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Abstract: In this paper, we employ a generalization of the Boas-Bellman inequality for inner products,
as developed by Mitrinovi¢-Pecari¢-Fink, to derive several upper bounds for the 2p-th power with

0
for any bounded linear

B*

operators A and B on a complex Hilbert space H. While the general matrix is not symmetric, a special

p > 1 of the numerical radius of the off-diagonal operator matrix

case arises when B = A*, where the matrix becomes symmetric. This symmetry plays a crucial role in
the derivation of our bounds, illustrating the importance of symmetric structures in operator theory.

Keywords: power inequalities; operator norm; numerical radius; off-diagonal 2 x 2-operator matrix;
Hilbert space

MSC: 46C05; 47A63; 47A99; 15A39; 26D15

1. Introduction

Block matrix techniques play a pivotal role in matrix analysis and operator theory,
offering theorems that characterize the properties of a matrix A, such as its norm, in terms
of the properties of a larger matrix, in which A is embedded as a block. In areas like the
theory of the Schur complement and the study of positive linear maps, particularly relevant
in quantum information, 2 x 2 block matrices are fundamental. Key theorems in these areas
are framed in terms of such block matrices (see, e.g., [1] and the survey article [2] in the
book [3]).

This present article aims to illustrate this technique through a specific problem con-
cerning the numerical radius. By utilizing a generalization of the Boas—Bellman inequality
for inner products, as developed by Mitrinovi¢-Pecari¢-Fink, we derive several power
bounds for the numerical radius of the off-diagonal 2 x 2 operator matrix.

Before presenting our results, we introduce relevant notions and notations. Through-
out this paper, we consider H as a complex Hilbert space equipped with an inner product
(-,-) and the corresponding norm || - ||. Specifically, ||x|| = \/(x, x) for all x € H. We denote
the C*-algebra of bounded linear operators on H as B(#). Let A € B(H). The adjoint of

1

A is denoted by A*, and the positive square root of A*A is expressed as |A| = (A*A)z.
The real part and imaginary part of A € B(H) are defined as Re(A) = (A + A*) and
Im(A) = L(A — A*), respectively. Furthermore, if A € B(#), then the norm of A is
defined as

sup  |[{Ax,y)l.
llxl=lly =1

[Al} = sup [|Ax] =
Ixll=1
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while the numerical radius of A is given by

w(A) = HSlHlEl [(Ax, x)].

The numerical radius is also a norm on B(# ). Comparing the numerical radius and the
operator norm, we have the inequalities:

w(A) < [[A] < 2w(A), (1)

which hold for every A € B(#). For further details, see, e.g., [4-10].
Kittaneh [11] established an improved version of these inequalities, demonstrating the

following:
1 2
TﬂAM+ANﬂSwM)S%;MN%+ANW @

To explore further progress regarding (1) and (2), interested individuals may consult [12-18].

Let us examine the off-diagonal part, denoted as [ 8 )0( ] , of a2 x 2 operator matrix

[ lZ/ V)\(I } defined on the direct sum space H & H.

For every X,Y € B(#H), it is well established that

(4 5])-=((5 )
(ER ()
(3 7)) -sommin([ & )

In 2011, Hirzallah, Kittaneh, and Shebrawi [19] established several results, including the
following double inequality:

0 X

Y 0

[W(X+Y)+w(X - Y)).

%max{W(X +Y),w(X-Y)}

IN
S

IN
N —

Additionally, they demonstrated that

o[ 3§ |) < mintw0o, )} + minglx-+ I, 1X - Y],

Furthermore, they derived several other notable inequalities of this kind.
In a significant publication by Kittaneh, Moslehian, and Yamazaki [20], they presented
a refined version of the triangle inequality, which can be expressed as follows:

X+Y 0 X 1XII+ 11Y]|
2l < < 02N TS
=] =3 2 ]) =55

for all X, Y € B(#). Several upper and lower bounds for the numerical radius of the
operator matrix
0 AX — XB
{ A*X — XB* 0 }

were provided, considering different assumptions for the operators involved.
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From a different perspective, in 2022, Bhunia and Paul obtained the following result,
as stated in ([21], Lemma 2.4):

([ 3]) =2

Motivated by the above results, in this paper, by utilizing a generalization of the
Boas—Bellman inequality for inner products due to Mitrinovié-Pecari¢-Fink ([22], p. 392),
we obtain several upper bounds for the power 2p of the numerical radius of the off-diagonal

|X]” + Y
2

+ %w(Y*X).

.10
operator matrix

B 6‘} for any operators A, B € B(H) and p > 1. Applications in the

case when B = A* are also provided. Although the matrix {E?* I(ﬂ is typically non-

symmetric, it becomes symmetric in the special case where B = A*. This symmetry is
essential in deriving our bounds, highlighting the significance of symmetric structures in
operator theory.

A key aspect of our results lies in providing general power inequalities that offer more
comprehensive and diverse upper bounds for the numerical radius of off-diagonal 2 x 2
operator matrices compared to those presented in recent papers [19-21]. Since our bounds
for the specific case p = 1 have distinct analytic expressions from those in [19,21], they are
not directly comparable.

The novelty of our approach is in the application of a Mitrinovi¢-Pecari¢-Fink gen-
eralization of the well-known Boas-Bellman inequality for two vectors, a technique not
previously employed by other authors to derive such bounds.

As highlighted in [5], upper bounds for the numerical radius can be useful in ap-
proximating polynomial solutions or estimating the numerical radius of the Frobenius
companion matrix, as discussed in [17]. However, these applications require extensive
research beyond the scope of this work and may be explored in future papers.

2. Some Preliminary Facts

In this section, we recall and establish some preliminary results that will be used in
this work. We begin with the following generalization of Bessel’s inequality, which states
thatif x,y1, ..., yn are elements of H, then the following inequality holds:

n
Yol P < 1x))?
i=1

1<i<n 1<iZj<n

maX||yi||2+< Y |<yi,yj>\2> ] ©)

The inequality (3) is known as the Boas—Bellman inequality (see [23,24]).

A generalization of the Boas-Bellman inequality was provided by Mitrinovi¢-Pecari¢-Fink
([22], p. 392). They proved that, if x, 11, ..., y, are vectors in H and cy, ..., ¢, € C, then the
following inequality holds:

2, %
< xl* Yleif? maXIIyz-I2+( Y \<yi,yj>l2> . 4)
i=1

tsisn 1<iZj<n

n
Z Ci<x1 yl>
i=1

For n = 2in (4), we have

le1 (x, 1) + ca{x, y2) | (5)
< [l (Jer]? + [eaf?) [max{ 1% 1217 } + V21 (91, 2)

for complex numbers c1, ¢ and vectors x, 1,2 € H.
By using this result, we can establish the following operator norm inequalities:
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Lemmal. Lety,6 € C, U,V € B(H) and p > 1. Then, we have
[y U + 8V || ©6)
max{ |[u|*, V][], ]

U+ VP uP=v ]
' .

<2 |y +102)” {Zp/zw”(v*u) + {

Proof. If we takein (5) c; = 7,6 = 6, y1 = Uy and y, = Vy, then we get
[(x, (U + 8V)y)
< 2l (I + 1o ) [max{ 1y P, vyl } + V21 (v uy, )|
= [l (I +15)
LR+ VR)wy) + [{(uP = 1VE)ww)] + VAW u)|
since
max{ |[uy|% [vy|* } = max{ (uly,y), (IVIy,

)}
=%[<|Ulzy,y> +(IVPyy)] + 2\<|U|2y,y>*<lVlzy1y>\
|

= (P +vR)wy) + 5| (Ul = 1vE)ny))
forallx,y € H.

If we take the power p > 1, then we get
[(x, (YU +8V)y) [ (7)
P N P
< 2P (I + 1617) [max{ Uyl [vyl* } + V21V Uy, y) ]
r
= |IxI?? (] + loI?)

<[5 [P+ VR + [((uP - W) ] + vl ]

forallx,y € H.
Using the elementary inequality that follows from the convexity of the power function,

(m+n)? <207 YmP +nP), mn>0, p>1,
we get
. p
[max{ Uy, [ vy } + V2l(v* Uy, y)]
< 20~ [max{ Uyl |vy | } +2¢72|(v* Uy, y)" |

and

E[<<|U|2+ V) wy) + [ (P = 1vP)ny)|] + \/§|(V*Uy,y>\r
_ zﬂ—l{ [<(u2 +1VP)yy) + | (lur - |V|2)y/y>’] p +2p/2|<V*uy’y>p}

2

. 2p1{ <(\U|2 + |V|2>y1y>p _1_2‘<<|U|2 — |V|2)y/y>‘p +2P/2<V*Uy,y)|p}
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forallx,y € H.
By utilizing (7) we derive

_ p «
[(x, (YU A6V PP < 2% /271 || (1o + o) (v Uy, )

2 2
[ max{ iy el
— 2 2 2
+ 207 x| (I + 1oP) "

<(|U|2+\V|2)y,y>”+zy<(\uwzf|w2)w>|’“

forallx,y € H.
Therefore, by taking the supremum over x,y € H with || x|| = ||y|| = 1, we derive

I(YU +6v)||*

= sup |(x,(U+V)y)[?
ll=lyl=1

p
< 23p/271(|,y|2 i |§|2) sup |(V*Uy, )|
lyl=1
2 2
supy, 1 max{ | uy|*?, | vy |},
p
_~_2P*1 (\,Y|2 + ‘5|2)

UP+VE)y) "+ [ ((UP=1V)yw) |
sup|y|_1[<( )+ o)
2 2
) [ max{iuEr v,
<227 |y 4 o) wr (Vi) + 207 (] + 18) x
-+ v 2| ] - v ]
2 7

which proves (6). O

Corollary 1. With the assumptions of Lemma 1, we have

2 2
max{ [[ul |V]I*},
i +ov|® < (JvP +161°) [ V2w (vu) +

UV U= V2]
2
and

4 4
. max{ [lu’*, |V]I*},
Iyu+ovi|* <21yl +[8P)" | 202 (V') +

U+ VP 1uP- v
! .

3. Inequalities for Off-Diagonal Operator 2 X 2 Matrix

In this section, we aim to establish some inequalities for the off-diagonal operator
2 x 2 matrix. Our first investigation focuses on stating a result concerning upper bounds
for the power of the numerical radius of the operator matrix. Before stating it, we need to
recall from [20] the following lemma.

Lemma 2. Let A,B € B(H). Then

w 0 A —lsu
B 0 |) " 22p

e* A+ e*i”‘BH. (8)
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Now, we can prove the following result.
Theorem 1. Let A, B € B(H) and p > 1, then
2 2
max{ || A%, |1BI[* },

(5 3] <zjprwoa
[[1AP+ B2 |+l 1aP-18/]"
2

() &

& max{||A + BI7, | A~ BJ ||,

and

L wr((A-B)(a+B) +
2|:2p/2 %(H|A|z+‘B|2HP+zp||Re(B*A)||P>]

Proof. In (6) choose v = e §=e¢"™ U= Aand V = B, then

max{ || 4|, |1B|*

. , 2
et A+ e B[ < 2%/ TP (B A) + 271 x

1A+ "+ (147181
2

and dividing by 227, we obtain

2p 2p
) max{ || A|*, B},

22p

. . 2
doa e B < (B Ay + L x

[1AP+BP (" +]|14P-1B]"
2

Therefore, by (8), we deduce (9).
Further, observe that

e A+ e B = (cosa+isina)A + (cosa — isina)B (11)
= cosa(A+ B) +isina(A — B)

fora € R.
Now, if we take in (6) ¥ = cosa, § = isina, U = A+ Band V = A — B, then we get

in —in 2p
e*A+e "B (12)

2 2
max{ |4+ B|*, | A - B },

< 2%/27 1P (A~ B)*(A+B)) +2P 1 x
||A+B*+|A—B2||+|||A+BP~|A-B||"
5 :

Observe that
|A+Bl*+|A— B =2(]A +[B)

and
|A+B|* —|A— B|* = 4Re(B*A)
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and by (12), we obtain

o —in 2p
e"A+e B

2 2
max{||A+B|I*, |4 - B|**},
< 2%/27 1P (A - B)*(A+B)) + 2771 x
20 ||| AP+ 1B || "+2% |[Re(B* A)
2

then dividing by 2% we get the desired inequality (10). [

We observe that for p = 1 in (10), we obtain

([ 0 A
w <[ B* 0
2 2
s [ Amax{la+ B A B
< Tw((A —B)*(A+B)) + 5 X
[[JAP+1BP|| +2|Re(B*A)|
2 ’

while for p = 2, we get

([ 3])

4 4
[ Amax{ia Bt A - sy,
w?((A—B)"(A+B)) +35 X

1
< Z
— 4

||| A2+|B||* +4[|Re(B* 4)|
] .

Another result is as follows:

Theorem 2. Let A, B € B(H) and p > 1, then

r
0 A 1A + B V2
2p < AT 1B v2
¢ ([ B* 0 D =2 2 T \/fl(A/B/P)Mz(A,B,p), (13)
where
(1(A,B,p) =2 ((B°A)?)
and
|B*A||*,
EZ(Ar B/ P) =
[[1B*A1% +|4*B2||"+]||B* AP~ A BI*]|"
2 .
Proof. Consider ‘ '
in —in
Hy B := W#, fora € R.
Observe that
. 2 ) s, '
4|Hya8” = emAJre_mB‘ - (emA+e_“"B) (emA+e_“"B>

_ (e—iaA* +eiaB*> (eiucA +e—iaB)
— A*A+B*B+€2MB*A+€72“XA*B
— |A|2+ |B|2 +e2ith*A+e_2iaA*B



Symmetry 2024, 16, 1199

8 of 19
which implies that
2 2 2in p* —2ix A%
> 1[|A]"+B| e?“B*A+e “*A*B
|HIX,A,B| - 2( 2 + 2
fora € R.
By taking the norm, we have
2 2 2ix p* —2ix A%
2_ |1 A"+ B e?*B*A+e “"A*B
HHDC,A,BH - 2( 2 + 2
_L(|[|AP+IBP|  ||[#“B*A+e 2 A"B
-2 2 2
fora € R.
By using the convexity of the power function, we have
1142 +BP|| | ||#*B A +e2xaB|\]"
| Ha, 811 < l2< 4] 2' | 5 H (14)
1| 1A+ BP|" | ||e¥B* A +e22arB|
-2 2 2
fora € R.
From (6), we get
eZiDéB*A _|_e—2itxA*B 2p
2
i I3 Al
<3 2”/2w7"<(B*A)2 +

|| 1B A +|A*BI?||" +|||B* A2~ |A*B[*||”
2 7

which, by taking the square root, gives that

eZile*A_._efﬁzxA*B P
2
1B* A,
2
S% ZP/sz((B*A)z +
|| IB*A[*+|A*B]?||" +||B* A~ |A*B*||”
5 .
By making use of (14)
| H 4,811
B*A|?,
111412 - 1812 p 5 [
SE | | —2i_| | _'_% Zp/zwp<(B*A)2 +

|[1B*AP+|A*B]*||"+||1B* A~ A*B||”
2

for « € R. By taking the supremum over « € R and utilizing the representation (8), we can
deduce the desired result (13). O
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The following remark provides a special case of the above theorem and is of interest.

Remark 1. For p = 1 we get

2([ 0 A 1A+ B v2
w ([ = ol)<3 . + 4 V01(A,B,1) + 62(A, B, 1)
where
(1(A,B,1) = v2w((B*A))
and

I1B=A|I?,

gz(A, B, 1) =
|||B* A+ A*BJ?||+|||B*A*—|A*B]|
> .

Our next result reads as follows.

Theorem 3. Let A,B € B(#H) and p > 1. Then

P
0 A 1||[]A]* + |BJ?
2p i | I S et
(| g o |) <3 @B sy, )
where
ki(A, B, p) :=2P/>" 1wl ((A*B — B*A)(A*B + B*A))
and

max{HB*A + A*B||¥,||B*A — A*BHZ’”},

kZ(A, B, p) = X

NI~

27| |B* A*+| A*BP||” +47||Re((B* 4)%) ||
5 )

Proof. Observe that

e?%B*A + e 2@ A*B  [cos(2a) +isin(2a)]B* A + [cos(2a) — isin(2a)] A*B
2 2
cos(2a)(B*A + A*B) +isin(2a)(B*A — A*B)
5 .

From (6) we get

cos(2a)(B*A + A*B) +isin(2a)(B*A — A*B) ||*
2
< 2P/27 1P ((A*B — B*A)(A*B + B* A))

max{|[B*A + A*B|?, || B*A - A"B|"},

(16)

+§X

||IB* A+A*B|>+|B*A—A*B|*||"+||[B*A+A*B*~|B*A-A*B ||
5 :

Observe that

|B*A+ A*B|* + |B*A — A*B]* = 2(|B*A|2 + |A*B|2)

and
IB*A+ A*B|> — |[B*A — A*B]? = 4Re((B*A)2)
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and by (16) we get

cos(2a)(B*A + A*B) + isin(2x)(B*A — A*B) ||**
2
< 2P/27 1P ((A*B — B*A)(A*B+ B*A))

max{ |B*A+ A*B||*, || B*A — A*BHZ”},

1
+ 5 %

2 || (1B* AP+ A*B) || +47 ||Re((B*A)?) ||
> .
=k1(A,B,p) + k(A B,p).
By utilizing (14) we then get the desired result (15). O

Remark 2. The case p = 1 gives that

2 2
([0 A 1]||AP + |B|
where
ki(A,B,1) := ?w((A*B — B*A)(A*B + B*A))
and
: max{||B*A+A*B||2,||B*A—A*B||2},
k2(A,B,1) := 3 x

|1B* AP +147BP|| +2||Re((B*4)%) .
Moreover, we can state the following result as well:

Theorem 4. Let A, B € B(H) and p > 1. Then

0 A 1 1
2p - ¥ A A p
w ([ ol D < gperlB A= A+ \/m1(A,B,p) + ma(A, B, p),
where
my (A, B, p) = 2’”/2w”(|A —B*|A+ B|2)
and

4 4
max{ |4+ B|*, 4 - B|*},
my(A,B,p) =

[1a+Bi*+1a=81*|"+|1a+B*~1a-B*|”
5 .

Proof. From (11) we have
4|H, 4 |* = |cosa(A + B) + isina(A — B)|?
= [cosa(A+ B) +isina(A — B)]"[cosa(A+ B) +isina(A — B)]
= [cosa(A+ B)" —isina(A — B)*|[cosa(A + B) +isina(A — B)]
— cos® a|A + B|* +sin?a|A — B|?
+isinacosa[(A+ B)*(A—B) — (A—B)"(A+B)] (17)

fora € R.
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Observe that
(A+B)"(A—B)— (A—B)"(A+B)
= (A*+B*)(A—B) — (A*—B*)(A+B)
— |AP+B*A— A*B— B> — |A]+B*A— A*B+ |B|
=2(B*A— A*B).
So, by using (17), we get
4|Hy a8|* = cos®a|A + B> + sin? a| A — B|* + 2isinacosa(B*A — A*B)
namely
|Hy a8 (18)
2 2 2 _ 2
= ;<cos a|A + B| —2}—sm %A~ B| +isinacosa(B*A — A*B))
fora € R.

If we take the norm in (18), we get

H 2 -
| Ha, 8] 5

<1<
-2

2 2

1( cos?a|A + B|* +sin?a|A — B
(COS #|A+ B[” +sina] | +isinacosa(B*A — A*B)

cos? a|A + B|* +sin®a| A — BJ?
2

+ |sinacosw|||B*A — A*B||>

fora € R.

Further, if we take the power p > 1 and use the convexity of the power function,
we obtain

1]|cos?a|A + B|? +sin2a|A — B2 ||
|y 5] < S[| 2214+ B |4~ B (19)
2 2
+ T |sin(2a)|P||B*A — A*BHP
1 cos?a|A + B|? +sin?a|A — B2 "
-2 2

1
+ sprrllB A - A"B|?

fora € R.
By (6) we get
2
cos?a|A + B|* +sin?a| A — B|? ’
2

. P
< op—1 cos* a + sin*

2
max{ H |A+ B|2H p,

a-sf]"),

x |2r/2r (|A~ BP|A+ BP) +
”\A+B\4+\A73\4HP+H\A+B\47\A73\4Hp
5 )

1
< W(ml(A/ B, p) +ma(A, B, p))
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since
costa+sin*a < cos?a+sinfa=1, a €R,

which gives that

cos?a|A + B|? +sin?a|A — B]? | 1
5 S ZPTH \/ml(A;B/P)+m2(A/BrP)
By making use of (19)
||, 4,811
. p

1{[cos?a|A + B|* +sin?a|A — BJ? 1
< Z i PIIB*A — A*BIIP
<3 > + Spr |sin(2x)|"||B*A — A*B||

1, o1

< gperlB A=A+ \/m1(A,B,p) + ma(A, B, p)

for « € R. By taking the supremum over « € R and utilizing the representation (8), we
obtain the desired result. [

For p = 1, we obtain the simpler inequality

0 A 1 1
2 ZIIB*A — A*BIIP o =
w ({ B 0 }) < 4||B A—A"B| +4\/m1(A,B,1)+m2(A,B,1),

where
mi(A,B,1) == ﬁwr’(m —BPlA+ B|2>

and
4 4
max{ A+ B||*, |4 - B|'},

A,B,1) =
BTN nsasaco]finsariaor]
: |

We conclude this section with the following result.

Theorem 5. Let A,B € B(H) and p > 1. Then for « € R, we have

0 A 1
w <[ B 0 }) < T (K(w, A, B)) (20)
25 max{[[L(a, A, B)||?, | M(a, A, B) ||},
+2°P71 x

2 2 P
M-&-%isim(Za)(B*A—A*B)H +|cos(2a)|?||Re(B* A)||

7

where
K(a, A, B) := sin(2a)Re(A*B)
+i [coszzx(A* — B*)(A+B) +sin?x(A* + B*)(A — B)},
L(x, A, B) := cos® «|A + B|* + sin® a| A — BJ* + isin(2x)(B*A — A*B)
and

M(w, A, B) :=sin® | A + B|* + cos® a| A — B|* + isin(2a)(B*A — A*B).
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Proof. Observe that

i A —inpg 1
Hyap = % = E[cos a(A+ B) +isina(A — B)]

fora € R.
Observe that, for all «, § € R, we have

cos BHy,a +SinfHy 7 ap

= - cosBlcosa(A + B) +isina(A — B)]
. s . m

+ smﬁ[cos(tx + E) (A+B) —I—zsm(tx + E)(A - B)}

cos B[cosa(A + B) +isina(A — B)]

sin B[—sina(A + B) +icosa(A — B)]

[ S YR S ) I ORI

= ~(cos Bcosa — sin Bsina)(A + B)

+
—N= o

i(cos Bsina + sina cosa)(A — B)

= 5lcos(a+ B) (A + B) +isin(a+ B) (4 — B)] = Hy g a5

From (6), with y = cos 8,6 =sinp, U =Hy 4pand V = HH%A,B, we obtain

2 _
| Hespasl? <2972 1l (5 4 gHonp) @y
2p 2p
max{ | Ho a1, [Hoo g 05| L,
+2r 1% e L
|I_Io(,1‘\,l:’-|2+ Ha+ %/A,B + |H1X,A,B|27 Hzx+%,A/B

Observe that

*
H:x+ Z,AB Hy,a,8

= %[— sina(A+ B) +icosa(A — B)|"[cosa(A + B) +isina(A — B)]
1

= 1[_ sina(A* + B*) —icosa(A* — B*)][cosa(A + B) +isina(A — B)]
1

= 1[—sinoccoszx\A+B|2—icoszzx(A* —B*)(A+B)

—isinzzx(A*+B*)(A—B)+sintxcoszx|A—B\2}
1y 2 2
= Z[Slnacosoc(|A—B| —|A+ B| )}

- ii[cosz a(A* — B*)(A+ B) +sin® a(A* + B*)(A — B)}
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This implies that

*
Hyy 2 apHenB

= i[— sina cosa(B*A + A*B)]

- %i |cos? (A" — B*)(A + B) +sin? (A" + B*)(A - B)]

_ 711[2 sina cos aRe(A*B))]
- %i [cosztx(A* — B*)(A+B) +sin?x(A* + B*)(A — B)]
_ —}l{sin(za)Re(A*B)
+i]cos? (A" — B*)(A+ B) +sin® (A" + B*)(A - B)| }.
So,

1
;Jr%,A,BHa!AIB = 7[11((06, A, B)

On the other hand, we see that

|Ha, a8/
1 * .

= Z[Cosa(A + B) +isina(A — B)]"[cosa(A + B) +isina(A — B)]

= %[cosa(A* + B*) —isina(A* — B*)][cosa(A + B) +isina(A — B)]
1

= _coszoc|A + B)? +sina|A — B\Z]

=

sinacosa[(A* + B*)(A — B) — (A* — B*)(A + B)]

cos?al A+ Bf” +sin®alA — B?| + }Lisin(Zoc)(B*A — A*B)

L S

cos®a| A+ BJ” +sin®a| A — B> +isin(2a) (B*A — A"B)|.

Thus,

1
|Hoa > = ZLL(a,A,B).

In addition, we have
2
‘Htx+§,A,B ‘

= —[—sina(A+ B) +icosa(A — B)]"[—sina(A+ B) +icosa(A — B)]

[—sina(A* 4+ B*) —icosa(A* — B*)][—sina(A + B) +icosa(A — B)]

[l Bl o

= Z{sinzoc\A—b—B|2+cosza|A—B|2}
1- . * * * *
+ gisin(20)[(A” = B')(A+B) — (A" + B*) (A4 - B)]
1
=3 [sin®a| A + B> + cos? a| A — B[ + isin(2a) (B*A — A"B)]

= M(,A,B)
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This gives that

[Ha,a,

+ ‘Hﬂc+%,A,B’

- %[cosza|A+B|2 +sin2a|A — B\2—|—isin(20c)(B*A —A*B)}
+ﬂsin2a|A+B|2+cosza\A_B|2+isin(2a)(B*A_A*B)}
= %[|A+BIZ+ |A—B\2+2isin(2a)(B*A_A*B)]

= 1[2(|A|2 + |B|2> + 2isin(2a)(B*A — A*B)]

_ AP+ 1B

> + 21s1n(20c)(B A—A*B)

and

|H, .81 ‘ +AB)

= ﬂcos a|A+ B> +sin?a|A — B|? + isin(2x)(B*A — A*B)}
1

- Z[sin2a|A+B|2+coszzx\A—B|2—|—isin(21x)(B*A—A*B)}
1

=1 {Cos(2zx)|A + B|* — cos(2a)| A — B|2}
1 2 2 «

= Zcos,(za)[\A+B| —|A-B| ] = cos(2a)Re(B*A).

By using (21) we get

2 1
|Herpas|™ < 3T w? (K(a, A, B))
22p max{|L(x, A, B)||?,||M(x, A, B)||},
+2r71

A2+ B2

P
+|B‘ +1Lisin(2a)(B*A—A*B )H +|cos(2a)|? |Re(B*A) ||

for a, B € R. By taking the supremum over § € R, we get (20) as desired. [

Remark 3. For p =1, we get

(2 4)

Imax{||L(a, A, B)|, |M(a, A, B)|},
V2
4

< —w(K(a, A B))+

A2+ B2

+|B‘ +1Lisin(2a)(B*A—A*B Hﬂcos 24)||Re(B* A)

For « = 0 we have
K(0,A,B) :=i(A* — B*)(A+B),

L(0,A,B) := |A+BJ?

and
M(0,A,B) := |A — BJ?

and by (20), we recapture (10).
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If we take o = 7t/4, then we have

K(rt/4,A,B) = Re(A"B) + Ji[(A" — B')(A+B) + (A" + B')(A — B)]

— Re(A"B) +i(| AP~ |B]")

L(7t/4, A, B) = % [|A +BP+|A— B|2] +i(B*A— A*B)
= |A> + |B* +i(B*A— A*B) = |A —iB|?
and
M(7/4,A,B) = L(t/4,A,B).
By (20), we get

“([» 5)) @

—
wllA—iB|*,

<

< Ww”(Re(A*B) +i(JAP = |BP)) +27 1 x

2 2 p
A HB +%i(B*A—A*B)H

and for p = 1, we derive

12
illA—iBJ|%,

([ §]) < Foliewmri(af ) 48 e ol

4. Inequalities for One Operator

In this section, we present some applications of our results. By setting B = A* in
Theorems 1 and 2, we obtain the following upper bounds for the power 2p of the numerical
radius for p > 1:

A|#
) A1,
w?(A) < 3 2P/ 2P (Az) + , ,
AP +A" ] +[[1AP A" ]
2 7
(A)
w
g max{||4+ a2, |4 - 4% }],
<35l5mw (A" = A)(A+AY)) +
212v 2 2||?
1([[ 1P + 147" + 20 [Re(42)]")
and
2 %2 ||P
w? (A) < % M + g\/zp/zwp(A4) +((A,Bp)
where )
142,
(A, p):

1 e I R Nl
; .
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Now, if we utilize the inequalities from Theorems 3 and 5 for the same choice B = A*,

we have: ) |A|2+|A*|2 ;
w(4) < S| BT 4yl (4p) + k(A p),
where ._9p/2-1_.p ¥\2 42 *\2 2
k(A p) =22 Twr (A7) - A2) ((47) + 42))
and ) . ) .
max{H(A*) —I—AZH S (A%) —AZH },
1
ky(A,p) === x
B R i v e o)
2 ’
and
1 1
w(4) < oo a2 - |+ E\/ml(A,B,p) +ma(A,B,p),
where p " .
mi(A,p) = 22w (|A - AT P|A+ A"
and
max{[|4+A4*|%, |4 - a*|*},
my(A, B, p) =

|la+ar*+ja-a®

" +la+ari-—ja-ar?
2

‘ P

Moreover, we have

w? (A)
ot max{[|L(a, A) ", [M(a, A)]"},
1
< —wP(K(a,A)) +2P~1 x . p
2v+l MJr%isin(Za)(Azf(A*)z) +|cos(20¢)\p||Re(A2)||p
where

K(a, A) = sin(21x)Re<(A*)2)

+i [cosza(A* —A)(A+ A*) +sin2a(A* + A)(A— A*)},

L(x, A) := cos®a|A + A*|* + sin a| A — A*|* + i sin(2) (AZ - (A*)z)

and
M(w, A) := sin? a|A + A*|* + cos® a| A — A*|* + isin(2) (A2 - (A*)Z)
fora € R.
Finally, from (22) we get for B = A* that
w? (A)

FllA =A%),
< 219/17%110? (Re((A*)2> +i(|A|2 _ \A*|Z)> Lorly

AP|a*)2 . o lf
AT 4 ia2—(a0)?)
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5. Conclusions

In this paper, we have used a generalization of the Boas—Bellman inequality, known
as the Mitrinovi¢-Pecari¢-Fink inequality, to find new upper bounds for the 2p-th power
of the numerical radius of off-diagonal 2 x 2 operator matrices. Our results provide more
varied and comprehensive bounds compared to those found in recent papers like [19-21].
Specifically, for the case p = 1, our bounds have different forms, making them unique and
not directly comparable to those in the other papers.

The key innovation in our work is the use of the Mitrinovi¢-Pecari¢-Fink generaliza-
tion, which has not been applied before in this context. This approach has allowed us to
discover new inequalities, especially when the matrix becomes symmetric.

While our results add to the understanding of numerical radius inequalities, they also
open up possibilities for future research. As noted in [5], upper bounds for the numerical
radius can be useful in areas like approximating polynomial solutions or estimating the
numerical radius of the Frobenius companion matrix, as discussed in [17]. These potential
applications go beyond the scope of this paper and could be explored in future studies.

In summary, this work serves as a starting point for further research. We hope that
the methods and results presented here will inspire more studies that continue to explore
power inequalities and their uses in operator theory.
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