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The high-throughput extraction of quantitative imaging features from medical images for
the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing
and emerging research field that has been attracting increasing interest, particularly in
multimodality and multi-omics studies. In this context, the quantitative analysis of
multidimensional data plays an essential role in assessing the spatio-temporal
characteristics of different tissues and organs and their microenvironment. Herein,
recent developments in this method, including manually defined features, data
acquisition and preprocessing, lesion segmentation, feature extraction, feature selection
and dimension reduction, statistical analysis, and model construction, are reviewed. In
addition, deep learning-based techniques for automatic segmentation and radiomic
analysis are being analyzed to address limitations such as rigorous workflow, manual/
semi-automatic lesion annotation, and inadequate feature criteria, and multicenter
validation. Furthermore, a summary of the current state-of-the-art applications of this
technology in disease diagnosis, treatment response, and prognosis prediction from the
perspective of radiology images, multimodality images, histopathology images, and three-
dimensional dose distribution data, particularly in oncology, is presented. The potential
and value of radiomics in diagnostic and therapeutic strategies are also further analyzed,
and for the first time, the advances and challenges associated with dosiomics in
radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a
robust framework for radiomic analysis is presented and challenges and
recommendations for future development are discussed, including but not limited to the
factors that affect model stability (medical big data and multitype data and expert
knowledge in medical), limitations of data-driven processes (reproducibility and
interpretability of studies, different treatment alternatives for various institutions, and
prospective researches and clinical trials), and thoughts on future directions (the
capability to achieve clinical applications and open platform for radiomics analysis).
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1 INTRODUCTION

In the new era of precision medicine, interest has grown in
exploring potential biomarkers embedded in different images.
The development of advanced machine and deep learning
algorithms has enabled capturing the shape and texture of
tissues of concern from multimodality images such as X-ray,
computed tomography (CT), magnetic resonance (MR),
positron emission tomography (PET), and ultrasound (US).
These integrated computational and analytical methods for
medical images called radiomics (1, 2) are an emerging field
of study.

Intelligent analysis algorithms can be helpful in radiology as
an effective aid to physician decision-making in cases of cancer
and non-cancer (3–5). In oncology, structural and functional
imaging, pathological tissue sections, and combinations
provide valuable insights for screening, diagnosis, treatment,
and prognostic assessment. Meanwhile, three-dimensional
(3D) dose distribution data are considered new “images” and
novel predictors of toxicity and prognosis after radiotherapy
(RT). The radiomic features extracted from these four images
will capture anatomical, anatomical, and functional,
pathological, and dose spatial aspects (6, 7), respectively.
Ev idence has shown that some common imag ing
characteristics may exist between these different data types,
albeit with undoubtedly independent biomarkers and unclear
correlations. By integrating the phenotypic properties of
medical images and messages extracted from other sources
(e.g., pathology and clinical reports recorded) (1, 8, 9), a more
comprehensive assessment can be effectively conducted for
diagnosing and preparing personalized treatment plans.
Radiomics and deep learning have been two rapidly evolving
technologies in recent years to achieve this aim, such as the
emerging technique of dosiomics, which is an extension of this
approach. Their ultimate goal is to create faster and more
reliable clinical decision support systems for assisting
clinicians, rather than replacing them (3).

Herein, radiomics and deep learning-based radiomics were
reviewed, focusing on the types of characteristics, approaches for
extraction and selection, statistical analysis, predictive models,
and depth feature-based methods. Subsequently, their latest
applications and advances in radiology, multimodality,
pathology images, and 3D RT dose distribution are
summarized and analyzed. Finally, future challenges and
recommendations for both techniques were discussed and a
robust framework for radiomic analysis was presented. To the
Abbreviations: AUC, Area under the curve; ceCT, Contrast-enhanced computed
tomography; CNN, Convolutional neural networks; CT, Computed tomography;
DVI, Dose-volume indices; EGFR, Epidermal growth factor receptor; GC, Gastric
cancer; IBSI, Image Biomarker Standardization Initiative; ICC, Intraclass
correlation coefficients; IOV, Interobserver variation; LC, Local control; LGG,
Lower-grade glioma; LR, Logistic regression; MR, Magnetic resonance; NSCLC
Non-small cell lung cancer; PET, Positron emission tomography; RF, Random
forest; ROI, Region of interest; RP, Radiation pneumonitis; SBC, Skull-based
chordomas; SNR, Signal-to-noise ratio; SVM, Support vector machine; VMAT,
Volume-modifying arc therapy; WSI, Whole slide imaging.
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best of our knowledge, no systemic reports are available on the
progress and challenges associated with dosiomics.
2 MATERIALS AND SELECTION CRITERIA

A literature search was conducted using the Web of Science/
PubMed/Medline database by employing the methodological
subject terms “Radiomics”, “Deep learning”, and “Dosiomics,
“and their “Tumor”, “Cancer”, “Lesion”, “Images”, “Multi-
modality”, “Cross-modality”, “Histopathological”, and “H&E”
associations to identify relevant studies in November 2021. The
inclusion criteria of materials included (a) radiomics, (b) deep
learning-based radiomic analysis, (c) uni- or multimodality
surveys, (d) single- or multi-omics investigations, and (e)
dosiomics. Data were retrieved with a focus on the latest
developments and applications of techniques related to radiomics
in oncology. First, an initial check regarding potential research that
met the inclusion criteria was performed based on the titles and
abstracts. Then, an independent and comprehensive review of
papers deemed pertinent was conducted. The exclusion criteria
included literature from irrelevant fields, published manuscripts in
languages other than English, duplicate studies, case reports, and
articles that did not include human results.

Moreover, for the newly published applied studies that met
the inclusion/exclusion criteria, data from the articles based on
full-text analysis and retrieval, including (a) datasets; (b) with or
without data enhancement; (c) modality; (d) research subjects;
(e) study objectives; (f) methods; (g) relevant features (clinical
characteristics, radiomic profiles, and predictive attributes); (h)
model building (prediction and validation); (i) results of the
model; and (j) conclusions, were extracted and analyzed.
3 RADIOMICS

Radiomics is a cost-effective and non-invasive approach to
characterize tissue intensity, shape, and texture by quantifying the
imaging phenotype of the region of interest (ROI) (1, 10, 11).
Several basic steps are involved, including image acquisition and
preprocessing, ROI annotation, feature extraction and selection, and
model construction and prediction. Numerous studies have
indicated that radiological differences in radiomic signatures can
aid in describing tissue heterogeneity. In addition, as demonstrated
by several applications, texture characteristics are associated with
the genotype of an organism and contribute to the biological
interpretation of image phenotypes, i.e., an area of research that is
commonly referred to as radiogenomics (12, 13).

3.1 Radiomic Feature Classes
The extracted features mainly fall into qualitative (semantic) and
quantitative (non-semantic) attributes. Semantic properties (14)
are empirical descriptors proposed by radiologists to quantify the
lesion phenotype and are usually associated with clinical
outcomes. These traits cannot be mathematically expressed but
are helpful for clinicians and radiomics studies. For instance, Wu
February 2022 | Volume 12 | Article 773840
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et al. (15) mentioned that CT semantic signatures of partial solid
nodules showed correlation with the diagnosis of patients with
invasive lung adenocarcinoma.

Non-semantic characteristics can be defined as image
representations obtained by building mathematical expressions
(2). In radiomic analysis, most quantitative attributes come from
voxel information computed from predefined ROI. The first
group is the histogram signatures, including the size, shape, and
frequency distribution of the lesion voxel intensity. The second
set contains the spatial interrelationships of voxel intensities, i.e.,
texture traits. The properties obtained from the raw or
transformed ROI generate the following categories (Figure 1).

3.1.1 Morphological Features
Describe the geometric ROI composition. Characteristics that are
associated with shape and volume (16, 17), such as two-
dimensional (2D) and 3D maximum diameter, effective
diameter, maximum axial length, and ratio, volume, maximum
surface area, the surface to volume ratio, compactness,
eccentricity, sphericity degree, and standard deviation, have
already been reviewed. Conceptually, shape properties are
simpler and easier to understand than other attributes. For
instance, the standard deviation reflects the similarity of the
ROI to a circle or sphere, and the sharp edges present the
morphological appearance of the lesion area.

3.1.2 First-Order Gray-Level Histogram Features
Reflect the gray-level frequency distribution of voxel intensities
and do not contain spatial relationships. Histogram analysis aims
to calculate the statistical variables for each voxel on the image
such as mean, maximum, minimum, standard deviation,
Frontiers in Oncology | www.frontiersin.org 3
variance, skewness, kurtosis, uniformity, and entropy. Among
these variables, skewness and kurtosis describe the shape of the
data density distribution and measure the asymmetry and
flatness of the data layout curve, respectively. Because
histogram-based attributes do not focus on voxel locations and
distinguish between spatial distributions, they cannot subsist
understood as actual “texture” characteristics.

The grayscale histogram based on single-pixel or single-voxel
analysis reveals the homogeneity of images and is known as a
summary of first-order statistical information. Histograms of
homogeneous and heterogeneous lesions correspond to a narrow
and a broad intensity peak, respectively. Based on tumor volume
changes in patients with cervical cancer who are treated with RT,
Bowen et al. (18) proposed statistical test intensity histogram
scores on MR, fluorodeoxyglucose (FDG)-PET/CT, and
diffusion-weighted imaging images to describe tumor
heterogeneity, such as FDG-PET SUVCoV, dynamic contrast-
enhanced-MRI SICoV, and DW-MRI apparent diffusion
coefficient (kurtosis). Considerable variation was noted in the
apparent diffusion coefficient on DW-MRI in early RT
treatment, suggesting that some intensity histogram
heterogeneity signatures are concerned with RT response.
Virginia et al. (19) identified primary mass entropy as a
prognostic indicator of the overall survival in a training set for
non-small cell lung cancer (NSCLC), but not reproduced in the
validation cohort, thereby raising questions about the results of a
small cohort study.

3.1.3 Second- and Higher-Order Texture Features
By evaluating the spatial distribution among voxels, spatial
variations in voxel intensity levels can be perceived or
measured. Second-order statistical characteristics are obtained
by computing the spatial relationships between neighboring
voxels such as energy, entropy, uniformity, and contrast.
Third- and higher-order texture traits describe the distribution
across three or more voxels and assess roughness, busyness, and
complexity, among other parameters. Such texture signatures are
derived based on matrices that mainly contain the gray-level co-
occurrence matrix, gray-level size zone matrix, gray-level
distance zone matrix, gray-level dependence matrix, gray-level
run-length matrix, neighborhood gray-tone difference matrix,
and neighborhood gray-level dependence matrix. They are
elucidated in Supplementary Section 1.2.

Therefore, texture analysis evaluates the spatial distribution of
pixel intensities based on different parent matrices, focusing on
the relationship between each voxel and its neighboring regions
and emphasizing on local analysis. Conversely, histogram
features reflect global properties.

3.1.4 Filter- and Transform-Based Features
Unlike Section Section Second- and Higher-Order Texture
Features, and higher-order texture, it is calculated after the
ROI transformation. Spatial and frequency domains describe
the texture information at different scales and are extensively
studied on CT and MR images (20, 21). Filters, such as Gabor,
Laws’ texture, Gaussian, and Laplacian, are usually applicable for
spatial level conversion. Complex linear or radial wavelets are
FIGURE 1 | Radiomic features extracted by radiomic analysis tools. The length
of the horizontal line on the right describes the approximate number of features.
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available in the frequency domain, and Fourier can also turn the
spatial representation of an image into a frequency mode.

Wavelet features are excellent examples. For instance, the
grayscale evolution of an image can be observed better using
Haar wavelets (22) after processing the image using a high-pass
(focus on image details) and low-pass filter (ignore image
details), and image preprocessing and segmentation is also
performed adequately using these wavelets.

3.1.5 Model-Based Features
These depict the spatial gray-level shape information, which
inscribes geometric complexity from the most complex
mathematical models. For instance, the fractal analysis (23)
assesses the self-similarity and roughness of distinct
dimensions by superimposing various patterns on the image.
Such methods generate fractal dimensional profiles that reflect
the rate of change between magnification scale or resolution and
structural detail, i.e., the self-dependent likelihood of the texture
when the image is scaled up.

Most above-mentioned features are neither original nor
novel. Texture signatures to quantify image representations
and the adoption of filters and digital transformations to
decompose signals essentially emerged decades ago. In medical
images, the main innovation lies in radiomics, which captures
novel biomarkers of tissue lesions. More importantly, it can be
combined with other data types, such as metabolism, genetics,
and pathology, to identify more valuable phenotypic profiles,
promising for comprehensive disease assessment.

3.2 Feature Extraction Process
Data collection is the first step in the radiomics workflow. At
present, most investigations rely on retrospective data. The
impact of image acquisition parameters and reconstruction
algorithms needs to be considered while designing the study
methodology (Supplementary Section 1.1).

3.2.1 Image Segmentation
In radiomics guidelines, delineating the ROI from 2D or 3D
images is critical, determining the region to calculate the
radiomics features. This step is considerably tedious and
challenging, especially in diffuse diseases or in the presence of
multiple lesions.

ROI segmentation has not been automated yet. The tumor or
lesion tissue gets manually outlined by experienced radiologists
(22, 24), which is considered the most straightforward method.
However, this process is laborious and susceptible to
interobserver variation (IOV), and it should be ensured that at
least two or more experts simultaneously observe and reach
consensus to minimize IOV. Pavic et al. (25) investigated the
effect of IOV for radiomic analysis based on ROI delineated by
three experts and found that three distinct tumor types had
varying median Dice coefficients (DC), i.e., considerable IOV
existed. Many researchers believe that having experts divided
ROI is the fundamental truth despite time consumption
and variability.

Semi-automatic segmentation algorithms have evolved to
maximize timeliness, accuracy, and automaticity in different
Frontiers in Oncology | www.frontiersin.org 4
imaging modalities and lesions. Region growth (26) is a
routine procedure in which the operator first selects a seed
point. When the neighboring pixel sites have similarities with
the core pixel point, they are merged and are allowed to continue
to grow outward until no more pixel spots satisfy the condition.
Such an approach is suitable for partitioning relatively
homogeneous patches and requires an experienced physician
to perform contour correction of in homogeneous tissue areas,
e.g., non-/sub-solid and nodules involving the blood vessels and
pleural surfaces. Threshold class algorithms were generally
performed in terms of robustness and accuracy, especially in
heterogeneity analysis (27, 28). Furthermore, in the assessment
of metabolically active tumor volume, threshold-based
approaches focus on the tumor subvolume with the highest
uptake, vastly underestimating the true metabolically active
tumor volume range (29, 30), which in turn increases the bias
of heterogeneity estimation. Some studies have employed the
watershed method (31), which connects pixel points with similar
spatial locations and grayscale values to form a closed outline.
Then, the user selects a rough area, and the algorithm
automatically generates a 3D image of the lesion, which is then
manually refined on the 3D surface. Yin et al. (32) proposed a
novel, fast, and fully automated morphology segmentation
algorithm for dividing breast tissue in breast MR images with
accuracy and precision that exceeds those of the existing
methods. Huang et al. (33) compared and analyzed
thresholding-, clustering-, and watershed-based segmentation
architectures in breast US images recently and concluded that
each technique has benefits and drawbacks.

Software packages are publicly available that support semi- or
auto-lesion outlining, mainly from 3D Slicer (34), MITK (35),
ITK-SNAP (36), MeVisLab (37), LIFEx (38), ImageJ2 (39), and
SmartPaint (40). Parmar et al. (26) compared ROIs obtained by
semi-automatic, and five experts depicted layer-by-layer, with
intraclass correlation coefficients (ICC) of 0.77 ± 0.17 and 0.85 ±
0.15, indicating higher reproducibility and robustness of
radiomic features derived from the ROI outlined by the
region growth algorithm. No suitable universal segmentation
algorithm is available because of the lack of a gold standard for
defining ROI and the possible difficulty in capturing
morphological variations and boundary blurring between
different lesions. Therefore, performing preprocessing
operations is essential to improve the quality of ROI before
extracting traits.

3.2.2 Feature Extraction
The following phase is to quantify the attributes at the gray level
within the segmented region. Radiomic properties have been
described in detail in Section 3.1. Their extraction and analysis
are complex, but several open-source packages are already
available. The Image Biomarker Explorer is already being
tested for feature extraction and modeling cross-modality
medical images. Recently, Bettinelli et al. (41) investigated the
compliance of Image Biomarker Explorer and showed that
preprocessing introduces non-negligible inconsistencies, but
the developed Standardized Image Biomarker Explorer
complies with the Image Biomarker Standardization Initiative
February 2022 | Volume 12 | Article 773840
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(IBSI) standard. PyRadiomics (10) and Chang Gung Image
Texture Analysis (42) can be accessed as plugins to generate
quantitative imaging signatures but do not include analysis
modules. Mazda (43) and Computational Environment for
Radiological Research (44) contain several textural analysis
modules such as image import, outlining ROI, image
preprocessing, and feature extraction. These are open-source
toolkits, and commercial packages, such as RadiomiX (45) and
TexRAD (46), are available. They are simple to use but support
fixed characteristics and are less scalable. Some in-house
programs are also available, e.g., the open-source Matlab-based
Quantitative Image Feature Engine (47). The characteristics and
functions supported by these available packages are summarized
in Supplementary Table S1.

These toolkits differ in the level of support for image types
and formats, outlining ROI, preprocessing, and modeling, and
show inconsistencies in the types and names and the number of
features. Therefore, different methods produce various gray-level
phenotypes, and validating the same model using different
programs is challenging.

However, the IBSI provides a uniform definition for the
supported radiomic feature, i.e., the name and number of
offers are always constant. The values obtained for the same
characteristic are variable under distinct calculation parameters,
especially for second- and higher-order texture traits. Therefore,
newer information about the segmentation region can become
accessible with specific and different computational variables.
Although such variability may affect the texture profile
robustness, it can aid in optimizing the texture analysis. For
instance, checking the compliance of diverse software packages
according to IBSI can improve the potential for reproducible
validation of the same model (41).

Standards for image preprocessing and features facilitate the
construction of reproducible models and potentially accelerate
the translation of radiomics methods to clinical applications. In
addition, updating multiple existing toolkits to meet the IBSI
initiative standards is one way to obtain a common
software solution.

3.3 Feature Selection and Dimension
Reduction
As noted in Section Feature Extraction Process, extraction, the
number of computed features can often vary from a few hundred
to several thousand (e.g., 104, 867, 1108, and 7260 (48–50),
respectively), which is frequently more considerable than a much
larger size of the study cohort that may continue to increase.
Many factors do not aid in outcome prediction (51, 52); as a
result, improving the count does not mean that more amount of
new and valuable information is available. The non-repeatable,
highly correlated, redundant, extremely large, or small variance
and outlier traits should be exclusionary. Moreover, the greater
the number of traits involved for forecasting or the smaller the
patient sample size, the more likely is the overfitting result.
Therefore, selecting valuable attributes from the character set is
essential to build a prediction model. Several methods for feature
selection have been developed, mainly covering the
following aspects:
Frontiers in Oncology | www.frontiersin.org 5
3.3.1 Feature Harmonization
Harmonization techniques eliminate batch effects in high-
throughput data, i.e., removing the center-dependent impact of
scanner parameter variations for radiomic analysis. ComBat
Harmonization is one of the newest and most promising
schemes available. Initially, this method proved effective in
genomic data and preserved pathophysiology information (53).
However, it was soon adopted to solve the center effect problems
in radiomics studies. Mahon et al. (54) assessed the capability of
the ComBat algorithm on CT images of patients with lung
cancer . The percentage of cons iderably diverg ing
characteristics produced by the 32 imaging protocols was
noted to be 0%–2% or was retained at 0%. Additionally,
studies based on MR and PET images have employed this
technique (55, 56), thereby further demonstrating the
possibility to reconcile the radiomic profiles of different
imaging modalities. Recently, Da-ano et al. (57) proposed a
hybrid version based on a modified B-ComBat and M-
ComBat, namely BM-ComBat, to improve the robustness (B)
and flexibility (M) of the estimation. All ComBat versions could
eliminate the differences in radiomic characteristics between
institutions, but the improved ComBat provided the best
results. Therefore, the BM-ComBat method is recommended as
the preferred choice for model development and validation in a
multicenter study.

3.3.2 Removal of the Interobserver
Variation Features
If manual or semi-automatic methods are implemented in lesion
segmentation, irreproducible or highly variable signatures
introduced by IOV require exclusion. ICC is routinely
employed to assess inter- and intra-reader agreements. Pavic
et al. (25) compared the variability of tumor regions that are
manually outlined by three observers on CT images (ICC of >0.8
indicates excellence). They found that IOV has various degrees of
influence on the radiomic analysis of diverse tumor. Considering
that the ICC calculation relies on the natural variance of the
underlying data, testing repeatability alone may be insufficient.
Kendall’s W (58) can also evaluate IOV consistency when three
or more operators are present, i.e., test–retest analysis is a
necessity to maximize the robustness of imaging attributes.

3.3.3 Selecting Relevant Features
A common scheme excludes redundant or irrelevant
characteristics. Based on recent studies (59–62), the popular
feature selection methods in radiomics are summarized in
Supplementary Table S2. The previous three types are
filtering, wrapping, and embedding. First, the filtering way
ranks variables according to their scoring criteria in two
manners: univariate and multivariate. The univariate analysis
depends on profile relevance to the target variables, whereas the
multivariate analysis combines correlations and redundancies.
For instance, Relief (63) calculates weights based on the relevance
of each property to the outcome, and components with less value
than a certain threshold will get removed. The core idea of
minimum redundancy maximum relevance (62) is to determine
the amount of mutual information between a set of indicators
February 2022 | Volume 12 | Article 773840
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and predictor variables and then select those with the maximum
mutual information and minimum redundancy. This filtering
operation is typically performed without considering the model
and is also an independent process. Secondly, the wrapping
pattern prunes unwanted elements in the initial signature set
by recursive model training until the best subset is found. Among
them, recursive feature elimination (64) is the most frequently
employed approach. Finally, the embedding manner
incorporates feature selection into the model building process.
The least absolute shrinkage and selection operator is an
exquisite example of simultaneously generating relevant
properties and predictive models (65). Both wrapping and
embedding techniques evaluate traits based on the forecast
results. The difference is that one is recursive filtering and the
other is automatic adjustment of parameters during model
learning. Generally, the solution with model involvement has
higher accuracy, and filtering focuses on preliminary screening,
e.g., some studies employ P-values (<0.05) to detect associated
hallmarks (66), and others reduce the number of attributes by the
Chi-squared test and Mann–Whitney U test (67).

Apart from the three methods already described,
unsupervised techniques are another effective means to reduce
data dimensionality (68, 69). Mapping the characteristic set to a
lower-dimensional space by linear or non-linear transformation
minimizes information loss. Cluster analysis and principal
component analysis are representative examples. The first step
of cluster analysis is to establish attributes with high intra-cluster
redundancy and low inter-cluster correlation and then choose
the most representative variables from the different groups to
build the model, which can be visualized by clustering heatmaps
(70). The principal component analysis targets creating a smaller
subset of maximally uncorrelated from the feature set to describe
the phenotypic evolution in imaging with as few primary
elements as possible (71). Furthermore, this approach does not
rely on objective variables (benign or malignant), has no
overfitting risk, and is a highly preferred method.

3.4 Model Construction and Classification/
Predictive
Once the feature selection step is complete, the most promising
predictors that remain are directed to model training to evaluate
the current research objectives. The target variables can be scalar
(survival in time) or categorical (tumor diagnosis and cancer
subtype). Depending on the usage level of prior variables
(outcomes), the models are classified as supervised, semi-
supervised, and unsupervised learning. Supplementary Table S2
summarizes the feature selection methods and models popularly
practiced in radiomics to enhance the readability and
comprehensibility of the manuscript.

Supervised learning models are analyzed in conjunction with
outcome variables to establish a mathematical representation
between the selected characteristics and the target variables, a
widely utilized method in radiomic analysis. Support vector
machine (SVM) is a commonly employed promising
discriminative classification technique and is a typical practice
to introduce multiple classification models for profiling to
Frontiers in Oncology | www.frontiersin.org 6
achieve better performance (24, 71–73). For instance, Kim
et al. (71) showed that SVM, logistic regression (LR), bagging
tree, boosting tree, and dual-channel bidirectional long and
short-term memory network performed well for prostate
cancer identification on tissue images. Many other supervised
classifiers exhibit favorable learning abilities such as the least
absolute shrinkage and selection operator-LR (74), multivariate
Cox proportional hazards regression models (59), decision trees
(75), and random forest (51). A study comparing six feature
selection strategies and nine classification measures in a
prognostic task for nasopharyngeal carcinoma in which a
combination of RF-based hallmark screening with RF classifier
was used showed the best performance (76). The machine
learning algorithms allowed for easy realization in tools such
as R (77), MATLAB (78), and scikit-learn (79), ranging from
simple linear regression or LR to more complex SVM or neural
networks. The predictive power of the models is excellent;
however, their learning process considers the prophecy goals
and is prone to overfitting problems, thereby leading to overly
optimistic results. Sufficient signatures make forecasting possible
in random data even without incorporating objective variables.
Therefore, on one hand, more potential traits need to be mined,
and on the other hand, more medical data should be made
available. Radiomics has developed to a considerable extent in
recent years; however, limited annotated data are still a
pain point.

In the case of poorly labeled data, unsupervised learning
models could serve as an alternative. They utilize the distance
metric between samples to calculate the similarity, divide the
samples with high similarity into groups, and evaluate the
prediction level based on the clustering results. Commonly
employed algorithms include k-means (80), fuzzy (81), and
consensus clustering (82). A previous study with consensus
clustering assessed tumor heterogeneity on CT images of
patients with lung, head, and neck cancer, splitting the
clustering outcomes into two teams, each with different
radiomic characteristics and varying prognoses. This approach,
which does not consider target variables, seems more clinically
appropriate , but the performance of the model is
hardly satisfactory.

A semi-supervised learning model may be a great choice to
balance performance and labeled data. The principle is to exploit
a large amount of non-annotated data to mine potentially
valuable information, combined with a small number of
annotated items, and establish a relationship between features
and desired output values. The method is relatively common in
the deep learning framework, as described in the next section.

Performance evaluation is an essential process after modeling.
The predictive power of a model can be quantified in different
ways. The most widely adopted metrics for binary discriminant
types are the receiver operating characteristic curve, the area
under the curve (AUC), specificity, sensitivity, and accuracy (49,
62). In survival analysis and regression tasks, the general
assessment measures are the consistency index and the time-
based receiver operating characteristic curve (83, 84). Moreover,
calibration often works as an indicator with a calibration plot
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that visualizes the correlation between forecast and actual risk
values (85).

The reliability of the findings is another crucial metric that is
considered a prerequisite for entry into clinical practice. Internal
validation is the first thing to be satisfied by dividing the dataset
into a training and testing and validation set, and then training,
optimizing, and evaluating the model in the segmented subset.
Stratified sampling (69) and random division (86) are commonly
performed. The groups, after utilizing stratified partitioning,
have similarity distribution but are more tedious than simple
random separation. Conversely, the stochastic nature of random
splitting leads to uneven data patterns and typically requires
multiple separations and reporting of average returns. Cross-
validation is the most prevalent scheme. K- fold cross-validation
divides the samples into k disjoint subsets, where k – 1 is the
training set, and the remaining is the test set (68). The leave-one-
out cross-validation method ensures that the value of k is equal to
the number of examples and only one is used for testing at a time
(87). The second is external validation based on patient data
from different institutions, which is more reliable because of the
difference in distribution of patients in various regions.

At present, no single feature selection method or classifier
seems to perform best for different tasks. Therefore, considering
ensemble learning and fusing several classifiers may be an
effective way to improve model robustness. Additionally, deep
learning techniques play an increasingly important role in the
medical field and provide a promising direction for radiomics.
4 DEEP LEARNING-BASED RADIOMICS

As described in Section 3.2.1, radiomics can be a valuable tool for
accurate diagnosis and treatment planning. However, ROI
segmentation requirements hinder development because the
Frontiers in Oncology | www.frontiersin.org 7
process is too cumbersome and dependent on the experience
of the operator. Deep learning algorithms are a good alternative
to address this problem because they are capable of automatically
learning phenotypic features with powerful characterization
capabilities without predefined characteristics and human
intervention and are considered advanced radiomics (Figure 2)
(88–90). Considering that deep learning methods are not the
focus of this study, we have focused on their application in
radiomic analysis. Information on the segmentation algorithms
and prediction models of these methods is provided in
Supplementary Sections 1.3, 1.4.

4.1 Deep Learning-Based Lesion
Segmentation
As described in Section Image Segmentation, segmentation
algorithms have demonstrated that they can improve the
annotation process of ROI; however, reaching a level of
automation is still a challenge. Deep learning methods are a
more potentially effective means (Supplementary Section 1.3).

Recently, deep learning-based automatic segmentation
techniques have been rapidly emerging (91–93). Because
multimodality images can provide complementary information,
Guo et al. (94) proposed a deep learning framework for
automatic selection of gross tumor volume in PET/CT with a
DC of 0.73, indicating that the suggested method has a better
outlining result than the advanced U-Net (DC 0.71). Tan et al.
(91) compared the performance of 12 models based on U-Net,
GAN, attention mechanism, and multiscale fusion for separating
pulmonary vessels on CT and CT angiography imaging. Results
showed that spatial information and multiscale feature maps
facilitate algorithm accuracy. Convolutional neural networks
(CNN) are already engaged in processing histopathology slices.
Xu et al. (92) utilized CNN pre-trained by ImageNet to segment
and classify brain tumors and colon cancer and noted that the
FIGURE 2 | The radiomics pipeline includes two modeling approaches, manually defined and depth features. Modeling pre-defined features involve several basic
steps, including image acquisition and pre-processing, ROI segmentation, computation of features, feature filtering, and internal validation. Deep learning picks up
features by performing end-to-end training on a coarse region containing the target without a separate feature extraction and selection process. After training is
complete, depth features can be combined with semantic ones for radiomic analysis or applied directly to model prediction. The models built by both methods
should undergo external validation on a new dataset. Tr, Train; Te, Test; V, Validation; LASSO, least absolute shrinkage and selection operator;.
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characteristics extracted by CNN are considerably more effective
than those designed by experts. Besides contouring tumors, Amyar
et al. (93) developed a multi-task model to auto-screen COVID-19
pneumonia from chest CT images and validated the superiority of
the proposed approval (DC >0.88). Automatic ROI generation is
beneficial for radiomics studies because it can improve the IOV and
labor costs in manual or semi-automatic ways to a considerable
extent. However, performing the same segmentation objective with
trained models on different datasets usually leads to task failure or
not achieving the expected outcomes, which may be the main
reason for the limitations of this technique.

As discussed in Section Feature Selection and Dimension
Reduction, subtle segmentation errors will lead to discrepancies
in the extracted radiomic features, which may result in
significant measurement bias. Therefore, deep learning-based
methods are proven to be very promising; however, validation
and correction of the results should not be neglected. Any
automated segmentation technique that acts as an outlining
tool should undergo careful review and approval of the results
by medical experts to ensure the reliability of the study.

Moreover, the study of radiomics remains controversial,
where differences in preprocessing, ROI segmentation, feature
extraction, feature selection, and the classifier can affect the final
performance of the model. Semantic layer segmentation is
getting closer to the physician’s visual level with the addition
of deep learning algorithms; however, its role in optimizing the
overall workflow remains limited.

4.2 Depth Feature-Based Radiomics
Deep learning is not a new concept and has been around for
decades. The progressive availability of accessible medical data
and computing power has given rise to new radiomics that are
non-deterministic and non-pre-defined (Figure 2) (95, 96). Such
deep network architectures rely on the data driven to produce
more abstract, richer, general, and robust depth features without
expert definition, which perfectly match the medical big data.
They can do what medical experts with extensive experience do
in many ways, such as identifying image attributes, fusing
multiple types of metrics for diagnosis, and generating
preliminary diagnostic reports (97–99). Meanwhile, several
studies have compared this technology with handcrafted
signatures for radiomics and reported the potential of depth
characteristics (100–102).

Conceptually, deep learning algorithms are generally broadly
classified into generative and discriminative ways (96). They can
be used to generate models to guide the different relationships of
the input data. The conditional probabilities of various categories
are then calculated by utilizing the joint distribution, and finally,
the category with the highest probability works as the prediction
outcome. Extending this approach to radiomics, which aimed to
identify intrinsic features of the phenotype and assess its
heterogeneity (tumors), a generative strategy may be more
appropriate. The frequently employed models are shown in
Supplementary Section 1.4.1.

Contrarily, discriminative models do not compute joint
distributions but learn the mapping relationship between x and
Frontiers in Oncology | www.frontiersin.org 8
y directly. The ultimate concern is the output of y, given the input
of x. For instance, if the research question predicts a benign or
malignant nature, discriminative learning may be a better choice.
Supplementary Section 1.4.2 is a typical example.

Deep learning algorithms are typically network architectures
composed of three or more layers; thus, millions of parameters
(weights) need to be estimated, which is computationally
intensive and requires datasets of sufficient size for training
and parameter tuning. Samples per category require 1000 or
more to perform well in a classification task trained from scratch.
Approximately, 100 per class possibly achieves a more
reasonable result in some data augmentation techniques (103,
104). Furthermore, the potential of transfer learning has been
evident in several studies (100, 104). The principle is that
common characteristics between source and target data are
identified and migrated to new feature space for the training of
the target model (105). Xu et al. (106) proposed a pre-training-
based model for problems associated with insufficient data,
which effectively reduces the overfitting risks. Several
researchers worked with only the first few layers of a pre-
trained CNN and then retrained the later ones in a new
optimization task (107). Thus, transfer learning can first train a
rough approximation model for a given task and serve as a basis
for modeling a novel task. Therefore, successful examples are
rare between medical images, and only a few studies have
explored the stability of depth traits.

Deep learning methods demonstrated outperforming the
feature engineering-based approaches in many tasks such as
detecting lesions (108), predicting mortality (109), and image
registration (110). Furthermore, with the increasing amount of
electronic data from major medical institutions and the
availability of more medical data, deep learning solutions
should be the preferred alternative for radiomics research in
the coming years. A basic guideline should rule whichever is
selected: avoid building a complex model with no significant
pe r fo rmance improvemen t than s imp l e mach ine
learning methods.

Deep learning-based radiomics solutions undoubtedly have
tremendous potential for development. However, many
challenges need to be addressed to replace traditional
radiomics effectively: (a) deep network structures contain
millions of parameters and require reliance on massive datasets
for efficient training to avoid overfitting; (b) the design and
parameter optimization of algorithms are very complex and
involve many hyperparameters that require tuning (e.g.,
number and size of the convolutional kernel, learning rate, and
activation function); (c) traditional machine learning models
seem to offer more explanatory power than the black-box deep
learning approach. The introduction of transfer learning, data
augmentation, and visualization techniques and the construction
of a diagnostic map of medical knowledge will contribute to
resolving these issues. Multi-omics methods that fuse different
types of medical data are a promising and novel topic for future
research. The next section presents the latest developments in
radiomics to assist stakeholders in understanding the
applications of clinical, imaging, pathology, and genetic data.
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5 SOME CASE STUDIES AND
APPLICATIONS

A growing number of studies demonstrated the value of deep
learning with radiomics to achieve personalized medicine.
Herein, advances in their application in radiological images,
histopathological images, and 3D dose distributions from the
perspective of disease diagnosis and treatment have been outlines
(Figure 3). Additionally, Supplementary Table S3 summarizes
these latest applications to improve the study readability.

5.1 Conventional Radiological Images
CT imaging quantifies tissue density and has vast application.
Radiomic analysis of images frommultiparametric MR and PET/
CT by many investigators allows a more comprehensive
assessment from different perspectives such as imaging,
genetics, and metabolism. Simultaneously, the potential in
simple and real-time US images is becoming apparent. It can
be subdivided into radiomics, ultrasonics, and metabolomics
depending on the imaging modality.

Moreover, with radiomics techniques, multimodality and/or
multi-omic studies have become a vital research topic.
Multimodality is the extraction of radiomic features from
different imaging, whereas multi-omics attempts to establish
cross-omics associations between various data types. Simply
put, a multilevel fusion framework has been established,
mining more valuable characteristics for a comprehensive
radiomic analysis. Fusion methods are crucial in diagnosing
and treating tumors because they capture richer information.

5.1.1 Diagnosis
5.1.1.1 Single-Modality Analysis
The most common radiomic application in radiology images is
to aid in disease diagnosis. Li et al. (104) proposed an attention
mechanism-based model with 88.7% and 70.0% classification
Frontiers in Oncology | www.frontiersin.org 9
accuracy for breast density on in-house and public X-ray
datasets, respectively, which can effectively reduce manual
operations. Kolossvary et al. (111) found that coronary CT
angiography features could predict changes in coronary
atherosclerosis. Benedetti et al. (112) explored the association
between characteristics of contrast-enhanced CT (ceCT) and
non-contrast-enhanced (non-ceCT) images and histopathologic
profiles and revealed their role in tumor characterization. Pang
et al. (103) used TripleGAN to synthesize breast US data to
improve mass classification performance, resulting in a semi-
supervised model with AUC, sensitivity, and specificity of
90.41%, 87.94%, and 85.86%, respectively. Jiang et al. (113)
designed a depth feature approach based on MR images that
achieved better results than the conventional radiomics model in
distinguishing vessel invasion in patients with cervical cancer.
Several researchers have recently compared the discriminatory
power of 2D and 3D ROIs. Meng et al. (62) extracted 2D and 3D
signatures from CT images of patients with gastric cancer (GC)
from four centers to forecast lymph node metastasis and
lymphovascular invasion (LVI) and classify pT4 and other pT

stages. They noted that time-saving 2D annotations showed
comparable performance to 3D in describing GC. Xie et al.
(114) claimed that 3D non-ceCT attributes outperformed 2D in
predicting BRCA1-associated protein 1 (BAP1) status in patients
with malignant pleural mesothelioma. Fewer studies reported on
2D and 3D radiomic analysis, and their findings are conflicting
and insufficient to generalize to all studies. Besides being
employed for oncology diseases, Du et al. (115) utilized the
profile of gestational diabetes mellitus, pre-eclampsia, and
normal pregnancies to assess fetal lung and gestational age in
gestational diabetes mellitus/pre-eclampsia, supporting the
research of neonatal respiratory disorders. Salvatore et al. (116)
performed a comprehensive evaluation of MR traits in patients
with Alzheimer’s and Parkinson’s diseases to investigate their
role in neurodegenerative disorders.
FIGURE 3 | Conceptually, radiomics and deep learning in radiology allow the application of three essential types of image-based clinical tasks: 1) Detection of
regions of interest, including cancerous, non-cancerous, and normal tissue; 2) Segmentation of target regions, disease diagnosis, and patient stratification; 3)
Treatment response or prognosis and tissue progression. TNM, tumor node metastasis; EGFR, epidermal growth factor receptor; SCLC, small cell lung cancer;
LNM, lymph node metastasis; NAC, neoadjuvant chemotherapy.
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Determining the immunophenotype and genotype of a
tumor is crucial for treatment decisions in patients with
cancer, especially in those with advanced stages. Ligero et al.
(117) identified 14 features from the CT imaging of 85 cases
with advanced solid tumors to predict the response to anti-PD-
1/PD-L1, exposing a potential relationship between radiomic
characteristics and tumor immunophenotype. Genotyping by
Rossi et al. (48) indicated that their machine learning model
showed globally good accuracy in recognizing epidermal
growth factor receptor (EGFR) mutations in CT images of
patients with NSCLC after data optimization, a finding
validated in public (The Cancer Imaging Archive) and
external datasets. Agazzi et al. (49) assessed EGFR-positive
s ta tus and predic ted anaplas t ic lymphoma kinase
rearrangements in NSCLC by radiomic signatures, obtaining
an accuracy of 81.76%. Bhandari et al. (118) conducted a
systematic review of MR image-based studies of lower-grade
gliomas (LGGs) and found that radiomic analysis can non-
invasively predict isocitrate dehydrogenase and 1p19q
mutations and noted that this method could be an alternative
to invasive biopsy techniques. Choi et al. (119) distinguished
isocitrate dehydrogenase mutation status in gliomas by a fully
automated approach combining radiomics and deep learning,
obtaining 93.8%, 87.9%, and 78.8% accuracy in-house in the
Seoul National University Hospital and The Cancer Imaging
Archive datasets, respectively. These discoveries suggest that
radiomics performs well in the detection of immunophenotypic
and genomic tumors.

5.1.1.2 Multimodality Analysis
Combining diverse images to identify benign or malignant
cancers is the main application. Guo et al. (120) utilized an
integrated model of profiles of T2-weighted, DW, and ceCT
images to predict perineural invasion in rectal cancer. Results
showed that the multimodality approach achieved better
performance and was considerably better than any of the
individual methods in AUC. Khan et al. (121) proposed an
automated multimodality brain tumor classification technique
that employs deep learning to integrate the best depth signatures
extracted from T1, T1CE, T2, and Flair images by VGG16/
VGG19 networks. Radiomic signatures are affected by imaging
modality and tumor histology; thus, combining different images
can provide more potential information and make feature fusion
and selection difficult. Wu et al. (122) designed a deep learning
method across two modalities and three cancer types to ensure
reproducible automatic tumor segmentation and recognition.
Zhao et al. (123) developed a multi-stage radiomics framework
based on united adversarial learning and achieved 92.94%
accuracy in liver tumor segmentation and detection tasks.
Unlike typical radiomic schemes, they designed a pyramid
module that computed similarity characteristics to extract
complementary multimodal signatures and new feature fusion
and selection channels to select the best-fused signatures. Several
models to differentiate cancer subtypes are to be developed and
validated. Alvarez-Jimenez et al. (124) predicted patients with
adenocarcinoma and squamous cell carcinoma by WSI and CT-
based traits and found essential correlation attributes across
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scales between pathological sections and CT images to
significantly improve the identification of NSCLC subtypes.
Giardina et al. (125) assessed the value of profiles of optical
coherence tomography, multiphoton microscopy, and line scan
Raman microspectroscopy to analyze and identify morpho-
molecular metabolic. The accuracy of the suggested model was
as high as 88% and 99% for the binary task of identifying gland
and adenomas and the multivariate task of distinguishing
pituitary adenoma subtypes, respectively. Shiri et al. (66)
performed a radiomic analysis of CT, ceCT, and PET images
of NSCLC targeting EGFR and Kirsten rat sarcoma virus
mutations with 6 feature selection methods and 12 different
classifiers for the combination with genomic data and revealed
that the stochastic gradient descent model outperformed the best
among the 12 methods. Besides tumor-related applications,
Zhou et al. (73) employed multimodality signatures of
children’s multiparametric MR images and an SVM classifier
to differentiate attention-deficit/hyperactivity disorder from
normal children with diagnostic AUC and accuracy of 69.8%
and64.3%, respectively, a significant improvement over earlier
feature fusion and single-modality approaches. These studies
demonstrate that multimodality fusion features possess rich and
complementary information that allows robust and highly
accurate tumor characterization. Recently, Calisto et al. (126)
explored the value of multimodality imaging histology
techniques in clinical applications and concluded that
introducing the complementary diagnostic technique resulted
in a significantly increased clinician productivity and improved
diagnostic quality from a report on the behavior of 45 physicians
from nine different institutions.
5.1.2 Treatment
5.1.2.1 Single-Modality Analysis
Treatment response assessment is of great value in clinical
decision-making, particularly in cancer prognosis. FOLFIRI
and bevacizumab are first-line treatment options for colorectal
cancer (CRC), and multivariate Cox analysis based on CT
radiomic features can predict patients with good responses
early (127). Chen et al. (128) showed promising results in
predicting the objective response to first transarterial
chemoembolization by utilizing characteristics of preoperative
ceCT images in cases with intermediate-stage hepatocellular
carcinoma (HCC). Dissaux et al. (129) revealed that PET/CT
profiles can detect recurrence after stereotactic body RT (SBRT)
in patients with early-stage NSCLC. Fatima et al. (130)
performed radiomic analysis of US images of patients with
head and neck squamous cell carcinoma to assess the
recurrence status after RT. The best-selected SVM model
achieved AUC and accuracy of 75% and 81% at week 1 and
80% and 82% at week 4, respectively. Xiong et al. (131)
discovered that MRI traits could anticipate treatment response
to neoadjuvant chemotherapy (NAC) in patients with breast
cancer. DiCenzo et al. (132) and Quiaoit et al. (72) demonstrated
a relationship between radiomic signatures and NAC on US
images of patients with breast cancer. Furthermore, Jiang et al.
(85) detected complete pathological responses of NAC based on
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depth features of US imaging. Hu et al. (133) employed deep
learning-based radiomics to assess treatment response in patients
with esophageal squamous cell carcinoma directly from
pretreatment CT images and indicated that the best-
performing ResNet50 model, superior to both radiomics and
clinical models, could effectively and accurately forecast the
response to neoadjuvant chemoradiotherapy for esophageal
squamous cell carcinoma.

Additionally, many studies have concentrated on the
prognostic aspects. Haider et al. (134) evaluated the ability of
quantitative characteristics of PET/CT images in predicting the
prognosis of human papillomavirus-associated oropharyngeal
squamous cell carcinoma and demonstrated that selected
signatures were associated with the local progression of human
papillomavirus-associated oropharyngeal squamous cell
carcinoma. Zhao et al. (67) discovered that MRI profiles were
predictors of intracranial progression-free survival in patients
with anaplastic lymphoma kinase-positive NSCLC. Ferreira et al.
(135) discovered that F-18 FDG-PET traits could be additionally
helpful information for predicting disease-free survival in
cervical cancer but would be affected by different PET/CT
device parameters. For longitudinal models, Kickingereder
et al. (136) noted that the dynamic automatic quantification of
tumor volume in space and time utilizing deep learning
algorithms for MRI surpassed the response assessment in
neuro-oncology in terms of reliability and prediction of overall
survival. Crombe et al. (137) demonstrated on the MR images at
baseline and after two cycles of chemotherapy that the Delta-
radiomics approach could provide valuable information for
predicting the early responses to STS patients with receive
NAC that the assessment was improved compared with
RECIST criteria.

5.1.2.2 Multimodality Analysis
The main concerns in prognosis are treatment response and OS.
Recently, two research groups validated the predictive power of
radiomics under multiple imaging for pathological and immune
responses (138, 139). Joo et al. (138) investigated the potential of
multimodality MR characteristics, clinical information of
patients with breast cancer in predicting pathologic complete
response to NAC, and deep learning models with fused attributes
performed best. Yang et al. (139) designed a unified deep
learning architecture based on multimodality sequence
messages from CT, laboratory data, and baseline clinical
metrics to increase the proportion of NSCLC cases benefiting
from anti-PD-1/PD-L1 immunotherapy, thereby fusing
multidimensional details to distinguish between cohort anti-
PD-1/PD-L1 responders and non-responders. The claimed
model can be a promising approach to better distinguish
patients who will benefit from this compared with typical
radiomics. Several studies have validated that fusion
characteristics can also be a robust biomarker in other tumors.
For instances, Lv et al. (140) performed a combined PET and CT
radiomic analysis to anticipate the prognosis of head and neck
cancers. Amini et al. (141) established a fusion signature based
on F-18 FDG-PET and CT to assess overall survival for
improving NSCLC prognosis and found that image-level
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fusion strategies considerably outperformed approaches based
on single-modal images, clinical information, and feature-level
fusion. Yan et al. (142) proved that fusion traits generated from
multimodality MRI of glioblastoma could strongly predict
progression phenotype after treatment. Additionally, some
investigators have successfully applied it to surgical treatment
and tumor heterogeneity assessment. Mariscotti et al. (143)
employed binary LR to analyze the characteristics of four
image types to predict preoperative surgical outcomes for
breast cancer, and the combined model had a mastectomy rate
of 45%, which indicates superior performance over clinical or
individual imaging predictors. Moreover, longitudinal studies of
multiple imaging from different time points during the treatment
offer unique advantages. Peeken et al. (144) utilized changes in
MRI radiomic features before and after neoadjuvant therapy to
predict the pathological complete response in patients with high-
grade soft-tissue sarcomas. The results showed that the
established “Delta-radiomics” model achieved better
performance and reproducibility than a single time point
method. Xu et al. (145) demonstrated that a deep learning
approach based on CT imaging of lung cancer at multiple time
points before and after treatment significantly correlated model
performance with the number of incorporated follow-up images
in predicting prognostic endpoints and was comparable to the
time-consuming manual methods used for outlining tumor
volumes. Multimodality or multi-omics fusion characteristics
and delta-radiomic signatures are potential biomarkers for
prognostic assessment.

5.2 Histopathological Images
The pathological test is the gold standard for cancer diagnosis,
and diagnosis efficiency and accuracy are critical for the
subsequent treatment and prognostic assessment. Radiomic
techniques offer a new approach; however, radiomic analysis of
whole slide imaging (WSI) with gigapixels is a challenging task
that has become a research hotspot in the field of pathology,
which is known as pathomics.

5.2.1 Diagnosis
Evidence supports that the classification and grading of many
tumors, such as breast, colorectal, prostate, glioma, and lung
cancer, are possible through histopathological images (21, 71, 88,
146, 147). Specifically, Sharma and Mehra (146) evaluated the
discriminative power of handcrafted and baseline pathology and
depth features in a breast cancer multi-classification problem, with
linear SVM and VGG16 networks exhibiting excellent predictive
performance. Trivizakis et al. (21) proposed a multiscale texture
analysis framework for CRC classification. They obtained an
accuracy of 95.3% in the recognition task of eight types of CRC
tissue image patches, which is better than the 87.4% obtained in
recent studies. Kim et al. (71) classified benign vs. malignant and
low-grade vs. high-grade prostate cancer utilizing the five best
pathomic signatures. Pei et al. (147) developed a deep neural
network model incorporating molecular and cellular
characteristics to differentiate LGG and high-grade glioma. This
algorithm reportedly outperforms state-of-the-art methods in
detecting LGG II and LGG III and performs better in
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distinguishing LGG from high-grade glioma. Concerning cancer
tissue separation in WSI, Li et al. (88) compared 10 deep learning-
based multi-model and single-model methods for lung cancer
segmentation. The performance of the best methods was close to
the observer’s results. These investigations illustrated that radiomics
could facilitate pathologists in locating suspicious areas for further
analysis of cancerous tissue.

Furthermore, some applications are determined to analyze
molecular typing. Chen et al. (148) proposed an automated
method to test the most common HCC subtype of liver cancer
through the Inception V3 network with a performance approaching
that of a pathologist with 5 years of experience. They discovered the
ability to predict CTNNB1, FMN2, TPP3, and ZFX4mutations. The
molecular subtype evaluation of bladder cancer by Woerl et al. (90)
indicated that deep learning models reached a level similar to
pathologists. Recently, Hu et al. (149) designed for the first time a
CNNmodel to directly predict anti-PD-1 responses on hematoxylin
and eosin (H&E) images of patients with melanoma and lung
cancer, obtaining optimal results and potentially providing a
complementary clinical diagnosis in clinical practice. Qu et al.
(150) built an attention mechanism-based deep learning
algorithm from WSIs of patients with breast cancer to detect six
important genetic mutations associated with targeted therapy,
revealing a correlation between depth features and molecular
typing. Wang et al. (151) obtained similar outcomes employed a
ResNet network to anticipate breast cancer’s BRCAmutation status.
Farahmand et al. (152) developed an H&E-based deep learning
algorithm to determine human EGFR 2 statuses and trastuzumab
treatment response in patients with breast cancer with an AUC of
0.81 and 0.80, respectively, independent of the TCGA dataset. They
demonstrated power classification within the level of interobserver
variability. However, the clinical meaning of these differences
is unclear.

5.2.2 Treatment
Considerable interest has been generated in prognostic
assessment based on WSIs in cancer prognosis. Arya and Saha
(153) established a multimodality deep learning approach for
breast cancer survival detection by combining genomic data,
WSIs, and clinical details. The proposed sigmoid gated attention
CNN as a feature extraction algorithm and RF as a classifier
resulted in considerably better prediction performance than
existing methods. Yamashita et al. (7) reported that a deep
learning model could automatically learn pathological
characteristics associated with microsatellite instability from
H&E-stained WSI of patients with CRC, and it recognized
microsatellite instability at the level of five gastrointestinal
pathologists. Klein et al. (154) demonstrated that deep learning
algorithms could directly detect human papillomavirus
association in oropharyngeal squamous cell carcinomas from
H&E-stained sections to identify patients with favorable
prognoses. Wang et al. (155) utilized the depth characteristics
of lymph node histopathology images to anticipate GC prognosis
and concluded that the tumor area to metastatic lymph node
ratio was a clinical indicator of improved prognostic staging.
Histological and cellular morphological signatures can provide
valuable insights into survival; however, tumor risk stratification
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shows a considerable association with survival. The established
tumor risk score based on WSIs divides patients with HCC into
five groups with entirely different prognoses, providing a novel
prognostic phenotype for HCC risk stratification (156). Wulczyn
et al. (84) developed a deep learning system for 10 cancers to
stratify patients with tumors across stages. The deep learning
system demonstrated a 3.7% absolute improvement in predicting
survival of patients with cancer compared with a baseline clinical
staging model. Some studies recognized the potential of
histological profiles of the cancer cell microenvironment as a
prognostic biomarker, and the combination with genomic data is
a promising avenue for improving survival outcomes.

5.3 3D Radiotherapy Dose Distribution
(Images)
RT is the primary anticancer therapy for patients with cancer, and
its applicability rate in the cancer population is close to 50% (6).
Radiomic analysis of 3D information on dose distribution in
radiation treatment plans utilizing a radiomics framework, known
as dosiomics (6), is a new field of radiomics research that has
emerged in recent years. Contrary to conventional models based on
the dose-volume histogram and normal tissue complication
probability, radiomic analysis techniques provide a new approach
to predict treatment-related toxicity and prognosis by incorporating
spatial and statistical data in 3D dose distribution.

5.3.1 Radiotherapy Toxicity
This approach initially arose in the task of predicting
gastrointestinal and genitourinary toxicity after RT for prostate
cancer, and the findings revealed that dosiomic features
containing spatial relationships between voxel doses improved
predictive performance (157). Meanwhile, several researchers
have described the potential value in xerostomia after RT for
patients with head and neck cancer and radiation pneumonitis
(RP) after volume-modifying arc therapy (VMAT) for patients
with NSCLC (158, 159). Recently, dosiomic analysis has gained
momentum in assessing side effects and prognosis after RT.
Adachi et al. (160) developed the dose-volume indices (DVIs)
and dosiomics and hybrid (DVIs + dosiomics) models to analyze
RP after SBRT in a retrospective NSCLC cohort at three
institutions. The dosiomics (ROC–AUC, 0.837 ± 0.054) and
hybrid (ROC–AUC, 0.846 ± 0.049) approaches outperformed
the DVI (ROC–AUC, 0.660 ± 0.054) approach, indicating that
texture-based dosiomic attributes can independently
prognosticate RP. Lee et al. (161) utilized a multi-view model
based on radiomics and dosiomics to divine early weight loss in
lung cancer RT and indicated that radiomics and dosiomics
signatures (AUC, 0.710) had a significantly higher predictive
power than dose-volume histogram and/or clinical parameters
(AUC, [0.534–0.675]) and that dosiomic characteristics were
more critical than radiomic profiles. Additionally, a recent study
validated the feasibility of applying CNN for RP forecast in
patients with NSCLC undergoing VMAT (162). In this research,
the CNN model, as compared with dosimetric, normal tissue
complication probability, and dosiomics ways, respectively, and
the outcomes revealed that methods with deep dose distribution
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characteristics displayed the best predictive performance (AUC,
0.842 vs. 0.676, 0.744, and 0.782).

5.3.2 Radiotherapy Prognosis
Several recent studies have illustrated that dosiomics is also
applicable in evaluating prognosis after radiotherapies, such as
locoregional recurrences (LR) (163), biochemical recurrence
(BCR) (164), and local control (LC) (165). An LR study in
intensity-modulated RT (IMRT) for neck tumors indicated that
the combined model based on features of CT, PET, and 3D dose
distribution maps performed better than radiomics alone,
suggesting that dosiomic characteristics are associated with LR
and have prognostic value (163). A dosiomics approach based on
prostate, clinical target volume, and planning target volume is a
more powerful tool than the classical model containing clinical
variables, dosimetric parameters, and radiomic profiles to
distinguish between high- and low-risk cases in terms of the risk
for BCR in patients with prostate cancer treated with IMRT (164).
Notably, the dosiomic features are not more powerful than the
clinical parameters, but the combination of these two attributes
substantially improves performance. Buizza et al. (165) extended
this method to rare tumors to assess LC after carbon-ion RT (CIRT)
for skull-based chordomas (SBC) and noted that dosiomic
signatures were the most promising traits compared with clinical
variables, the profile of CT and MR, with comparable radiomic and
clinical model capabilities. The studies byMurakami et al. (164) and
Buizza et al. (165) yielded different conclusions when assessing the
predictive power of dosiomic profiles and clinical factors, which
may be associated with variations in radiation treatment regimens.
Additionally, for the forecasting of gamma passing rate values in
VMAT treatment regimens, Hirashima et al. (166) demonstrated
that plan and dosiomic traits are potent factors in classifying and
predicting the risk of BCR in patients with prostate cancer by
comparing plan complexity, dosimetric, and combined models of
both for eight diseases. Such findings support the role of dosiomic
signatures as a new indicator to evaluate the quality of
treatment schemes.
6 DISCUSSION

Advances in deep learning with radiomics in radiology have been
witnessed in recent years. Their potential to tap into underlying
phenotypes has been revealed, i.e., the ability to capture unique
imaging features at levels beyond the reach of the naked eye. This
technology has thus become a beneficial tool for clinical tasks such
as accurate diagnosis, treatment response, and prognostic
assessment. Next, the potential and value of this technology
from diagnostic and treatment strategies were analyzed and the
advances and challenges of dosiomics in RT were independently
discussed. Several aspects of the radiomics pipeline that can be
improved and will propose a new and robust framework for
radiomic analysis were identified to optimize existing workflows.
Finally, factors that affect model stability and data-driven process
limitations were discussed and unique insights into future
challenges and recommendations were provided.
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6.1 Analysis of the Application
of Radiomics
Structural images serve to visualize and assess the internal
structure of anatomical regions in radiology, and functional
imaging reflects the anatomical and metabolic information of
tissues and organs. However, histopathological sections can
identify heterogeneity at the cellular level. Underlying
biomarkers independent of these three images provide
valuable information on tumor diagnosis, staging and
stratification, and treatment decisions. Thus, structural and
functional radiomic features have the potential to decode
many physiopathological architecture descriptors at the
microscopic scale, creating opportunities for reverse inference
from phenotype to genotype.
6.1.1 Potential in Diagnosis
6.1.1.1 Differentiation and Localization of Cancerous
Lesions
Phenotypic information that is difficult to observe visually can
detect/diagnose cancer or automatically outline carcinoma
lesions. Deep learning-based radiomics-driven multi-
classification methods for breast cancer typically employ
supervised models based on transfer learning (146). Multiscale
texture characteristics of WSIs have demonstrated the best
performance in recent studies in terms of the CRC tissue
region differentiation (21). Khan et al. (121) used an extreme
learning machine model combining transfer learning and feature
fusion to classify voxels frommultimodality MRI of patients with
brain tumors automatically. Moreover, cross-modality, uni- or
multi-modal, and united adversarial learning-based approaches
were employed for lesion segmentation in multiple cancers (lung,
breast, and brain) (122), lung cancer (88), and liver tumors
(123), respectively.

6.1.1.2 Histopathological Evaluation and Tumor
Stratification
Radiomics is a promising technique for revolutionizing the
traditional macroscopic variable approach to tumor
characterization, replacing the classical cancer features. In the
relationship between tumor phenotypes and pathological
characteristics, employing the radiomic signatures of ceCT
and non-ceCT, WSIs, and pathology and CT can identify
pathological biomarkers of pancreatic neuroendocrine tumors
(112), diagnose and grade prostate cancer (71), and recognize
NSCLC subtypes (apparent diffusion coefficient and squamous
cell carcinoma) (124), respectively. The accuracy of the
radiomic model based on depth characteristics of WSIs in
predicting glioma grading (LGG and high-grade glioma)
(147), liver cancer subtypes (148), and molecular subtypes of
bladder cancer (90) has reached the level that can be assessed by
pathologists. Multimodality spectral imaging (optical
coherence tomography, malignant pleural mesothelioma, and
LSRM) for morphology-molecular metabolism analytics has
distinguished the pituitary from tumor and classified pituitary
adenoma subtypes (125).
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6.1.1.3 Tumor Heterogeneity Characterization
Combining dynamic contrast-enhanced-T1 and T2*-weighted
imaging MRI features to discriminate vascular invasion in
patients with cervical cancer can reveal tumor heterogeneity
(113). A multicenter-based CT radiomic analysis focused on
characterizing GC (62), i.e., by predicting lymph node metastasis,
LVI, and T-stage to quantify tumor progression. Additionally,
the integrated signatures of multimodality (T2*-weighted
imagings, diffusion-weighted imagings, and ceCT) can predict
perineural invasion in rectal cancer better (120). Radiomics
yields diversity metrics to quantify tumor habitat and provide
traction to establish relationships between underlying molecular
alterations and clinical outcomes.

6.1.1.4 Tumor Genotype
Several studies demonstrated the correlation between tumor
phenotype and genomic features. For NSCLC, signatures of
CT, fusion characteristics of ceCT, and PET forecasted EGFR
mutations and anaplastic lymphoma kinase rearrangements,
EGFR and Kirsten rat sarcoma virus positivity (48, 49, 66),
respectively. Preoperative radiomic analysis of MR and CT
images was successfully applied to differentiate isocitrate
dehydrogenase and 1p19q mutations in glioma and BAP1
mutation in malignant pleural mesothelioma (114, 118, 119).
In breast cancer, deep learning-based radiomics was successfully
implemented to identify BRCA, and six different types of positive
statuses from WSIs correlated with targeted therapy (150, 151).
Many investigations suggested an association between radiomics
and genomics; however, few preclinical reports have confirmed a
noteworthy relationship.

6.1.1.5 Clinical Variables and Phenotypic Characteristics
The traits derived from US, X-ray, and coronary CT
angiography were associated with clinical variables related
to disease diagnosis and progression. These parameters
include breast masses, breast density, and risk factors for
coronary artery disease (103, 104, 111). This finding
provides an avenue for early screening and progression
assessment of disease.

6.1.1.6 Non-Tumor Diseases
Recent findings that indicate the benefit of radiomic features in
neonatal respiratory disease (115), Alzheimer’s and Parkinson’s
disease (116), and attention-deficit/hyperactivity disorder (73)
suggest that radiomics is also effective in non-oncology cases.

6.1.2 Values in Treatment Strategies
6.1.2.1 Local Recurrence and Response
Phenotypic attributes of medical images have value in dividing
local recurrence and treatment response preoperatively.
Response to NAC is evaluable based on MR and US imaging
of patients with breast cancer (85, 131, 138) and CT imaging of
cases with esophageal squamous cell carcinoma (133). Several
investigators have combined the radiomic properties of PET/CT
with independent clinical and therapeutic parameters to assess
local recurrence in patients with NSCLC after SBRT
treatment (129).
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6.1.2.2 Distant Metastasis
The CT and PET/CT image-based radiomics model can
determine the risk of distant metastasis in NSCLC cases
treated with SBRT (4, 167). CT radiomic signatures at baseline
and 2 months after FOLFIRI and bevacizumab chemotherapy
predicted early adverse outcomes in those with metastatic CRC
(127). More aggressive tumors may exhibit diverse
morphological patterns in the peri-cancerous region; therefore,
radiomic analysis of the peri-tumor space contributes to
providing potential insights into distant metastasis.

6.1.2.3 Survival Assessment
Fusion characteristics evaluated from multimodality data
(genomic data, WSIs, and clinical factors), 18F-FDG-PET and
CT, and RFS and PET/CT served to estimate the survival rates of
patients with breast (153), NSCLC (141), and head and neck
cancers (140), respectively. Staging and stratification of 10 cancer
cases using a depth feature-based approach revealed considerably
higher survival rates (84). Generally, multimodality and/or
multimodal radiomics models have superior survival prediction
capabi l i t i e s than s ing le-moda l i ty or s ing le-moda l
radiomics models.

6.1.2.4 Molecular Targeted Therapy
Overexpression of oncogenes in many tumors benefits from
molecular targeted therapies such as EGFR tyrosine kinase
inhibitor. Evidence suggests that changes in CT radiomic
features extracted before and after treatment could distinguish
between NSCLC cases that benefit from gefitinib treatment (4).

6.1.2.5 Immunotherapy
Cancer immunotherapy, which is being strongly developed, is a
promising treatment modality, but only if patients who respond
to it are selected. Radiomics has successfully adapted to diverse
immune phenotypes. Radiomic traits extracted from CT imaging
of patients with solid tumors (117), H&E images of melanoma
and lung cancer (149), and WSIs of patients with breast cancer
(152) can determine the response to anti-PD-1/PD-L1 and anti-
PD-1 and trastuzumab, respectively.

6.1.2.6 Side Effects and Prognosis
Radiomics methods can assist in early post-treatment side effect
assessment such as radiation-induced lung injury. Reports of
lung injuries in patients with lung cancer derived from changes
in CT radiomic profiles before surgery and after SBRT treatment
showed considerable correlation with expert scores and indicated
associations with dose and fractionation. Additionally,
characteristics extracted from preoperative H&E images could
act as independent factors to assess treatment response and
prognosis in patients with colorectal, oropharyngeal squamous
cell, gastric, and breast cancers (7, 143, 154, 155).

6.1.2.7 Recurrence or Progression
Studies that recognize tumor recurrence in follow-up images
have gradually become apparent. US-based radiomic features can
identify recurrence risk in patients with head-neck squamous cell
carcinoma treated with RT (130). Glioblastoma multiforme has a
poor prognosis and inevitably recurs or progresses. The fusion
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characteristics of pretreatment multimodality MRI are an
important prognostic factor for glioblastoma multiforme
progression (142). The delta-radiomic signatures can precisely
reflect radiation-induced biological changes.

6.1.2.8 Other Treatments
While performing transarterial chemoembolization in patients
with intermediate to advanced HCC (128), ceCT images have
variable radiomic signatures and can distinguish between cases
with objective responses.

6.2 Developments and Challenges
in Dosiomics
Dosiomics is the latest development in radiomics and offers new
opportunities for establishing more informative models of RT
outcomes. This approach has demonstrated prognostic value in
patients with different types of tumors and various RT
techniques, including weight loss after RT in lung cancer (161),
RP after VMAT or SBRT in NSCLC (159, 160, 162), xerostomia
after RT, and LR after IMRT in head and neck cancer (158, 163),
gastrointestinal, and genitourinary toxicity after RT and BCR
after IMRT in prostate cancer (157, 164), LC after CIRT in SBC
(165), and prediction of gamma passing rate (166); however,
relevant studies remain relatively sparse. Therefore, these results
should be considered cautiously, with necessary additional
investigations to elucidate their application and potential value
in the field of radiation therapy. This technique is undoubtedly
suitable for predicting any RT outcome, whether positive
(survival and control) or negative (normal tissue injury
and complications).

Several aspects in further research require attention. (a) Given
their retrospective nature and relatively small sample sizes,
reported results must be analyzed and validated in the context
of data from multiple institutions. Multicenter studies may
include biases related to treatment schemes such as each
institution’s protocol policies and dose limits. (b) Dosiomics is
similarly subject to reproducibility issues because dose
calculation algorithms, grid sizes, planners, and treatment
regimens can lead to variations in DVI values and dosiomic
characteristics. Recently, Placidi et al. (168) evaluated the
correlation between dosiomic properties and clinical outcomes
by employing various dose calculation algorithms, 30 distinct
dose distributions, and 2 grid resolutions at 8 centers to
determine the sensitivity characteristics when there is a change
in the dose distribution. This study favorably supports a
multicenter investigation of this method, although only
dosiomic signatures were considered, without including all
possible RT techniques and excluding different feature
extraction algorithms. (c) This approach currently focuses on a
traditional radiomics framework, which may not fully reflect the
unique attributes of a given RT. However, combining
handcrafted traits with depth features from deep learning is
expected to further improve the performance of predictive
models. (d) Till date, no investigations have systematically
explored how this technology can address the specific
challenges of classical dose-volume histogram and normal
tissue complication probability modeling, namely category
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imbalance due to low morbidity, varying follow-up times,
diverse treatment regimens, and heterogeneity and noisy data.
Similar work has been put forth in radiomics, and such analysis is
missing in dosiomics studies.

6.3 Robust Radiomic Analysis Framework
Section Radiomics and Section Deep Learning-Based Radiomics
learning radiomics highlighted the radiomics pipeline in a
randomized dichotomous state (Figure 2). The traditional
approach is to quantitatively extract predefined and handcrafted
radiomic features from manually/semi-automatically segmented
ROIs for model construction. Owing to the absence of uniform
standards, reproducibility and verifiability limitations are often
experienced while using these developed models. Therefore, a
robust framework for radiomic analysis was proposed (Figures 4A,
B). First, using test–retest analysis, ComBat harmonization, and
phantom study is necessary to reduce the influence of scan
acquisition equipment and reconstruction parameters for image
data. Second, at least two experts should have reviewed the selected
ROIs. Other process counterparts are also involved such as feature
extraction, statistical modeling, and the study itself. Thus, ensuring
maximum repetition of each step in the workflow is possible, which
facilitates the standardization of the entire process.

Moreover, ROI outlining is an important bottleneck because
it relies on multiple medical experts with extensive experience
who are already overwhelmed by clinical work (14). This
problem is expected to be resolved as deep learning algorithms
become more prevalent in delineating tumors, non-cancerous
lesions, or other structures. Automatically segmented ROIs are
fed into the same pipeline, which not only reduces labor costs but
also minimizes the effect of IOV. Another approach is to employ
the entire image or a coarse target region as input to detect
imaging biomarkers. This method typically utilizes deep neural
networks, which automatically learn and extract characteristics
and obtain more signatures than any manually defined feature
algorithm. However, the impact of changes in the way ROIs
come from is still limited compared with a rigorous workflow.

The second is deep learning-based radiomics (Figure 2),
which has shown an apparent growing trend in the
development of radiomic analysis. It can learn notable depth
features from images without prior manual definition. The
advantage of this working strategy is the fully automated
classification/prediction process, where the extracted depth
characteristics are associated with the expected results.
However, deep learning algorithms are not without limitations.
The entire process of feature learning and task execution takes
place in deep network architecture; thus, many training samples
are required to build a satisfactorily robust model. Therefore,
purposes, such as disease diagnosis and prognosis prediction,
usually require training on thousands of single-class cases, with
the available standardized medical image data being relatively
less. For instance, in this study, except for large classification
tasks (identifying benign and malignant lung cancer), the vast
majority of studies have single sample sizes between a few tens
and a hundred. At present, many investigations have tried
various data augmentation and transfer learning techniques to
overcome this weakness. Another issue is the black box problem
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associated with deep learning. Even the designers/algorithm
architects of the researches are unsure about how to select the
most relevant depth traits for prediction. Regardless of the
accuracy, clinicians are often skeptical of such unexplained
outcomes. Therefore, an interpretability framework applicable
to depth signatures was proposed to improve the clinical
interpretability of studies in visualizing models (Figures 4B,
C), establishing causal data logic, and generating semantic
reports. In the following subsections, we will discuss the factors
that affect the robustness of the model.

6.3.1 Medical Big Data and Multitype Data
The future of radiomics is still thirsty for data. First, a reliable
conclusion requires a sufficient sample size for training and
validation, especially for deep learning methods. Moreover,
there is a higher demand for the standardization of data.
However, owing to ownership and protection factors, the data
are scattered in different medical institutions or research centers
worldwide, and researchers do not have easy access to them.
Federated learning (169) enables data conversion from multiple
centers into mineable shared data while preserving privacy
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constraints. Simultaneously, the increased type and number of
samples and the raised layers and resolution of image scanners
make the collection process extremely time-consuming.
Therefore, despite its higher storage and labor costs, building a
shared database from across the globe is essential. The Cancer
Imaging Archive is an important example, and many
investigators utilize this dataset to train and validate newly
developed models (60, 156, 170). The Reference Image
Database to Evaluate Therapy Response is another publicly
available data integration project consisting of 31 sets of
repeated CT scans at 15-min intervals that can be feature
screened by test–retest analysis (171). With such multicenter
clinical big data, future researchers working closely with
clinicians can conceivably improve the clinical applicability of
study results. Noting that early radiomic analysis mainly used
semantic and medical expert-defined features with clinical
significance is important. Now, the focus of this field has
moved to predictive performance improvement with a trend
toward high-throughput agnostic analysis. The disconnect with
biological interpretation will inherently limit the translation of
research results to clinical applications. Overall, reintroducing
A

B

C

FIGURE 4 | Robust radiomic analysis framework. (A) Reproducibility in radiomics analysis can be obtained in terms of imaging data reproducibility, segmentation
reproducibility, feature extraction reproducibility, statistical analysis reproducibility, and research reproducibility. (B) The robustness of radiomics and deep learning-
based radiomics models could be improved in medical big data, multiple types of data, and medical expert knowledge. (C) Interpretability in deep learning-based
radiomics can be enhanced concerning the visualization of models, semanticization of results, and causal logic of data. IBSI, Image Biomarker Standardization
Initiative.
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biological significance into radiomics through emerging
approaches, such as genomics, pathomics, and proteomics
is necessary.

Conversely, several studies have proved the potential value of
complementary information from various modalities or different
omics data (5, 172, 173). Moreover, medical images are not
isolated assessment metrics, and many factors can influence the
disease measurements. For instance, for patients with cancer,
molecular tumor biomarkers (blood reporting characteristics),
lifestyle habits, socioeconomic status, and even social networks
could impact the final treatment outcome. There is a growing
awareness that data sources have diversified to include wearable
devices, smartphones, social networks, unstructured electronic
medical records, and input from other intelligent methods.
However, deep learning algorithms are well suited for fusing
diverse data streams. Thus, this approach promises to enhance
the potential of radiomics techniques in all aspects of radiology.

6.3.2 Expert Knowledge in Medical
Advances in methodology can continuously improve model
performance for medical image analysis; however, a surprising
conclusion that sophisticated algorithms and precise structures
are not decisive factors for building a great solution was reached.
Many researchers utilized the same analysis method/network
structure when assessing tumor heterogeneity but showed
different results. An easily overlooked critical aspect is that
expert knowledge in medical of a specific task is more
beneficial than the algorithm itself. Studies that achieve
outstanding outcomes in utilizing radiomics techniques are
often unique in ways other than the approach such as novel
image preprocessing and data enhancement strategies or unique
network structures that incorporate clinical knowledge. The best-
performing model in the breast US-based mass classification task
showed considerable improvement after adding preprocessing
and data enhancement, rather than changing the network
structure (AUC from 88.72% to 90.41%) (103). Furthermore,
establishing a strong link between medical images and expert
knowledge to form a diagnosis with a causal relationship can
significantly increase the study’s credibility. Although graph
neural networks have become an effective tool for building
well-established knowledge graphs, it is disappointing that no
clear way exists to achieve promising performance.

The following discusses the challenges and recommendations
for implementing these two radiomics frameworks.

6.4 Limitations and Suggestions for Data-
Driven Processes
6.4.1 Methods of Reproducibility Studies
Most studies aimed to develop a predictive or prognostic model
with high accuracy and efficiency. Ideally, large enough datasets
can train and test the new methods and tools developed while
using a completely new open dataset for evaluation, which may
be the standard for future researches. However, in multicenter
datasets, some phenotype variations may not reflect the actual
biomarkers of the tissue owing to the image acquisition and
reconstruction algorithms, resulting in limited model
performance or biased results (174). Therefore, particular
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attention or exclusion is essential for those features that are
more influential, such as kVp, mAs, signal-to-noise ratio
(SNR), and thick layers for CT; sequence settings (type, many
other sequence factors), temporal parameters (echo, repetition,
and relaxation) for MR; and spatial resolution for PET.
Additionally, a comprehensive analysis of the reproducibility
and stability of quantitative characteristics of X-ray, US, and
histopathological images is unavailable. The recent efforts of
IBSI in pursuing standardization of high-throughput signatures
provide a very informative direction. Another critical way is the
Radiology Quality Score (175), which can help assess the
robustness of radiomics methods. Pointing out that the
Radiology Quality Score primarily guides the workflow of
investigations and does not reveal the overall quality of
approaches is essential.

For the reproducibility risk of multicenter, many researchers
have explored different approaches such as improving SNR,
resampling, filtering, and super-resolution reconstruction. Park
et al. (23) developed a way for SNR correction based on images
with nine different CT scan parameters and found that
optimizing SNR is a factor in improving the assessment of
tumor heterogeneity. Ibrahim et al. (176) noted a considerable
improvement in 42 features after resampling data from 8 different
CT machine scanners from 3 different manufacturers. Mali et al.
(177) demonstrated that the correction method of resampling and
Butterworth low-pass filtering effectively reduced the variation in
radiomic characteristics owing to voxel size differences and other
CT acquisition variables. Information might be lost during
preprocessing and standardizing the CT scan protocol before
image reconstruction is best. Tan et al. (178) proposed a
preprocessing approach for super-resolution reconstruction of
CT imaging that minimizes the effect of layer thickness on the
extracted traits to improve the image quality to enhance the
vertical resolution, i.e., to strengthen the spatial information in
the coronal and sagittal planes. Orlhac et al. (179) could modify
the variation in the values of the signatures of CT imaging in a
better manner with different thickness layers (1.25 mm, 2.5 mm,
and 5 mm) with the ComBat compensation method.

6.4.2 Reproducibility of Different Studies
Reproducibility is a common problem in parameter-sensitive
imaging, such that variations in grayscale values in CT and PET
images can lead to differences in characteristics and affect
prediction results. Some works have addressed the impact of
various acquisition parameters; however, absence of
reproducibility remains the most critical issue in radiomic
ana lys i s , l imi t ing the feas ib i l i ty of the i r c l in ica l
implementation. Different surveys have developed specific
models based on a particular software, making outcome
comparison or replication difficult. If specific standardization
and validation pathways are in place, the utility of models in
clinical trials can be determined. The following aspects can be
considered to incorporate radiomics into clinical tests: first, by
disclosing the details of each step in the study process to facilitate
reproducibility and comparison with other research and meta-
analyses, and second, the model must be trained and tested on a
sufficiently large data set and its efficiency validated relative to
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existing models (from other studies) with statistical methods. All
methodological details, clinical information reports, final
models, and study-related codes should be publicly accessible
for optimal reproducibility gains and further independent
testing. Finally, pre-validated characterizations may serve as
primary or secondary endpoints for inclusion in clinical trials.
In an “exploratory endpoint”, an additional test can subsist to
identify the most promising signature. Such data-driven
biomarkers are indistinguishable from quantitative imaging
biomarkers and can further faci l i tate personal ized
tumor treatments.

6.4.3 Different Treatment Options for Various
Institutions
Multicenter validation is intrinsic to achieving standardization,
and multi-institutional studies are subject to imaging modalities,
acquisition strategies, and quality assurance devices, which will
result in biased results. A recent investigation indicated that
dosiomics models outperformed radiomics in forecasting LC in
patients with SBC after CIRT. This observation can be
interpreted by the high degree of standardization of dosing
regimens in patients with SBC, supporting the idea that
optimizing treatment schemes can facilitate improved
predictive power. Regarding the effect of bin width, Rossi et al.
(157) developed a prediction model with a bin width of 1 Gy to
assess gastrointestinal and genitourinary toxicity after RT in
prostate cancer cases. However, Lee et al. (161) employed a
smaller bin width (value of 25 cGy) to detect weight loss after RT
for patients with lung cancer to reveal subtle variations between
the 3D dose distribution maps; their findings indicated that
distinct bin widths result in changes in dose signatures and
such discrepancies influence model outputs. This discovery is
consistent with the effect of diverse acquisition parameters in
radiology images. Second, quality assurance equipment
standards from across vendors can affect the research
outcomes. Additionally, the association between radiomic and
dosiomic features and failed quality assurance plans is difficult to
determine, hindering the exclusion of adverse factors. Moreover,
3D dose distribution can vary depending on the material such as
CTs and/or phantoms. Therefore, the impact of different
treatment plans on the predictive performance of therapy and
prognosis needs future investigation.

6.4.4 Interpretability of the Study
The black box problem of models is another limitation of clinical
application. Interpretable results are critical for clinicians.
Without understanding how and why the algorithm is
classifying or evaluating, the conclusions drawn are often less
than acceptable. Therefore, interpretable radiomic features are an
urgent requirement. For manually defined characteristics,
correlating them with the biological properties of the tissue
may be a promising option. They are not uniformly defined;
however, their association with pathophysiology may accelerate
with the development of multimodality and multi-omics studies.
Therefore, establishing significant relationships between the
known biological properties of different images and
handcrafted signatures is promising. For deep network
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architecture, understanding and interpreting the depth traits
learned by the algorithm is more complex. Many studies
demonstrated that deep neural networks could easily be
spoofed to misclassify specific tasks (89, 180, 181). Such
erroneous predictions or evaluation outcomes may eventually
cause fatal accidents in the medical field, making their
interpretability even more urgent. Fortunately, several
researchers are working on techniques to attenuate deep
learning black-box perception (Supplementary Section 1.5)
and have achieved better outcomes. However , the
interpretability of depth attributes is still low and difficult to
conceptualize. Therefore, translating radiomics methods into
clinical practice is a challenge even now. However, these
methods may evolve into new algorithms or emerging
techniques developed to understand and analyze medical data
in the future.

6.4.5 Prospective Studies and Clinical Trials
Although the results of retrospective analyses can help with
screening, diagnosis, treatment, and prognostic assessment,
prediction does not change the outcome later. However,
prospective studies can overcome this drawback and, after
validating the algorithm with clinical data, can be targeted to
guide the next treatment step. Data reporting should comply
with the recommendations of the Transparent Reporting of a
multivariable prediction model for Individual Prognosis or
Diagnosis in the study design to ensure result validity in
clinical practice (182). Zwanenburg and Lock (183) discussed
that different TRIPOD analysis types have inherently varying
reliabilities, and it is needed to avoid the over-fitting phenomena
and build models with external validation. Peeken et al. (144)
performed a post-hoc secondary analysis to determine the final
effect in a mixed cohort of two independent institutions based on
Transparent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis Type III validation
requirements. Additionally, clinical trials are placing higher
demands on study compliance owing to regulatory restrictions
and data protection rules. Recently, national and international
network initiatives (184), ethical regulation of algorithms (185),
and data privacy protections (169) were further discussed to
support precision medicine and AI-based paramedic programs.
Supplementary Section 1.6 discussed the design of research
compliance from a legal and regulatory perspective. These
initiatives have facilitated the creation of collaborative
structured annotation databases to extensively assess model
generalization capabilities.
7 CONCLUSIONS

The above-discussed analysis framework and challenges raise
questions about the future development of radiomics. The first is
how to look at the factors that affect model robustness. Training
on a large high-quality dataset seems to be a standard measure to
improve the predictive power of the algorithm. However, as the
number of feature sets continues to increase, the field is gradually
moving toward quantitative, high-throughput agnostic analysis,
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further leading to a disconnect between findings and biological
significance, inherently limiting the ability to translate research
results into clinical practice. Apart from the complement of
experimental data, one aspect that tends to be overlooked is that
task-specific expert knowledge may be more beneficial than the
algorithms themselves, which is not unlikely to be a viable
approach. Additionally, integrating multiple types of medical
data, such as clinical data, test reports, genetic data, radiology
images, pathology images, and exploring potential connections,
between quantitative imaging biomarkers and biological and
clinical outcomes can not only improve the performance of
algorithms but also more importantly, reintroduce biological
significance into the radiomic analysis. Second, considering the
reproducibility and interpretability of studies and the impact of
different treatment protocols at various institutions, the
following studies should focus on independent validation of
the robustness of existing and/or new models. The specific
implementation strategies are discussed accordingly in the
presented analysis framework. Third, whether radiomics can
achieve clinical application is crucial for future investigation.
Therefore, multicenter prospective studies and clinical trials are
necessary. Finally, an open platform for radiomics analysis
should be determined in the future. A rounded and systematic
dissection of clinical data based on compliance with legal and
ethical requirements and respecting patient privacy will better
facilitate the forward development of the field.

In summary, radiomics and deep learning remain two rapidly
evolving novel technologies with considerable potential value in
disease diagnosis, treatment, and prognosis. A representative
example is the emerging dosiomics in RT. As they continue to be
studied and validated more widely, their applications in
Frontiers in Oncology | www.frontiersin.org 19
radiology will become part of clinical decision-making and give
rise to more comprehensive and personalized treatments. To
advance the translation of research results to clinical
implementation, additional prospective studies are necessary to
ensure outcome validity and generalizability and demonstrate
the value of this technology for workflow and treatment
decisions through expert reports in clinical trials.
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