevents the individual trees from overfitting the data. The uniformly
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generated weighted average on R1, R2, and R3 with both algorithms showed that each
class was equally considered in its calculation of the metrics and had equal impact on the
average score for each of those metrics (Table 3).
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Figure 4. (a) Performance evaluation of the KNN algorithm showing average accuracy of 84 percent
with high recall and F1-scores. (b) Performance evaluation of Random Forest with average accuracy
of 86 percent with high recall and F1-scores. (c) Performance evaluation of XGBoost stands at
75% accuracy in classifying MFC heights into the following three pre-defined categories: below
average, safety, and well-above safety limits. The recall, precision, and F1-score index at well-above
safety limits are below that observed with Random Forest and KNN. XGBoost can detect positive
cases at well-above safety limits with a greater chance of error than observed in other models.
(d) Comparison of model performances based on ROC AUC where higher values indicate a better
separability, which is higher discrimination capacity to distinguish between classes and further
comparison for discrimination capacity between each class. (e) Feature importance evaluation in
classing MFC heights into the following three pre-defined categories: below average, safety, and
well-above safety limits.

Table 3 shows the comparison between prediction accuracy and model training time on
KNN, Random Forest, and XGBoost. XGBoost has the lowest accuracy and highest training.
KNN has the quickest training time and closely follows Random Forest in accuracy.

A comparison of the ROC AUC scores is presented in Figure 4d, where all three
algorithms show high discrimination capacity, with KNN outperforming the rest (consistent
with the prior results).

Further assessment was performed on feature importance as presented in Figure 4e.
The results of the algorithm showed that the three most important features for the

classification were measurements from angular velocity Z (Gyro_Z) and linear acceleration
Z (Acc_Z). This confirmed the initial results that the increased tripping risk is associated
with the Z-axis components.

We further examined the prediction accuracies of the separate linear accelerations and
angular velocities together and as individual features contributing to the MFC heights. The
results are shown in Table 4a,b. The feature importance assessment was conducted using
the ‘sklearn’ package and is shown graphically.

It was observed that the combined linear acceleration and angular velocity features
had a more positive impact on the overall performance accuracies of the three models.
However, individual features contributing to the prediction varied. Table 4b showed that
the Z-axis component of the linear acceleration and the X-axis and Y-axis components of
the angular velocity had greater influence on the MFC heights than the other kinematic
features used for the training.
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Table 4a shows the angular velocity had a more positive effect on the predicted
MFC heights than the linear acceleration, and MFC height is best predicted with multiple
features. Table 4b indicated that the vertical acceleration and the X and Z axes of the
angular velocities are more significantly related to the MFC height than the other kinematic
variables (p < 0.001).

The ROC AUC scores show how well the model performs with no knowledge of the
class imbalance and take values from 0–1. Table 5 shows the AUC scores on all three models
in each target class. The scores are represented by both high recall and high precision,
where high precision relates to a low false positive rate and high recall relates to a low
false negative rate. The high scores for both show that the classifier returns accurate results
(high precision), as well as a majority of all positive results (high recall). Again, KNN and
Random Forest had higher AUC scores than XGBoost.

Table 5. The macro average area under curve (AUC) score for each target class (R1, R2, and R3) on
different machine learning models.

Random Forest KNN XGBoost

R1 0.87 0.84 0.73

R2 0.83 0.71 0.73

R3 0.97 0.92 0.89

The high AUC score across each model indicates that none of the model’s performance
is a random prediction. KNN and Random Forest are the best-performing models to cor-
rectly classify the three MFC categories. To operationalize the model, a quick computation
time becomes a leverage when the AUC scores are closely matched, and the computational
time has considerable impact as a preferred margin to increase effectiveness.

4. Discussion

Minimization of tripping risks has been one of the central issues for fall prevention,
and providing sufficient swing foot–ground clearance at MFC has been a key consideration
while applying an intervention. For the real-time technology as part of the intelligent
system, one effective approach is to use feed-forward prediction of upcoming MFC as
early as the initiation of the swing phase at toe-off. For healthy young adults, MFC
usually takes place approximately around 50% of the swing phase, 0.2 s–0.3 s after toe-
off [66]. It can be interpreted that ‘prediction and actuation’ should, in this example,
occur within the mentioned time limit. In the current study, KNN successfully classified
MFC into the three categories at 84% accuracy within 0.025 s, suggesting the sufficient
reliability and feasibility of our machine learning outputs to be incorporated into intelligent
assistive devices. Previous methods for MFC height estimation based on double-integration
of vertical acceleration [22] are useful for taking measurements outside the laboratory
environment; however, our machine learning-based prediction is the first attempt to devise
intelligent active exoskeletons to increase MFC height. We have previously demonstrated
that toe-off kinematics can be used to predict MFC timing [36]; in this research we have
applied toe-off kinematics for the real-time feedforward prediction of MFC heights.

Machine learning approaches are the emerging technique for classification and evalua-
tion of gait patterns based on large data volumes, considered to be the mainstream analytical
method in the future and replacing conventional, complex, manual, and customized math-
ematical programming. The prediction of a future gait event can be incorporated into
assistive devices for them to become intelligent real-time systems for augmenting human
ambulation. In machine learning use cases, we have employed KNN, Random Forest, and
XGBoost for gait classification. All the models successfully classified MFC height into the
three subcategories from toe-off information at high accuracies except for XGBoost. Never-
theless, caution is required for machine learning algorithms to provide feedforward control
for a powered assistive device in a timely manner. While Random Forest showed better
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performance in accuracy, KNN may be the preferred option considering the time taken for
prediction to activate assistive devices at MFC based on a preceding toe-off event. High
recall and high precision cannot be compromised to ensure correct classification of MFC
heights for the populations at critically high and moderate tripping risks, respectively [65].
Further collection of the data is essential in feeding the developed algorithms to improve
performance before equipping them into assistive devices for people. It is, however, the
primary advantage of the machine learning approach, meaning that the prediction accuracy
can basically only improve as data feeding progresses. Our research can be a groundwork
for further development for practical equipping with lower limb active exoskeletons.

In addition to the essential data feeding, there are some other fundamental concerns
to overcome for practical application into assistive devices as intelligent systems. In the
current proof-of-concept research, data of healthy young participants were selected to
build the algorithms, but prediction of the tripping risk is more useful for vulnerable
populations such as older adults, stroke survivors, people with Parkinson’s disease, and
other pathological conditions. Gait patterns of the high-tripping-risk group are often clearly
different from the healthy young group, implying that the currently developed algorithms
require fine-tuning for each gait pathology. MFC classification requires reconsideration,
i.e., the further sub-divisions of the lower end (e.g., less than 0.5 cm, 1 cm, etc.) should
be tested to examine the hazardous risk rather than the MFC below 1.5 cm categorization.
Such risk detection can be useful not only for frail, pathological older adults but also for
younger individuals in cases of physical inactivity or when operating in visually restricted
environments, such as the sport industry.

After data feeding from various populations is carried out to achieve certain relia-
bility in recognizing hazardous MFC heights, the developed intelligent systems can be
incorporated into ankle active exoskeleton devices to directly control ankle motion in
order to increase MFC and prevent the risk of tripping falls. Kubota et al. [67] introduced
the active ankle exoskeleton based on hybrid assistive limb (HAL) technology, which
operates ankle dorsiflexion–plantarflexion motion based on efferent neural signals. In
another word, HAL technology utilizes intention to make movements to precisely control
exoskeletons and reproduce intended movements, known to enhance motor control func-
tions and improve neurological disorders [68,69]. Ankle-HAL technology was developed
for rehabilitation to focus on joint motion training by users’ own neuro-signals, therefore
not designed to directly assist active walking [51,70]. Incorporation of the ML algorithm
and feedforward actuation to reduce the tripping risk could be possible by operating the
exoskeletons with kinematic inputs. This approach represents a promising direction for
tripping risk mitigation. Unlike traditional methods that may rely solely on the user’s bio-
electrical signals—which can be unreliable in populations at high risk of falls—actuation
in this model can be dynamically managed based on external conditions. This proactive
intervention method directly reduces tripping risks by integrating real-time user-specific
movement patterns into the decision-making process of assistive devices. If ankle control
is not based on neuro-signals, rehabilitation effects on motor control may be lower, but
in return, wearers can be expected to learn the optimum ankle motion during the swing
phase and acquire less trip-prone walking patterns. Such application is one of the more
prospective directions of the current research outcomes for practical rehabilitation settings,
while continuous research efforts are essentially required.

Although further consideration may be required before practical application, IMU
attachment to the mid-foot section as illustrated in Figure 1 can be incorporated into the
ankle active exoskeleton. If the ankle exoskeleton is to be worn to directly assist walking,
the size of the motor actuator should be minimized while providing sufficient torque
for supporting dorsiflexion and increasing MFC. Combined with our previous attempt
to identify MFC timing from toe-off kinematics [38], the current findings represent the
groundwork for prototyping the intelligent prediction system, which is utilized to reduce
tripping risk. Motor actuation torque and its effects on MFC should be tested, as only 1◦ of
ankle dorsiflexion is estimated to increase toe height by more than 0.3 cm [26]. Therefore,
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no exaggerated ankle motion is required. Battery requirement is another consideration,
but may not be a critical limitation if only subtle effects are demanded to prevent tripping,
which can avoid triggering any negative side effects on other gait patterns.

As highlighted throughout the discussion, this study acknowledges several limitations
that warrant attention in future research. Firstly, the sample size and diversity need
expansion. The testing algorithms on healthy young adults provided a foundational model
and a total of 18,490 swing phase gait cycles. Data were extracted from six healthy young
adults, extending the application to populations prone to tripping, such as older adults
or those with motor impairments. Additionally, the classification was restricted to three
categories; introducing more nuanced categories could enhance the precision of tripping
risk predictions without compromising measurement accuracy. Advances in data collection
will facilitate these improvements. Moreover, integrating deep learning techniques could
refine the accuracy of tripping risk predictions. For practical applications, especially in
active exoskeletons, achieving early predictions with minimal computation time remains a
priority in addition to accuracy. Incorporating efferent bioelectrical signals could further
enhance the predictability of risky swing toe clearances. Optimization efforts should also
explore positional data through double-integration of acceleration signals and the use of
pressure sensors to acquire kinetic and foot center pressure data. Subjective feedback on
comfort, usefulness, and everyday feasibility must also be optimized for practical use.

5. Conclusions

Tri-axial linear accelerations and angular velocities data from a single IMU sensor
mounted on the mid-foot effectively classified Minimum Foot Clearance (MFC) into the
following three categories: (i) less than 1.5 cm, (ii) 1.5–2.0 cm, and (iii) more than 2.0 cm.
However, as the data were collected from only six healthy young adults, this study’s limita-
tions include a need for a broader dataset encompassing more diverse population groups.
Future research should target individuals at higher risk of tripping-related falls, such as
older adults, stroke survivors, and individuals with neurological disorders, including
Parkinson’s disease and dementia.

In conclusion, this study has confirmed the potential of using machine learning, specif-
ically KNN, to predict MFC heights with a high degree of accuracy (84%) and efficiency.
While the initial results are promising, the performance of MFC prediction needs further
validation using different machine learning algorithms and a wider range of populations.
This research supports the application of such predictive models in the control systems of
movement assistive devices. Future studies should consider employing advanced machine
learning techniques, such as convolutional neural networks (CNNs), transformers, and en-
semble models, to improve predictive accuracy. Additionally, expanding the dataset size is
crucial. The analysis also revealed that vertical acceleration and the ‘x’ and ‘z’ components
of angular velocities are primarily associated with Minimum Foot Clearance height.
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