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1. Introduction

Let H be a complex Hilbert space equipped with an inner product ⟨·, ·⟩ and the
corresponding norm ∥ · ∥. The C∗-algebra of bounded linear operators on H is denoted by
B(H). For any operator A ∈ B(H), the adjoint of A is denoted by A∗, and |A| = (A∗A)

1
2

represents the positive square root of A∗A. The numerical range of A, denoted by W(A), is
the set of values {⟨Ax, x⟩ : x ∈ H, ∥x∥ = 1}.

The operator norm and numerical radius of A are denoted by ∥A∥ and w(A), respec-
tively. The operator norm is defined as

∥A∥ = sup{|⟨Ax, y⟩| : x, y ∈ H, ∥x∥ = ∥y∥ = 1},

while the numerical radius is given by

w(A) = sup{|⟨Ax, x⟩| : x ∈ H, ∥x∥ = 1}.

It is known that the numerical radius w(·) defines a norm on B(H) that is equivalent to the
operator norm ∥ · ∥. In particular, the following double inequality is valid:

1
2
∥A∥ ≤ w(A) ≤ ∥A∥ (1)

for any operator A ∈ B(H). These inequalities are sharp. The first inequality becomes an
equality if A2 = 0, while the second inequality becomes an equality if and only if A is a
normal operator. An improvement to these inequalities was established by Kittaneh [1],
who proved that

1
4
∥|A|2 + |A∗|2∥ ≤ w2(A) ≤ 1

2
∥|A|2 + |A∗|2∥. (2)
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For further advancements related to inequalities (1) and (2), interested readers can refer to
sources [2–8] and the references therein.

Let (C, D) ∈ B(H)2 := B(H)×B(H). The Euclidean operator radius is defined by

we(C, D) := sup
x∈H
∥x∥=1

(∣∣〈Cx, x
〉∣∣2 + ∣∣〈Dx, x

〉∣∣2)1/2
.

As pointed out in [9], we : B(H)2 → [0, ∞) is a norm and the following inequality holds:
√

2
4

∥∥∥|C|2 + |D|2
∥∥∥1/2

≤ we(C, D) ≤
∥∥∥|C|2 + |D|2

∥∥∥1/2
(3)

for (C, D) ∈ B(H)2, where the constants
√

2
4 and 1 are best possible in (3).

In [10], the second author obtained the following lower bound:
√

2
2

[
w
(

B2 + C2
)] 1

2 ≤ we(B, C).

The constant
√

2
2 is best possible in the sense that it cannot be replaced by a larger constant.

In the same paper, the following results were obtained as well:
√

2
2

max{w(B + C), w(B − C)} ≤ we(B, C) ≤
√

2
2

[
w2(B + C) + w2(B − C)

] 1
2 ,

with constant
√

2
2 sharp in both inequalities,

w2
e (B, C) ≤ max

{
∥B∥2, ∥C∥2

}
+ w(C∗B),

with the inequality being sharp, and also

w2
e (B, C) ≤ 1

2

[∥∥∥|B|2 + |C|2
∥∥∥+ ∥∥∥|B|2 − |C|2

∥∥∥]+ w(C∗B),

which is sharp as well.
By taking (B, C) = (A, A∗) or (B, C) = (R(A), I(A)) for A ∈ B(H), where we recall

that
R(A) :=

A + A∗

2
and I(A) :=

A − A∗

2i
,

the second author obtained in [10] several norm and numerical radius inequalities of
interest for one operator A. Note that R(A) and I(A) refer to the real and imaginary parts
of A, respectively.

For some recent results involving the estimation of the Euclidean numerical radius
in terms of similar upper and lower bounds, see [11–13]. These estimations appear to
be simpler to calculate when the involved operators are self-adjoint, since in that case,
for instance, |B|2 = B2, |C|2 = C2, and C∗B = CB. Moreover, if B and C are projections
orthogonal to each other, then B2 = B, C2 = C, and CB = 0, which make the bounds even
simpler to calculate.

The Davis–Wielandt radius of an operator T ∈ B(H), denoted by dw(T) is defined as
follows [14,15]:

dw(T) = sup
x∈H
∥x∥=1

(
|⟨Tx, x⟩|2 + ∥Tx∥4

)1/2
.

It is evident that dw(T) ≥ 0, and dw(T) = 0 if and only if T = 0. For any λ ∈ C,
the following inequalities hold: dw(λT) > |λ|dw(T) if |λ| > 1, dw(λT) < |λ|dw(T)
if |λ| < 1, and dw(λT) = |λ|dw(T) when |λ| = 1. Note that the triangle inequality
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dw(T + S) ≤ dw(T) + dw(S) does not always hold for arbitrary operators T, S ∈ B(H).
However, this inequality holds when R(T∗S) = 0, as shown in ([16], Corollary 2.2). It is
also straightforward to verify that

max
{

w(T), ∥T∥2
}
≤ dw(T) ≤

(
w2(T) + ∥T∥4

)1/2
,

and these inequalities are sharp, as noted in ([16], Corollary 2.2).
Additionally, observe that for C = T and D = |T|2, we have

we(T, |T|2) := sup
∥x∥=1

(
|⟨Tx, x⟩|2 + |⟨|T|2x, x⟩|2

)1/2

= sup
∥x∥=1

(
|⟨Tx, x⟩|2 + ∥Tx∥4

)1/2
= dw(T).

If we set C = T and D = |T|2 in (3), then we obtain

1
2

∥∥∥|T|2 + |T|4
∥∥∥ ≤ dw2(T) ≤

∥∥∥|T|2 + |T|4
∥∥∥, (4)

which provides the upper bound from (5) and a corresponding lower bound.
Zamani and Shebrawi ([17], Theorem 2.1) proved that

dw(T) ≤
[
w2(T − |T|2) + 2∥T∥2w(T)

]1/2
.

Furthermore, in ([17], Theorems 2.13, 2.14, and 2.17), they also established the follow-
ing inequalities:

dw2(T) ≤ ∥T∥2 max
{

1, ∥T∥2
}
+
√

2w
(
|T|2T

)
,

dw2(T) ≤ 1
2

(∥∥∥|T|4 + |T|2
∥∥∥+ ∥∥∥|T|4 − |T|2

∥∥∥+√
2w
(
|T|2T

))
,

and
dw2(T) ≤ ∥T∥max

{
w(T), ∥T∥2

}[
1 + ∥T∥2 + 2w(T)

]1/2

for any operator T ∈ B(H).
Recently, Bhunia et al. in ([16], Theorem 2.4) obtained the following upper bound:

dw(T) ≤
∥∥∥|T|4 + |T|2

∥∥∥1/2
(5)

for T ∈ B(H).
Additionally, in [18], the authors derived inequalities for the sum of operators. Specifi-

cally, we have

dw(T + S) ≤
[
2
(

dw2(T) + dw2(S)
)
+ 6
∥∥∥|T|4 + |S|4

∥∥∥]1/2

≤ 2
√

2
[
dw2(T) + dw2(S)

]1/2

for T, S ∈ B(H).
Motivated by these results, we present new lower and upper bounds for the Euclidean

numerical radius of operator pairs in this paper, demonstrating that some of these bounds
improve upon those recently established by other authors.
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2. Lower Bounds for the Euclidean Numerical Radius of Operator Pairs

In this section, we derive and establish several lower bounds for the Euclidean numer-
ical radius of pairs of operators. Specifically, we present and prove the following lower
bounds for the Euclidean numerical radius.

Theorem 1. For any B, C ∈ B(H), we have

w2
e (B, C) ≥ 1

2
max

{
w
(

B2 + C2
)

, w(BC + CB)
}

(6)

+
1
2

max{w(B), w(C)}|w(B + C)− w(B − C)|

and

w2
e (B, C) ≥ 1

2
max

{
w
(

B2 + C2
)

, w
(

B2 − C2
)}

(7)

+
1
2

max{w(B + C), w(B − C)}|w(B)− w(C)|.

Proof. As in the proof of Theorem 1 of [10] (see also [12], Theorem 2.2), we have

w2
e (B, C) = sup

∥x∥=1

[∣∣〈Bx, x
〉∣∣2 + ∣∣〈Cx, x

〉∣∣2]
≥ 1

2
sup
∥x∥=1

(∣∣〈Bx, x
〉∣∣+ ∣∣〈Cx, x

〉∣∣)2

≥ 1
2

sup
∥x∥=1

∣∣〈Bx, x
〉
±
〈
Cx, x

〉∣∣2
=

1
2

sup
∥x∥=1

∣∣〈(B ± C)x, x
〉∣∣2 =

1
2

w2(B ± C).

This implies that

w2
e (B, C) ≥ 1

2
max

{
w2(B + C), w2(B − C)

}
(8)

≥ 1
2

max
{

w
(
(B + C)2

)
, w
(
(B − C)2

)}
=

1
4

[
w
(
(B + C)2

)
+ w

(
(B − C)2

)]
+

1
4

∣∣∣w((B + C)2
)
− w

(
(B − C)2

)∣∣∣
=

1
4

[
w
(
(B + C)2

)
+ w

(
(B − C)2

)]
+

1
4
[w(B + C) + w(B − C)]|w(B + C)− w(B − C)|

By the triangle inequality, we have

w
(
(B + C)2

)
+ w

(
(B − C)2

)
≥ w

[
(B + C)2 ± (B − C)2

]
,

which gives

w
(
(B + C)2

)
+ w

(
(B − C)2

)
≥ 2 max

{
w
(

B2 + C2
)

, w(BC + CB)
}

.

Also,
w(B + C) + w(B − C) ≥ w[(B + C)± (B − C)],
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which gives
w(B + C) + w(B − C) ≥ 2 max{w(B), w(C)}.

By (8), we obtain (6).
If we replace B by B + C and C by B − C in (6), then we obtain

w2
e (B + C, B − C) (9)

≥ 1
2

max
{

w
(
(B + C)2 + (B − C)2

)
, w((B + C)(B − C) + (B − C)(B + C))

}
+ max{w(B + C), w(B − C)}|w(B)− w(C)|.

Since
(B + C)2 + (B − C)2 = 2

(
B2 + C2

)
and

(B + C)(B − C) + (B − C)(B + C) = 2
(

B2 − C2
)

,

we can apply (9) to obtain

w2
e (B + C, B − C) ≥ max

{
w
(

B2 + C2
)

, w
(

B2 − C2
)}

+ max{w(B + C), w(B − C)}|w(B)− w(C)|,

which, by noting that
w2

e (B + C, B − C) = 2w2
e (B, C),

yields the desired result (7).

Remark 1. Inequality (6) is better than the following result obtained recently in ([12], Theorem 2.2).
Indeed, for any B, C ∈ B(H), we have

w2
e (B, C) ≥ 1

2

[
w
(

B2 + C2
)
+ max{w(B), w(C)}|w(B + C)− w(B − C)|

]
(10)

≥ 1
2

w
(

B2 + C2
)

.

Notice that the second lower bound in (10) was obtained in 2006 by the second author (see [10]).

Several consequences of Theorem 1 can be drawn. We begin with the following corollary.

Corollary 1. For any B, C ∈ B(H) and α, β ∈ C, we have

max
{
|α|2, |β|2

}
w2

e (B, C) (11)

≥ 1
2

max
{

w
(

α2B2 + β2C2
)

, |αβ|w(BC + CB)
}

+
1
2

max{|α|w(B), |β|w(C)}|w(αB + βC)− w(αB − βC)|

and

max
{
|α|2, |β|2

}
w2

e (B, C) (12)

≥ 1
2

max
{

w
(

α2B2 + β2C2
)

, w
(

α2B2 − β2C2
)}

+
1
2

max{w(αB + βC), w(αB − βC)}||α|w(B)− |β|w(C)|.
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Proof. By replacing B with αB and C with βC in Theorem 1, we obtain

w2
e (αB, βC)

≥ 1
2

max
{

w
(

α2B2 + β2C2
)

, w(αβBC + αβCB)
}

+
1
2

max{w(αB), w(βC)}|w(αB + βC)− w(αB − βC)|

and

w2
e (B, C)

≥ 1
2

max
{

w
(

α2B2 + β2C2
)

, w
(

α2B2 − β2C2
)}

+
1
2

max{w(αB + βC), w(αB − βC)}|w(αB)− w(βC)|.

Since
max

{
|α|2, |β|2

}
w2

e (B, C) ≥ w2
e (αB, βC),

w(αβBC + αβCB) = |αβ|w(BC + CB)

and
w(αB) = |α|w(B), w(βC) = |β|w(C);

hence, the inequalities (11) and (12) are obtained.

Remark 2. If α, β ∈ C with |α| = |β| = 1, then from Corollary 1, we derive the simpler inequalities

w2
e (B, C) ≥ 1

2
max

{
w
(

α2B2 + β2C2
)

, w(BC + CB)
}

(13)

+
1
2

max{w(B), w(C)}|w(αB + βC)− w(αB − βC)|

and

w2
e (B, C) ≥ 1

2
max

{
w
(

α2B2 + β2C2
)

, w
(

α2B2 − β2C2
)}

(14)

+
1
2

max{w(αB + βC), w(αB − βC)}|w(B)− w(C)|.

Moreover for α = 1 and β = i, we obtain from (13) and (14) that

w2
e (B, C) ≥ 1

2
max

{
w
(

B2 − C2
)

, w(BC + CB)
}

+
1
2

max{w(B), w(C)}|w(B + iC)− w(B − iC)|

and

w2
e (B, C) ≥ 1

2
max

{
w
(

B2 − C2
)

, w
(

B2 + C2
)}

+
1
2

max{w(B + iC), w(B − iC)}|w(B)− w(C)|.

We also present the following corollary, which offers inequalities that improve upon
the lower bound established in Corollary 2.4 of the recent paper [12].
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Corollary 2. For any self-adjoint operators B, C we have the inequalities

w2
e (B, C) ≥ 1

2
max

{∥∥∥B2 + C2
∥∥∥, ∥BC + CB∥

}
(15)

+
1
2

max{∥B∥, ∥C∥}|∥B + C∥ − ∥B − C∥|

≥ 1
2

∥∥∥B2 + C2
∥∥∥

and

w2
e (B, C) ≥ 1

2
max

{∥∥∥B2 + C2
∥∥∥,
∥∥∥B2 − C2

∥∥∥}
+

1
2

max{∥B + C∥, ∥B − C∥}|∥B∥ − ∥C∥|.

Proof. The proof follows directly from Theorem 1, noting that the numerical radius of a
self-adjoint operator is equal to its norm.

The following numerical example demonstrates that the first lower bound in (15) is
significantly better than the second one, which was initially obtained in [10].

Example 1. Consider the diagonal 2 × 2 matrices

B =

(
1 0
0 1

)
= I2 and C =

(
1 0
0 a

)
with a > 0.

Then,

B2 = I2, C2 =

(
1 0
0 a2

)
, BC + CB =

(
2 0
0 2a

)
,

B + C =

(
2 0
0 a + 1

)
, B − C =

(
0 0
0 1 − a

)
and

B2 + C2 =

(
2 0
0 a2 + 1

)
.

It is well known that if A = diag(λ1, · · · , λn), then ∥A∥ = max
i=1,··· ,n

|λi|. Therefore,

∥B∥ = 1, ∥C∥ = max{1, a}, ∥B + C∥ = max{2, 1 + a} = 1 + max{1, a},

∥B − C∥ = |1 − a|, ∥BC + CB∥ = 2 max{1, a}

and ∥∥∥B2 + C2
∥∥∥ = max

{
2, a2 + 1

}
= 1 + (max{1, a})2

for a > 0.
Observe also that for z = (x, y) ∈ C2, we have that

⟨Bz, z⟩ = |x|2 + |y|2, ⟨Cz, z⟩ = |x|2 + a|y|2.
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Therefore,

w2
e (B, C) = sup

|x|2+|y|2=1

((
|x|2 + |y|2

)2
+
(
|x|2 + a|y|2

)2
)

= sup
|x|2+|y|2=1

(
1 +

(
1 + (a − 1)y2

)2
)

= sup
|x|2+|y|2=1

(
1 + 1 + 2(a − 1)y2 + (a − 1)2y4

)
= 2 + sup

|x|2+|y|2=1

[
(a − 1)y2

(
2 + (a − 1)y2

)]
for a > 0.

If we take a = 2, then
w2

e (B, C) = 5,

the middle term in (15)

1
2

[
max

{∥∥∥B2 + C2
∥∥∥, ∥BC + CB∥

}
+ max{∥B∥, ∥C∥}|∥B + C∥ − ∥B − C∥|

]
= 4.5

and the right term
1
2

∥∥∥B2 + C2
∥∥∥ = 2.5.

This numerically shows that the middle term in (15) provides a significantly better lower bound
for the Euclidean numerical radius than the previous one from [10].

We also have the following corollary.

Corollary 3. For any A ∈ B(H) and α, β ∈ C we have(
|α|2 + |β|2

)
w2(A) (16)

≥ 1
2

max
{

w
(

α2 A2 + β2
(

A2
)∗)

, |αβ|
∥∥∥|A|2 + |A∗|2

∥∥∥}
+

1
2

max{|α|, |β|}w(A)|w(αA + βA∗)− w(αA − βA∗)|

and (
|α|2 + |β|2

)
w2(A) (17)

≥ 1
2

max
{

w
(

α2 A2 + β2
(

A2
)∗)

, w
(

α2 A2 − β2
(

A2
)∗)}

+
1
2
||α| − |β||w(A)max{w(αA + βA∗), w(αA − βA∗)}.

Proof. We take B = αA and C = βA∗ in Theorem 1 to obtain

w2
e (αA, βA∗) ≥ 1

2
max

{
w
(

α2 A2 + β2
(

A2
)∗)

, w(αβAA∗ + αβA∗A)
}

+
1
2

max{w(αA), w(βA∗)}|w(αA + βA∗)− w(αA − βA∗)|
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and

w2
e (αA, βA∗) ≥ 1

2
max

{
w
(

α2 A2 + β2
(

A2
)∗)

, w
(

α2 A2 − β2
(

A2
)∗)}

+
1
2

max{w(αA + βA∗), w(αA − βA∗)}|w(αA)− w(βA∗)|.

Observe that
w2

e (αA, βA∗) =
(
|α|2 + |β|2

)
w2(A),

w(αβAA∗ + αβA∗A) = |αβ|w(AA∗ + A∗A) = |αβ|
∥∥∥|A|2 + |A∗|2

∥∥∥
and

w(βA∗) = |β|w(A),

which proves the desired results (16) and (17).

Remark 3. If we take α = cos θ and β = sin θ, θ ∈ R in (17), we obtain

w2(A) ≥ 1
2

max

{
w
(

cos2 θA2 + sin2 θ
(

A2
)∗)

, |sin(2θ)|
∥∥∥∥∥ |A|2 + |A∗|2

2

∥∥∥∥∥
}

(18)

+
1
2

max{|cos θ|, |sin θ|}w(A)|w(cos θA + sin θA∗)− w(cos θA − sin θA∗)|

and

w2(A) ≥ 1
2

max
{

w
(

cos2 θA2 + sin2 θ
(

A2
)∗)

, w
(

cos2 θA2 − sin2 θ
(

A2
)∗)}

+
1
2
||cos θ| − |sin θ||w(A)max{w(cos θA + sin θA∗), w(cos θA − sin θA∗)}.

If we take θ = π/4 in (18), we obtain

w2(A) ≥ 1
2

max

{∥∥∥∥∥A2 +
(

A2)∗
2

∥∥∥∥∥,

∥∥∥∥∥ |A|2 + |A∗|2

2

∥∥∥∥∥
}

+
1
2

w(A)

∣∣∣∣∥∥∥∥A + A∗

2

∥∥∥∥− ∥∥∥∥A − A∗

2

∥∥∥∥∣∣∣∣.
We now present the following corollary, which offers an improvement of the lower

bound from ([12], Corollary 2.5).

Corollary 4. For any A ∈ B(H), we have

w2(A) ≥ 1
2

max

{∥∥∥∥∥ |A|2 + |A∗|2

2

∥∥∥∥∥,

∥∥∥∥∥ (A∗)2 − A2

2

∥∥∥∥∥
}

(19)

+
1
2

max
{∥∥∥∥A + A∗

2

∥∥∥∥,
∥∥∥∥A∗ − A

2

∥∥∥∥}∣∣∣∣(∥∥∥∥ (1 − i)A + (1 + i)A∗

2

∥∥∥∥)−
∥∥∥∥ (1 + i)A + (1 − i)A∗

2

∥∥∥∥∣∣∣∣
and

w2(A) ≥ 1
2

max

{∥∥∥∥∥ |A|2 + |A∗|2

2

∥∥∥∥∥,

∥∥∥∥∥A2 + (A∗)2

2

∥∥∥∥∥
}

(20)

+
1
2

max
{∥∥∥∥ (1 − i)A + (1 + i)A∗

2

∥∥∥∥,
∥∥∥∥ (1 + i)A + (1 − i)A∗

2

∥∥∥∥}∣∣∣∣∥∥∥∥A + A∗

2

∥∥∥∥− ∥∥∥∥A∗ − A
2

∥∥∥∥∣∣∣∣.
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Proof. Let A = B + iC be the Cartesian decomposition of A, where

B = R(A) =
A + A∗

2
and C = I(A) =

A − A∗

2i
=

i
2
(A∗ − A).

Observe that

w2
e (B, C) = w2(A), B2 + C2 =

|A|2 + |A∗|2

2

BC + CB =
i
2

[
(A + A∗)(A∗ − A)

2
+

(A∗ − A)(A + A∗)

2

]
=

i
4

[
AA∗ + (A∗)2 − A2 − A∗A + A∗A − A2 + (A∗)2 − AA∗

]
=

i
2

(
(A∗)2 − A2

)
,

B2 − C2 =

(
A + A∗

2

)2
−
(

i
2
(A∗ − A)

)2

=

(
A + A∗

2

)2
+

(
A∗ − A

2

)2

=
A2 + AA∗ + A∗A + (A∗)2 + A2 − AA∗ − A∗A + (A∗)2

4

=
1
2

(
A2 + (A∗)2

)
B + C =

A + A∗

2
+

i(A∗ − A)

2
=

(1 − i)A + (1 + i)A∗

2
and

B − C =
A + A∗

2
− i(A∗ − A)

2
=

(1 + i)A + (1 − i)A∗

2
.

By making use of (6) and (7), we deduce the desired results (19) and (20).

We have the following lower bounds for the Davis–Wielandt radius. These lower
bounds are better than the one offered by the first inequality in (4).

Corollary 5. For any T ∈ B(H), we have

dw2(T) ≥ 1
2

max
{

w
(

T2 + |T|4
)

, w
(

T|T|2 + |T|2T
)}

+
1
2

max
{

w(T), ∥T∥2
}∣∣∣w(T + |T|2

)
− w

(
T − |T|2

)∣∣∣
and

dw2(T) ≥ 1
2

max
{

w
(

T2 + |T|4
)

, w
(

T2 − |T|4
)}

+
1
2

max
{

w
(

T + |T|2
)

, w
(

T − |T|2
)}∣∣∣w(T)− ∥T∥2

∣∣∣.
Proof. The proof follows by taking (B, C) =

(
T, |T|2

)
in Theorem 1.

Further, we recall the following representation result obtained in ([11], Theorem 2.2).
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Lemma 1. Let X, Y ∈ B(H). Then,

w2
e (X, Y) = sup

µ2+ν2=1,
µ,ν≥0

sup
θ∈R

w2
(

µeiθX + νe−iθY
)

.

By utilizing this result, we can prove the following lower bound for the Euclidean
numerical radius.

Proposition 1. For B, C ∈ B(H), we have

w2
e (B, C) ≥ 1

2
we

(
B2, C2

)
. (21)

Proof. Let µ, ν ≥ 0 be such that µ2 + ν2 = 1. Let also θ ∈ R. From (11), we obtain for
α =

√
µei θ

2 and β =
√

νe−i θ
2 that

max{µ, ν}w2
e (B, C) ≥ 1

2
w
(

µeiθ B2 + νe−iθC2
)

.

So, we deduce that

sup
µ2+ν2=1,

µ,ν≥0

max{µ, ν}w2
e (B, C) ≥ 1

2
sup

µ2+ν2=1,
µ,ν≥0

sup
θ∈R

w
(

µeiθ B2 + νe−iθC2
)

=
1
2

we

(
B2, C2

)
and since sup

µ2+ν2=1,
µ,ν≥0

max{µ, ν} = 1, we deduce inequality (21).

Remark 4. If we take B = A and C = A∗ in (21), we obtain

w2(A) ≥ 1
4

we

(
A2, (A∗)2

)
.

If we take B = R(A) and C = I(A), then by (21) we obtain

w2(A) ≥ 1
2

∥∥∥R2(A) + I2(A)
∥∥∥1/2

.

Indeed, we have

w2
e

(
R2(A), I2(A)

)
= sup

∥x∥=1

[〈
R2(A)x, x

〉
+
〈
I2(A)x, x

〉]
= sup

∥x∥=1

[〈(
R2(A) + I2(A)

)
x, x
〉]

= ω
(
R2(A) + I2(A)

)
=
∥∥∥R2(A) + I2(A)

∥∥∥.

If we take B = T and C = |T|2, then by (21), we obtain

dw2(T) ≥ 1
2

we

(
T2, |T|4

)
.

The following representation is also known (see, for instance, [19]).



Mathematics 2024, 12, 2838 12 of 23

Lemma 2. Let X, Y ∈ B(H). Then,

w
(

0 X
Y∗ 0

)
=

1
2

sup
θ∈R

∥∥∥eiθX + e−iθY
∥∥∥.

We are able now to prove the following proposition.

Proposition 2. For B, C ∈ B(H), we have

w2
e (B, C) ≥ 1

2
w
(

0 B2

(C∗)2 0

)
. (22)

Proof. By using (12) for α = ei θ
2 and β = e−i θ

2 , we obtain

w2
e (B, C) ≥ 1

2
max

{
w
(

eiθ B2 + e−iθC2
)

, w
(

e−iθ B2 − e−iθC2
)}

≥ 1
4

max
{∥∥∥eiθ B2 + e−iθC2

∥∥∥,
∥∥∥e−iθ B2 − e−iθC2

∥∥∥}
for all θ ∈ R.

If we take the supremum over θ ∈ R, we obtain

w2
e (B, C) ≥ 1

4
max

{
sup
θ∈R

∥∥∥eiθ B2 + e−iθC2
∥∥∥, sup

θ∈R

∥∥∥e−iθ B2 − e−iθC2
∥∥∥}. (23)

Since, by Lemma 2,

1
2

sup
θ∈R

∥∥∥eiθ B2 + e−iθC2
∥∥∥ = w

(
0 B2(

C2)∗ 0

)
= w

(
0 B2

(C∗)2 0

)
and

1
2

sup
θ∈R

∥∥∥e−iθ B2 − e−iθC2
∥∥∥ = w

(
0 B2

−(C∗)2 0

)
= w

(
0 B2

(C∗)2 0

)
.

Then, by (23), we deduce (22) as requested.

Remark 5. If we take B = A and C = A∗ in (22), we obtain

w2(A) ≥ 1
4

w
(

0 A2

A2 0

)
=

1
4

w
(

A2
)

.

If we take B = R(A) and C = I(A), then by (22), we obtain

w2(A) ≥ 1
2

w
(

0 R2(A)
I2(A) 0

)
.

Moreover, if we take B = T and C = |T|2, then by (21), we obtain

dw2(T) ≥ 1
2

w
(

0 T2

|T|4 0

)
.

3. Upper Bounds for the Euclidean Numerical Radius of Operator Pairs

In this section, we aim to establish several upper bounds for the Euclidean numerical
radius of operator pairs in Hilbert spaces. To derive our first result, we recall two well-
known inequalities. The first is the Kato inequality (see [20]), which is given by∣∣〈Tx, y

〉∣∣2 ≤
〈
|T|2λx, x

〉〈
|T∗|2(1−λ)y, y

〉
(24)
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for any T ∈ B(H), λ ∈ [0, 1], and any x, y ∈ H.
The second is the well-known McCarthy inequality (see [21]), which asserts that for

any positive operator P and for s ≥ 1, we have〈
Px, x

〉s ≤
〈

Psx, x
〉
, x ∈ H, ∥x∥ = 1. (25)

With these preliminaries, we can now present the following result.

Theorem 2. For any B, C ∈ B(H), λ ∈ [0, 1] and α, β, γ, δ ∈ {−1, 1}, we have

w2
e (B, C) ≤ w

(
α|B|2λ + iβ|C|2λ

)
w
(

γ|B∗|2(1−λ) + iδ|C∗|2(1−λ)
)

(26)

≤
∥∥∥|B|4λ + |C|4λ

∥∥∥1/2∥∥∥|B∗|4(1−λ) + |C∗|4(1−λ)
∥∥∥1/2

and

w2
e (B, C) ≤ w

(
α|B|2λ + iδ|C∗|2(1−λ)

)
w
(

γ|B∗|2(1−λ) + iβ|C|2λ
)

(27)

≤
∥∥∥|B|4λ + |C∗|4(1−λ)

∥∥∥1/2∥∥∥|B∗|4(1−λ) + |C|4λ
∥∥∥1/2

.

Proof. By (24), we have∣∣〈Bx, x
〉∣∣2 + ∣∣〈Cx, x

〉∣∣2 ≤
〈
|B|2λx, x

〉〈
|B∗|2(1−λ)x, x

〉
+
〈
|C|2λx, x

〉〈
|C∗|2(1−λ)x, x

〉
(28)

for any B, C ∈ B(H), x ∈ H and λ ∈ [0, 1].
By the Cauchy–Schwarz inequality, we have〈
|B|2λx, x

〉〈
|B∗|2(1−λ)x, x

〉
+
〈
|C|2λx, x

〉〈
|C∗|2(1−λ)x, x

〉
(29)

≤
(〈

|B|2λx, x
〉2

+
〈
|C|2λx, x

〉2
)1/2(〈

|B∗|2(1−λ)x, x
〉2

+
〈
|C∗|2(1−λ)x, x

〉2
)1/2

=
(〈

α|B|2λx, x
〉2

+
〈

β|C|2λx, x
〉2
)1/2(〈

γ|B∗|2(1−λ)x, x
〉2

+
〈
δ|C∗|2(1−λ)x, x

〉2
)1/2

,

for x ∈ H, where α, β, γ, δ ∈ {−1, 1}.
Since 〈

α|B|2λx, x
〉2

+
〈

β|C|2λx, x
〉2

=
∣∣∣〈α|B|2λx, x

〉
+ i
〈

β|C|2λx, x
〉∣∣∣2

=
∣∣∣〈(α|B|2λ + iβ|C|2λ

)
x, x
〉∣∣∣2

and 〈
γ|B∗|2(1−λ)x, x

〉2
+
〈
δ|C∗|2(1−λ)x, x

〉2
=
∣∣∣〈(γ|B∗|2(1−λ) + iδ|C∗|2(1−λ)

)
x, x
〉∣∣∣2,

then by taking (29) into account, we obtain〈
|B|2λx, x

〉〈
|B∗|2(1−λ)x, x

〉
+
〈
|C|2λx, x

〉〈
|C∗|2(1−λ)x, x

〉
(30)

≤
∣∣∣〈(α|B|2λ + iβ|C|2λ

)
x, x
〉∣∣∣∣∣∣〈(γ|B∗|2(1−λ) + iδ|C∗|2(1−λ)

)
x, x
〉∣∣∣

for x ∈ H.
By (28) and (30), we derive∣∣〈Bx, x

〉∣∣2 + ∣∣〈Cx, x
〉∣∣2

≤
∣∣∣〈(α|B|2λ + iβ|C|2λ

)
x, x
〉∣∣∣∣∣∣〈(γ|B∗|2(1−λ) + iδ|C∗|2(1−λ)

)
x, x
〉∣∣∣
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for x ∈ H.
By taking the supremum over x ∈ H, ∥x∥ = 1, we obtain

w2
e (B, C) = sup

∥x∥=1

(∣∣〈Bx, x
〉∣∣2 + ∣∣〈Cx, x

〉∣∣2)
≤ sup

∥x∥=1

[∣∣∣〈(α|B|2λ + iβ|C|2λ
)

x, x
〉∣∣∣ ∣∣∣〈(γ|B∗|2(1−λ) + iδ|C∗|2(1−λ)

)
x, x
〉∣∣∣]

≤ sup
∥x∥=1

∣∣∣〈(α|B|2λ + iβ|C|2λ
)

x, x
〉∣∣∣ sup

∥x∥=1

∣∣∣〈(γ|B∗|2(1−λ) + iδ|C∗|2(1−λ)
)

x, x
〉∣∣∣

= w
(

α|B|2λ + iβ|C|2λ
)

w
(

γ|B∗|2(1−λ) + iδ|C∗|2(1−λ)
)

,

which proves (26).
By the Cauchy–Schwarz inequality, we also have〈
|B|2λx, x

〉〈
|B∗|2(1−λ)x, x

〉
+
〈
|C|2λx, x

〉〈
|C∗|2(1−λ)x, x

〉
≤
(〈

|B|2λx, x
〉2

+
〈
|C∗|2(1−λ)x, x

〉2
)1/2(〈

|B∗|2(1−λ)x, x
〉2

+
〈
|C|2λx, x

〉2
)1/2

=
(〈

α|B|2λx, x
〉2

+
〈
δ|C∗|2(1−λ)x, x

〉2
)1/2(〈

γ|B∗|2(1−λ)x, x
〉2

+
〈

β|C|2λx, x
〉2
)1/2

for x ∈ H, where α, β, γ, δ ∈ {−1, 1}.
By making a similar argument as above, we then derive (27).
Furthermore, by McCarthy inequality (25), we have for ∥x∥ = 1∣∣∣〈(α|B|2λ + iβ|C|2λ

)
x, x
〉∣∣∣2 =

∣∣∣α〈|B|2λx, x
〉
+ iβ

〈
|C|2λx, x

〉∣∣∣2
=
〈
|B|2λx, x

〉2
+
〈
|C|2λx, x

〉2

≤
〈
|B|4λx, x

〉
+
〈
|C|4λx, x

〉
=
〈(

|B|4λ + |C|4λ
)

x, x
〉
.

By taking the supremum over ∥x∥ = 1, we obtain

w
(

α|B|2λ + iβ|C|2λ
)
= sup

∥x∥=1

∣∣∣〈(α|B|2λ + iβ|C|2λ
)

x, x
〉∣∣∣

≤ sup
∥x∥=1

〈(
|B|4λ + |C|4λ

)
x, x
〉1/2

=
∥∥∥|B|4λ + |C|4λ

∥∥∥1/2
.

Similarly,

w
(

γ|B∗|2(1−λ) + iδ|C∗|2(1−λ)
)
≤
∥∥∥|B∗|4(1−λ) + |C∗|4(1−λ)

∥∥∥1/2
,

which proves the last part of (26).

Several consequences of Theorem 2 can be presented. We start with the following
corollary.

Corollary 6. For any B, C ∈ B(H) and α, β, γ, δ ∈ {−1, 1}, we have

w2
e (B, C) ≤ w(α|B|+ iβ|C|)w(γ|B∗|+ iδ|C∗|)

≤
∥∥∥|B|2 + |C|2

∥∥∥1/2∥∥∥|B∗|2 + |C∗|2
∥∥∥1/2
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and

w2
e (B, C) ≤ w(α|B|+ iδ|C∗|)w(γ|B∗|+ iβ|C|)

≤
∥∥∥|B|2 + |C∗|2

∥∥∥1/2∥∥∥|B∗|2 + |C|2
∥∥∥1/2

.

Proof. The proof follows directly from Theorem 2 by setting λ = 1
2 .

Remark 6. In ([12], Theorem 2.2), the authors proved that for any B, C ∈ B(H), the following
result holds:

w2
e (B, C)

≤ min
{

w(|B|+ i|C|)w(|B∗|+ i|C∗|), w(|B|+ i|C∗|)w
(
|B∗|2 + i|C|

)}
≤ min

{∥∥∥|B|2 + |C|2
∥∥∥1/2∥∥∥|B∗|2 + |C∗|2

∥∥∥1/2
,
∥∥∥|B|2 + |C∗|2

∥∥∥1/2∥∥∥|B∗|2 + |C|2
∥∥∥1/2

}
.

This result can be derived from Corollary 6 by setting α = β = γ = δ = 1. The interested reader
can derive other similar bounds by choosing some of α, β, γ, δ to be −1.

We also present the following corollary, which, while straightforward, is of signifi-
cant interest.

Corollary 7. For any B, C self-adjoint operators, λ ∈ [0, 1] and α, β, γ, δ ∈ {−1, 1}, we have

w2
e (B, C) ≤ w

(
α|B|2λ + iβ|C|2λ

)
w
(

γ|B|2(1−λ) + iδ|C|2(1−λ)
)

≤
∥∥∥|B|4λ + |C|4λ

∥∥∥1/2∥∥∥|B|4(1−λ) + |C|4(1−λ)
∥∥∥1/2

and

w2
e (B, C) ≤ w

(
α|B|2λ + iδ|C|2(1−λ)

)
w
(

γ|B|2(1−λ) + iβ|C|2λ
)

≤
∥∥∥|B|4λ + |C|4(1−λ)

∥∥∥1/2∥∥∥|B|4(1−λ) + |C|4λ
∥∥∥1/2

.

Remark 7. For λ = 1/2 in the above corollary, we obtain

w2
e (B, C) ≤ w(α|B|+ iβ|C|)w(γ|B|+ iδ|C|) ≤

∥∥∥|B|2 + |C|2
∥∥∥

for α, β, γ, δ ∈ {−1, 1}.

Another important consequence of Theorem 2 is derived in the next corollary.

Corollary 8. For A ∈ B(H), φ, ψ ∈ C, λ ∈ [0, 1] and α, β, γ, δ ∈ {−1, 1}, we have the
numerical radius inequalities(

|φ|2 + |ψ|2
)

w2(A)

≤ w
(

α|φ|2λ|A|2λ + iβ|ψ|2λ|A∗|2λ
)

w
(

γ|φ|2(1−λ)|A∗|2(1−λ) + iδ|ψ|2(1−λ)|A|2(1−λ)
)

≤
∥∥∥|φ|4λ|A|4λ + |ψ|4λ|A∗|4λ

∥∥∥1/2∥∥∥|φ|4(1−λ)|A∗|4(1−λ) + |ψ|4(1−λ)|A|4(1−λ)
∥∥∥1/2
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and(
|φ|2 + |ψ|2

)
w2(A)

≤ w
(

α|φ|2λ|A|2λ + iδ|ψ|2(1−λ)|A|2(1−λ)
)

w
(

γ|φ|2(1−λ)|A∗|2(1−λ) + iβ|ψ|2λ|A∗|2λ
)

≤
∥∥∥|φ|4λ|A|4λ + |ψ|4(1−λ)|A|4(1−λ)

∥∥∥1/2∥∥∥|φ|4(1−λ)|A∗|4(1−λ) + |ψ|4λ|A∗|4λ
∥∥∥1/2

.

Proof. We take B = φA and C = ψA∗ in Theorem 2 to obtain the desired results.

Remark 8. We notice that for φ = ψ = 1, we obtain the simpler inequalities

w2(A) ≤ 1
2

w
(

α|A|2λ + iβ|A∗|2λ
)

w
(

γ|A∗|2(1−λ) + iδ|A|2(1−λ)
)

≤
∥∥∥|A|4λ + |A∗|4λ

∥∥∥1/2∥∥∥|A∗|4(1−λ) + |A|4(1−λ)
∥∥∥1/2

and

w2(A) ≤ 1
2

w
(

α|A|2λ + iδ|A|2(1−λ)
)

w
(

γ|A∗|2(1−λ) + iβ|A∗|2λ
)

≤ 1
2

∥∥∥|A|4λ + |A|4(1−λ)
∥∥∥1/2∥∥∥|A∗|4(1−λ) + |A∗|4λ

∥∥∥1/2
.

We also have in the particular case of λ = 1/2, that

Remark 9. For λ = 1/2 in Corollary 8, we obtain(
|φ|2 + |ψ|2

)
w2(A) ≤ w(α|φ||A|+ iβ|ψ||A∗|)w(γ|φ||A∗|+ iδ|ψ||A|) (31)

≤
∥∥∥|φ|2|A|2 + |ψ|2|A∗|2

∥∥∥1/2∥∥∥|φ|2|A∗|2 + |ψ|2|A|2
∥∥∥1/2

.

If |φ|2 + |ψ|2 = 1 in (31), then we obtain

w2(A) ≤ w(α|φ||A|+ iβ|ψ||A∗|)w(γ|φ||A∗|+ iδ|ψ||A|) (32)

≤
∥∥∥|φ|2|A|2 + |ψ|2|A∗|2

∥∥∥1/2∥∥∥|φ|2|A∗|2 + |ψ|2|A|2
∥∥∥1/2

.

If we take φ = sin θ, ψ = cos θ, θ ∈ R in (32), then we obtain

w2(A) ≤ w(α|sin θ||A|+ iβ|cos θ||A∗|)w(γ|sin θ||A∗|+ iδ|cos θ||A|)

≤
∥∥∥sin2 θ|A|2 + cos2 θ|A∗|2

∥∥∥1/2∥∥∥sin2 θ|A∗|2 + cos2|A|2
∥∥∥1/2

.

Also, if we take φ = ψ = 1, then we obtain from (31) that

w2(A) ≤ 1
2

w(α|A|+ iβ|A∗|)w(γ|A∗|+ iδ|A|) ≤ 1
2

∥∥∥|A|2 + |A∗|2
∥∥∥.

This is an improvement of the second Kittaneh’s inequality in (2).

Another significant consequence of Theorem 2 is presented in the following corollary.

Corollary 9. For any A ∈ B(H) and λ ∈ [0, 1], we have
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w2(A) ≤ w

(
α

(
A + A∗

2

)2λ

+ iβ
(

A∗ − A
2

)2λ
)

w

(
γ

(
A + A∗

2

)2(1−λ)

+ iδ
(

A∗ − A
2

)2(1−λ)
)

(33)

≤
∥∥∥∥∥
(

A + A∗

2

)4λ

+

(
A∗ − A

2

)4λ
∥∥∥∥∥

1/2∥∥∥∥∥
(

A + A∗

2

)4(1−λ)

+

(
A∗ − A

2

)4(1−λ)
∥∥∥∥∥

1/2

and

w2(A) ≤ w

(
α

(
A + A∗

2

)2λ

+ iδ
(

A∗ − A
2

)2(1−λ)
)

w

(
γ

(
A + A∗

2

)2(1−λ)

+ iβ
(

A∗ − A
2

)2λ
)

(34)

≤
∥∥∥∥∥
(

A + A∗

2

)4λ

+

(
A∗ − A

2

)4(1−λ)
∥∥∥∥∥

1/2∥∥∥∥∥
(

A + A∗

2

)4(1−λ)

+

(
A∗ − A

2

)4λ
∥∥∥∥∥

1/2

.

Proof. Let A = B + iC be the Cartesian decomposition of A, where

B =
A + A∗

2
= R(A) and C =

i
2
(A∗ − A) = I(A).

By applying Theorem 2 for this choice of B and C, we obtain (33) and (34).

Remark 10. For λ = 1/2 in Corollary 9, we obtain

w2(A) ≤ w
(

α

(
A + A∗

2

)
+ iβ

(
A∗ − A

2

))
w
(

γ

(
A + A∗

2

)
+ iδ

(
A∗ − A

2

))
≤ 1

2

∥∥∥A2 + (A∗)2
∥∥∥

for α, β, γ, δ ∈ {−1, 1}.
This is another improvement of the second Kittaneh’s inequality in (2).

By taking (B, C) =
(

T, |T|2
)

in Theorem 2, we obtain

Corollary 10. For any T ∈ B(H), λ ∈ [0, 1] and α, β, γ, δ ∈ {−1, 1}, we have

dw2(T) ≤ w
(

α|T|2λ + iβ|T|4λ
)

w
(

γ|T∗|2(1−λ) + iδ|T|4(1−λ)
)

≤
∥∥∥|T|4λ + |T|8λ

∥∥∥1/2∥∥∥|T∗|4(1−λ) + |T|8(1−λ)
∥∥∥1/2

and

dw2(T) ≤ w
(

α|T|2λ + iδ|T|4(1−λ)
)

w
(

γ|T∗|2(1−λ) + iβ|T|4λ
)

≤
∥∥∥|T|4λ + |T|8(1−λ)

∥∥∥1/2∥∥∥|T∗|4(1−λ) + |T|8λ
∥∥∥1/2

.

In particular for λ = 1/2, we have

dw2(T) ≤ w
(

α|T|+ iβ|T|2
)

w
(

γ|T∗|+ iδ|T|2
)

(35)

≤
∥∥∥|T|2 + |T|4

∥∥∥1/2∥∥∥|T∗|2 + |T|4
∥∥∥1/2

for all T ∈ B(H).
We observe that, if |T∗|2 ≤ |T|2, namely T is hyponormal operator, then∥∥∥|T∗|2 + |T|4

∥∥∥ ≤
∥∥∥|T|2 + |T|4

∥∥∥
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and by (35), we obtain

dw2(T) ≤ w
(

α|T|+ iβ|T|2
)

w
(

γ|T∗|+ iδ|T|2
)

≤
∥∥∥|T|2 + |T|4

∥∥∥1/2∥∥∥|T∗|2 + |T|4
∥∥∥1/2

≤
∥∥∥|T|2 + |T|4

∥∥∥,

which is an improvement of inequality (5).
To obtain our next result, we make also use of the well-known McCarthy inequal-

ity (25).

Theorem 3. For any B, C ∈ B(H), λ ∈ [0, 1] and p, q > 1 with 1
p + 1

q = 1, we have

w2
e (B, C) ≤

∥∥∥|B|2λp + |C|2λp
∥∥∥1/p∥∥∥|B∗|2(1−λ)q + |C∗|2(1−λ)q

∥∥∥1/q
(36)

and
w2

e (B, C) ≤
∥∥∥|B|2λp + |C∗|2(1−λ)p

∥∥∥1/p∥∥∥|B∗|2(1−λ)q + |C|2λq
∥∥∥1/q

. (37)

Proof. By Hölder’s inequality, we have for λ ∈ [0, 1] that〈
|B|2λx, x

〉〈
|B∗|2(1−λ)x, x

〉
+
〈
|C|2λx, x

〉〈
|C∗|2(1−λ)x, x

〉
(38)

≤
(〈

|B|2λx, x
〉p

+
〈
|C|2λx, x

〉p
)1/p(〈

|B∗|2(1−λ)x, x
〉q

+
〈
|C∗|2(1−λ)x, x

〉q
)1/q

for x ∈ H and p, q > 1 with 1
p + 1

q = 1.
By utilizing McCarthy’s inequality (25), we obtain〈

|B|2λx, x
〉p

+
〈
|C|2λx, x

〉p ≤
〈
|B|2λpx, x

〉
+
〈
|C|2λpx, x

〉
=
〈(

|B|2λp + |C|2λp
)

x, x
〉

and 〈
|B∗|2(1−λ)x, x

〉q
+
〈
|C∗|2(1−λ)x, x

〉q ≤
〈
|B∗|2(1−λ)qx, x

〉
+
〈
|C∗|2(1−λ)qx, x

〉
=
〈(

|B∗|2(1−λ)q + |C∗|2(1−λ)q
)

x, x
〉

for x ∈ H, ∥x∥ = 1. So, by (38), we obtain〈
|B|2λx, x

〉〈
|B∗|2(1−λ)x, x

〉
+
〈
|C|2λx, x

〉〈
|C∗|2(1−λ)x, x

〉
≤
〈(

|B|2λp + |C|2λp
)

x, x
〉1/p〈(|B∗|2(1−λ)q + |C∗|2(1−λ)q

)
x, x
〉1/q

for x ∈ H, ∥x∥ = 1.
By making use of (28), we get∣∣〈Bx, x

〉∣∣2 + ∣∣〈Cx, x
〉∣∣2

≤
〈(

|B|2λp + |C|2λp
)

x, x
〉1/p〈(|B∗|2(1−λ)q + |C∗|2(1−λ)q

)
x, x
〉1/q

for x ∈ H, ∥x∥ = 1.
By taking the supremum over ∥x∥ = 1, we obtain (36).
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We also have〈
|B|2λx, x

〉〈
|B∗|2(1−λ)x, x

〉
+
〈
|C|2λx, x

〉〈
|C∗|2(1−λ)x, x

〉
≤
(〈

|B|2λx, x
〉p

+
〈
|C∗|2(1−λ)x, x

〉p
)1/p(〈

|B∗|2(1−λ)x, x
〉q

+
〈
|C|2λx, x

〉q
)1/q

for x ∈ H and p, q > 1 with 1
p + 1

q = 1, which gives in a similar way (37).

Remark 11. For p = q = 2 in Theorem 3, we obtain the last upper bounds in Theorem 2, where
λ ∈ [0, 1].

For λ = 1/2 in Theorem 3, we obtain

w2
e (B, C) ≤

∥∥|B|p + |C|p
∥∥1/p∥∥|B∗|q + |C∗|q

∥∥1/q

and
w2

e (B, C) ≤
∥∥|B|p + |C∗|p

∥∥1/p∥∥|B∗|q + |C|q
∥∥1/q

for p, q > 1 with 1
p + 1

q = 1.

Several consequences of Theorem 3 can be derived. As a first step, we present the
following corollary.

Corollary 11. For any A ∈ B(H), λ ∈ [0, 1] and p, q > 1 with 1
p + 1

q = 1, we have

w2(A) ≤ 1
2

∥∥∥|A|2λp + |A∗|2λp
∥∥∥1/p∥∥∥|A|2(1−λ)q + |A∗|2(1−λ)q

∥∥∥1/q

and
w2(A) ≤ 1

2

∥∥∥|A|2λp + |A|2(1−λ)p
∥∥∥1/p∥∥∥|A∗|2λq + |A∗|2(1−λ)q

∥∥∥1/q
.

In particular,

w2(A) ≤ 1
2

∥∥|A|p + |A∗|p
∥∥1/p∥∥|A|q + |A∗|q

∥∥1/q.

Proof. It follows by taking in Theorem 3 B = A and C = A∗.

Our next corollary follows by taking B = R(A) and C = I(A) in Theorem 3.

Corollary 12. For any A ∈ B(H), λ ∈ [0, 1] and p, q > 1 with 1
p + 1

q = 1, we have

w2(A) ≤
∥∥∥|R(A)|2λp + |I(A)|2λp

∥∥∥1/p∥∥∥|R(A)|2(1−λ)q + |I(A)|2(1−λ)q
∥∥∥1/q

and

w2
e (B, C) ≤

∥∥∥|R(A)|2λp + |I(A)|2(1−λ)p
∥∥∥1/p∥∥∥|R(A)|2(1−λ)q + |I(A)|2λq

∥∥∥1/q
.

In particular,

w2(A) ≤
∥∥|R(A)|p + |I(A)|p

∥∥1/p∥∥|R(A)|q + |I(A)|q
∥∥1/q.

We derive also the next corollary.

Corollary 13. For any T ∈ B(H), λ ∈ [0, 1] and p, q > 1 with 1
p + 1

q = 1, we have

dw2(T) ≤
∥∥∥|T|2λp + |T|4λp

∥∥∥1/p∥∥∥|T∗|2(1−λ)q + |T|4(1−λ)q
∥∥∥1/q
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and
dw2(T) ≤

∥∥∥|T|2λp + |T|4(1−λ)p
∥∥∥1/p∥∥∥|T∗|2(1−λ)q + |T|4λq

∥∥∥1/q
.

In particular,

dw2(T) ≤
∥∥∥|T|p + |T|2p

∥∥∥1/p∥∥∥|T∗|q + |T|2q
∥∥∥1/q

.

Proof. The proof follows by taking (B, C) =
(

T, |T|2
)

in Theorem 3.

We also have the following theorem.

Theorem 4. For any B, C ∈ B(H) and λ ∈ [0, 1], we have

w2
e (B, C) ≤ 1

2

[∥∥∥|B|2λ + |C|2λ
∥∥∥+ ∥∥∥|B|2λ − |C|2λ

∥∥∥]∥∥∥|B∗|2(1−λ) + |C∗|2(1−λ)
∥∥∥ (39)

and

w2
e (B, C) ≤ 1

2

[∥∥∥|B|2λ + |C∗|2(1−λ)
∥∥∥+ ∥∥∥|B|2λ − |C∗|2(1−λ)

∥∥∥]∥∥∥|B∗|2(1−λ) + |C|2λ
∥∥∥. (40)

Proof. One can see that

〈
|B|2λx, x

〉〈
|B∗|2(1−λ)x, x

〉
+
〈
|C|2λx, x

〉〈
|C∗|2(1−λ)x, x

〉
≤ max

{〈
|B|2λx, x

〉
,
〈
|C|2λx, x

〉}[〈
|B∗|2(1−λ)x, x

〉
+
〈
|C∗|2(1−λ)x, x

〉]
=

1
2

[〈
|B|2λx, x

〉
+
〈
|C|2λx, x

〉
+
∣∣∣〈|B|2λx, x

〉
−
〈
|C|2λx, x

〉∣∣∣][〈|B∗|2(1−λ)x, x
〉
+
〈
|C∗|2(1−λ)x, x

〉]
=

1
2

[〈(
|B|2λ + |C|2λ

)
x, x
〉
+
∣∣∣〈(|B|2λ − |C|2λ

)
x, x
〉∣∣∣]〈(|B∗|2(1−λ) + |C∗|2(1−λ)

)
x, x
〉

for x ∈ H.
From (28), we obtain∣∣〈Bx, x

〉∣∣2 + ∣∣〈Cx, x
〉∣∣2

≤ 1
2

[〈(
|B|2λ + |C|2λ

)
x, x
〉
+
∣∣∣〈(|B|2λ − |C|2λ

)
x, x
〉∣∣∣]〈(|B∗|2(1−λ) + |C∗|2(1−λ)

)
x, x
〉

for x ∈ H.
By taking the supremum over x ∈ H, ∥x∥ = 1, we obtain the desired result (39).
Inequality (40) follows by the fact that〈

|B|2λx, x
〉〈
|B∗|2(1−λ)x, x

〉
+
〈
|C|2λx, x

〉〈
|C∗|2(1−λ)x, x

〉
≤ max

{〈
|B|2λx, x

〉
,
〈
|C∗|2(1−λ)x, x

〉}[〈
|B∗|2(1−λ)x, x

〉
+
〈
|C|2λx, x

〉]
for x ∈ H.

Remark 12. If we take λ = 1/2 in Theorem 4, we obtain

w2
e (B, C) ≤ 1

2
[∥|B|+ |C|∥+ ∥|B| − |C|∥]∥|B∗|+ |C∗|∥

and
w2

e (B, C) ≤ 1
2
[∥|B|+ |C∗|∥+ ∥|B| − |C∗|∥]∥|B∗|+ |C|∥.

The first consequence of Theorem 4 is presented in the following corollary.
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Corollary 14. For any A ∈ B(H) and λ ∈ [0, 1], we have

w2(A) ≤ 1
4

[∥∥∥|A|2λ + |A∗|2λ
∥∥∥+ ∥∥∥|A|2λ − |A∗|2λ

∥∥∥]∥∥∥|A∗|2(1−λ) + |A|2(1−λ)
∥∥∥

and

w2(A) ≤ 1
4

[∥∥∥|A|2λ + |A|2(1−λ)
∥∥∥+ ∥∥∥|A|2λ − |A|2(1−λ)

∥∥∥]∥∥∥|A∗|2(1−λ) + |A∗|2λ
∥∥∥.

In particular,

w2(A) ≤ 1
4
[∥|A|+ |A∗|∥+ ∥|A| − |A∗|∥]∥|A∗|+ |A|∥.

Proof. The proof follows by taking B = A and C = A∗ in Theorem 4.

The next corollary holds also.

Corollary 15. For any A ∈ B(H), λ ∈ [0, 1], we have

w2(A)

≤ 1
2

[∥∥∥|R(A)|2λ + |I(A)|2λ
∥∥∥+ ∥∥∥|R(A)|2λ − |I(A)|2λ

∥∥∥]∥∥∥|R(A)|2(1−λ) + |I(A)|2(1−λ)
∥∥∥

and

w2(A)

≤ 1
2

[∥∥∥|R(A)|2λ + |I(A)|2(1−λ)
∥∥∥+ ∥∥∥|R(A)|2λ − |I(A)|2(1−λ)

∥∥∥]∥∥∥|R(A)|2(1−λ) + |I(A)|2λ
∥∥∥.

In particular,

w2(A) ≤ 1
2
[∥|R(A)|+ |I(A)|∥+ ∥|R(A)| − |I(A)|∥]∥|R(A)|+ |I(A)|∥.

Proof. The proof follows by taking B = R(A) and C = I(A) in Theorem 4.

Finally, by selecting B = T and C = |T|2 in Theorem 4, we can also state the follow-
ing corollary.

Corollary 16. For any T ∈ B(H), λ ∈ [0, 1], we have

dw2(T) ≤ 1
2

[∥∥∥|T|2λ + |T|4λ
∥∥∥+ ∥∥∥|T|2λ − |T|4λ

∥∥∥]∥∥∥|T∗|2(1−λ) + |T|4(1−λ)
∥∥∥

and

dw2(T) ≤ 1
2

[∥∥∥|T|2λ + |T|4(1−λ)
∥∥∥+ ∥∥∥|T|2λ − |T|4(1−λ)

∥∥∥]∥∥∥|T∗|2(1−λ) + |T|4λ
∥∥∥.

In particular

dw2(T) ≤ 1
2

[∥∥∥|T|+ |T|2
∥∥∥+ ∥∥∥|T| − |T|2

∥∥∥]∥∥∥|T∗|+ |T|2
∥∥∥.

4. Conclusions

In this paper, we have presented new lower and upper bounds for the Euclidean
numerical radius of operator pairs in Hilbert spaces, improving upon recent results in
the literature. We also derived new inequalities for the numerical radius and the Davis–
Wielandt radius as natural consequences of our findings.

This work lays a strong foundation for future research in this area. In particular,
extending these results to the setting of semi-Hilbert spaces would be a valuable direction
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to explore (see [22–24] for a solid background on operators in semi-Hilbert spaces). Another
interesting direction for future work is to study the Berezin number of operator pairs in
reproducing kernel Hilbert spaces (see [25,26] and the sources cited therein for background
on reproducing kernel Hilbert spaces).

We hope this study will inspire further advancements in numerical radius inequalities
and related concepts in operator theory.
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