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Abstract: This review paper critically examines the role of demand response (DR) in energy man-
agement, considering the increasing integration of renewable energy sources (RESs) and the rise in
electric vehicle (EV) adoption. As the energy landscape shifts toward sustainability, recognizing the
synergies and challenges offered by RESs and EVs becomes critical. The study begins by explaining
the notion of demand response, emphasizing its importance in optimizing energy usage and grid
stability. It then investigates the specific characteristics and possible benefits of incorporating RESs
and EVs into DR schemes. This assessment evaluates the effectiveness of DR techniques in leverag-
ing the variability of renewable energy generation and managing the charging patterns of electric
vehicles. Furthermore, it outlines important technological, regulatory, and behavioral impediments
to DR’s mainstream adoption alongside RESs and EVs. By synthesizing current research findings,
this paper provides insights into opportunities for enhancing energy efficiency, lowering greenhouse
gas emissions, and advancing sustainable energy systems through the coordinated implementation
of demand response, renewable energy sources, and electric vehicles.

Keywords: demand response; energy management system; renewable energy sources; electric vehicle

1. Introduction

Energy management (EM) is the monitoring, planning, optimizing, planning, and
energy conservation process used to build an energy-efficient system [1]. Global energy
demand has increased as a result of population growth and increasing urbanization. In re-
cent decades, numerous electromagnetic theories, including sustainable energy, renewable
energy, and green energy, have emerged to address the challenges posed by increasing en-
ergy consumption. The primary goal of the green energy concept has been to minimize the
negative environmental and economic impacts of using non-renewable energy sources [2].
It effectively fulfills the demand for clean energy while mitigating carbon emissions, green-
house gas emissions, and adverse effects on human health [3]. The concept of sustainable
energy was developed to preserve non-renewable energy resources for current and future
generations. Sustainable energy is typically generated by combining energy efficiency with
the use of renewable energy sources [4]. Renewable energy is an appealing concept that
utilizes renewable energy sources (RESs) to meet global energy needs. Tidal, wind, and
solar energy are among the most commonly used RESs [5]. The world’s energy needs are
currently largely satisfied by non-renewable resources like nuclear power, coal, oil, and
natural gas. Despite considerable progress driven by experts to enhance the role of renew-
able energy sources (RESs) in meeting global energy demands, there is growing pressure
on the traditional electromagnetic framework to adopt a hybrid model that integrates both

World Electr. Veh. J. 2024, 15, 412. https://doi.org/10.3390/wevj15090412 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj15090412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0001-8596-9811
https://orcid.org/0000-0002-2413-8421
https://orcid.org/0000-0002-5933-6380
https://doi.org/10.3390/wevj15090412
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj15090412?type=check_update&version=1


World Electr. Veh. J. 2024, 15, 412 2 of 26

renewable and non-renewable energy sources. While modernizing distribution systems
into smart grids that efficiently monitor and manage interactions among consumers and
utility companies [6], the shift to hybrid energy generation still demands additional en-
hancements. As a result, the smart grid concept accommodates distributed energy storage,
renewable energy generation, and other related technologies [5].

A major challenge currently facing the electrical power system is integrating the un-
predictable nature of renewable energy sources (RESs) while maintaining system reliability
amidst rapid and widespread electrification. Demand response (DR) has garnered signifi-
cant attention as a potential solution to these challenges. DR programs seek to encourage
customers to adjust their energy consumption in response to factors such as changing prices
or incentives. Over the past decade, demand-side management (DSM) solutions have been
developed to promote energy-saving behaviors and reduce customer energy costs [7]. The
majority of electricity users are used to paying flat rates that do not account for the varying
expenses associated with producing and distributing electricity. Demand response (DR)
tariffs or programs offer incentives to encourage reduced electricity consumption during
peak pricing periods or when system stability is at risk due to these fluctuations [8]. These
programs aim to encourage end users to decrease their energy consumption when market
prices increase or grid reliability is threatened. The two categories of DR techniques are
comprised of both price-based and incentive-based strategies.

• Real-time pricing (RTP) gives clients time-varying rates that illustrate the value and
cost of power over various time periods, TOU tariffs, and critical-peak pricing (CPP)
periods. When electricity rates are high, customers who are aware of this tendency
consume less of it.

• Participating clients are rewarded via incentive-based DR systems for reducing their
loads during certain times when the program sponsor requests it, which is usually
when there is a grid reliability issue or when power prices are high.

RESs have a high penetration in the scenario of today’s power system; utilizing the
available energy is necessary to uplift the insufficient power requirement in the system. The
RES is disclosed for its authenticity, sustainability, and reliability; having these features, the
incorporation of renewable resources has sparked widespread interest. The gap between
supply and demand should be as small as is practical, though. DR involves bridging
the gap between electricity supply and demand. In a system with dynamic pricing, the
ability of utilities and customers to manage their energy consumption is essential. The DR
procedure can be finished while the loads are being managed at the distribution end [9].

Current discussions among relevant authorities encompass various concepts associ-
ated with demand response (DR) programs, renewable energy sources (RESs), and electric
vehicles (EVs), focusing on electrical sourcing, storage mechanisms, and the development
of efficient planning to achieve a diverse and optimal electromagnetic (EM) approach [10].
Table 1 outlines the advantages of DR programs.

Table 1. The benefits of DR implementation.

Environment Utilities Consumers

Decreased greenhouse gas emissions. Improvement of system reliability. Improvement of lifestyle.
Protection of the environment. Reducing the cost of electricity production. Improvement of service quality.

Reduction in resource consumption. Increasing system efficiency. Reduction in electricity bills.
Reduction in environmental degradation. Reduction of operational expenses. Enhancement of electricity supply to meet demand.

Impact statement: Energy management through DR has been widely studied, including
the influence of renewable energy sources on energy management. This approach has
emerged as a viable strategy for improving efficiency and reducing pollution. Many
different DR approaches have been used in the literatures for energy management. RTP-
based DR approaches in VPP are not often utilized in such studies. As a result, the used
of RTP-based DR for EM provides a broad potential for future study. In addition, electric
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vehicles as an electrical storage system or source have become a hot topic. On the other
side, VPP and MG have extensive research development with demand response.

Contribution: In order to pique readers’ interest, this study reviews the use of the
DR approach for EM on most of the recent works. Additionally shown is the system’s
integration of RESs and EVs as well as the use of DR in VPP, MG, and other areas. Utilization
of MILP and MINLP, a stochastic programming technique, is also shown in one section.

2. Demand Response
2.1. Price-Based DR

A. Time of Use
TOU pricing’s major objective is to retain distinct fixed charges for the consumption of

power at different times during the day or week [11]. The typical energy market scenario
may be enhanced with TOU pricing, social welfare, or imbalance cost considerations as a
price-changing rate system based on daily energy use that is unaffected by daily variations
in supplier costs [12,13]. The peak rate, off-peak, and, possibly, shoulder-peak rates for
TOU schemes can be separated across a utility-defined time period. Clients are urged to
lower their load during peak demand hours by means of TOU pricing plans, which charge
very expensive fees during peak demand hours and offer customers inexpensive charges
during off-peak demand periods. However, the effectiveness of such a tariff is limited
because consumers do not receive incentives in response to a decrease in load. Figure 1
shows the different types of DR programs.
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B. Critical Peak Pricing
Critical peak pricing (CPP) and time-of-use (TOU) methods are similar in their ap-

proach to setting prices for different times of the day. However, CPP introduces a dynamic
rate that allows for short-term, event-based pricing during periods of high demand or other
costly system conditions [14]. Unexpected demand shifts brought on by systemic factors
such as reserve shortages and bad weather are addressed by the CPP tariff. When applied
to flat rates or time-of-use (TOU) rates, the result is a high rate [15]. Both the total number
of required days annually and the number of time periods that the CPP rate is in effect are
specified in the pertinent contracts. Alternatively, the tool starts a few minutes or hours
prior to the CPP rate being implemented and notifies users in real time of a CPP occurrence.
There are two more CPP categories: extreme-day CPP and extreme-day price. The CPP
rates for peak and off-peak days are exclusive to the most extreme day [16]. The extreme
day CPP uses flat rates on all other days. Extreme-day rates, on the other hand, charge
hefty fees for energy use that is active around-the-clock.

C. Real-time pricing
Real-time pricing (RTP) enables energy providers to dynamically adjust energy consump-

tion prices, with users receiving advance notifications before each pricing interval [17–19]. In
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RTP schemes, fluctuations in energy market pricing, zonal costs, or locational costs directly
impact end users [20–22]. Effective transmission of information between energy suppliers
and users is essential for the successful operation of RTP systems. The necessity for real-time
communication capabilities within energy management systems (EMSs) at user sites poses
a significant challenge during RTP scheme implementation [23]. The majority of the infor-
mation flow between energy sources and EMSs involves high computational complexity,
necessitating substantial bandwidth requirements, which can impede system efficiency. In
day-ahead RTP (DA-RTP) schemes, users receive advance notifications of predicted real-time
prices for the following day and are billed accordingly for their consumption [24].

2.2. Incentive-Based DR

A. Direct Load Control (DLC)
Different types of loads such as lighting, electrical pumps, air conditioners, electrical

heaters etc., which are a common residential load, can be directly regulated with a DLC
technique, which is preferable to the utilities [25]. Knowing this, the DLC schemes are
typically favored for large numbers of residential subscribers [26]. Economic benefit and
dependability being the top priorities for every operation, the DLC events might also be
triggered [27]. Typically, these systems outline the quantity and duration of interruptions
to fulfill end-user expectations adequately and maintain customer satisfaction without
compromise [28]. The end user receives rewards or reductions on their electricity bill in
exchange for signing up for the DLC system, as well as receiving some reimbursement
for additional costs [29]. Because the utility manages these services, the end user is not
informed in advance of any problems.

B. Curtailable Load Programs
During peak hours, consumers are often requested to turn off some of their loads

according to system requirement and they are given incentives for their load reduction
or even for interrupting their normal power-consumption pattern [30]. Curtailable load
schemes benefit both medium and large consumers. These schemes are designed for such
consumers, and, similar to the DLC program, curtailable load contracts should specify
the maximum number and duration of calls. Given that these initiatives are required,
consumers who fail to react to DR occurrences risk penalties. In reaction to problems with
reliability, utilities may contact customers, but load reductions may also be sold on the
market [31].

C. Emergency DR Program
Market-based emergency demand response (DR) programs can be seen as a com-

bination of curtailable load and direct load control (DLC) programs, as they incentivize
consumers to decrease energy consumption during peak periods. Customers have the op-
tion to decrease their loads to avoid predetermined penalties. In [32], the authors proposed
an event-driven DR program scheme, assessing the advantages of adjusting set-points
for home electric water heaters. By implementing DR based on a pre-defined table of
operations specifying locations and required electricity amounts, potential critical inci-
dents are averted. However, real-world instances have revealed that excessive shedding
under emergency DR programs may lead to unforeseen power oscillations, complicating
sequential generation control [33].

D. Capacity Market Programs
The capacity market program (CMP) is open to consumers who can reduce the load on

alternative generation or distribution resources by a predetermined amount [34]. Customers
that take part in a CMP often receive a day’s notice to cut back on their energy use, and
they get punished if they do not significantly contribute to the load reduction [35]. It is
imperative for participants to exhibit that they are able to attain minimal load reduction
with assured rewards, regardless of the necessity of limiting their usage.

E. Demand Bidding Programs
Users can actively participate in the energy market by posting load-reduction bids

using demand-side bidding [36]. Small customers can take part in the bidding process
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indirectly through a third party, while large consumers can participate in direct bidding
and utilize cutting-edge load management strategies to buy and sell products on the market
directly [37]. Demand-side participants are also permitted to participate in the markets for
capacity and auxiliary services, providing a range of system solutions services over a range
of time periods, as mentioned in [38,39].

F. Day-Ahead Demand Response
This involves planning and scheduling demand-response events a day in advance

based on predictions of grid conditions, weather, and electricity prices. Consumers or
automated systems receive signals or prices a day before the event, allowing them to plan
and adjust their consumption accordingly. The paper [40] explores combining RESs and
coal-fired power units with carbon capture schemes. Various DR programs and hydropower
plants are used strategically to enhance power system flexibility. The day-ahead (DA)
operation planning uses a market-clearing framework, modeled as a risk-constrained,
two-objective, stochastic mixed-integer linear programming problem.

Overall, integrating DR options improves performance by cutting costs, emissions, and
boosting revenue. This framework addresses RES and demand uncertainties using a hidden
Markovian process (HMP) technique. An enhanced augmented ε-constraint method aims
to minimize operational costs and CO2 emissions. In [41], the manuscript introduces the
GOA-SNN strategy for day-ahead energy management of hybrid renewable energy systems
with DR. Combining PV, diesel generator, and battery systems, the strategy leverages the
Gazelle Optimization Algorithm (GOA) and Spiking Neural Network (SNN) to enhance
outcomes for consumers and utility providers. It minimizes human intervention and
uses bi-directional communication, focusing on off-grid systems. The strategy optimizes
scheduling and incentives to maximize HRES operation over 24 h, using GOA for resource
scheduling and SNN for demand prediction. Lower electricity prices are used to influence
consumer behavior, identifying optimal discount times to improve energy management.

G. Load Side Management
This refers to the techniques and strategies employed to control and manage the

consumption of electricity at the consumer side (i.e., homes, businesses, industries). Load
side management aims to optimize energy usage, reduce costs, and shift loads to off-peak
times to alleviate stress on the grid. Energy communities are vital for the sustainable energy
transition by engaging end users actively. Many trials falter due to unrealistic expectations
and unpredictable energy-demand behaviors. In [42], the paper analyzes residential load
profiles and consumer surveys to refine DSM strategies. It validates appliance behavior
for high and flexible loads in three scenarios and uses a genetic algorithm to optimize
demand and load profiles with time-variable tariffs. The findings reveal that shiftable
appliances can reduce peak load by up to 29%, increase renewable self-consumption, and
cut energy bills by 9%. In [43], the study tackles the increasing cost of grid electricity
caused by the widening demand-supply gap by creating a hybrid ant colony optimization
and genetic algorithm. The algorithm improves demand-side management and supports
sustainable energy use. It cuts community peak load demand by 35.4% and reduces costs
by 33.67%, outperforming traditional and mutated ACO methods in peak load, total cost,
peak-to-average ratio, and waiting time.

H. Load Shifting
Load shifting is a demand response strategy where electricity usage is shifted from

peak periods (when demand is high and electricity is expensive) to off-peak periods (when
demand is low and electricity is cheaper). This helps in flattening the demand curve
and reducing peak loads on the grid. In [44], the research introduces a hybrid DSM
technique for managing generation costs and emissions in a low-voltage MG system, using
TOU pricing. In Table 2, the author compares the proposed optimization technique with
various algorithms recently used in the literature to evaluate ECD and CEEDPPF for the
test system and finds that the proposed CSAJAYA algorithm delivers the best results
with superior solution quality. Here, the author compares the proposed optimization
technique with various algorithms recently used in the literature to evaluate ECD and
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CEEDPPF for the test system and finds that the proposed CSAJAYA algorithm delivers the
best results with superior solution quality. Table 2 highlights the effectiveness of various
optimization algorithms in managing economic and environmental costs in a power system
with renewable energy integration. The CSAJAYA with DSM algorithm emerges as the
most efficient, offering the lowest costs in both ECD and CEED metrics.

Table 2. Comparison of ECD and CEEDPPF metrics for a 5-unit test system across different algo-
rithms [44].

Sl. No Algorithms ECD with RES ($) CEED with RES ($)

1 GA 103,625.2777 120,305.9871
2 PSO 103,474.3922 120,218.7259
3 DE 103,600.8322 120,293.9634
4 SCA 103,477.1104 120,224.3862
5 TLBO 103,478.823 120,254.9188
6 GWO 103,486.5133 120,225.3156
7 MGWO 103,482.164 120,221.5939
8 WOA 103,732.5368 120,600.9558
9 MWOA 103,662.4691 120,464.7106

10 CSA 103,469.3322 120,219.0719
11 MGWOSCACSA 103,468.5678 120,213.5
12 CSAJAYA 103,468 119,807
13 CSAJAYA with DSM 103,107 119,334

The approach reduces generation costs by 10–13% with 30–40% customer participation
and balances cost and emissions more effectively than existing methods, as confirmed by
statistical analysis and comparisons with prior studies. The paper [45] optimizes energy
costs and resource use in home energy management by enhancing participation in DR
programs and renewable electricity source, focusing on load shifting and scheduling
constraints. Using a genetic algorithm, it reduces costs by up to 24.3% for individual
households and 11.8% for a community of 20 homes, with savings of 12.67 EUR and
31.78 EUR, respectively. Community scheduling provides cost reductions of 1.5–26.8%
compared to individual scheduling.

I. Peak Shaving
Peak shaving involves reducing electricity consumption during peak demand periods

to lower the peak demand level. This can be done through energy storage, distributed
generation, or adjusting the operation of certain appliances or industrial processes. Peak
shaving helps utilities avoid the need for additional power generation and reduces the
overall cost of electricity supply. In [46], the study aims to reduce peak grid demand
while ensuring comfort by using an energy-efficient solar PV and battery storage system
with a rule-based peak-shaving strategy. Optimized with a genetic algorithm, the strategy
achieves energy consumption reductions of 19.02% to 20.9% and peak demand reductions
of 33.1% to 49.82%. It also maintains the battery’s state-of-charge at 50% by the end of each
day, offering flexible daily management. Table 3 shows vademand response types.

Table 3. Types of demand response programs.

Type Description Example

Time-Based Rates Consumers adjust their energy use based on price signals
that vary by time. Time-of-Use pricing, Real-Time Pricing

Incentive-Based Programs Consumers receive financial incentives to reduce or shift
their energy use during peak periods. Direct Load Control, Demand Bidding

Ancillary Services Demand response resources are used to provide grid
support services, such as frequency regulation. Frequency Regulation, Spinning Reserve

Behavioral Programs Consumers receive feedback and insights on their energy
consumption to encourage voluntary reductions. Home Energy Reports, Energy Apps
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3. Energy Management

As delineated in [47], the objective of an energy management system (EMS) is to
integrate renewable energy sources and distribute diverse energy resources to users with
optimal efficiency, thereby guaranteeing system reliability, security, and safety. According
to [48], an EMS makes it possible to monitor, manage, optimize, and regulate every facility
related to generation, distribution, transmission, and consumption. Thus, taking opera-
tional limits into account, the main goal of an EMS is to create a cost-effective and efficient
balance between supply and demand.

Each residential client is considered as a smart home EMS in [49], where the author
focuses on real-time two-way interactions between a utility provider and several customers.
For home EMSs, in [50], the study proposes an hour-ahead DR algorithm. To address the un-
certainty in future pricing, an artificial neural network-based steady price prediction model
is offered. In [51] the study outlines a day-ahead EMS for reducing operation expenses and
improving dependability of a MG while accounting for several difficulties for maintaining
thermal and electrical. In order to establish an energy management (EM) technique with
demand response (DR) program and hydrogen storage, researchers in [52] build a program
logic controller (PLC). In [53], an intelligent park microgrid (MG) is modeled, which inte-
grates solar power, a combined cooling, heating, and power system, energy storage system
(ESS), and responsive loads to optimize planning utilizing price-based demand response
(DR). Furthermore, in [54], the study investigates stochastic EM in a MG utilizing RESs
(solar, wind, and tidal energy) with a disaster recovery plan and storage. In [55], an issue
covered is the operation of networked MGs. In order to ensure cost-effective operation,
an incremental DR program is taken into consideration in EM. An independence perfor-
mance index (IPI) for networked MGs to help cooperative multi-objective optimization and
reduce energy transfer to the primary grid is presented in [56]. In [57], a novel demand
response (DR) strategy utilizing multi-agent deep reinforcement learning is put forward
for managing the energy of discrete industrial systems. Meanwhile, [58] proposes a collab-
orative framework designed to incorporate a targeted DR program with an incentive-based
model and a reconfiguration approach into the day-ahead energy management (EM) of
microgrids (MGs).

In [59], the research focuses on integrating a HEMS with a smart thermostat, using a
MILP model for day-ahead load scheduling. The goal is to improve photovoltaic (PV) self-
consumption and achieve cost savings. To efficiently manage refrigerant air conditioning
while ensuring thermal comfort, the thermostat is designed using fuzzy logic. For the DR
of multi-thermal-zone constructions, [60] offers the ideal method for controlling building
energy in connection to a smart electrical grid. The best energy hub (EH) scheduling is
suggested in [61] using a multi-objective decision-making approach. Pollution, power
outages, average EH reserve, and total EH cost is all considered in the proposed model.
In [62], interruptible/curtailable service DR software is suggested to assist energy customers
in reevaluating their patterns of energy usage based on incentive and punishment measures.
To reduce energy consumption in IoT-enabled homes, the author developed a method
utilizing the wind-driven bacterial foraging algorithm (WBFA) from [63]. This method
helps lower the peak-to-average ratio (PAR), reduce electricity costs, and enhance user
comfort. Taking on the issues of energy management (EM) for microgrids (MG), a three-
layer multi-agent system model that incorporates demand response (DR) and energy
storage systems (ESS) is adapted to actual Chinese circumstances in [64]. Furthermore,
in [65], in order to provide more realistic rewards, an energy management system (EMS)
is integrated with an incentive-based DR program and creates a consumer cost function.
In order to represent MG scheduling and VPP EM issues simultaneously, a hierarchical
model is given in [66]. In [67], the article offers a COVID-19 based optimization approach
to manage energy in a power system to increase stability and renewable energy penetration.
In [68], the paper aims to develop a strategy for managing distribution feeders to implement
emergency demand response (EDR) during overload and contingency situations. The
proposed approach in the paper focuses on managing smart home appliances and EVs,
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taking into account demand rebound and consumer convenience. The strategy is validated
through simulations, showing its effectiveness in reducing network stress, minimizing
congestion, and maintaining consumer comfort during demand-response events. In [69],
the study included considerations for the energy market price, pricing offered by sources
of distributed generation (DG), the presence of EVs on the grid, and responsive loads
for EM. In [70], a method for regulating energy hubs in the commercial, industrial, and
residential domains while taking demand response (DR) activities into account is presented.
The model follows the limits of AC optimal power flow and integrates network design
to prevent inappropriate power transactions. In [71], a home energy management system
(HEMS) that balances distributed energy supplies and load demand while accounting for
customer satisfaction, utility prices, and distribution transformer quality is recommended.
In [72], a novel self-scheduling approach for HEMSs using a linear discomfort index (DI)
that considers end-user preferences in scheduling home appliances is presented. In [73],
a HEMS technique is recommended for coordinating household load demand, including
electric vehicle (EV) battery activities, in residences without renewable energy source
(RES) or energy storage system (ESS) integration. In [74], an integrated optimal energy
management (EM) strategy for an AC microgrid (MG) connected to the grid is discussed,
aiming to minimize operating costs and reduce emissions. A long-term MG planning
optimization approach that considers consumer comfort is introduced in [75]. In two stages,
the proposed model employs the endogenous Stackelberg leader–follower relationships;
interactions between the MG operator and responsive load aggregators are handled first,
followed by aggregator–customer exchanges. This gives a practical methodology for
improving the precision of investment appraisals for DR-aided energy systems. The
comparison of EMSs using different techniques is summarized in Table 4. Table 5 gives a
comparison of literature on EMS.

Table 4. Key technologies in demand response.

Technology Role in Demand Response

Smart Meters Provide real-time data on energy consumption and enable dynamic pricing.
Advanced Metering Infrastructure (AMI) Facilitates communication between utilities and consumers.

Home Energy Management Systems (HEMS) Allow consumers to automate and optimize energy usage.
Distributed Energy Resources (DERs) Enable consumers to produce and store energy locally.

Table 5. Comparison of the literature on EMS.

Ref Types Solar Wind ESS EV DR Uncertainty MG Approach

49 EMS No No Yes No Yes No No Distributed Real Time Algorithm
50 HEMS No No No No Yes No No ANN
51 EMS Yes Yes Yes No Yes Yes Yes PSO and MOPSO
52 EMS Yes Yes Yes Yes Assumed No FLC and PLC Controller
53 EMS Yes No Yes Yes Yes No Yes GA
54 EMS Yes Yes Yes No Yes Yes Yes Augmented ε-constraint
55 EMS Yes No Yes No Yes Yes Yes MILP
56 EMS Yes Yes No No Yes Yes Yes Compromised Program
57 EMS No No No No Yes No No MADDPG
58 EMS Yes Yes No No Yes Yes Yes PSO
59 HEMS Yes No Yes Yes Yes No No MILP
60 EMS No No No No Yes No No PSO
61 EMS Yes Yes Yes No Yes Yes No Lexicography Optimization
62 EMS Yes No Yes No Yes Yes No DDFR
63 EMS No No No No Yes No No WBFA
64 EMS Yes Yes Yes No Yes No Yes ACPSO
65 EMS Yes Yes Yes No Yes No Yes EMS-WOA
66 EMS Yes Yes Yes Yes Yes Yes No MILP
67 EMS Yes Yes Yes Yes Yes No Yes MIQCP
68 EMS Yes Yes No Yes Yes Yes No MIP
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Table 5. Cont.

Ref Types Solar Wind ESS EV DR Uncertainty MG Approach

69 EMS Yes Yes Yes Yes Yes Yes No MILP
70 HEMS Yes No Yes Yes Yes No No DR Optimization
71 EMS Yes Yes Yes Yes Yes No Yes ICDSMMCM
72 HEMS No No Yes Yes Yes No No MILP
73 HEMS No No Yes Yes No No No HEMS
74 EMS Yes Yes Yes No Yes Yes Yes PSO

3.1. Centralized EMS

The centralized energy management system (EMS) comprises a singular central con-
troller, a robust computer system, and a secure communication network. This architecture
oversees energy consumption regulation. The central controller, serving as either a utility
or aggregator, collects data from all nodes, including distributed energy resource (DER)
energy generation, load and consumer energy consumption patterns, meteorological data,
and relevant market participant information. These data are utilized to execute an optimiza-
tion program, ensuring goal achievement and efficient system operation. This centralized
control system offers the best overall performance, but it also has significant drawbacks.
This control system is less suitable for real-time communication requirements because all
information is received and managed in one location, especially if a sizable amount of
assets need to be managed [76].

3.2. Decentralized EMS

Peer-to-peer communication and autonomous control abilities are features of the dis-
tributed processing system of the decentralized EMS design. By enhancing expandability,
permitting greater operational flexibility, and preventing single-point failure, the decentral-
ized EMS architecture thereby overcomes the shortcomings of the centralized architecture
by preventing single-point failure in [76].

3.3. Hierarchical EMS

A hierarchical architecture divides the system into several levels of control, each with a
unique set of control objectives as mentioned in [77]. The norm calls for two- or three-level
systems. Information is exclusively transferred between units at nearby levels; there is no
information exchange between units at the same level. Supervisory control, optimization
control, and execution control are the three basic EMS hierarchy levels. Sublevels at each
level are also a possibility, depending on how the system is described.

4. EV Charging Scheme

The charging behavior of EVs is optimized by optimizing the overall grid stability
and renewable energy availability, mentioned in [78]. To combat the possibility of not
charging to the specified SOC as well as the percentage of interruption, a scheduling-
driven algorithm is used to determine the chargeability of EVs with DR in [79]. To give
EV customers advice on how to charge with the least amount of volatility and expense, an
extensive communication framework is presented in [80]. In [81], a dynamic differential
game model is formulated, utilizing time-of-use (TOU) pricing from the power grid and
electric vehicle (EV) charging capacity. The objective is to mitigate peak-to-valley differences
in the power grid and reduce EV charging costs. In [82], an application of real-time pricing
for demand response (DR), aiming to increase EV charging participation while minimizing
electricity expenditures, is introduced. In [83], the maximum increment in locational
marginal price for two demand-side management (DSM) programs, load shifting, and
demand bid price responsiveness, during evening charging scenarios, is reduced from 9%
to 5% compared to the base-case scenario. In [84], it discusses the development of price-
based and incentive-based DR scenarios for corporate EV fleets, along with optimization
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methods to improve EV charging schedules. Table 6 presents details on various types of
plug-in electric vehicles (PEVs), while Figure 2 illustrates the state-of-charge (SOC) and
demand characteristics of PEVs over time. Figure 3 depicts EV charging scheme.

Table 6. Popular PEV brands [23].

Brand Capacity (kWh) Percentage (%) Pch-Max (KW)

Nissan Leaf 40 25.52 11.5
Tesla Model S 100 21.81 17.2
Tesla Model X 100 18.64 17.2
Renault Zoe 41 15.00 20

Alliance other PEV 25 19.03 12.5
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The DR-based EV charging optimization approach is also used in [85], where a multi-
objective charge-discharge model of EVs is built and real-time energy pricing is studied.
In [86], the paper proposes an ideal EV control model with DR that takes into consideration
the current price of power. The active demand program management and EV charging
control are handled by a multi-agent system that is intelligent and decentralized, and the
EV charging system is properly regulated to support system voltage stability [87]. In [88],
the study presents algorithms that anticipate the aggregation of EV charging and an EV
model considering EV charging characteristics. These algorithms are then integrated into
the multi-agent system.
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5. DR in the Presence of Renewable Energy Source

Renewable energy sources (RESs) have been increasingly integrated into the power
grid, achieving substantial penetration levels in [89]. Large-scale electricity generation from
various RESs, including hydroelectric, solar, wind, tidal, geothermal, and biomass energy, is
pivotal in diminishing the dependency on traditional fossil fuels for energy production in [90].

Solar energy is currently the top source for an environmentally clean, secure, and
reliable power source in [91]. A small portion of this enormous source is what they are
using. Wind energy is a viable form of renewable energy in [92]. The key advantage is
that this energy usage works even when the weather is unfavorable. The position of the
wind turbine is critical for achieving maximum efficiency because it boosts the system’s
effectiveness. Rapid water flow is used to generate hydropower. Any other traditional
sources of energy can be replaced by it. Its application is limited due to its availability
in various places. There exist various opportunities for harnessing the potential of water
flow. Tidal energy is derived from the conversion of water movement into electrical
energy. Geothermal energy exploits the heat stored beneath the Earth’s surface, providing
a renewable and environmentally clean energy source. Energy from living organisms is
used to produce biomass. The sun’s energy is stored as a chemical molecule in biomass.
This energy is released during a chemical process.

However, the continuous growth of power also leads to the requirement of developing
these technologies. RES has a huge impact in the upstream as well as in individual
residential homes. End users not only buy power from the grid but also have the potential
of selling their power produced to the grid through smart grid technology. Renewable
resources are also termed as DGs. Several DGs are combined and are capable of forming a
MG as well as a VPP [93]. Proper planning of DGs is an important aspect for the power
provider company and reducing the planning cost might also be done using DR. There are
a number of uncertainties to be considered for the renewable resources due to the varying
random input parameters. A power smoothing service must be provided to challenge the
stochastic nature, which can be performed using DR and EV in [94].

DR in Virtual Power Plant

A new approach to industrial virtual power plants (IVPP) programming considers the
coexistence of EVs and DR initiatives. In order to increase system profitability, improve grid
dependability during peak load periods, and lessen load shedding in industrial clusters,
an innovative solution is offered for industrial virtual power plants (IVPPs) to optimize
energy management [95]. Figure 4 shows a simple representation of VPP.World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 12 of 27  
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Electric vehicles (EVs) that are available in parking lots are used in tandem with
demand response (DR) loads in this optimization. With the aim of optimizing IVPP revenue,
the objective function is developed for DER short-term production planning in conjunction
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with EV integration and DR projects. The impact of a VPP that integrates resources from
EVs, DR, and WPPs on the energy market is assessed. The stochastic multi-period game
models for day-ahead (DA) power markets and the concept of oligopolistic competition are
described [96]. These models employ techniques for generating and reducing scenarios to
handle uncertainties in wind speeds and incorporate a penalty system for any discrepancies
between the WPP’s actual output and the agreed-upon quantities. In [97], a stochastic
chance-constrained planning approach is employed to create a multi-objective optimization
model for scheduling VPPs. This model evaluates the cost of implementing demand
response (DR) by analyzing the variation in system revenue. It integrates conventional
power plants with a VPP composed of a fleet of electric vehicles (EVs), a wind power
plant, and a solar power plant. The VPP’s operations are guided by a stochastic scheduling
model that accounts for uncertainty through three objective functions. Furthermore, a
three-stage hybrid intelligent solution is proposed, integrating the entropy weight method,
fuzzy satisfaction theory, and particle swarm optimization algorithm to tackle the problem.
Given an example from Table 7, in a VPP with RESs, the following scenario illustrates DR
throughout the day:

• 00:00: Total demand is 50 MW (30 MW renewable, 20 MW non-renewable). No DR
adjustment, net demand is 50 MW.

• 06:00: Demand rises to 70 MW (40 MW renewable, 30 MW non-renewable). DR reduces
demand by 10 MW, net demand is 60 MW.

• 12:00: Peak demand is 120 MW (80 MW renewable, 40 MW non-renewable). DR reduces
demand by 30 MW, net demand is 90 MW.

• 18:00: Demand drops to 90 MW (60 MW renewable, 30 MW non-renewable). DR reduces
demand by 10 MW, net demand is 80 MW.

• 24:00: Demand is 60 MW (35 MW renewable, 25 MW non-renewable). No DR adjustment,
net demand is 60 MW.

Table 7. DR interacts with renewable energy sources within a VPP example.

Time Total Demand
(MW)

Renewable
Generation (MW)

Non-Renewable
Generation (MW)

Demand
Response (MW)

Net Demand
(MW)

00:00 50 30 20 0 50
06:00 70 40 30 −10 60
12:00 120 80 40 −30 90
18:00 90 60 30 −10 80
24:00 60 35 25 0 60

DR adjustments help optimize renewable energy use and maintain grid stability.
As detailed in [98], the virtual power plant (VPP) concept is introduced to streamline

the integration and use of distributed energy resources (DERs). The demand response (DR)
model applied focuses on price-based DR for common loads and incentives. To improve the
VPP’s profitability, the issue is tackled using a mixed-integer linear programming (MILP)
approach. In [99], risks associated with such integration are investigated and an integrated
approach is proposed to mitigate them by making use of FACTS devices. In [100], the
presented work tackles the same issue, but develops a different approach to mitigate the
risk, i.e., by developing financial instruments as incentives and punishment.

6. DR with Mixed-Integer Programming

To investigate the effects of DR on shared EV planning operations, a mixed-integer
programming model including DR operations has been proposed in [101]. The model
comprises two stages, the first of which involves setting up the charging station and the
second of which involves transporting the car. In order to explore and approximate supply-
side and demand-side uncertainty into manageable forms, additional techniques are used,
including entropy knowledge, distributional robust set, sample average approximation,
and multi-level charging times for EVs. Optimizing the risk analysis of a microgrid (MG)
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connected to an electric vehicle parking facility and a disaster recovery plan—two more
flexible resources—is the main focus of study as mentioned in [102]. More precisely,
better financial and environmental goals are to be achieved through a major integration of
renewable energy sources (RESs) including solar and wind energy. Under this scenario,
the system operator is in charge of figuring out the best ways to react to changes in the
load, the real-time power market, variations in the output of PV and wind power, and the
actions of drivers of electric cars. In this decision-making process, the risk is measured
using the conditional value-at-risk criterion.

The topic of SCUC when a DR program and merged PEV fleets are present is covered
in [103]. Reduced operational expenses are the goal, provided that all constraints are
followed. In addition to security requirements, a variety of limitations are taken into
account, including those for the system, units, transmission system, DR program, and PEVs.
A suitable PEV model is created to allow for their integration into the grid while taking into
account efficiency, charging and discharging characteristics, and the SCUC as a two-stage
stochastic MIP issue. Additionally, this paper presents a workable model of DR program
based on the idea of demand elasticity at a given price.

In [104], it is suggested to use a hierarchical model to simultaneously represent the MG
scheduling and VPP EM problems. Since the scheduling inputs are stochastic, a scenarios-
based approach is used to model the uncertainty in power generation and load demand.
A stochastic MILP model is the result, which is the final model. The fluctuations can be
covered at the lowest feasible cost by utilizing DR program and EVs.

According to base load and plug-in electric car loads, a nonconvex MIP model of
household load is described in [105]. This idea’s main objective is to lower power costs for
home customers by altering PEV charging and discharging strategies depending on current
price information (RTP). An inertial neural subnetwork and a feedback neural network are
utilized in conjunction with a neurodynamic method to address this problem.

An innovative approach to day-ahead optimization for an integrated water–heat-
electricity system is provided with the aim of achieving the reduction of fuel costs associated
with purification, heat treatment, and power production units [106]. This strategy involves
pure electric vehicle aggregators actively participating in bulk energy management (EM).
These aggregators use cheaper, off-peak hours to charge their cars and charge them during
the more expensive, peak hours. The optimizer of the generalized algebraic quantitative
modeling approach produces a mixed-integer non-linear program, which is solved through
the use of the branch-and-reduce optimization navigator (BARON) tool. To assess the
water–heat–power hub system’s viability and economics is the aim.

In [107], the study leverages mixed-integer linear programming (MILP) to evaluate
the operations of a smart home. This smart home framework encompasses several key
elements: a small-scale distributed generation (DG) unit that supports grid energy, energy
storage systems (ESSs) with capabilities for peak clipping and valley filling, electric vehicles
(EVs), and another small-scale DG unit used for charging and vehicle-to-home (V2H)
operations. Various case studies are conducted to explore different demand response (DR)
strategies, taking into account dynamic pricing and peak power limitations. These analyses
aim to assess the technical and economic impacts of integrating ESS and DG units into
smart home environments [108].

7. Energy Hub

An energy hub is a centralized facility designed to unify various energy conversion,
storage, and distribution processes within a single system. These hubs are essential for
enhancing the efficiency, reliability, and sustainability of energy supply networks. They
make use of energy routers for electrical energy routing [109]. This section delves into the
concept of energy hubs and their practical applications, highlighting their critical function
in merging different energy sources to optimize the distribution and utilization of energy.
We will also explore how energy hubs can incorporate demand response (DR) strategies
to enhance the efficiency and sustainability of energy management systems (EMS). This
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analysis will underscore the potential advantages and challenges of using energy hubs
to balance energy supply and demand, lower energy costs and emissions, and boost the
reliability of energy networks. Figure 5 shows the conceptual flowchart of an energy hub.
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In [110], the research focuses on tackling the self-scheduling challenge encountered
by a virtual energy hub, which must contend with diverse uncertainties while engaging
in multiple energy markets. The virtual energy hub manages multi-energy demands
encompassing electricity, heat, hydrogen, and cooling by utilizing internal generation units
and participating in various energy markets. It integrates critical elements such as cooling
energy storage, thermal energy storage, and hydrogen energy storage systems. This paper
aims to propose a robust strategy for optimizing a virtual energy hub’s participation in
various energy markets. It introduces a risk-averse management approach, employing
a two-stage stochastic method to manage uncertainties. The approach also incorporates
demand-side management through both electrical and thermal demand response programs.
The study demonstrates that incorporating different types of energy storage systems into
a virtual energy hub significantly boosts its profitability. Specifically, adding a battery
energy storage system increases profits by 0.88%, thermal energy storage by 0.62%, cooling
energy storage by 0.7%, and hydrogen energy storage by 1.5%. Moreover, implementing
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electrical demand response programs raises profits by 1.02%, while thermal demand
response programs contribute an additional 0.25%.

In [111], an energy hub based on hydrogen is proposed for day-ahead scheduling
through the implementation of a robust algorithm. The hydrogen storage system stores
hydrogen, which can be converted into electricity during peak hours or supplied to the
hydrogen industry for use during off-peak times. Additionally, a transferable integrated
demand response system is provided to control the load pattern of consumers within the
energy hub. In the proposed scheme, EV parking is also incorporated in the integrated
demand response program, with EVs providing flexibility to the energy hub by adjusting
their charging patterns according to the supply and demand of electricity. The integrated
demand response system can help balance the grid, reduce carbon emissions, and lower
electricity costs for EV owners and other consumers.

In [112], a distributed, two-sided multi-energy coordination framework is suggested
in order to optimize energy supply from energy hubs (EHs) and user energy consumption,
hence minimizing overall system costs. The approach successfully strikes a balance between
user pleasure and EH fuel costs. The framework effectively handles many energy forms
through the use of a standardized matrix modeling technique, enabling energy hubs (EHs)
to handle a variety of energy kinds beyond just a few specific ones. Customers can also
control energy- and time-shifting loads using this way. Customers can optimize their
energy use by varying their use at different times and moving between energy sources,
such as from gas to electricity, with integrated demand response (IDR). Through a dynamic
network, EHs and consumers exchange information with only their close neighbors. A
completely distributed sub-gradient averaging consensus algorithm that balances energy
supply and demand at each time interval is presented in the paper. Numerical simulations
show the algorithm’s practical efficacy, while theoretical validation verifies its convergence
and optimality.

The study in [113] aims to model an advanced energy hub that is fitted with a range of
storage systems, including electrical and thermal storage, conventional energy sources like
gas and electricity, renewable energy sources like wind, and a boiler for heat generation
in addition to a combined heat and power unit. The hub operator improved the energy
hub’s concept and associated costs to ensure optimal simultaneous production of heat
and electricity. The performance of the energy hub was to be evaluated in the following
phase in relation to a load response program. According to the results, system expenses
were reduced by 4.66% when the demand response software was optimized as opposed to
running as normal. Additionally, the application greatly raised the battery’s charge levels.
Peak load was effectively lowered during peak times by moving peak load from periods
of high demand and high prices to periods of lower demand and cost. As a result, the
demand response program seems to be a very useful instrument for energy hub systems
load management.

In [114], a novel IoT-based model covering the residential, commercial, and industrial
sectors is presented. It investigates the relationships between different energy carriers
across networked energy hubs. These hubs integrate a variety of technologies, such as
boilers, heat storage units, plug-in hybrid electric vehicles (PHEVs), renewable energy
sources, and combined heat and power (CHP) units. In order to reduce uncertainty related
to renewable resources, researchers developed a stochastic framework that makes use of
the unscented transformation technique. The results of the simulation show that trading
heat and power amongst energy hubs significantly lowers reliance on natural gas and
electricity, which lowers total network costs. Because they provide necessary loads during
hours of peak demand, energy storage devices are very helpful at off-peak times. Moreover,
network running costs are greatly reduced and the load demand curve is smoothed by
including demand response (DR) programs and encouraging optimal energy use. This
significantly affects the energy markets.

In [115], an energy hub is presented with an integrated residential demand response
(DR) model, enabling consumers to actively engage in the energy system. Through a
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demand response program, the system can adjust load demands, empowering residential
users to flexibly increase or decrease their energy consumption. This is achieved by adjust-
ing the timing of electrical appliance usage or switching energy types, facilitated through
IoT integration. IoT devices are pivotal in managing household appliances, allowing them
to align with the demand response program. This flexibility implies that demand response
capabilities within the energy hub can vary dynamically over time. The research findings
highlight substantial cost savings, indicating that optimizing residential appliance usage
via IoT can achieve more than a 70% reduction in total operating costs over a day with
flexible demand response limits. Furthermore, the study reveals that for every 1% increase
in demand response tolerance, there is a two-fold increase in the percentage of operational
cost savings. Table 8 shows key components.

Table 8. Key components.

Component Function

Internal Generation Units Generate energy from various sources.
Energy Storage Systems Store energy in various forms for later use.

Demand Response Programs Optimize energy consumption patterns.
Energy Distribution Network Distribute energy to different users and markets.

A demand-side management (DSM) approach for integrated community energy sys-
tems is presented in [116]. Using a dynamic energy router model, the study first evaluates
energy conversion efficiency under various load scenarios. The energy hub model takes
into account the availability of various energy sources as well as the demand for energy.
Next, a demand response (DR) strategy that incorporates renewable energy generation is
shown. Real-time pricing is used in the method to adapt to changes in renewable energy
supply and load demand. To improve operational efficiency, a multi-objective optimization
method is also designed with an emphasis on maintaining economic sustainability and
decreasing carbon emissions. This approach takes device limitations into account when
producing and transmitting energy. The suggested paradigm lessens the burden on the
infrastructure supporting the energy supply, lowers carbon emissions, and dramatically
enhances the financial performance of integrated community energy systems.

An improved load dispatch model for multi-carrier energy systems is presented
in [117], taking into account the interplay between thermal and electrical energy compo-
nents. The model’s main objective is to reduce overall costs in the energy hub system,
including resource costs, the effect of carbon emissions, and demand response (DR) initia-
tive costs. The work presents a flexible robust optimization strategy to address uncertainties
related to renewable energy sources and demand response (DR) programs. Three scenarios,
each with a different level of energy storage integration and DR program implementation,
were the subjects of simulation studies carried out by the researchers. The simulations
show that the overall operating expenses of the energy hub system can be significantly
reduced by incorporating energy storage systems with DR programs.

The functioning of an energy hub intended to satisfy thermal, electrical, and gas
demands is examined in [118]. Electric vehicles (EVs), a boiler, a heat storage unit, a
combined heat and power system, a wind turbine, and a power-to-gas (P2G) storage
system are some of the components that this energy center incorporates. An emphasis on
load-shifting is placed on a demand response (DR) program in order to boost the hub’s
operational flexibility. The study also looks at how three different electric vehicle (EV)
charging scenarios—scheduled charging, uncontrolled charging, and vehicle-to-grid (V2G)
charging—affect the energy hub’s efficiency. The findings suggest that implementing
V2G charging for EVs and combining P2G technology with DR can result in significant
operational cost savings.

In [119], the study presents a new method designed to maximize gas and energy con-
sumption in smart homes that are part of domestic energy hubs. The model includes several
energy conversion technologies, including heat and energy storage systems, combined heat
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and power (CHP) units, and effective management of both electrical and thermal demands,
with an emphasis on balancing cost-effectiveness and environmental sustainability. The
goal of the technique is to minimize tenants’ overall energy consumption and expenses by
scheduling household duties as efficiently as possible. It looks into how merging micro en-
ergy communities (MEC) and time-of-use (TOU) demand-side management (DSM) might
improve residential energy hubs (REH). The outcomes of the simulation show a decrease
in emissions and energy expenses. Optimized energy storage reduces operating expenses,
while heat storage devices assist balance natural gas consumption. This method not only
guarantees effective scheduling and improves resident comfort, but it also makes it possible
to sell excess electricity back to the grid, which lowers procurement costs even further.
Table 9 highlights the effectiveness of different algorithms in achieving cost minimization
in various energy system optimization scenarios.

Table 9. Comparison of numerical results for various algorithms applied to system optimization.

Ref. No Algorithm Objective Formulation Obtained Numerical
Result ($)

[111] Robust Optimization Minimize system costs
Cost = min

(
αE PE,imp + αG PG,imp − αhyd,exp+

Cstore,hyd Pstore,hyd + Cstore,EV Pstore,EV + CE,up + CE,down+
CT,upTup + CT,downTdown)

36,886.1

[112]
Distributed sub-gradient

averaging consensus
algorithm

Minimize system cost by
balancing EH fuel expenses

with consumer benefits
Obj = min

(
∑

t∈P
∑
i∈I

Ci,t Xi,t − ∑
j∈J

∑
σ∈Saux

Bj Rj,σ Zj,σ

)
2957.89

[113] MILP Minimize cost of EH minCost = ∑
tεT

(
αem Et + βchpCchp,t+
γboil Cboil,t + ςend,t + εp Pt

)
1609.601

[116] Interior Point Method Minimize 24 h operating
cost of ICES

Obj = min(Ces + Cer) 6163.66

[117] MILP Minimize total operating
cost

OF = min
(
Celec + Cgas + Cem + Cedr + Chdr

)
383.58

[118] MILP

The EH evaluated
components like boilers,
wind turbines, P2G, EVs,

and CHP, optimizing their
schedules to minimize total

operating costs

Fobj = min
{

T
∑

t=1
(αe Et + αgGt + Ceind Pwind,t)+

T
∑

t=1
[CDR(DRup,t + DRdn,t)−

CHS HHS,t ] +
T
∑

t=1
CGSSt −

T
∑

t=1

NEV
∑

n=1
CEV PD,ev,n,t

} 42,531.80 (30% DR
participation)

A novel scenario-based stochastic programming technique is presented to control wind
velocity unpredictability when arranging an energy hub’s daily operations in [120]. In order
to meet demand for hydrogen and transfer it via a hydrogen network, this hub combines
equipment for power conversion to hydrogen and storage tanks. In addition, a demand
response (DR) program is presented in order to align supply and demand for energy. In
order to evaluate the suggested strategy and look into the impacts of electrical and thermal
DR programs, the research performs three case studies. Investigating hydrogen’s function
as the main energy carrier is the main focus. The findings indicate that the multi-energy
system performs noticeably better when hydrogen is prioritized as the primary energy
source rather than a secondary one, especially in terms of emissions reduction.

In [121], the study proposes an improved concept for an optimal load distribution
system that aims to maximize price effectiveness and reduce CO2 emissions. The model
combines various energy generation components such as combined heat and power (CHP)
units, gas boilers, water pumps, heat storage units, hydrogen storage systems (HSS),
photovoltaic (PV) arrays, and wind turbines (WT), establishing a comprehensive analytical
structure. A thorough assessment of probable future swings in energy prices is made
possible by the study’s handling of uncertainties related to the output of renewable energy
and the inconsistent charging habits of electric vehicles (EVs). A demand response (DR)
program is integrated into the model to assess the impacts of water pumps and hydrogen
storage systems while analyzing thermal and electrical systems. An improved particle
swarm optimization (PSO) method is applied to address the optimization problem. The
outcomes demonstrate the method’s efficacy, especially in supporting EVs’ synchronized
charge/discharge strategy to reduce total expenses.
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8. Discussion

In exploring the future landscape of demand response for energy management, it
becomes evident that strategic integration of real-time pricing with virtual power plants,
enhanced utilization of electric vehicles through vehicle-to-grid capabilities, and the devel-
opment of hybrid energy systems comprising renewable and storage technologies present
significant opportunities for innovation. Furthermore, the adoption of advanced optimiza-
tion techniques and stochastic modeling can address the inherent uncertainties in energy
supply and demand, paving the way for more resilient and efficient energy systems. By
combining these strategies with smart grid technologies and hybrid incentive-based and
price-based DR programs, the potential for transforming energy management practices is
substantial, offering a pathway towards achieving sustainability, reliability, and economic
viability in modern energy networks.

The following Table 10 shows a critical analysis of the strategies with their respective
advantages and disadvantages.

Table 10. Analysis of the strategies with their respective advantages and disadvantages.

Topics Advantages Disadvantages

Energy Management

- Facilitates efficient energy use and
management.

- Supports integration of renewable
energy sources (RES) with
conventional grids.

- Reduces carbon footprint by
promoting green energy practices.

- Requires significant initial
investment in technology and
infrastructure.

- Complex integration with existing
systems, potentially leading to
operational disruptions during
transition phases.

EV Charging Scheme

- Reduces EV charging costs through
optimization techniques like
time-of-use (TOU) pricing.

- Enhances grid stability by
mitigating peak demand using
dynamic pricing strategies.

- Provides flexibility to EV owners
through smart charging options.

- Uncertainty in charging due to
reliance on real-time pricing and
DR strategies.

- Possible inconvenience to users due
to variable charging schedules.

DR in the presence of Renewable
Energy Source

- Promotes the use of RES by
balancing supply-demand gaps
through DR.

- Enhances grid reliability by
integrating distributed generation
(DG) and virtual power plants
(VPPs).

- Supports end users’ active
participation in energy markets,
potentially lowering energy costs.

- High variability and uncertainty in
renewable energy output require
sophisticated management
strategies.

- Potential for reduced energy
reliability if not managed correctly,
especially during peak periods or
low renewable output.

DR with Mixed Integer Programming

- Provides optimized solutions for
energy management considering
both supply and demand
uncertainties.

- Enables integration of EVs and DR
programs in energy markets,
enhancing overall system efficiency.

- Computationally intensive and
complex, requiring significant
resources and expertise to
implement effectively.

- May require simplifications that
could impact the accuracy of
solutions in real-world applications.
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Table 10. Cont.

Topics Advantages Disadvantages

Energy Hub

- Integrates multiple energy sources
(e.g., electricity, heat, gas) to
optimize energy flow and reduce
costs.

- Enhances resilience by diversifying
energy supply and storage options.

- Supports sustainable energy
management by utilizing renewable
and non-renewable resources
efficiently.

- Complex system design and
operation, requiring advanced
control systems and algorithms.

- High capital costs and potential
regulatory challenges in
implementation.

8.1. Main Findings

Integration with RES:
DR plays a crucial role in managing the fluctuations and unpredictability of renewable

energy sources like solar and wind. By synchronizing energy usage with energy production,
DR enhances the efficiency of clean energy utilization and minimizes dependence on
fossil fuels.

Role of EVs:
The growing use of electric vehicles brings both challenges and opportunities for

demand response. EVs can act as adaptable loads, and by leveraging DR programs, their
charging times can be optimized to alleviate grid congestion and support the integration of
renewable energy.

Technological Advancements:
Advancements in smart meters, energy storage systems, and data analytics are im-

proving the accuracy and effectiveness of DR strategies. These technologies facilitate
the real-time monitoring and management of energy usage, resulting in more efficient
implementation of DR initiatives.

Economic and Environmental Benefits:
DR programs play a key role in lowering greenhouse gas emissions and reducing

operational costs. By shifting energy use away from peak times and optimizing overall
consumption, both utilities and consumers can realize considerable cost savings while also
gaining environmental advantages.

8.2. Future Trends

Enhanced Interoperability:
Future research should focus on developing standards and protocols to improve

interoperability between DR technologies and energy systems. This will enable seamless
integration and communication between different components of the energy system.

Advanced DR Solutions:
The development of more dynamic and responsive DR strategies that leverage real-

time data and analytics will be a key area of focus. These solutions should be adaptable to
changing energy demands and market conditions.

Consumer Behavior Studies:
Understanding consumer behavior and preferences is crucial for designing effective

DR programs. Research should explore methods to increase consumer engagement and
participation, such as personalized incentives and feedback mechanisms.

8.3. Potential Areas for Research

Energy Hubs:
Investigating the use of energy hubs, which integrate various energy conversion,

storage, and distribution processes, can enhance the efficiency and sustainability of energy
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management systems. Research can explore the potential advantages and challenges of
using energy hubs to balance energy supply and demand.

Impact of EV Adoption:
With the ongoing increase in EV adoption, research should prioritize understand-

ing the effects of EVs on DR programs and the energy grid. This includes investigating
strategies for managing EV charging and incorporating EVs into the larger energy manage-
ment framework.

Integration with Smart Grids:
The integration of DR with smart grid technologies offers opportunities for enhanced

energy management and optimization. Research should investigate the potential synergies
and challenges associated with this integration.

Integration of Machine Learning and AI:
Integrating machine learning and artificial intelligence into demand response frame-

works presents another promising area. Research could focus on predictive modeling and
data analysis techniques that facilitate real-time adjustments in energy usage based on con-
sumer behavior patterns and environmental data. For instance, utilizing physics-informed
neural networks could enable more adaptive control strategies.

Long-Term Sustainability Studies:
Long-term studies examining the sustainability and resilience of demand response

strategies in the context of climate change and energy supply volatility are necessary.
Research could focus on how demand response can be used to support grid stability during
extreme weather events or crises, which has not been sufficiently addressed.

9. Conclusions

In summary, this review underscores the significant potential of demand response
(DR) when integrated with renewable energy sources (RESs) and electric vehicles (EVs) to
revolutionize energy management and promote a sustainable future. Through an extensive
synthesis and analysis of the literature, this paper highlights the various benefits and chal-
lenges associated with incorporating DR, RESs, and EVs into modern energy systems. The
review begins by elucidating the critical role of demand response in optimizing energy con-
sumption, enhancing grid flexibility, and addressing the intermittency issues of renewable
energy generation. DR programs encourage consumers to modify their electricity usage in
response to price signals or grid conditions, providing a crucial mechanism for balancing
supply and demand, lowering peak loads, and improving overall grid stability. Moreover,
the integration of advanced technologies like smart meters, energy storage systems, and
data analytics facilitates the implementation of more sophisticated DR strategies. These
technologies enhance the precision and efficiency of energy demand management, paving
the way for more dynamic and responsive energy systems.

Additionally, the review underscores the significant potential of integrating renewable
energy sources (RESs) and electric vehicles (EVs) within demand response (DR) frame-
works. With solar and wind energy increasingly prominent in the energy landscape, DR
mechanisms can effectively manage the variability inherent in these sources. This integra-
tion promotes the optimal utilization of clean energy resources while reducing reliance on
fossil fuels. Moreover, the widespread adoption of electric vehicles presents both oppor-
tunities and challenges for DR. EVs serve as flexible loads that can be managed through
DR programs to optimize charging schedules, alleviate grid congestion, and facilitate the
integration of RESs. However, their extensive adoption necessitates careful planning and
coordination to ensure alignment with existing DR mechanisms and mitigate potential
strain on electricity infrastructure.

In conclusion, while the synergies between DR, RESs, and EVs hold promise for
advancing energy sustainability, several barriers must be addressed to realize their full
potential. Regulatory frameworks must evolve to incentivize the deployment of DR and
support the integration of renewable energy and electric vehicles into the grid. Moreover,
technological advancements and innovation are essential to enhance the interoperability
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and scalability of DR solutions, enabling seamless integration with evolving energy systems.
Additionally, education and outreach efforts are needed to raise awareness and encourage
consumer participation in DR programs, fostering a culture of energy conservation and
resilience. Overall, by capitalizing on the complementary strengths of demand response,
renewable energy sources, and electric vehicles, stakeholders can unlock new opportunities
for achieving a more resilient, efficient, and sustainable energy future.
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RTP Real-time pricing DER Distributed Energy Resource
EVs Electric vehicles MADDPG Multi-Agent Deep Deterministic Policy Gradient
VPP Virtual Power Plant PSO Particle Swarm Optimization
MG Micro Grid DDFR Dynamic Distribution Feeder Reconfiguration

MILP Mixed Integer Linear Programming ACPSO
Adaptive Weight and Chaotic search Particle Swarm
Optimization

MINLP Mixed Integer Non Linear Programming WOA Whale Optimization Algorithm
TOU Time of Use MIQCP Mixed-Integer Quadratic Constrained Programming
CPP Critical Peak Pricing MIP Mixed-Integer Programming

DLC Direct Load Control ICDSMMCM
Incentive-Compatible Demand-Side Management
Market-Clearing Mechanism

CMP Capacity Market Program PEVs Plug-in Electric Vehicles
PLC Program Logic Controller IVPP Industrial Virtual Power Plants
ESS Energy Storage System WPP Wind Power Plants
IPI Independence Performance Index DA Day-ahead
PV Photovoltaic SCUC Security Constrained Unit Commitment
HEMS Home Energy Management System EH Energy Hub
CEED Combined Economic Emission Dispatch SR Spinning Reserve
CSA Crow Search Algorithm DE Differential evolution
ECD Economic Cost Dispatch GWO Gray Wolf Optimisation

MGWO Modified Grey Wolf Optimisation MGWOSCACSA
Modified Grey Wolf Optimisation Sine Cosine Algorithm
Crow Search Algorithm

TLBO Teaching Learning Based Optimisation
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