
Procedural learning is associated with microstructure
of basal ganglia-cerebellar circuitry in children

This is the Published version of the following publication

Bianco, Kaila M, Fuelscher, Ian, Lum, Jarrad AG, Singh, Mervyn, Barhoun, 
Pamela, Silk, Timothy J, Caeyenberghs, Karen, Williams, Jacqueline, Enticott, 
Peter G, Mukherjee, Mugdha, Kumar, Gayatri, Waugh, Jessica and Hyde, 
Christian (2024) Procedural learning is associated with microstructure of basal
ganglia-cerebellar circuitry in children. Brain and Cognition, 180. ISSN 0278-
2626  

The publisher’s official version can be found at 
https://www.sciencedirect.com/science/article/pii/S0278262624000812?via%3Dihub
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/49181/ 



Procedural learning is associated with microstructure of basal
ganglia-cerebellar circuitry in children

Kaila M. Bianco a,*, Ian Fuelscher a, Jarrad A.G. Lum a, Mervyn Singh a, Pamela Barhoun a,
Timothy J. Silk a,b, Karen Caeyenberghs a, Jacqueline Williams c, Peter G. Enticott a,
Mugdha Mukherjee a, Gayatri Kumar a, Jessica Waugh a, Christian Hyde a

a Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
b Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
c Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, Australia

A B S T R A C T

In adults, individual differences in procedural learning (PL) are associated with white matter organization within the basal ganglia-cerebellar circuit. However, no
research has examined whether this circuitry is related to individual differences in PL during childhood. Here, 28 children (Mage = 10.00 ± 2.31, 10 female)
completed the serial reaction time (SRT) task to measure PL, and underwent structural magnetic resonance imaging (MRI). Fixel-Based Analysis was performed to
extract specific measures of white matter fiber density (FD) and fiber cross-section (FC) from the superior cerebellar peduncles (SCP) and the striatal premotor tracts
(STPMT), which underlie the fronto-basal ganglia-cerebellar system. These fixel metrics were correlated with the ‘rebound effect’ from the SRT task – a measure of PL
proficiency which compares reaction times associated with generating a sequence, to random trials. While no significant associations were observed at the fixel level,
a significant positive association was observed between average FD in the right SCP and the rebound effect, with a similar trend observed in the left SCP. No
significant effects were detected in the STPMT. Our results indicate that, like in adults, microstructure of the basal ganglia-cerebellar circuit may explain individual
differences in childhood PL.

1. Introduction

Our ability to implicitly acquire and apply motor sequences is
essential to daily living, and particularly important for skill acquisition
during childhood. This process, known as procedural learning (PL), is
necessary for performing fundamental motor tasks such as tying shoe-
laces, riding a bike, and typing on a keyboard. The PL process is not only
central to the expression of motor skills (Ashe et al., 2006; Doyon et al.,
2009), but may also support higher-order operations, including lan-
guage and social skills (Lieberman, 2000; Ullman & Pierpont, 2005).
Furthermore, atypical PL is often reported in children with neuro-
developmental disorders where motor skills are delayed (Clark & Lum,
2017; Van Dyck et al., 2022). Given the critical role that PL plays in the
maturation of core motor, cognitive and social processes, it is essential to
understand the neural mechanisms that underpin this process in
children.

PL has been widely studied using the serial reaction time (SRT) task
(Nissen& Bullemer, 1987). Here, a visual stimulus appears repeatedly in
one of four spatial locations on a computer screen, and participants press
buttons on a response panel that matches the stimulus’ location.

Participants are not informed that the stimuli are presented in a pre-
determined, repeating visuospatial sequence. In typically developing
participants, manual reaction times (RTs) decrease (i.e., become faster)
across these trials, which is generally interpreted as the consequence of
learning the repeating sequence. Following presentation of the
‘sequence blocks’, a block of random trials is then presented. Implicit
learning across the initial sequence blocks is inferred if the observed
initial reduction in RTs is followed by an increase in RT at the intro-
duction of the ‘random block’. The magnitude of the increase in RT
between the final sequence block and the random block is referred to as
the ‘rebound effect’ and is used to measure PL proficiency (Janacsek &
Nemeth, 2013; Robertson, 2007). Participants who are more sensitive to
the sequence embedded in the task typically exhibit a larger rebound
effect, which indicates that RTs were faster on the sequence block
compared to random.

To date, the neural basis of PL has predominantly been explored in
adults, which has implicated fronto-basal ganglia-cerebellar circuitry.
For example, Activation Likelihood Estimation meta-analyses of func-
tional MRI studies revealed robust activation in the basal ganglia, cer-
ebellum, and premotor regions during SRT task performance in
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neurotypical adults (Baetens et al., 2020; Janacsek et al., 2020). The
proposed involvement of these (sub)cortical regions in sequence
learning is broadly consistent with previous theoretical and behavioral
models of PL (Doyon et al., 2003; Penhune & Steele, 2012), as well as
neuropsychological accounts which show deficits in PL in patients with
neurological disease affecting the basal ganglian circuitry (Parkinson’s
Disease e.g., Siegert et al., 2006; Huntington’s Disease e.g., Knopman &
Nissen, 1991; cerebellar damage e.g., Morgan et al., 2021). While the
available neuroimaging evidence has examined the neural correlates of
PL in terms of functional activation, our group recently demonstrated
that microstructural organization within white matter tracts connecting
fronto-basal ganglia-cerebellar regions explains individual differences in
PL in adults (Bianco et al., 2023). In this recent work, we used the SRT
task to measure PL, and adopted a novel Fixel-Based Analysis (FBA)
framework to generate fiber specific estimates of micro- and macro-
structure within those tracts that support communication between
fronto-basal ganglia-cerebellar regions previously implicated in PL.
These included the superior cerebellar peduncles (SCP), and the striatal-
premotor tracts (STPMT). We found that increased fiber density within
the SCP was associated with a larger rebound effect. These study find-
ings support broader evidence of involvement of basal ganglia-
cerebellar systems in PL in adults, extending earlier accounts by sug-
gesting a relationship between white matter network structure and PL
ability. The current study investigated whether this also extends to
children.

To our knowledge, no study to date has considered the role of white
matter organization in PL in typically developing children. Childhood is
a particularly sensitive period for neuro-cognitive development,
whereby genetic (and neurobiological) factors constantly interact with
experience to alter structural connectivity (Edde et al., 2021). As such,
the white matter properties of a dynamic child brain are not necessarily
comparable to that of a mature adult brain, particularly in the case of
white matter which is known to transform across the lifespan (for re-
view, see Lebel et al., 2019). Despite some similarities in the functional
regions implicated in PL between children and adults (Baetens et al.,
2020; Janacsek et al., 2020; Thomas et al., 2004), we cannot assume that
the structural (i.e., white matter) properties that support adult PL are
necessarily analogous to children. There remains a need to investigate
the role of fronto-basal ganglia-cerebellar circuitry in childhood PL.
Doing so may provide insight into the mechanisms that explain differ-
ences in children’s abilities to engage in PL, and why PL presents
atypically in some children.

The aim of the current study was to investigate the role of white
matter organization in fronto-basal ganglia-cerebellar tracts in PL in
typically developing children. We administered the SRT task to measure
PL in children aged 6–14 years. A subset of children underwent higher-
order diffusion magnetic resonance imaging (MRI), following which
FBA was conducted to characterize white matter organization in vivo.
Like our work in adults (Bianco et al., 2023), we delineated white matter
tracts that support communication within the fronto-basal ganglia-
cerebellar system. Tracts of interest included the STPMT, which con-
nects the premotor and basal ganglia network; and the SCP, which
connects the cerebellum and basal ganglia network. Specific measures of
fiber density (FD; a measure of the microscopic density of a given fiber
population), and fiber cross section (FC; a measure of the macroscopic
cross-section region occupied by a given fiber bundle) were extracted
within each tract, and we probed the association between these metrics
and the rebound effect on the SRT task. We hypothesized that FD and FC
in the SCP and STPMT would be positively associated with the rebound
effect (i.e., PL) in typically developing children.

2. Methods

2.1. Participants

Participants were 37 children aged 6–14 years (Mage = 9.97 ± 2.32,

13 female, 19% left-handed), recruited via flyers posted on community
boards and on social media. Of these participants, a subset of 28 children
also underwent MRI (Mage= 10.00± 2.31, 10 female, 18% left-handed).
Exclusionary criteria were a known medical or neurodevelopmental
condition that might be expected to impact PL (e.g., autism spectrum
disorder or dyslexia) and, for those who participated in MRI, contra-
indications to MRI (e.g., claustrophobia or metal in the body). All par-
ents provided written informed consent, while children gave assent and
were reimbursed for their participation. The Deakin University Human
Research Ethics Committee approved the experimental procedures
(2019–009).

We note that preliminary analyses revealed no significant differences
in RT across blocks (F= 0.67, p= .420) – or the rebound effect (t= 0.32,
p = .754) – between left- and right-handed participants. As such, our
data indicated that handedness did not impact SRT task performance, so
data were collapsed across left- and right-handed participants.

2.2. Serial reaction time (SRT) task

The SRT task was presented using E-Prime 2 software (Psychology
Software Tools, Pittsburgh, PA). Participants were seated in front of a
17-inch display and operated a game controller consisting of four but-
tons arranged in the shape of a diamond (see Fig. 1). At the beginning of
a trial, participants viewed a white screen with four empty diamond-
arranged boxes for 500 ms. Then, a visual stimulus (shape) appeared
in one of the four boxes, and participants responded as quickly as
possible by pressing the button on the controller that corresponded to
the stimulus’ location. Following each response, feedback was given in
the form of a red border appearing over the indicated box. Failure to
respond to the stimuli within 800ms was coded as an incorrect response.
These events represented one trial. The task consisted of four blocks of
60 trials. Each block was separated by a 3-second rest period in which a
white screen appeared on the display.

Participants were unaware that on Blocks 1–3, the visual stimulus’
location followed a pre-determined 10-element sequence. Labelling the
left-most point of the diamond configuration as 1, and moving anti-
clockwise around the diamond configuration, the sequence was 3-4-1-
2-4-1-3-4-2-1. The sequence repeated six times to equal 60 trials in
each sequence block. On Block 4, the visual stimulus appeared pseudo-
randomly in one of the four positions on the display (totaling 60 trials)
adhering to the following constraints: 1) the visual stimulus could not
appear in the same location on two consecutive trials; 2) the number of
times the visual stimulus appeared in each of the four spatial locations
was the same as for the sequence blocks; 3) the frequency of each
pairwise transition in the random block matched the sequence blocks.
The randomization was reset at the end of each ten trials.

The stimuli comprised 60 different shapes (circles and polygons),

Fig. 1. Schematic overview of the serial reaction time (SRT) task (adapted from
Lum et al., 2010). Left: shows the locations that the visual stimuli could appear
on each trial, and the corresponding buttons on the controller used as the
response device. Right: provides timing details on two trials.
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presented in different colors (purple, green, blue, red, orange). On each
trial within a block, a different visual stimulus appeared on the screen,
without replacement. This aided in disguising the sequence, thus
reducing the likelihood that participants would become aware of it
(Koch et al., 2020; Lum, 2020). This was important, since explicit
learning appears to rely on different neural substrates compared to
implicit learning (see Hardwick et al., 2013).

2.3. Diffusion MRI acquisition

A subset of children (N = 28, Mage = 10.00 ± 2.31, 10 female, 19%
left-handed) underwent MRI scanning at the Florey Institute of Neuro-
science and Mental Health, Heidelberg, using a Siemens Prisma 3T MRI
scanner (Erlangen, Germany). Children were screened for MRI contra-
indicators, and those who were eligible underwent a mock scan to
help them acclimate to the MRI environment and reduce any anxiety
about the scanning session. High resolution T1-weighted multi-echo
MPRAGE images were acquired for each participant using the following
parameters: TR = 1900 ms, TI = 900 ms, TE = 2.49 ms, flip angle = 9◦,
voxel size= 0.9 mm3, acquisition matrix 256× 256, FoV= 240mm, 192
contiguous slices.

Multi-shell high angular resolution diffusion imaging (HARDI) was
acquired following a single-refocused echo planar imaging (EPI)
sequence with the following parameters: 84 axial slices; 1.8 mm
isotropic voxels; TE/TR = 98 ms/3275 ms; flip angle = 90◦; acquisition
matrix 128 × 128, multiband (MB) acceleration factor = 4; phase
encoding anterior-posterior (AP); and SENSE1 multi-coil reconstruction.
The diffusion weighting schedule included b-values = 0, 1600, 5000,
with 8, 25, 64 volumes respectively. Half of the volumes were acquired
in the A≫P, and half in the P≫A phase encoding directions. Addition-
ally, we also acquired the corresponding phase images for complex bias
data denoising (Cordero-Grande et al., 2019).

2.4. MRI processing

2.4.1. Pre-processing
Diffusion data were processed using the MRtrix3 software package

(Tournier et al., 2019). Prior to pre-processing, the quality of the raw
images was visually assessed. Here, one participant was excluded for
substantial signal dropout. Pre-processing included denoising (Veraart
et al., 2016), removal of Gibbs ringing (Kellner et al., 2016), and eddy
and motion distortion correction (Andersson et al., 2016). Magnitude
and phase data was exported to facilitate complex data denoising
(Cordero-Grande et al., 2019). Data were then upsampled to an isotropic
voxel size of 1.50 mm3 before the computation of brain masks. Brain
masks were inspected for holes, resulting in the removal of one partic-
ipant (N = 26).

2.4.2. Fiber orientation distribution calculation
Response functions were estimated for gray matter, white matter,

and cerebrospinal fluid, and then averaged across participants to
generate group-level response functions for each tissue type (Dhollander
et al., 2019). Using these group average response functions, multi-shell
multi-tissue constrained spherical deconvolution (MSMT-CSD) was
performed for each participant to generate individual fiber orientation
distribution (FOD) maps (Jeurissen et al., 2014). FOD maps then un-
derwent multi-tissue informed bias field and intensity normalization, so
that the FODmagnitudes were comparable between participants (Raffelt
et al., 2017). A study-specific population template using FOD maps from
all 26 participants was then generated. Each participant’s individual
FOD map was subsequently registered to the population template and
segmented to produce individual fixel maps for each participant (Raffelt
et al., 2017).

2.4.3. Fixel metric calculations
Fixel metrics (FD and FC) were computed for each participant across

all white matter fixels, as described in Raffelt et al. (2017). Of note, FC
(herein referred to as logFC) was log-transformed as per the MRtrix3
suggestion for FC-based statistical analyses to ensure data is normally
distributed (see www.mrtrix.org). FD and logFC metrics were used for
further analyses.

2.4.4. Tracts of interest
As in our previous study (Bianco et al., 2023), the semi-automated

TractSeg tool was used to delineate the SCP and STPMT (Wasserthal
et al., 2018, 2019). TractSeg offers a balance between the accuracy of
manual delineation, and the reliability of atlas-based approaches (Genc
et al., 2020). TractSeg was applied to the study-specific population
template to segment those voxels corresponding to the SCP (left and
right) and STPMT (left and right) in each individual. In this way, the
derived tracts aligned closely with the structural neuroanatomy of the
participants in the sample. These tractograms were subsequently com-
bined across hemispheres to generate a single bilateral tractogram for
each tract (Fig. 2). The SCP and STPMT tractograms were then con-
verted to fixel maps, whereby each participant’s FD and FC fixel maps
were cropped to only include fixels belonging to the SCP and STPMT
using the ‘tck2fixel’ command (Tournier et al., 2019). The tract-specific
fixel masks were then smoothed to generate fixel-fixel connectivity
matrices using the ‘fixelfilter’ command (Tournier et al., 2019). The
smoothed fixel matrices for the SCP and STPMT were then submitted for
statistical analysis.

2.5. Statistical analyses

Analyses of SRT task data were conducted primarily using the
‘tidyverse’ (Wickham et al., 2019) and ’lme4’ (Bates et al., 2014)
packages in R (R Core Team, 2022). Graphs were created using the
’ggplot2’ (Wickham, 2011) and ‘sjPlot’ (Lüdecke & Lüdecke, 2015)
packages. Herein, sequence blocks 1, 2 and 3 will be referred to as S1, S2
and S3, and the fourth random block will be referred to as R1.

2.5.1. Behavioral analysis
Both accuracy and RT were measured for the SRT task. A correct

response was recorded when a participant pressed the button on the
controller that matched the location of the visual stimulus. For each
participant, the proportion of correct responses was computed for each
block (i.e., S1, S2, S3, R1). RT, in milliseconds, measured the time taken
to press the correct button on the controller following stimulus onset.
Only RTs from correct responses were included in the analyses. For each
participant, mean RTs for each block were calculated.

To confirm that the predicted PL effects took place during SRT task
performance, preliminary analyses were conducted on the full sample
(N = 37). We conducted a linear mixed model (LMM) using restricted
estimation maximum likelihood (REML), with mean RT as the depen-
dent variable, and with age and block (S1 vs. S3; see also Bianco et al.,
2023; Lum et al., 2019) as fixed effects. REML is known to provide less
biased estimates, particularly when estimating modest sample sizes,
compared to alternative models such as maximum likelihood (ML)
which often require larger sample sizes to generate unbiased models
(Maestrini et al., 2024). Trend analysis was also conducted to assess
whether participants showed a linear trend in RT performance from S1
to S3, with a significant reduction expected where sequence learning
had taken place.

To investigate the rebound effect on the SRT task, we ran a LMM
using REML, with RT as the dependent variable, and with age and block
(S3 vs. R1) as fixed effects. Trend analysis was also conducted to assess
whether participants showed a linear increase in RT from S3 to R1,
indicating a rebound effect. The above models each contained a random
intercept to account for clustering of RT in each block within individuals
(i.e., the model inherently controlled for individual differences in RT).

Since these preliminary analyses suggested that PL had taken place,
we next calculated a single rebound effect metric for each participant,
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which was subjected to subsequent analyses as the dependent measure
of PL (Bianco et al., 2023; Knopman & Nissen, 1991; Lum et al., 2019;
Robertson, 2007; Siegert et al., 2006). Here, raw RTs for each trial were
first transformed to z-scores to control for general processing speed
(Janacsek et al., 2012; Koch et al., 2020). This was calculated for each
participant based on their mean and standard deviation RT for all trials
across all blocks. This transformation ensured that, across participants,
the shortest and longest RTs had similar values. This allowed us to
attribute participant differences in the magnitude of the rebound effect
to PL only, rather than individual difference effects in general processing
speed (i.e., RT alone). Then, mean z-scores were calculated for each
block, resulting in a mean z-score for RT for each block, for each
participant. The magnitude of the rebound effect was calculated for each
participant by subtracting the mean z-score for RT for S3 from the mean
z-score for RT for R1.

2.5.2. Fixel-based analysis
To investigate the relationship between individual differences in SRT

task performance and white matter organization within the SCP and
STPMT, the connectivity-based fixel enhancement (CFE) method in
MRtrix3 was initially used to probe the relationship between the
rebound effect on the SRT task and fixel-based metrics in the SCP and
STPMT (N = 26). CFE provides a permutation-based, family-wise error
corrected p-value for every individual fixel in the population template
space (Raffelt et al., 2015). Sex and age were included as covariates, and
we further controlled for intracranial volume (ICV) for analyses
involving FC (Smith et al., 2019). ICV was derived from each subject’s
structural T1 image using FreeSurfer (Fischl, 2012).

As noted in the Results section below, our CFE analyses failed to
detect significant associations between fixel based metrics and the
rebound effect, though we observed trend effects at the fixel level for FD
in the right SCP (see Supplementary 1). As per our comparable work
examining white matter correlates of PL in adults (Bianco et al., 2023),
we explored this trend using a tract-based ROI analysis. This analysis
examined the association between white matter fiber metrics (averaged
across all fixels) and the standardized rebound effect. These associations
were calculated separately for the left SCP and right SCP. Covariates
included sex and age. These results are reported in the manuscript
proper.

3. Results

3.1. SRT task performance

Relevant assumptions of multicollinearity (variance inflation factors
[VIFs] < 5), linearity (scatterplots), homoscedasticity (homogeneity of
residuals plot) and normality (residual histograms and Q-Q plots) were
met for RT data.

The mean proportion of correct responses for all blocks approached
ceiling (S1:M = 0.92, SE = 0.01; S2:M = 0.93, SE = 0.02; S3:M = 0.92,
SE = 0.01; R1: M = 0.90, SE = 0.02). Mean RTs for each block are
presented in Fig. 3. The LMM exploring RT from S1 to S3 revealed a
significant contribution of age to the variation in RT, B = − 22.64, SE =

3.14, t(35) = − 7.21, p < .001. After controlling for age, trend analysis
showed a significant linear main effect for block, B= − 19.73, SE= 4.89,
t(36)= − 4.03, p< .001, whereby RT decreased significantly from S1 (M
= 456.91, SD = 75.47) to S3 (M = 429.02, SD = 66.25).

The LMM exploring the rebound effect (i.e., change in RT from S3 to
R1) revealed a significant contribution of age to the variation in RT, B =

− 22.53, SE = 2.90, t(35) = − 7.77, p < .001. After controlling for age,
trend analysis showed a significant linear main effect for block, B =

36.54, SE = 4.05, t(36) = 9.03, p < .001, whereby RT increased signif-
icantly from S3 (M = 429.02, SD = 66.25) to R1 (M = 480.69, SD =

Fig. 2. Glass brain depicting the SCP and STPMT, delineated using TractSeg (Wasserthal et al., 2018, 2019). The tractograms from the left and right hemispheres
were combined to generate one single bilateral tractogram for each tract (SCP in red, STPMT in blue). Labels indicate the cortical and subcortical regions that the
white matter tracts connect. Glass brain created in MRtrix3 (Tournier et al., 2019). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. Mean reaction times (RTs) on the SRT task reported by Block (N = 37).
Error bars show standard error. S1, S2 and S3 represent blocks 1, 2 and 3, where
the stimuli were presented in a visuospatial sequence. R1 represents the fourth
block, where stimuli were presented in a random visuospatial order. * = sta-
tistically significant difference at p < 0.001.
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69.36).

3.2. Association between the rebound effect and fixel-based metrics

As can be seen in Fig. 4, there was a significant positive correlation
between mean FD in the right SCP and the standardized rebound effect
(r = 0.41, p = .049). The association between mean FD in the left SCP
and the standardized rebound effect fell short of statistical significance
(r = 0.35, p = .098).

4. Discussion

The current study examined the structural basis of PL within fronto-
basal ganglia-cerebellar circuitry in children. The main finding was that
greater average FD in the right SCP was associated with better PL on the
SRT task, as indexed by the magnitude of the rebound effect. There was
also a trend towards an association between mean FD in the left SCP and
the rebound effect. We did not observe an association between logFC in
the SCP and the rebound effect, nor any relationships between micro/
macrostructure in the STPMT and the rebound effect. These findings
broadly align with findings from adults (Bianco et al., 2023), suggesting
basal ganglia-cerebellar microstructure may underlie individual differ-
ences in PL across the lifespan.

As expected, behavioral patterns on the SRT task indicated that PL
took place in our sample of children (Nissen & Bullemer, 1987; Rob-
ertson, 2007). That being, participant RTs became progressively faster
across sequence blocks, and slowed significantly when a random
sequence was presented. This pattern is characteristic of PL on the SRT
task in typically developing children (Gheysen et al., 2011; Lum et al.,
2010) as well as in neurotypical adult populations (Bianco et al., 2023).
Given this, we were confident that the magnitude of the rebound effect
(i.e., the difference in RT between the final sequence block and random
block) provided a reliable measure of PL for the current study.

At the fixel level, we did not observe significant associations between
the rebound effect and white matter organization in the SCP or STPMT.
Still, when averaging FD across the entire SCP, we found a significant
positive association, whereby FD in the right SCP was associated with a
larger rebound effect on the SRT task. The same trend was also present in
the left SCP (p = .098). FD is thought to reflect axon count and/or
density within a voxel, which seems to be related to the speed of in-
formation transfer within a tract (Raffelt et al., 2017). Our exploratory
results therefore suggest that SRT task performance may be more pro-
ficient in those children where the basal ganglia-cerebellar white matter
pathway endows a bundle with greater information processing capacity,
making it more efficient (Fletcher et al., 2021; Horowitz et al., 2015).
These findings mirror those of our recent adult study, which also found a
positive association between FD in segments of both the left and right
SCP and PL in a sample of adults (Bianco et al., 2023). Further, we found
no relationship between logFC in the SCP and the rebound effect, which

may suggest that PL is predominantly driven by microstructural prop-
erties within the basal ganglia-cerebellar circuit, rather than overall
tract macrostructure – another finding that mirrors our adult work
(Bianco et al., 2023). Whilst speculative in the absence of a direct
quantitative comparison between child and adult data, we tentatively
propose that the overlap between child and adult results may suggest
that the relationship between the basal ganglia-cerebellar circuit and PL
is established early in development, and may be age-invariant frommid-
childhood.

In the STPMT, there were no significant correlations detected be-
tween white matter organization (FD and logFC) and PL (rebound ef-
fect). This finding, or lack thereof, aligns with what we observed in our
sample of adults (Bianco et al., 2023), which may suggest that white
matter organization in these regions is not linked to individual differ-
ences in PL. However, given our modest sample size, it may be that we
were not optimized (or sufficiently powered) to detect small effects.
Further, while we controlled for the effects of age, we acknowledge that
the age span adopted in the present study (6–14 years) is a period of
rapid white matter maturation (Lebel et al., 2019). Thus, it is possible
that the effects of interest may alter as a function of age across this span –
an effect that we were underpowered to probe, but should be the focus of
future work. In all, a lack of effects found in the present study should not
be taken as evidence of a true null effect, and the association between PL
and white matter organization in the STPMT warrants further consid-
eration with a larger sample. At a minimum, our evidence here suggests
that the observed effects of white matter on PL may be stronger in the
SCP than in the STPMT, which appears to be a consistent pattern in both
children and adults.

The findings presented here contribute to our understanding of the
microstructural correlates of childhood PL and may have practical im-
plications for future research. We report qualified evidence that in
typically developing children, greater FD in the SCP was associated with
better SRT task performance. As such, white matter organization within
the basal ganglia-cerebellar network may offer a window into the
mechanisms that subserve compromised PL when it emerges in child-
hood. Further, PL difficulties have been implicated in the symptom
profile of several neurodevelopmental disorders e.g., developmental
coordination disorder (Van Dyck et al., 2022) and specific language
impairment (Lum et al., 2014). While speculative, our findings may
signal involvement of basal ganglia-cerebellar circuitry in those devel-
opmental instances where PL is compromised. This suggestion is sup-
ported by neuroimaging evidence reporting atypical cerebellar
structures in these disorders (Gill et al., 2022; Hodge et al., 2010; Shaw
et al., 2016). Future research should explore this suggestion further.

The current study is not without limitations. First, we failed to detect
our effects of interest within the fronto-basal-cerebellar network at the
fixel level. We argue that this may have occurred due to a lack of power,
given the trend effects observed at the fixel level (see Supplementary 1),
and that we proceeded to detect effects at the whole tract level. Still, it is

Fig. 4. Scatterplots visualizing the association between mean FD and the standardized rebound effect for the left and right SCP (N = 26). Residualized values are
presented after controlling for sex and age. The shaded area represents standard error.

K.M. Bianco et al. Brain and Cognition 180 (2024) 106204 

5 



interesting to note that the pattern of effects observed here in children
overlaps with those we observed in adults, particularly our findings
implicating the SCP in PL. In this context, and with consideration of the
scatterplots, the pattern of effects observed at the whole tract level ap-
pears to be robust. Further, while the tract average approach taken here
is common, it does not allow for inferences to be drawn about if (or how)
this effect changes within, or along, our tracts of interest (i.e., the SCP).
With all this in mind, we recommend that larger cohorts be examined in
future studies to better ascertain how the relationship between white
matter organization and PL in children manifests at the fixel level.

Additionally, we chose to investigate the role of the SCP and STPMT
in PL since they underlie the fronto-basal ganglia-cerebellar circuit that
prior functional work has implicated in PL (Baetens et al., 2020;
Janacsek et al., 2020). We do, however, acknowledge that additional
white matter tracts, such as the middle cerebellar peduncle (MCP; Palesi
et al., 2017), likely contribute to PL. To minimize the number of com-
parisons and maintain study sensitivity, we did not include this tract in
our analyses (nor other potential candidate white matter tracts). Future
work should consider the broader role of white matter networks –
including the MCP – in SRT task performance in children, to develop a
unified neurocognitive account of PL in children.

Lastly, we acknowledge that the age range of our sample (6–14
years) spans a large developmental period, during which white matter
organization undergoes significant maturation (Lebel et al., 2019). As
such, it is possible that the association between white matter micro-
structure and the rebound effect may differ as a function of age. While
not a direct aim of the study, we were nonetheless underpowered to
address this question specifically. However, we controlled for age in our
analyses, and we observed no significant association between age and
the rebound effect (r = − 0.23, p = 0.264). Hence, we can be confident
that the observed relationship between cerebellar morphology and SRT
task performance in the present study cannot, at least solely, be attrib-
uted to maturational factors related to age in the 6-to-14-year span.
Furthermore, as per the recommended pipeline (Smith et al., 2019),
analyses involving FC corrected for brain volume (i.e., ICV), to account
for differences in volumetric changes across our participants. Thus,
given that age and ICV were corrected for, we can be confident that our
results do not, at least solely, reflect any age-related differences in
morphology.

To conclude, this is the first study to explore the association between
white matter micro/macrostructure and PL in typically developing
children. We observed a significant positive association between PL and
white matter microstructure in the right SCP in children, with a similar
trend observed for the left SCP. Specifically, greater average FD within
these tracts was associated with better PL on the SRT task. This effect
overlaps with what we observed in neurotypical adults. Our findings
provide qualified support for the role of white matter organization in the
basal ganglia-cerebellar circuit in explaining individual differences in
childhood PL.
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