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A B S T R A C T

Context: Sugarcane, as an important economic crop, faces challenges such as long breeding cycles, low genetic 
improvement efficiency, and complex breeding operations.
Method: In order to address these challenges and improve the economic benefits of sugarcane breeding, this paper 
proposes an innovative smart sugarcane breeding system driven by artificial intelligence (AI), blockchain and 
digital twin technologies.
Results: The system integrates these technologies within a Human-Cyber-Physical System framework to offer a 
more efficient, secure, and smart strategy for sugarcane breeding. Firstly, AI processes extensive genetic and 
phenotypic data to enable precise prediction and optimization of sugarcane traits, resulting in shortened 
breeding cycles and enhanced efficiency and accuracy in selecting elite sugarcane varieties. Secondly, blockchain 
technology ensures the security and traceability of breeding data, enhancing the reliability and integrity of the 
breeding process. Thirdly, digital twin technology enables the real-time circulation of lifelike representations of 
real-world data among breeding-related workers. The system architecture consists of three layers: a physical 
layer for data collection, a cyber layer responsible for data analysis, storage and circulation managed by AI, 
blockchain and digital twin, and a human layer comprised of breeders and stakeholders. This multi-layered 
approach allows for sophisticated interaction and collaboration between the physical and digital realms, 
enhancing decision-making and breeding outcomes.
Conclusion: Taken together, the system utilizes AI, blockchain, and digital twin technologies to support sugarcane 
breeding, offering a promising solution to overcome the limitations of traditional methods and establish a more 
sustainable and profitable sugarcane breeding system.

1. Introduction

Sugarcane is a major economic crop cultivated in tropical and sub
tropical regions worldwide, serving as the primary source of sugar 
production, accounting for over 70 % of the world’s total sugar output 
(Yadav et al., 2020). It is also a significant crop for energy production 
and the production of by-products such as ethanol and fiber (de Morais 
et al., 2015). In China, approximately 60–70 % of the production costs 
for sugar are spent on sugarcane stalks, the raw material (Xu et al., 
2021). Enhancing the yield and quality of sugarcane, which is mainly 
achieved by the promotion of newly bred elite varieties, is a crucial 

means of increasing economic returns from sugarcane cultivation.
Crop breeding, through selection and cultivation, effectively im

proves the agronomic traits of varieties. It is one of the oldest agricul
tural activities, equivalent to human civilization (Shen et al., 2022), and 
a primary means of increasing crop yield and improving quality. Sug
arcane breeding aims to optimize growth characteristics, enhance yield, 
and biotic and abiotic resistance, meeting the growing global demand 
for sugar and improve the economic benefits of sugarcane cultivation. 
Through breeding, we can develop new varieties with high sugar con
tent, high yield, good ratooning ability, pest and disease resistance, and 
strong adaptability, thereby increasing sugarcane yield and quality, 

* Corresponding authors.
E-mail addresses: xu.yang@mju.edu (X. Yang), queyouxiong@126.com (Y. Que). 

Contents lists available at ScienceDirect

Field Crops Research

journal homepage: www.elsevier.com/locate/fcr

https://doi.org/10.1016/j.fcr.2024.109588
Received 20 July 2024; Received in revised form 12 September 2024; Accepted 12 September 2024  

Field Crops Research 318 (2024) 109588 

Available online 18 September 2024 
0378-4290/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license ( http://creativecommons.org/licenses/by- 
nc/4.0/ ). 

mailto:xu.yang@mju.edu
mailto:queyouxiong@126.com
www.sciencedirect.com/science/journal/03784290
https://www.elsevier.com/locate/fcr
https://doi.org/10.1016/j.fcr.2024.109588
https://doi.org/10.1016/j.fcr.2024.109588
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fcr.2024.109588&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


contributing to the development of sugar production, energy exploita
tion, and other industries. Currently, mainstream sugarcane breeding 
methods primarily consist of two approaches: hybrid breeding and 
molecular breeding (Qi et al., 2022). Hybrid sugarcane breeding pri
marily involves creating genetically heterogeneous breeding pop
ulations by selecting superior parental lines for flowering and 
cross-pollination or artificial pollination, followed by selecting in
dividuals with desired traits. At present, hybrid breeding remains the 
primary means of sugarcane breeding. The rapid development of genetic 
engineering has ushered in the era of molecular breeding. Breeders 
widely utilize technologies such as molecular markers, transgenics, gene 
editing, and genomic selection. They expedite breeding improvements 
and the development of new varieties by identifying and selecting genes 
related to target traits, inserting exogenous genes, and modifying spe
cific portions of genes. Briefly, molecular breeding effectively shortens 
the breeding cycle, enhances the targeting of breeding, and increases the 
diversity of breeding. However, both methods have certain shortcomings: 
Hybrid breeding has reached technical bottlenecks and faces significant 
challenges such as long breeding cycles, low genetic improvement effi
ciency, and substantial time and labor consumption (Jing et al., 2021). 
Although molecular breeding effectively addresses some of the limita
tions in hybrid breeding, it encounters challenges such as high costs, 
complexity, and intricate steps (Zhang et al., 2021). These challenges 
have prompted breeders to seek more efficient and precise breeding 
methods, namely the emerging field of smart breeding in recent years. 
The process is gradually evolving from traditional breeding to modern 
breeding, transitioning from hybrid breeding to molecular breeding, and 
to smart breeding.

Smart breeding is a novel breeding approach based on high- 
throughput data, deeply integrating modern biotechnology and infor
mation technology, to achieve the faster and more efficient selection of 
new crop varieties (Chandra et al., 2024). With rapid technological 
advancements, it is increasingly receiving attention and promotion. 
Notably, the application of advanced technologies such as sensing, ro
botics, remote sensing (RS), artificial intelligence (AI), blockchain 
(Zhang et al., 2020), and digital twin (DT) (Pylianidis et al., 2021) in
jects new vitality and possibilities into smart breeding (see Fig. 1). Smart 
sugarcane breeding, through the integration of high-throughput data 
collection platforms comprising elements such as unmanned aerial 
vehicle (UAV) and a variety of sensors with AI, can precisely handle 
genetic and growth data of sugarcane to predict and optimize its genetic 
characteristics and agricultural traits. Blockchain and DT can ensure the 
secure storage and real-time circulation of data. These technologies 
enable real-time collection, analysis, storage, circulation of data during 
the breeding process, providing more precise and reliable decision 

support. This holds great promise for addressing the challenges of long 
breeding cycles, low improvement efficiency, labor intensiveness, and 
high complexity faced by traditional sugarcane breeding.

Human-Cyber-Physical Systems (H-CPS) are systems that organically 
integrate physical systems, network systems, and human beings (Nunes 
et al., 2018). In such systems, the physical system serves as the platform 
for data collection and task execution, the network system acts as the 
medium for processing, analyzing, and storing data, while humans serve 
as the ultimate decision-makers, transmitting decisions back to the 
physical system to drive device execution (B. Wang et al., 2022). In 
H-CPS, the knowledge base of the network system is collaboratively 
constructed by human beings and the self-learning and cognitive mod
ules of the network system. This knowledge base not only includes 
experiential knowledge provided by humans but also incorporates 
reasoning knowledge learned by the network system itself, which is 
difficult for humans to describe and process (Bousdekis et al., 2020). The 
self-learning and cognitive modules enable the network system to 
continuously improve and optimize itself during operation (Zhou et al., 
2019). H-CPS achieves highly interactive and collaborative relationships 
between humans, networks, and the physical world through intelligent 
perception, data analysis, decision-making, and execution feedback 
loops. This system has been applied in various fields including smart 
manufacturing (B. Wang et al., 2022), intelligent buildings (Li et al., 
2021), and smart transportation (Taylor et al., 2023). In these areas, 
H-CPS has brought improvements such as increased efficiency, 
enhanced safety, and optimized operations. Similarly, H-CPS is poised to 
significantly transform breeding methods, making them more efficient, 
secure, profitable, and smart, just as it has done in these other domains.

The purpose of this paper is to design a more efficient and smart 
method for sugarcane breeding based on smart breeding technology, 
addressing the issues faced by traditional methods and advancing the 
field of sugarcane breeding. Our research method involves a literature 
review combined with the authors’ own research to discuss the new 
developments and achievements in sugarcane breeding technology, 
particularly in smart breeding. Based on this, we propose an efficient 
smart breeding scheme and evaluate this new breeding approach. As a 
result, we firstly envisions a smart sugarcane breeding system based on 
an H-CPS architecture driven by AI, blockchain and DT. The innovation 
lies in the organic integration of the latest modern information tech
nologies with the field of breeding, offering a novel, systematic solution 
for sugarcane breeding. By leveraging AI to process vast amounts of 
breeding data and combining it with blockchain to ensure data security 
and traceability, this system is poised to enhance the efficiency, preci
sion, and reliability of breeding work. Additionally, utilizing an H-CPS 
architecture design endows the system with better human-machine 

Fig. 1. A concept map for smart breeding.
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collaboration capabilities, which can accelerate the development of 
sugarcane breeding and make positive contributions to sugarcane 
cultivation as well as sugar and energy production.

The main contribution of this paper lies in the conception and pro
posal of a smart sugarcane breeding system driven by AI, blockchain, 
and digital twin technologies. Additionally, it is the first to introduce the 
H-CPS architecture into the sugarcane breeding field, providing stronger 
support for human-machine collaboration and ensuring the scientific 
rigor and traceability of breeding decisions.

2. Sugarcane breeding has witnessed the wide application of 
several advanced technologies

2.1. Achievements in traditional breeding

Several studies have applied bioengineering techniques to traditional 
sugarcane breeding. Yang et al. developed a PCR-based diagnostic 
marker to assist in marker-assisted selection of sugarcane varieties 
resistant to leaf scald (Yang et al., 2018). Josefina et al. established a 
whole-genome association to find molecular markers associated with 
yield traits consistent across harvest seasons in breeding populations, 
aiming to improve sugarcane yield and sugar content (Racedo et al., 
2016). Z. Wang et al., 2022 developed a sequencing-based mixed 
segregation strategy for polyploids to screen for candidate genetic 
markers associated with sugarcane leaf blight resistance. Islam et al. 
used genomic selection to predict breeding values, selecting ideal 
germplasm for disease-resistant sugarcane breeding (Islam et al., 2023). 
Laksana et al. discovered a method using CRISPR/Cas9 gene editing to 
reduce lignin content in sugarcane stems (Laksana et al., 2024). The 
promotion and application of techniques such as molecular markers, 
whole-genome association, genomic selection, and gene editing provide 
solid tools for smart breeding, accelerating the transition from tradi
tional breeding to smart breeding.

2.2. Achievements in smart breeding

Smart sugarcane breeding has seen numerous beneficial attempts, 
with corresponding advanced technological solutions proposed for 
various stages of the process, such as breeding data collection, analysis, 
and storage. Zhou et al. utilized a logistic regression model as a decision 
support tool to address early selection stages in sugarcane breeding 
(Zhou et al., 2014). This model selects based on yield components (such 
as straw quantity, straw height, etc.), aiding in identifying genotypes 
that produce high yields during non-replication stages. Brasileiro et al. 
evaluated the application of Artificial Neural Networks (ANN) in sug
arcane family selection (Brasileiro et al., 2015). Results showed that the 
optimal ANN model could successfully classify all genotypes correctly, 
demonstrating the ability of ANN to accurately predict the best plants. 
Hayes et al. employed three different genomic prediction methods, 
namely GBLUP based on genomic data, Genomics SS based on 
single-strand DNA, and BayesR based on Bayesian statistics for genomic 
selection, showing promising results for improving traits such as flow
ering time and pollen viability in sugarcane (Hayes et al., 2021). In 
addition to research on predicting genetic information, researchers have 
also investigated the measurement of sugarcane phenotypic data and 
environmental parameters. Using portable near-infrared spectroscopy 
(Sanseechan et al., 2018), sensors (Garcia et al., 2022) and sugarcane 
plantation mobile robot autonomous navigation systems (Xaud et al., 
2019; Cardoso et al., 2020), it is possible to non-invasively track envi
ronmental changes in sugarcane fields and conduct mapping, moni
toring, and image classification. Combining machine learning 
algorithms with RGB images collected by UAVs (Khuimphukhieo et al., 
2023) or satellite-derived images (Som-ard et al., 2024) to study the 
direct and indirect effects of canopy characteristics, it enables effective 
estimation of sugarcane yield. Furthermore, UAVs equipped with mul
tispectral cameras can accurately predict sugarcane sucrose content 

(Chea et al., 2022; Canata et al., 2024), nitrogen status (Hosseini et al., 
2021), several other parameters such as tiller number, plant height, and 
stem diameter (de Oliveira et al., 2022), and create digital soil maps for 
predicting calcium and magnesium content in sugarcane fields (Arshad, 
2020). Furthermore, research has utilized blockchain to store data 
during sugarcane cultivation and production processes. Deshmukh et al. 
employed blockchain to store data from the sugarcane production pro
cess, bridging the communication gap and enhancing transparency be
tween sugar mills and farmers (Deshmukh et al., 2019). Ekawati et al. 
addressed the problem of tracking the sugarcane supply chain and 
real-time collection of breeding and cultivation data by proposing the 
design of a blockchain-based decision support system for sugar supply 
(Ekawati et al., 2020). Kshetri et al. used blockchain in sugarcane 
cultivation to assist farmers in automating the storage of sugarcane 
planting data in a highly trusted manner (Kshetri et al., 2023).

In summary (see Table 1), advanced technologies such as sensors, 
UAVs, robots, and AI have been widely applied in the field of smart 
sugarcane breeding. Although there have been some examples on 
blockchain solutions in the sugarcane supply chain, the research on how 
to apply blockchain to sugarcane breeding is scarce. Therefore, 
exploring and developing novel solutions that combine blockchain with 
sugarcane breeding are of significant importance. The organic integra
tion of AI, blockchain and DT can lead to more efficient data manage
ment in sugarcane breeding, providing breeders with richer and better 
recommendations.

3. A smart sugarcane breeding system driven by AI, blockchain 
and DT

We envision a smart sugarcane breeding system driven by AI, 
blockchain, and DT (see Fig. 2). As for the H-CPS architecture, it includes 
three layers: (1) Physical Layer: Comprises devices like ground sensors, 
UAVs, robots, and communication devices to collect data from the 
breeding environment. (2) Cyber Layer: Involves cloud servers, 5 G 
networks, blockchain, AI, and DT. Data from the physical layer is pro
cessed here, structuring it for AI algorithms and blockchain storage. AI 
models analyze this data to provide critical insights such as yield pre
diction, disease detection, growth parameter monitoring, phenotype 
prediction, high-quality seed selection, and breeding improvement de
cisions (Zhou et al., 2014; Khuimphukhieo et al., 2023; de Oliveira et al., 
2022; Sharma and Punhani, 2023). Blockchain ensures data security and 
traceability, allowing for model semantics deployment and governance 
via smart contracts (Zhu et al., 2019). Federated meta-learning trains 
both personalized and global breeding models from multiple regions 
(Fallah et al., 2020; Jiang et al., 2019), with data circulating in real-time 
on DT platforms. (3) Human Layer: Breeders contribute additional data 
and expertise to the system, enhancing AI model reliability. They use DT 
to access and utilize stored data for decision-making. This collaboration 
under the H-CPS architecture enhances machine perception and effi
ciency, leveraging both physical and human resources to significantly 
improve breeding efficiency.

The smart sugarcane breeding system addresses complex breeding 
challenges by processing large-scale data. It integrates genotype, 
phenotype, and environmental data, alongside multiple omics, next- 
generation biotechnologies, and information technologies, to analyze 
extensive datasets and generate smart breeding decisions. This system 
rapidly identifies superior hybrid combinations or high-quality parents, 
shortens breeding cycles, improves efficiency, reduces costs, and pro
duces elite sugarcane varieties with desirable traits. The breeding 
workflow under this framework includes four key steps (see Fig. 3): 
collection, analysis, storage, and circulation. The first step involves 
collecting sugarcane genetic resource data, environmental data, and 
growth condition data. The second step utilizes emerging technologies 
such as deep learning (LeCun et al., 2015), reinforcement learning 
(Kaelbling et al., 1996) and large language model (LLM) (Zhao et al., 
2023) for data processing, prediction, and decision-making. The third 
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step leverages blockchain to ensure the secure storage and traceability of 
breeding data. In the final step, employing the DT approach, the data is 
visualized and rendered in a lifelike manner, circulating among various 
stakeholders in breeding-related fields. The following sections will 
sequentially introduce these four aspects in detail and discuss the roles 
of each element in these processes.

3.1. Data Collection

Data collection is a crucial step in sugarcane breeding (see Fig. 4). 
Genotype data provides information about the plant genome, including 
but not limited to genotype, genotype frequency and genetic diversity. 
Collecting genotype data can help assess the genetic background and 
genetic diversity, aiding in the selection of superior germplasm re
sources, thereby improving breeding efficiency and success rate. After 
obtaining high-quality DNA samples (Li et al., 2013), breeders use 

molecular marker to obtain more detailed genotype data (Erlich, 1989; 
Ganal et al., 2009). In addition, genome sequencing can also be used to 
directly obtain DNA, RNA and protein sequence information of plant 
genomes (Shendure et al., 2017). In this process, the incorporation of AI 
can monitor the working status and data output of experimental in
struments and equipment in real-time and automatically identify and 
correct errors or abnormalities in the data, thereby improving the 
quality and accuracy of breeding data. For example, AI algorithms can 
detect PCR deviations and anomalies during the amplification process, 
thereby reducing error introduction and improving data reliability 
(Villarreal-González et al., 2020). Through the above steps and methods, 
genotype data can be effectively collected, providing important genetic 
information and data support for smart sugarcane breeding.

All breeding ultimately needs to be implemented in field population 
testing. The field-testing is also the process of collecting plant phenotype 
data, enabling breeders to accurately measure the traits of sugarcane 

Table 1 
Corresponding technical solutions proposed at different stages of the breeding process.

Process Breeding data Technology

data collection phenotype, environment type sensors (Garcia et al., 2022)
phenotype, environment type portable infrared 

spectrometers (Sanseechan et al., 2018)
phenotype robots (Cardoso et al., 2020)
phenotype, environment type robots (Xaud et al., 2019)
phenotype satellites (Som-ard et al., 2024; Canata et al., 2024)
phenotype UAVs (Khuimphukhieo et al., 2023; Chea et al., 2022; Hosseini et al., 2021; de Oliveira et al., 2022)
environment type UAVs (Arshad, 2020)

data analysis phenotype AI (Zhou et al., 2014; Som-ard et al., 2024; Chea et al., 2022; Canata et al., 2024; Hosseini et al., 2021)
genotype AI (Brasileiro et al., 2015; Hayes et al., 2021)
environment type AI (de Oliveira et al., 2022; Arshad, 2020)

data storage phenotype blockchain (Deshmukh et al., 2019)
phenotype, environment type blockchain (Kshetri et al., 2023)
genotype, phenotype environment type blockchain (Sharma and Punhani, 2023)

Fig. 2. The architecture of a smart sugarcane breeding system driven by AI, blockchain and DT.
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varieties, such as sugar content, height, biomass, disease resistance and 
tolerance, and helping breeders discover the intrinsic relationship be
tween genotype and phenotype and make the wiser breeding decisions 
(Fountas et al., 2022). In breeding work, there is still a large amount of 
phenotype collection work being carried out in the traditional "eye 
measurement, hand touch" manner. Can traditional phenotype mea
surement methods keep up with the pace of biological breeding? The 
answer is optimistic. This requires the introduction of technologies such 
as sensors, UAVs, and agricultural robots. Currently, a series of sensors 
optimized by AI algorithms have been used to achieve real-time, rapid, 
and efficient plant phenotyping (Feng et al., 2021; Lv et al., 2022). 
Sensors can automatically perceive and record relevant growth infor
mation of sugarcane seedlings, such as leaf color and stem height. These 
data can be used to analyze plant growth characteristics and trait per
formance, providing important references for breeding work. In addition 
to the basic sensor system, agricultural robots can serve as practical 

platforms carrying various imaging devices for efficient and accurate 
phenotypic data collection, such as RGB, thermal imaging, multispec
tral, and hyperspectral cameras. Agricultural robots need to be suffi
ciently intelligent to perform complex tasks, such as moving between 
rows, identifying target areas, and avoiding obstacles in the field. 
Therefore, the use of AI technologies, such as YOLO and deep rein
forcement learning (Yan et al., 2021; Ibarz et al., 2021), can help robots 
make autonomous decisions and path planning, learn and optimize 
target detection and obstacle avoidance strategies, accurately locate 
detection areas, and avoid collisions with obstacles. In addition to 
agricultural robots, another popular platform is UAVs. Unlike agricul
tural robots that collect phenotype data in close proximity on the 
ground, UAVs equipped with various imaging devices can perform 
large-scale and efficient data collection from the air. Since sugarcane is 
much higher than that of general crops, some phenotypic data mea
surements (such as plant density and growth trend) require the aerial 

Fig. 3. The detailed workflow of sugarcane breeding using AI, blockchain, and DT.

Fig. 4. Data collection for sugarcane breeding.
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advantages of UAVs. Similarly, AI algorithms can be deployed for UAVs 
to enhance their image recognition capabilities and optimize flight 
routes. The combination of sensors, imaging devices, and platforms such 
as robots and UAVs constitute a high-throughput sugarcane phenotyping 
platform, realizing real-time, large-scale, automated, high-precision, 
high-resolution non-destructive measurement of sugarcane phenotypic 
data.

Moreover, sugarcane has a high demand for water and nutrients, 
including nitrogen, phosphorus and potassium, and the amount of these 
elements in the soil affects the yield and quality of sugarcane. Envi
ronmental factors such as temperature and climate also affect the 
growth of sugarcane. Even in the same variety, sugar content and stem 
height will vary with the environment. Therefore, the collection of 
environmental data is also an indispensable part of breeding work. By 
using various sensor arrays, mapping UAVs, we can promote environ
mental typing and effectively measure and characterize physical and 
environmental variables, draw digital soil maps. This enables us to 
simulate the relationship between crops and the environment and un
lock the genetic variation hidden in potential features (Mir et al., 2019). 
By understanding these environmental impacts, breeders can select and 
develop sugarcane varieties that are more resilient to specific condi
tions, ensuring optimal growth and yield under different environments.

3.2. Data Analysis

Breeding data possess a critical characteristic: accessibility to 
breeders. Ensuring accessibility means relieving breeders from the 
burden of analyzing vast amounts of genetic, phenotypic, and environ
mental data, allowing them to focus on the in-depth exploration of 
analyzed data and the breeding issues themselves. In recent years, with 
the advancement of large-scale datasets, powerful computing capabil
ities, and improved algorithms, AI has made significant strides in crop 
breeding (Khan et al., 2022). Methods like machine learning and deep 
learning can assist breeders in managing large multidimensional data
sets of genotype-phenotype-environment, thereby efficiently selecting 
and cultivating superior, multi-resistant varieties (see Fig. 5). Genotypic 
data typically contain numerous features, some of which may be 
redundant. AI can automatically filter out important data that have a 
significant impact on sugarcane trait using feature selection algorithms. 
Feature selection algorithms evaluate the importance of each feature to 
identify those that significantly affect sugarcane traits, thereby 

improving the accuracy and efficiency of prediction models. With these 
data, predictions of sugarcane trait can be made using well-trained 
models. Furthermore, AI can analyze the genetic regulation networks 
based on genotypic data, helping breeders better understand the genetic 
background and diversity of germplasm resources. By combining 
genotypic and phenotypic data, AI can uncover the intrinsic connec
tions, aiding in identifying key genes and understanding how these 
genes influence phenotype, thereby guiding breeding strategies and 
selecting excellent genotypes. Genetic variation is the basis of genetic 
improvement and one of the main driving forces behind breeding work. 
Deep learning methods can fit the correlation between gene expression 
and regulatory sequences, thereby uncovering various sites that affect 
gene expression, helping breeders understand the genomic variation of 
terminal phenotypes. Breeders can selectively breed new varieties based 
on this understanding, thereby improving and optimizing sugarcane 
traits.

The processing and analysis of phenotypic data form the foundation 
of AI breeding. The ultimate goal of sugarcane breeding is to cultivate 
varieties with high sugar content, strong ratooning, lodging resistance, 
high yield, strong disease resistance, and wide adaptability. Selecting 
seedlings with these characteristics requires the evaluation of pheno
typic data. By collecting spectral features, root system structures, root 
densities, stem structures, and other growth information using physical 
layer devices and combining them with machine learning and deep 
learning algorithms, we can construct prediction models for sugar con
tent, ratooning ability, and lodging resistance. This enables effective 
prediction of large-scale sugarcane phenotypic traits and the selection of 
high-quality seedlings, thereby improving breeding efficiency. In most 
cases, yield is the primary factor considered in crop breeding, and sug
arcane breeding is no exception. By using machine learning and deep 
learning methods to extract, construct, and select features from collected 
image and growth data, features relevant to sugarcane yield can be 
extracted, and yield prediction models can be constructed, enabling 
high-precision prediction and facilitating the selection of high-yield 
sugarcane lines. During sugarcane growth, diseases are one of the 
main factors affecting yield and quality. Some diseases such as smut, 
rust, and leaf scald pose significant challenges to disease control. 
Breeding for disease resistance is a fundamental way to control these 
diseases. Deep learning and target detection algorithms can be used to 
identify diseased plants in sugarcane fields. By deploying these algo
rithms and models to robots and UAVs, efficient disease identification 

Fig. 5. Data analysis for sugarcane breeding.
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can be achieved, enabling breeders to make early decisions and accel
erate the selection process of superior varieties. Of course, during the 
growth of sugarcane, any phenotypic trait is influenced by the envi
ronment. Therefore, we cannot simply judge the quality of varieties 
based on collected phenotypic data. A rigorous approach is to use AI to 
process and analyze environmental data, draw digital soil maps, analyze 
the correlation between environmental data and sugarcane phenotypic 
traits, and reveal the variation patterns of sugarcane phenotypes under 
different environmental conditions, further guiding breeding work.

It is worth noting that sugarcane varieties vary greatly in different 
regions. For example, in high-altitude areas, with increasing tempera
tures, sugarcane tends to grow faster, increase in height, decrease in 
stem diameter, increase in lodging, and increase in humidity, while in 
low-altitude areas, with increasing ultraviolet radiation, sugarcane 
tends to have shorter heights, thicker stem diameters, reduced flower
ing, and decreased lodging. Therefore, a model that performs well in one 
region may perform poorly in another. Therefore, training a global 
breeding model using federated meta-learning is adopted. The global 
breeding model is jointly trained by network centers from different re
gions and can be applied to sugarcane varieties in multiple regions. 
Federated meta-learning trains models collects locally across multiple 
data sources and aggregates model updates on a central server, thereby 
protecting data privacy and enhancing the generalization capability. 
This approach avoids the transmission of raw data to central servers and 
effectively ensures the security of breeding data. Furthermore, a LLM on 
breeding can be trained using federated meta-learning. This model en
ables the interpretation of complex agricultural knowledge in simple 
language, distilling key information from literature so that breeders can 
access the latest knowledge in botany or sugarcane breeding (Tzachor 
et al., 2023). By integrating genotypic, phenotypic, and environmental 
data, AI can provide comprehensive and systematic analysis and pre
diction for sugarcane breeding, providing breeders with scientific and 
accurate decision support and promoting the development of sugarcane 

breeding towards more smart and efficient directions.

3.3. Data Storage

After collecting breeding data, it is essential to record and store the 
data for subsequent tracking, analysis, and decision-making. Traditional 
methods of sugarcane data management relied on manual recording of 
data on paper, which was then transferred to Excel spreadsheets or da
tabases on computers. It required specialized personnel for manage
ment. However, this approach had several drawbacks, especially 
consuming significant time and effort during the data recording and 
input process. Additionally, human errors during data entry could 
compromise the accuracy and integrity of the data. Therefore, intro
ducing a more efficient, accurate, and secure digital recording method 
becomes necessary to address these concerns associated with traditional 
sugarcane data recording methods. The introduction of blockchain 
provides an innovative solution for storing and recording breeding data, 
making the process automated, decentralized, and tamper-proof. This 
enhances the credibility and reliability of the data (Namasudra et al., 
2021), laying a solid foundation for further development and applica
tion of sugarcane breeding. Here, we refer to the blockchain deployed in 
this system architecture as the Sugarcane Breeding Chain (see Fig. 6), as 
it spans the entire sugarcane breeding cycle. It significantly simplifies 
the process of breeders handling and recording breeding data, allowing 
them to focus on analyzing processed, information-rich data during 
breeding. Stakeholders can also easily trace breeding data on the Sug
arcane Breeding Chain.

In terms of the most basic breeding data storage records, sugarcane 
breeding chain can provide a highly secure data storage and trans
mission mechanism to ensure that important data generated during the 
sugarcane breeding process is not tampered with or leaked. During 
breeding, data collected from platforms such as sensors, robots, and 
UAVs are automatically stored in the Sugarcane Breeding Chain via 

Fig. 6. Blockchain structure for sugarcane breeding based on semantics and sharding.
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servers. Due to the decentralized nature of blockchain, breeding data is 
stored on multiple nodes, making it difficult for attackers to modify or 
sabotage, thereby ensuring data integrity and security. Furthermore, 
blockchain records timestamps and detailed information for each 
operation, enabling full traceability of the sugarcane breeding process. 
This aids in tracking the growth and breeding history of sugarcane, 
identifying potential issues and risk factors. Smart contracts are pro
grams on the blockchain that can execute pre-programmed logic without 
third-party intervention (Zheng et al., 2020). In that chain, smart con
tracts can automate contract execution in the breeding process, such as 
automatically distributing breeding outcomes or paying breeders’ re
wards. Through the Sugarcane Breeding Chain, different breeding in
stitutions, farmers, and researchers can upload and share sugarcane 
breeding-related data, accelerating breeding research progress and 
improving breeding efficiency.

Furthermore, we can store the semantic representation of breeding 
models on the Sugarcane Breeding Chain, allowing the models to run 
and process data automatically under the supervision of smart contracts. 
The parameters of sugarcane breeding models trained from massive 
genotype, phenotype, and environmental breeding data are extensive, 
and their model sizes are substantial. As blockchain is not suitable for 
storing very large data, the semantic representation of models needs to 
be compressed and stored on the blockchain to reduce data volume. 
Semantic data models capture the meaning of data attributes and re
lationships, providing a higher-level representation of knowledge (Zhu 
et al., 2019). By introducing semantic features, the intelligence, inter
pretability, and interoperability of the Sugarcane Breeding Chain can be 
enhanced, while reducing storage pressure. To further strengthen the 
scalability, we implement sharding (Zamani et al., 2018), which im
proves the performance and processing capacity of the Sugarcane 
Breeding Chain network. Sharding solves performance bottleneck issues 
caused by handling large volumes of transactions through dividing the 
entire sugarcane chain network into small, independent fragments. This 
method significantly increases parallelism, thus enhancing the 
throughput of the entire network. With the help of semantic data models 
and sharding technology, breeding data from different regions can be 
transformed into semantic representations and stored on different 
shards. Additionally, expert knowledge about sugarcane pedigree re
lationships (a kind of knowledge graph) can be transformed into se
mantic representations and stored on the Sugarcane Breeding Chain. 
Since we adopt a semantic sharding-based blockchain architecture, 
pedigree relationship graphs of sugarcane from different regions can be 
stored on dedicated blockchain shards. AI algorithms related to 
knowledge graphs (Rožanec et al., 2022) are used to merge pedigree 
relationship graphs of sugarcane from different regions, generating a 
more comprehensive and accurate large-scale knowledge graph, and this 
process involves removing redundant, erroneous, and inaccurate graph 
data. This allows breeding experts from different regions to accurately 
query crop knowledge graphs for their own and other regions, facili
tating subsequent breeding research. It is worth noting that the above 
solution is dynamic, meaning that with the addition of pedigree rela
tionship graphs of crops from new regions, the structure of the Sugar
cane Breeding Chain will also dynamically adjust. Similarly, the above 
solution is also applicable to the storage of excellent gene data. Based on 
the semantic sharding-based Sugarcane Breeding Chain architecture, the 
semantics of breeding models from each region can be used to generate 
shards for that region. The shards playing the role of committee mem
bers (selected based on some strategy with higher permissions) aggre
gate the semantic breeding model stored in different regional shards 
(Zhang et al., 2022), forming a global semantic breeding model. Once 
deployed, breeders from each region can directly use the sugarcane 
breeding models and global models of their region on the Sugarcane 
Breeding Chain, and can also request sugarcane breeding models from 
other regions.

3.4. Data Circulation

Recent years, DT has demonstrated remarkable capabilities in 
simulating, analyzing, and visualizing the real world (Liu et al., 2021; 
Liu et al., 2023). It holds promise as a novel way of data circulation, 
offering a fresh perspective and methods for sugarcane breeding work. 
In the Smart Sugarcane Breeding System, DT serves as a 
three-dimensional representation of data, aiming to construct a sugar
cane data circulation system from a multidimensional data visualization 
perspective, supported by technologies such as sensors, robots, UAVs, 
AI, and blockchain. DT utilizes updated data from collection devices, AI 
models, and blockchain to map physical entities in virtual space, thereby 
reflecting the life cycle process of physical entities anywhere and in real 
time (Ding et al., 2019). Physical devices such as sensors, robots, and 
UAVs can collect breeding information about sugarcane, and when 
combined with DT, can become a real-time visualization tool, auto
matically updating data on the physical devices themselves and 
breeding data. Information derived from AI breeding models can also 
circulate on DT, enabling breeders as well as stakeholders to engage in 
human-machine dialogues with the models through DT, thereby 
providing useful insights. Blockchain offers potential unified standards 
and protocols to ensure the security, reliability, and collaborative 
improvement of circulating data generated by DT. In our envisioned 
smart sugarcane breeding system, DT provides monitoring and optimi
zation services for breeders and stakeholders, allowing them to simulate 
their ideas and conduct virtual tests before implementation in the real 
world to determine their impact. This integrated circulation of breeding 
models and multiple information resources results in practical applica
tions. For example (see Fig. 7), breeders or stakeholders can use DT to 
view current growth information of specific sugarcane plants and their 
surrounding environmental condition anywhere and in real time, pre
sented in a lifelike manner, facilitating the revelation of environmental 
impacts and their interactions under controlled genotype effects.

4. Discussion

Compared with traditional breeding, the biggest advantage of this 
smart breeding system is that it can make full use of the feature 
extraction capabilities of AI to achieve rapid and precise selection effects 
that cannot be achieved by manual selection, thus greatly shortening the 
breeding cycle to develop elite sugarcane varieties. In addition, equip
ment such as UAVs and robots can automate breeding work and reduce 
the workload of breeders; while blockchain can automatically store in
formation on the breeding process and provide information traceability, 
which will undoubtedly bring benefits to breeders. It provides unprec
edented convenience, and the real-time and virtual reality features of 
the DT platform can support efficient collaboration between different 
collaborators. Although this study primarily focuses on technologies 
that shorten the breeding cycle, the potential benefits of their long-term 
application in perennial crops like sugarcane are equally promising. 
Smart breeding technologies, particularly AI-driven data analysis and 
digital twin technologies, can accumulate and optimize large amounts of 
data across each generation of breeding, enabling continuous improve
ment over multiple generations. Over time, these technologies can 
enhance the stability and adaptability of sugarcane varieties by identi
fying and preserving optimal genotypes. Moreover, the precise predic
tion and real-time feedback capabilities provided by smart breeding can 
continually optimize breeding strategies throughout the lifecycle of 
perennial crops, ensuring that each generation’s improvements are 
directed towards the best possible outcomes. Therefore, smart breeding 
technologies not only accelerate the breeding process but also hold 
significant potential to enhance the overall performance of crops in 
multi-generational breeding, leading to long-term improvements in 
sugarcane yield and quality.

Despite the significant advantages of this smart sugarcane breeding 
system, we still need to consider some of its challenges. For example, the 
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training of AI models requires a large amount of high-quality data, 
which places higher requirements on the collection and processing ca
pabilities of data collection equipment, while data interoperability and 
collaborative work between different technologies face compatibility 
between different technology platforms. Furthermore, the traditional 
concepts and habits of breeders will also cause the system to encounter 
resistance or even refusion in the promotion process. These require in- 
depth research and resolution in the future. Nowadays, technologies 
such as UAVs, AI, and blockchain are developing rapidly. We have 
confidence that in the coming years, data collection devices such as 
UAVs will collect data more intelligently and accurately, and the 
deployment and implementation of technologies such as AI and block
chain will also become easier in the future.

5. Conclusions

As an important economic crop, optimizing sugarcane breeding is 
crucial for enhancing sugar and energy production. Currently, sugarcane 
breeding mainly utilizes conventional hybridization and molecular 
breeding techniques, however both methods face technical bottlenecks 
and inefficiencies. Smart breeding, promising to overcome challenges 
unresolvable issues, is a novel approach integrating high-throughput 
data, modern biotechnology, and information technology. In the pre
sent study, we envision a new smart sugarcane breeding system aimed at 
addressing the inefficiencies, long cycles, and high complexity observed 
in traditional breeding by precisely processing genetic and growth data, 
predicting and optimizing the genetic traits and agronomic character
istics of sugarcane. We also introduce here a H-CPS to guide the system 
architecture of smart sugarcane breeding, an integrated framework of 
physical systems, network systems, and human decision-makers that 
enables high interaction and collaboration through intelligent sensing, 
data analysis, and execution feedback loops. The system comprises three 
layers: the physical layer, including ground sensors, UAVs, robots, and 
other devices for sensing and collecting breeding information; the cyber 
layer, including cloud servers, AI, blockchain, DT and so on for data 
transmission, processing, storage and circulation; and the human layer, 
consisting of breeders, farmers, and breeding institutions, which provide 
genetic data and breeding expertise and participate in AI model training 
and decision-making.

Taken together, this system provides more accurate and reliable 
decision support for the sugarcane breeding process. It integrates AI, 
blockchain, and DT to enhance efficiency and precision, shorten the 
breeding cycle, reduce costs, and cultivate high-quality sugarcane va
rieties. Nevertheless, in order to fully leverage its advantages, it is 
necessary to further optimize the technical details and continuously 
improve and perfect them in practical applications. We believe that the 
present study can offer new directions and possibilities for sugarcane 
breeding and the broader field of agricultural technology.
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