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Fibre-specific mitochondrial protein
abundance is linked to resting and post-
training mitochondrial content in the
muscle of men

Elizabeth G. Reisman 1,2,13, Javier Botella 1,3,13, Cheng Huang4,
Ralf B. Schittenhelm 4, David A. Stroud 5,6,7, Cesare Granata 1,8,9,10,
Owala S. Chandrasiri1, Georg Ramm 11, Viola Oorschot11,12,
Nikeisha J. Caruana 1,5 & David J. Bishop 1

Analyses of mitochondrial adaptations in human skeletal muscle have mostly
used whole-muscle samples, where results may be confounded by the pre-
sence of a mixture of type I and II muscle fibres. Using our adapted mass
spectrometry-based proteomics workflow, we provide insights into fibre-
specificmitochondrial differences in the human skeletal muscle ofmen before
and after training. Our findings challenge previous conclusions regarding the
extent of fibre-type-specific remodelling of the mitochondrial proteome and
suggest that most baseline differences in mitochondrial protein abundances
between fibre types reported by us, and others, might be due to differences in
total mitochondrial content or a consequence of adaptations to habitual
physical activity (or inactivity). Most training-induced changes in different
mitochondrial functional groups, in both fibre types, were no longer sig-
nificant in our study when normalised to changes in markers of mitochondrial
content.

The remarkable ability of skeletal muscle to adapt to repeated con-
tractile stimuli is one of the most fundamental and intriguing aspects
of physiology1. Repeated exercise sessions (i.e. exercise training) alter
the expressionof proteins,whichcan lead to improvedmaintenanceof

cellular homoeostasis2, altered metabolism3 and the prevention and
treatment of many chronic diseases4. Exercise is also a potent stimulus
to activate mitochondrial biogenesis5–7, with resulting increases in
mitochondrial protein content and respiratory function8,9. These

Received: 16 November 2023

Accepted: 16 July 2024

Check for updates

1Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia. 2Mary MacKillop Institute for Health Research, Australian Catholic
University, Melbourne, VIC, Australia. 3Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation
(IMPACT), Deakin University, Waurn Ponds, VIC, Australia. 4Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of
Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia. 5Department of Biochemistry and Pharmacology, Bio21 Molecular Science
andBiotechnology Institute, TheUniversity ofMelbourne, Parkville, VIC,Australia. 6MurdochChildren’s Research Institute, RoyalChildren’sHospital, Parkville,
VIC, Australia. 7Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC, Australia. 8Department of Diabetes, Central Clinical School,
Monash University, Melbourne, VIC, Australia. 9Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-
Heine-University, Düsseldorf, Düsseldorf, Germany. 10German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany. 11Rama-
ciotti Centre for Cryo EM, Biomedicine Discovery Institute andDepartment of Biochemistry andMolecular Biology,Monash University, Clayton, VIC, Australia.
12Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany. 13These authors contributed equally: Elizabeth G.
Reisman, Javier Botella. e-mail: nikeisha.caruana@unimelb.edu.au; David.Bishop@vu.edu.au

Nature Communications |         (2024) 15:7677 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5791-3324
http://orcid.org/0000-0002-5791-3324
http://orcid.org/0000-0002-5791-3324
http://orcid.org/0000-0002-5791-3324
http://orcid.org/0000-0002-5791-3324
http://orcid.org/0000-0001-9722-8519
http://orcid.org/0000-0001-9722-8519
http://orcid.org/0000-0001-9722-8519
http://orcid.org/0000-0001-9722-8519
http://orcid.org/0000-0001-9722-8519
http://orcid.org/0000-0001-8738-1878
http://orcid.org/0000-0001-8738-1878
http://orcid.org/0000-0001-8738-1878
http://orcid.org/0000-0001-8738-1878
http://orcid.org/0000-0001-8738-1878
http://orcid.org/0000-0002-2048-3383
http://orcid.org/0000-0002-2048-3383
http://orcid.org/0000-0002-2048-3383
http://orcid.org/0000-0002-2048-3383
http://orcid.org/0000-0002-2048-3383
http://orcid.org/0000-0002-3509-6001
http://orcid.org/0000-0002-3509-6001
http://orcid.org/0000-0002-3509-6001
http://orcid.org/0000-0002-3509-6001
http://orcid.org/0000-0002-3509-6001
http://orcid.org/0000-0003-3596-2288
http://orcid.org/0000-0003-3596-2288
http://orcid.org/0000-0003-3596-2288
http://orcid.org/0000-0003-3596-2288
http://orcid.org/0000-0003-3596-2288
http://orcid.org/0000-0002-0817-1686
http://orcid.org/0000-0002-0817-1686
http://orcid.org/0000-0002-0817-1686
http://orcid.org/0000-0002-0817-1686
http://orcid.org/0000-0002-0817-1686
http://orcid.org/0000-0002-6956-9188
http://orcid.org/0000-0002-6956-9188
http://orcid.org/0000-0002-6956-9188
http://orcid.org/0000-0002-6956-9188
http://orcid.org/0000-0002-6956-9188
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50632-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50632-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50632-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50632-2&domain=pdf
mailto:nikeisha.caruana@unimelb.edu.au
mailto:David.Bishop@vu.edu.au


adaptations appear to depend on the characteristics of the exercise
stimulus10,11.

One limitation of most human training studies to date is the
analysis of whole-muscle samples, where the results may be con-
founded by divergent changes in different fibre types12. Human ske-
letal muscle is composed of three major fibre types (type I, IIa, and
IIx), which differ in their contractile, metabolic and bioenergetic
characteristics; this is reflected by a greater reliance on mitochon-
drial oxidative enzyme activity in type I fibres13–15 and greater glyco-
lytic enzyme activity in type II fibres16. Furthermore, Henneman’s
size principle17 proposes that type I fibres have a lower threshold
of activation, and will be recruited at lower exercise intensities,
whereas fast-twitch fibres (type IIa and IIx) have a higher activation
threshold and will be increasingly recruited at greater exercise
intensities18,19. Skeletal muscle fibre recruitment is therefore related
to exercise intensity18,19, and it has been hypothesised that higher
exercise intensities might stimulate greater adaptations in type II
fibres relative to lower intensities17,20,21. It has also been proposed that
recruitment of type II fibres may help to explain the greater mito-
chondrial adaptations reported following high-intensity
training11,18,19,22. Until recently, however, technical limitations have
prevented the direct assessment of fibre-type-specific adaptations to
different types of exercise training.

Modifications to immunoblotting protocols have enabled
researchers to identify training-induced adaptations of mitochondrial
proteins in single skeletal muscle fibres23–26. However, due to limited
startingmaterial, only five of themore than 1100 knownmitochondrial
proteins have been investigated to date12,23–27. Improvements in mass-
spectrometry-based proteomic techniques have allowed greater
resolution of the contractile and metabolic features of single skeletal
muscle fibre types—first in mice28 and then in humans29. The detection
of functionally important, low-abundance proteins, in addition to
thousands of other proteins, was a significant development that has
advanced our understanding of the breadth and complexity of pro-
teins at the fibre level in skeletal muscle. Recent work has built on this
research and adapted this technique to investigate fibre-type-specific
protein changes to moderate-intensity training in the skeletal muscle
of a small number of men (n = 5)30. To date, however, no proteomic
study has investigated the effects of divergent exercise intensities,
whichdiffer in their recruitment of themajor fibre types, onfibre-type-
specific mitochondrial adaptations. A greater understanding of fibre-
type-specific adaptations to different exercise intensities may help to
optimise the prescription of exercise to prevent and treat diseases, as
well as counteract some of the detrimental effects of ageing.

In the present study,wedeveloped a sensitivemass spectrometry-
based (MS) proteomics workflow that allowed for the pooling of single
muscle fibres, and the utilisation of tandem mass tag (TMT) labelling,
to facilitate the identification of low abundant mitochondrial proteins.
To investigate potential fibre-type-specific changes in protein abun-
dances following exercise training, we employed two very different
training interventions -moderate-intensity continuous training (MICT)
and sprint-interval training (SIT). These two types of training were
chosen as they differ in intensity (i.e. moderate versus very high
intensity) and have been reported to require different skeletal muscle
fibre recruitment patterns22,27,31. In contrast to the only published
single-fibre proteomic study to examine the effects of exercise
training30, we did not detect any significant changes in the abundance
of individual proteins in either fibre type following either training type.
This finding, based on our more robust statistical approach, raises
important questions regarding the ability of current single-fibre stu-
dies to avoid false positives and to confidently detect training-induced
changes of individual proteins in single-fibre pools. While we were
able to detect fibre-specific changes in different mitochondrial
functional groups following training, many of these differences were
no longer apparent when corrected for training-induced changes in

mitochondrial content. Thus, most training-induced changes in mito-
chondrial protein abundances were no longer significant when nor-
malised to the overall increase in mitochondrial content. Despite the
hypothesis that SIT would target type II fibres, we observed few dif-
ferentially expressed protein functional groups following SIT. There
was, however, a decreased abundance of complex IV subunits in both
type I and II fibres following SIT.

Results
Single-fibre proteomics
Only two studies in youngmen, bothwith small sample sizes (n = 4 and
5, respectively), have employed proteomics to describe fibre-type-
specific differences for the contractile and metabolic features of
human skeletal muscle fibres29,30. In the present study, we present the
data from sixteen recreationally active, healthy men who completed
one of two 8-week training interventions - either moderate-intensity
continuous training (MICT; n = 8) or very high-intensity sprint-interval
training (SIT; n = 8) (see Supplementary Data 1-Tab 1 for participant
characteristics). Before (PRE) and after (POST) training, skeletalmuscle
biopsies were collected from the vastus lateralis muscle and single
fibres were isolated, fibre-typed, pooled and analysed utilising the
proteomic workflow described in Fig. 1a.

One of the challenges of analysing skeletal muscle is the large
dynamic range of protein concentrations caused by the highly abun-
dant sarcomeric proteins, which account for over 50% of the total
protein content28,32–34, while proteins from all other muscle compart-
ments, including the mitochondria, are confined to the lower half of
the abundance range34. Compared to typical whole-tissue proteomic
studies, single-muscle fibres provide very low protein yields28,35, which
further complicates the identification of lower abundant proteins34,36.
While previous studies have used label-free quantitative shotgun
approaches after filter-aided sample preparation29,30, we chose a
workflow incorporating TMT labelling, which not only allowed us to
increase sample size and throughput to accommodate our complex
experimental design investigating two different exercise intensities
but also exhibits higher quantitative precision than label-free
quantification37,38.

Our approach identified a total of 3141 proteins across all pooled
samples, with 81% (2534 proteins) of these identified with high-
confidence (false discovery rate [FDR] < 0.05) and >1 unique peptide
(Supplementary Data 1-Tab 2). On average, we were able to reliably
identify 1849 ± 59 (1477–1999) high-confidence proteins per pooled
single-fibre sample (Fig. S1a, b, c, d, e; Supplementary Data 9-Tab 1).
Proteins were removed from our dataset, as well as in comparative
datasets from ref. 29 to ref. 30, if they contained more than 30%
missing values, leaving a total dataset across all samples in our study of
1600proteins (SupplementaryData 1-Tab3). This cut-off is designed to
remove the bulk of missing data, which can cause further downstream
bias, but still allow appropriate imputation of missing values for
analysis.

To further understand the characteristics of the fibre-specific
proteome, we examined the cellular localisation of the proteins iden-
tified in each individual sample of pooled type I or type II fibres based
on Gene Ontology Cellular Components. Gene Ontology (GO) enrich-
ment analysis of our dataset (Fig. 1b, Supplementary Data 1-Tab 4)
demonstrates good coverage of the structural and metabolic features
of the skeletal muscle fibre proteome, including contractile, sarco-
meric, ribosomal and mitochondrial proteins.

To assess the comprehensiveness of our protein detection in
pooled single fibres, we compared our dataset to the two previous
studies investigating the single muscle fibre proteome in humans
(Fig. 1c, Supplementary Data 1-Tab 5)29,30. There were 844 proteins in
commonbetween the three studies,whichmay represent proteins that
canmore confidently be used to compare fibre types in human skeletal
muscle. Oneof themost significantly enriched cellular components for
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these commonly identified proteins was the mitochondrion (Fig. 1d,
Supplementary Data 1-Tab 6).

Fibre type differences in the pre-training samples
Multi-dimensional scaling revealed a good separation of the protein
profiles between pooled type I and type II single fibre samples pre-
training (Fig. 1e). Proteomic features of the different fibre-type pools

are presented in a volcano plot (Fig. 1f). A total of 206 proteins were
identified as differentially expressed between fibre types pre-training
(PRE), using an empirical Bayes method and with statistical sig-
nificance set at an adjusted P value cut-off of 0.05 (Benjamini-Hoch-
burg correction) (Supplementary Data 1-Tab 7). Proteins were
coloured if they had an adjusted P <0.05 and a Log2 Fold Difference of
>0.2 (red, higher in Type II fibres) or <−0.2 (blue, higher in Type I
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fibres) (Fig. 1f). Labelled points indicate proteins that were uniquely
differentially expressed within our study (compared with refs. 29,30;
for a full listing, please see Supplementary Data 1-Tab8. Our results are
similar to ref. 30, which identified 232 differentially expressed proteins
between fibre types (reanalysed by us with the same imputation and
empirical Bayes methods as our study). Unsupervised hierarchical
clustering revealed a clear separation of fibre types, although, as
expected, there was some biological variability amongst indivi-
duals (Fig. 1g).

Our analysis revealed contractile proteins thathavenotpreviously
been identified as having fibre-type-specific expression profiles (Sup-
plementary Data 1-Tab 8). These proteins included MYH3 and MYL4,
which code for myosin heavy and light chains present in embryonic
skeletalmuscle; their presence in adultmuscle is usually interpreted as
a sign of muscle regeneration, but little is known about these two
members of the myosin family in the context of exercise39. We also
observedmany of the expected differences between fibre types. Type I
fibres were characterised by a greater abundance of contractile pro-
teins belonging to themyosin heavy (MYH7) and light (MYL6B) chains,
as well as troponin (TNNT1, TNNC1, TNNI1) and an isoform of the
sarcoplasmic reticulum Ca2+-ATPase (ATP2A2, also named
SERCA240,41;), while type II fibres possessed a greater abundance of
MYH2, MYL1, TNNT3, TNNC2, TNNI2 and also ACTN3.

Most studies on muscle fibre heterogeneity have focused on
contractile proteins33,42. However, as confirmed in our study, the
diversity between muscle fibres is not only restricted to contractile
proteins but extends to a wide range of subcellular systems - including
ionic transport, cellular calcium signalling and metabolism42.
Approximately 30% of the proteins identified as differentially expres-
sed between fibre types were mitochondrial—with most of these
mitochondrial proteins (~90%) having a greater abundance in type I
fibres. These differentially expressed mitochondrial proteins were
enriched in pathways associated with fatty acid oxidation, as well as
other proteins involved in the electron transport chain (Supplemen-
tary Data 1-Tab 7).

Influence of mitochondrial content on fibre-type-specific
expression profiles
Of the 391 mitochondrial proteins quantified in the present study, 314
(~70%) were also quantified in the previous two single-fibre proteomic
studies (Fig. 2a, Supplementary Data 2-Tab 1). The top 5 GO Biological
Process (BP) terms for these commonly detected mitochondrial pro-
teins were related to mitochondrial electron transport (NADH to ubi-
quinone and respiratory chain complex I assembly), the tricarboxylic
acid cycle, fatty acid beta-oxidation and mitochondrial ATP synthesis
coupled proton transport (Fig. 2b, Supplementary Data 2-Tab 2). Many
of these mitochondrial proteins had a significantly greater abundance
in type I fibres (Fig. 2c—top panel, Supplementary Data 1-Tab 7), which
is consistent with the superior capacity of type I fibres for mitochon-
drial oxidative phosphorylation and fatty acid oxidation43.

An important question that has not been adequately addressed is
whether thesefibre-type-specific expressionprofiles formitochondrial
proteins are independent of the greatermitochondrial content in type
I versus type II human skeletal muscle fibres13,44,45. To examine the
potential influence of mitochondrial content on fibre-type-specific
expression profiles observed for mitochondrial proteins, we first cal-
culated the mitochondrial protein enrichment (MPE)—a value that
identifies the contribution of mitochondrial protein intensities to the
overall detectable proteome8. Consistent with previous research30,
there was a greater abundance of proteins associated with the mito-
chondria cellular component in type I compared to type II fibres
(Fig. 2d, Supplementary Data 2-Tabs 3–5). As this supported an overall
greater content of mitochondria in type I versus type II fibres in our
participants, we next employed our previously described mitochon-
drial normalisation strategy8, which aims to correct for the bias
introduced by differences in totalmitochondrial content. This allowed
us to compare the abundance of individual mitochondrial proteins
relative to the mitochondrial proteome in each fibre type (i.e.
mitochondria-corrected relative abundance).

Post normalisation, less than one-third of the mitochondrial pro-
teinswehadobserved to have a greater abundance in type I fibrepools
remained differentially expressed (compare Fig. 2c—bottom panel,
Supplementary Data 2-Tabs 6, 7, with Fig. 2c—top panel, Supplemen-
tary Data 1-Tab 7). This analysis suggests that many of the differences
in mitochondrial protein abundances between fibre types reported by
us, and others29,30, might be due to differences in total mitochondrial
content rather than fibre-type-specific remodelling of the mitochon-
drial proteome. With this approach, we also identified nine additional
mitochondrial proteins with a greater abundance in type II than type I
fibres; these proteins included ALDH1B1, SDHA, RIDA, SLC25A12,
GRSF1, PARK7, HSPE1, GPX4, PNPO (Fig. 2c). None of these nine
mitochondrial proteins had previously been reported to be differen-
tially expressed in type II versus type I muscle fibres, and further
research is required to explore their potential role in functional dif-
ferences between the fibre types.

Proteomic responses to different types of training in type I and
type II skeletal muscle fibres
One published proteomic study has examined fibre-type-specific
adaptations to one type of exercise training (1 h at 75–90% of max-
imum heart rate, 4x/week for 12 weeks) in human skeletal muscle30.
However, no study has investigated if there are fibre-type-specific
changes to the proteome that depend on the nature of the exercise
stimulus. The size principle states that type I fibres are mostly utilised
at lower exercise intensities, whereas type II fibres are increasingly
recruited at higher exercise intensities17,21. Therefore, a long-standing
hypothesis is that training-induced changes to the proteome in
response to low-intensity exercise will mostly be confined to the type I
fibres that are predominantly recruitedwith this type of exercise19,46. In
contrast, higher-intensity exercise (e.g. all-out sprinting) has been

Fig. 1 | Isolation of muscle fibres for proteomic analysis reveals fibre-type dif-
ferences in the pre-training samples. a Workflow for characterisation of pooled
human skeletal muscle fibres. Single fibres obtained from human biopsy muscle
samples and fibre typing confirmed through dot blotting. Six fibres were pooled,
with proteins extracted followed by labelling with TMT. LC-MS3 performed to
quantify proteins. b Percentage of proteins within samples in comparison with
human genome. Bars display percentage of proteins identified in GOCC group
based on (i) average number of proteins within individual pooled samples (pink),
(ii) number of proteins within entire dataset of high-confidence proteins (orange)
and (iii) known annotated proteins in the human genome, not detected in entire
dataset (grey). Identification of GOCC terms using DAVID95. c Venn diagram dis-
playing proteins identified in current study alongside results of single-fibre papers
published to date. Due to differences in experimental design, and to make valid
comparisons, ref. 29 were filtered for young participants with <30%missing values

and ref. 30were filtered for proteinswith <30%missing values.d Proteins identified
by three single-fibre studies in (c) underwent GOCC analysis. Top 5 terms of 844
proteins in intersect of proteins identified by Deshmukh et al., present study and
Murgia et al. are presented. Top terms and corresponding log10 P values identified
using DAVID95 and computed by one-sided Fisher’s Exact Test. e MDS plot shows
distances among fibre-type pools for PRE exercise type I (blue, n = 16) and type II
(red, n = 16) samples. f Volcano plot illustrating fold-change and significance of
proteins in PRE samples between type I (n = 16) and type II (n = 16) fibres. Points
were coloured if adjusted P <0.05 by limma analysis and a Log2 Fold Difference of
>0.2 (higher in Type II) or <−0.2 (higher in Type I). Points labelled if differentially
expressed uniquely within our study (compared with refs. 29,30). g Heatmap dis-
playing z-scorevalues ofdifferentially expressedproteins comparing type II (n = 16)
to type I (n = 16) fibre pools within PRE samples. Samples cluster by fibre type I
(blue) or type II (red).
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proposed to stimulate greater adaptations in type II fibres compared
to exercise performed at lower intensities47.

To investigate potential fibre-type-specific changes to the pro-
teome in response to divergent exercise stimuli, we analysed the data
from 16 healthy young men who trained 3 to 4 times per week for
8 weeks after random assignment to one of two very different
types of training – MICT or SIT (Fig. 3a). By design, both exercise

groups had very different exercise prescription characteristics; there
was a 4.7-fold greater exercise intensity for SIT and a 5.2-fold
greater training volume for MICT (Fig. 3b). The divergent exercise
prescriptions, and their associated effects on the metabolic
response to exercise, can be observed by the larger increase in blood
lactate concentration following SIT (13-fold; 1.4 ± 0.3–18.6 ±
3.5mmol.L−1; P <0.001) when compared to MICT (1.6-fold;
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1.38 ± 0.43–2.18 ± 0.38mmol.L−1; P =0.001) (Fig. 3b; Supplementary
Data 3-Tab 1). Similarly, blood pH levels were only decreased following
SIT (from 7.35 ± 0.03–7.02 ±0.09; P <0.001) and not MICT (from
7.35 ± 0.02–7.37 ± 0.02; P >0.05) (reflected by fold differences in [H+]
in Fig. 3b). These results agree with the well-described effect of exer-
cise intensity on increasing glycolytic flux through anaerobic pathways
and the associated increase in lactate and decrease in pH3,48. Immu-
nohistochemical analysis of muscle sections confirmed a greater
depletion of muscle glycogen in type I than type II fibres following the
firstMICT session, and greatermuscle glycogen depletion in the type II
fibres following SIT versus MICT (Fig. 3c). This is consistent with pre-
vious research49,50 and demonstrates that the two types of training
employed were associated with very different skeletal muscle fibre
recruitment patterns (i.e. MICT recruited predominantly type I fibres
while SIT recruited both type I & type II fibres; see the schematic
in Fig. 3d).

When correcting for multiple comparisons (Fig. 4a)51, we did not
detect any significant changes in the abundance of individual proteins
in either fibre type following either training type (Fig. 4b; Supple-
mentary Data 4). Our results are consistent with those of the only
published single-fibre proteomic study utilising exercise30, which only
reported changes in the abundance of individual proteins when they
analysed their data with a posteriori information fusion scheme that
combines fold change and statistical significance (unadjusted P values
from thousands of individual paired t-tests) (Fig. 4c)52. There is, how-
ever, good evidence that empirical Bayes methods better control for
false positives when analysing large datasets53. Indeed, when we rea-
nalysed the data of ref. 30 with the same imputation and empirical
Bayes methods as our study (i.e. limma51), we observed no significant
changes in protein abundance in either fibre type following their
training programme (Fig. 4d; Supplementary Data 4). Another notable
difference between the two studies is that the fold changes reported
by Deshmukh et al. 30 (−4.5 to 3.6 Log2FC; Fig. 4c) were much larger
than those observed in our study (−1.5 to 1.7 Log2FC; Supplementary
Data 4). These larger fold changes may partially be due to differences
in quantification methods between our two studies but would have
contributed to the greater number of differences identified via the
posteriori information fusion scheme. Thus, our results raise impor-
tant questions about the ability of human studies with small to mod-
erate sample sizes to confidently detect training-induced changes of
individual proteins in single-fibre pools, especially when making
appropriate adjustments for multiple hypothesis testing. This can be
attributed, at least in part, to the inherent inter-individual/inter-fibre
variability of human muscle biopsy samples and the individual varia-
bility in the response to training.

Another interesting observation was that there were fewer dif-
ferentially expressed proteins between type I and type II fibres post-
training compared topre-training (compareFig. 5a, b, Tables S5-Tabs 1,
2, with Fig. 1f). When comparing training types, more differentially
expressed proteins were higher in both type I and type II fibre pools
following MICT than SIT (Fig. 5c; Supplementary Data 5-Tab 3). Addi-
tionally, more than 70% of the proteins identified as differentially

expressed between type I and type II fibres pre-training were not sig-
nificantly different post-training (Fig. 5d; SupplementaryData 5-Tab4).
This is consistentwithprevious reports that type IIfibres becomemore
like type I fibres with endurance training54–56. We add that this reduced
difference between type I and type II fibres post-training was more
pronounced for SIT (greater recruitment of both type I and II fibres;
see Fig. 3c, d) than MICT. There were, however, an additional 23 dif-
ferentially expressed proteins between the two fibre types post-MICT
that were not differentially expressed between the two fibre types pre-
training (Fig. 5d; Supplementary Data 5-Tab 4). This included Cyto-
chrome b5 reductase (CYB5R3), which was higher in type I fibres fol-
lowing MICT and has recently been linked to the regulation of lipid
metabolism and modest lifespan extension in mice57.

Given the challenges in confidently detecting training-induced
changes of individual proteins in human single-fibre pools, we turned
our attention to protein groupswithin different pathways; this allowed
for an overview of protein changes within pathways (Fig. 5e; Supple-
mentary Data 5-Tab 5). Network analysis conducted on differentially
expressed proteins in the two fibre types after both training inter-
ventions (i.e. MICT and SIT) demonstrates that differences were more
common between the same fibre type than the same exercise training
type (Fig. 5f; Supplementary Data 5-Tab6). For example, for both types
of training, striated muscle contraction proteins associated with slow-
twitch skeletal muscle isoforms were predominately higher post-
training in type I fibres (TNNT1, TNNI1, TNNC1, TPM3, MYL2 and
MYL3), while proteins associated with fast-twitch skeletal muscle iso-
forms were predominately more abundant post-training in type II
fibres (TNNC2, MYH6, TNNT3, MYBPC2, TPM1, TNNI2, MYL1 and
MYL4). The network analysis also indicated that proteins associated
with glycolysis were mostly differentially expressed only in type II
fibres after both types of training; proteins belonging to the glycogen
synthesis pathway were only observed to be greater in type II fibres
post-MICT and not post-SIT. Finally, although fatty acid oxidation
pathwayproteinswerepredominately differentially expressed in type I
fibres following training, these differences were all present in the PRE
samples.

Fibre-type-specific effects of different types of exercise training
on mitochondrial proteins
Mitochondrial content is greater in type I compared with type II
fibres58,59 (see also Fig. 2d). However, while research has reported that
markers ofmitochondrial content increasewith exercise training6,60–63,
little is known about the fibre-specific effects of different types of
exercise training. Consistent with our morphological (mitochondrial
volumedensity obtained fromTEM;Fig. 6a, b) andbiochemical (citrate
synthase [CS] activity; Fig. 6c) markers of mitochondrial content
(SupplementaryData 6-Tab 1), we observed a significant increase in the
mean abundance of known mitochondrial proteins only following
MICT and not SIT (Fig. 6d) (Supplementary Data 6-Tab 2). This can
likely be attributed to the five-fold greater volume of training com-
pleted by the MICT group6,64, although a consensus has yet to be
reached on the relative importance of exercise intensity versus volume

Fig. 2 | Analysis of themitochondrial proteome revealsfibre-typedifferences in
the pre-training samples. a A Venn diagram displaying the number of mito-
chondrial proteins annotated according to the mitochondrial protein database
Mitocarta 3.095 in the present study, alongside two published human single-fibre
datasets (refs. 29,30). Only proteins with less than 30% missing data pre-
intervention were annotated to Mitocarta 3.0. b Top gene ontology biological
processes (GOBPs) in which the identified mitochondrial proteins common to all
three studies illustrated in (a) are mainly involved. The bars represent Log10P
values, where P represents the significance of each GOBP enriched by the mito-
chondrial proteins. The P value was computed using the DAVID software95 and
computed by a one-sided Fisher’s Exact Test. c Illustration of mitochondrial pro-
teins that were differentially expressed between type I and type II fibres in the PRE

samples following standard normalisation (Upper panel) and proteins that were
identified as differentially expressed when the abundance of individual mito-
chondrial proteins was expressed relative to the total mitochondrial protein
abundance of each fibre type (i.e. mitochondria-corrected relative abundance8)
(Lower Panel). Proteins that are no longer differentially expressed following
mitochondrial normalisation are shaded light blue. Proteins were labelled as
mitochondrial according to Mitocarta 3.095. d Comparison of Mean Mitochondrial
Protein Expression in the PRE exercise samples for type I (blue) (n = 16) and type II
fibres (red) (n = 16). Replicates are biological. The blue and red boxes indicate the
median and the 25th/75th percentile with the whisker lines representing the dis-
tribution extending to 1.5 of the interquartile range. An adjusted P value of 0.0015
was computed with a two-tailed paired t-test.
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on training-induced changes in markers of mitochondrial content62,65.
Changes in the mean abundance of known mitochondrial proteins
following MICT occurred in both the type I and type II fibres (Fig. 6d);
this suggests that there is recruitment of type IIfibres, alongwith type I
fibres, during long-duration, moderate-intensity exercise. There was a
significant decrease in known mitochondrial protein abundance in
type I fibre pools following SIT (Fig. 6d).

Given the training-specific changes in the mean abundance of
known mitochondrial proteins, we next investigated training-

induced changes in the total abundance of proteins in different
mitochondrial functional groups in both fibre types. We observed
fibre-type-specific adaptations of mitochondrial proteins to training
(Supplementary Fig. 2a, Supplementary Data 8-Tab 1), consistent
with the only other proteomic study investigating the effects of
exercise training in pools of single fibres30. Our results suggest that
the overall mean abundance of many mitochondrial functional
groups is enhanced by high-volume, moderate-intensity, endurance
training. Interestingly, the total abundance of TCA cycle, beta-
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Fig. 3 | Responses tomoderate-intensity continuous training (MICT) and sprint
interval training (SIT). a 8-week exercise training regime for MICT and SIT as per
described methodology. Skeletal muscle biopsies were taken before week 1 and
after week 8. Grey bars indicate number of training sessions per week. Biopsies
were taken at rest before first session and 72 h post final session. Singlefibre lysates
were fibre typed via dot-blotting and subsequently pooled by fibre type. b Bar
graphs displaying fold differences betweenMICT (n = 8) and SIT (n = 8) for exercise
intensity (%Ẇmax) and total training volume (J), with adjusted P values of 8.1 × 10−11

and 6.9 × 10−7, respectively, computed by two-tailed t-tests. Bar graphs displaying
the change in blood lactate concentration (mmol•L−1) and hydrogen ion (H+) con-
centration (mol•L−1) from pre to post exercise following the first MICT (n = 8, n = 7
[H+]) and the first SIT (n = 8) session, with adjusted P values of 1.7 × 10−9 and
1.6 × 10−5, respectively, computed by two-tailed t-tests. Data are presented as

mean ± SD; * adjusted P value < 0.05. Individual points signify individual participant
values. Antecubital venous bloodwas drawn at rest and immediately post exercise.
c Representative images of the effects of a single session of exercise on fibre-type-
specific glycogen depletion patterns in human vastus lateralis muscle samples
collected before and after MICT (n = 4) or SIT (n = 4). Top panels display immu-
nofluorescent fibre-type staining for myosin heavy chain content, with type I
muscle fibres (MHC7) identified as blue and type II fibres (MHC2) identified as
green. Bottom panels display serial sections stained for glycogen (periodic acid-
Schiff staining); a decrease in staining saturation reflects lower glycogen con-
centration. Bars = 200 µm.Each stainingwas repeated independently for 8 different
samples. d Illustration of proposed hierarchal recruitment pattern of type I and IIa
skeletal muscle fibres in relation to exercise intensity. MICT is in purple and SIT in
green, with type I fibres and type II fibres in blue and red, respectively.
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oxidation and mitochondrial ribosome proteins increased in both
fibre types from PRE to POST MICT (Fig. S2b, c, Supplementary
Data 8-Tab 2). This latter result is similar to those of another pro-
teomic study, which revealed changes in mitochondrial ribosomal
proteins in whole-muscle samples following interval training66.
These authors hypothesised that translational level regulation is a
predominant factor controlling mitochondrial biogenesis in humans

in response to exercise training. No changes in mitochondrial ribo-
some proteins were observed in either fibre type for SIT. This sug-
gests the volume of MICT was sufficient to induce significant
mitochondrial protein synthesis in both fibre types, whereas SIT
may not provide a sufficient stimulus to significantly alter mito-
chondrial protein synthesis67, and is consistent with our TEM find-
ings (Fig. 6b).
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these proteins remained significant. c, d Volcano plots illustrating the fold-change
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Fibre-type-specific expression profiles for mitochondrial pro-
teins independent of training-induced changes inmitochondrial
content
Given the greater changes in mitochondrial content that occur fol-
lowingMICT comparedwith SIT61,68–69; (see also Fig. 6d), we turned our
attention to investigating if fibre-type-specific changes in different
mitochondrial functional groups with training were independent of

changes in our marker of total mitochondrial content (i.e. MPE). Once
again, we employed our normalisation strategy8 to remove the bias
introduced by the changes in mitochondrial content in each fibre type
following both types of training (Fig. 7a). This enabled us to investigate
differences in mitochondrial protein abundances between the two
fibre types without the bias introduced by training-induced changes in
total mitochondrial content (Supplementary Data 7-Tabs 1, 2). Post
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normalisation, very few training-induced changes in mitochondrial
protein abundances remained in either fibre type, following either
training intervention. One exception was the relative decrease in the
abundance of complex IV subunits in both type I and II fibres following
SIT (Fig. 7b, c). Thus, when changes in mitochondrial content are
controlled for, very-high-intensity SIT appears to deprioritise the bio-
genesis of OXPHOS components involved in the final step of the
mitochondrial electron transport chain (i.e. complex IV). The other
exception was the increase of proteins associated with fatty acid oxi-
dation in type I fibres following MICT, which our results suggest was
greater than the overall training-induced increase in mitochondrial
content (Fig. 7d). This adds to the evidence that MICT provides a
powerful stimulus to increase fatty acid oxidation70,71; we add that this
adaptation occurs predominantly in type I skeletal muscle fibres (with
the exercise stimulus employed in our study).

Discussion
Proteomics applied to human skeletalmuscle remains in its infancybut
has introduced new opportunities to explore the complexity of the
biological networks underlying fibre-specific differences and respon-
ses to exercise training. In the present study, we developed a sensitive
MS-based proteomics workflow that allowed for the pooling of single
muscle fibres, and the utilisation of TMT labelling, to accommodate
our complex experimental design and increase the quantitative accu-
racy of our results. In addition, we incorporated a larger sample size
than previous studies to better account for the individual variability in
human skeletal muscle and to increase the robustness of our findings.
Consistent with previous research30, we identified more than 200 dif-
ferentially expressed proteins between type I and type II fibres at
baseline (Fig. 1f). However, further analysis of these results allowed us
to make two important observations. The first is that less than half of
mitochondrial proteins (20 of 56) with fibre-type-specific expression
profiles remained significantly different when we used our published
normalisation strategy to account for the overall greater content of
mitochondria in type I versus type II fibres (Fig. 2c—bottom panel).
Thus, many of the differences in mitochondrial protein abundances
between fibre types reported by us (Fig. 2c—top panel), and others29,30,
are likely due to differences in total mitochondrial content rather than
representing a fibre-type-specific mitochondrial proteome. A further
finding is thatmore than 70%of the proteins identified as differentially
expressed between type I and type II fibres pre-training were not sig-
nificant post-training (Fig. 5d; Supplementary Data 5-Tab 4). This
highlights the challenge of distinguishing between protein expression
profiles intrinsic to different fibre types and those that are a con-
sequence of adaptations to habitual physical activity (or inactivity).

Repeated muscle contractions, via habitual physical activity or
exercise training, provide a potent stimulus to alter the expression of
proteins and confer many health benefits4. The development of mass-
spectrometry-based proteomics has advanced our understanding of
training-induced changes in protein abundance in mixed-fibre

samples8,72–74. However, while it is well known that adaptations to
training depend on the characteristics of the exercise stimulus10, no
proteomic study has investigated the effects of different exercise sti-
muli on fibre-type-specific adaptations. Therefore, an important fea-
ture of our study design was to investigate fibre-type-specific
adaptations in response to two types of training that were very dif-
ferent in volume, intensity, metabolic stress and fibre recruitment
patterns (Fig. 3). Although our study design was motivated by the
many changes reported as significant in the only published single-fibre
proteomic study30, we did not detect any significant changes in the
abundance of individual proteins in either fibre type following either
training type. Subsequent re-analysis of the previously published data
highlighted two potential contributing factors—the greater fold dif-
ferences reported in the previous study (which may be related to dif-
ferences in protein quantification method, and/or the choice of
imputation method75) and the determination of statistical significance
via a posteriori information fusion scheme that combines fold change
and statistical significance (Fig. 4c; Supplementary Data 4). These
results collectively highlight some of the methodological challenges
that need to be overcome to confidently detect training-induced
changes of individual proteins in single-fibre pools - especially given
the inherent inter-individual and inter-fibre variability of human mus-
cle biopsy samples.

Given the well-known effects of different types of training on
mitochondrial content (see also Fig. 6), a further important feature of
our study was to investigate whether the fibre-type-specific changes
observed by us for the total abundance of proteins in different mito-
chondrial functional groups were independent of training-induced
changes in total mitochondrial content. To do this, we used our pre-
viously described normalisation strategy to control for the bias intro-
duced by changes in mitochondrial content in each fibre type
following both types of training8. This analysis revealed that most
training-induced changes in mitochondrial protein abundances were
no longer significant when normalised to the overall increase in
mitochondrial content (compare Fig. 7 with Supplementary Fig. 2).
However, a surprising observation was the decrease in the abundance
of complex IV subunits, relative to the overall increase in mitochon-
drial protein content, in both type I and II fibres following SIT. It has
been hypothesised that complex IV downregulation may be a con-
sequence of allosteric feedback inhibition by ATP76. This deprioritisa-
tion of the OXPHOS components involved in the final step of the
mitochondrial electron transport chain is intriguing given that when
also controlling for changes in mitochondrial content, we have pre-
viously reported greater changes in mitochondrial respiration follow-
ing SIT than MICT69. The results of our normalisation strategy also
revealed a discordant regulation of proteins associated with fatty acid
oxidation, with an increase of these proteins in type I but not type II
fibres following MICT. A previous study has also reported greater
increases in perilipin (PLIN) 2 and 5 in type I compared with type II
fibres following MICT77. These adaptations may facilitate greater

Fig. 5 | Differentially expressed proteins between type I and type II fibres post-
training. a Volcano plot illustrating distribution of proteins differentially expres-
sed between type I (n = 8) and II (n = 8) fibres in POST MICT samples. Points were
labelled based on whether they were differentially expressed, according to adjus-
ted P values from the two-sided limma analysis. b Volcano plot illustrating dis-
tribution of proteins that were differentially expressed between type I (n = 8) and II
(n = 8) fibres in the POST SIT samples. Points were labelled based on whether they
were differentially expressed, according to adjusted P values from the two-sided
limma analysis. c VennDiagrams displaying number of proteins identified as higher
in type I or type II fibres for both exercise types, with proteins that appear in both
datasets seen in the overlap. d Venn Diagram displaying number of proteins that
were differentially expressed between type I and type II fibres in the PRE samples
(n = 16 participants), compared with number of differentially expressed proteins
between type I and type II fibres in the POST MICT (n = 8) and SIT (n = 8) samples.

e EnrichPlot dot plot of protein expression in type I vs type II fibres for the POST
MICT (n = 16) and SIT (n = 16) samples. Pathways were identified using WikiPath-
ways. Top 15 terms, according to adjusted P values (<0.05), are displayed. Red dots
identify pathways higher in type IIfibres, blue dots indicate pathways higher in type
I fibres. The saturation of each colour is proportional to the average Log2 fold
difference for each exercise and fibre group. Size of dot indicates how many pro-
teins correspond to each pathway. For all proteins, the corresponding log2 fold
change and P values from the differential expression analysis were used. All terms
can be found in Supplementary Data 5-Tab 5. f ClusterProfiler network plot using
differentially expressed (Benjamini-Hochburg adjusted P <0.05) terms. Pathways
were identified using WikiPathways. Colours indicate in which exercise and fibre
group the proteins in thatWikiPathway termwere found. Size of dot indicates how
many proteins corresponded to each pathway. Displayed terms were selected for
readability. All terms can be found in Supplementary Data 5-Tab 6.
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intramuscular triglyceride lipolysis and fatty-acid oxidation in type I
fibres when metabolic demand increases78,79.

In summary, our study incorporated several unique elements
(a sensitive MS-based proteomics workflow, the largest sample size to
date, two very different types of training stress and an in silico mito-
chondrial normalisation strategy) to investigate fibre-specific adapta-
tions to different types of training. This provides an important
resource to better understand how different fibre types adapt to dif-
ferent training interventions, with potential insights for how best to
prescribe exercise to improve both health and human performance. In
contrast to the decreased abundance of complex IV subunits in both

type I and II fibres following SIT, and the increase in proteins asso-
ciated with fatty acid oxidation only in type I fibres with MICT, most
training-induced changes in mitochondrial protein abundances were
no longer significant when normalised to the overall increase in
mitochondrial content.

Limitations of the study
This study recruited healthy, young, active men and, therefore, some
of the conclusions may not apply equally well to individuals of differ-
ent sexes, ages (e.g. the elderly), ethnicity, or health status. Another
potential limitation is the use of pooled muscle fibre samples; while
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Fig. 6 | Changes in markers of mitochondrial content with training.
a Representative images of skeletal muscle samples analysed using transmission
electron microscopy (TEM) pre- and post-training for participants who performed
either moderate-intensity continuous training (MICT) or sprint interval training
(SIT). Note the difference in the abundance of mitochondria post MICT. Bars =
0.5 µm. b Violin plots of the absolute change (Δ) in mitochondrial volume density
(MitoVD—proportion of themuscle volume occupied bymitochondria) frompre- to
post-training following MICT (purple; n = 8) and SIT (green; n = 8). Twenty images
were randomly obtained fromat leastfivefibres of eight individuals of each training
group and quantified PRE and POST training. The black boxes indicate the median
and the 25th/75th percentile, with the whisker lines representing distribution
extending to 1.5 of the interquartile range. Adjusted P values of 0.018 (MICT) and
0.99 (SIT) were computed by two-tailed paired t-tests. c Violin plots of absolute

change (Δ) in citrate synthase activity (CS; mol.h−1.kg protein−1) from pre- to
post-training following MICT (purple, n = 8) and SIT (green, n = 8). Two samples
from each individual (PRE and POST training) were measured in triplicate for
Citrate Synthase activity. The black boxes indicate the median and the 25th/75th
percentile, with the whisker lines representing distribution extending to 1.5
of the interquartile range. Adjusted P values of 0.0034 (MICT) and 0.29 (SIT)
were computed by two-tailed paired t-tests. d Scaled profile plots showing the
relative abundance of mitochondrial proteins (grey) pre- and post-exercise in
the MICT (purple, n = 16) and SIT (green, n = 16) groups for each fibre type, and
the mean relative abundance (black) of the proteins in each group. Data are shown
as Δmean z-score. * indicates P values for significance (*: P < =0.01, **: P < =0.001,
***: P < =0.0001, ****: P < =0.00001) by two-sided paired t-tests from pre- to post-
training.
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this assists in reducing biological variability amongst samples, it may
not be a true representation of some single-fibre differences both pre-
and post-training. Additionally, and similar to previous research30, the
type II fibre pools for some participants may have included a small
proportion of type IIx and/or type IIa/x fibres80,81. Future research in
this area should also consider analysing type IIx fibres, whichmay help
explain someof the variability of the proteomic data in the type II fibre

pools reported by us and others. To better account for the inherent
inter-individual/inter-fibre variability of human muscle biopsy sam-
ples, and the individual variability in the response to training, studies
with even larger sample sizes should also be considered. It was not
possible for us to determine if the fibre-specific adaptations to the two
different types of exercise training had functional consequences, but it
is unlikely that small changes in individual proteins are able to explain
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the observed improvements in exercise performance. Finally, it is
important to note that there are several quantitative mass-
spectrometry-based methods used to detect changes in the pro-
teome, each with their advantages and disadvantages, and the results
are not always directly comparable.

Resource availability
Lead contact. Further information and requests for reagents and
resources may be directed to and will be fulfilled by the lead contact,
Professor David J Bishop (David.Bishop@vu.edu.au).

Methods
Experimental model and subject details
Ethics approval. Ethics approval for the study was obtained from the
Victoria University Human Research Ethics Committee (HRE17-075)
and conformed to the standards set by the latest revision of the
Declaration of Helsinki. The study was registered as a clinical trial
under Australian New Zealand Clinical Trials Registry (ANZCTR;
ACTRN12617001105336).

Statistics and reproducibility. Twenty-eight healthy men initially
volunteered to take part in this study. The data from sixteen partici-
pants (27.5 ± 5.2 years; 177 ± 7 cm; 73.8 ± 8.7 kg; 23.6 ± 2.6 BMI; Sup-
plementary Data 1-Tab 1) was included in the final analysis; two
participants from the MICT group and two from the SIT group with-
drew from the study due to time constraints, and the data from one
participant was excluded from the final analysis as their muscle sam-
ples were of poor quality. Samples were also excluded where fibre
typing by dot blotting was inconsistent with the proteomic data (see
study recruitment flow chart and final group sizes; Supplementary
Fig. 1f, overview Supplementary Fig. 1g). The sample size (n) required
to reach a significance level of P < 0.05with a power of at least 80%was
calculated for the following variables: mitochondrial volume, mito-
chondrial cristae density, and mitochondrial respiration. Inputted
values were based on our prior studies with a lower training volume or
duration than the present study. Based on these calculations, a sample
size of 8–14 per group was sufficient to reach the level of significance
required. Participants were provided with the information to partici-
pants’ document, and were informed of the study requirements,
benefits and risks involved before giving their written informed
consent.

Study design and training. During the first 2 weeks, participants
performed two exercise familiarisation sessions and multiple testing
familiarisation sessions. Participants were then allocated into one of
the two training groups, based on their age, body mass index (BMI),
maximum rate of oxygen consumption (V̇O2max), peak aerobic power
output (Ẇmax;Ẇ.kg−1) and 20-km time trial (TT) performance (Ẇ.kg−1)
(all P > 0.05), to match the two groups for baseline endurance char-
acteristics. The participants then underwent another week of testing,
had a resting biopsy and then trained 3 to 4 times per week for 8weeks

before the last muscle biopsy sample and final testing was per-
formed (Fig. 3a).

Sprint-interval training (SIT). Eight participants were from this group
(28.3 ± 5.2 years; 179 ± 8 cm; 77.3 ± 6.5 kg; 24.2 ± 2.6 BMI; Supplemen-
tary Data 1-Tab 1). The SIT group completed 4–8 30-s ‘all-out’ cycling
sprints against a resistance set at 0.075 kg/kg body mass (BM), inter-
spersed with a 4-min recovery period between sprints69,82. The training
load was increased to 0.080 kg.kg−1 BM in week 3, to 0.085 kg.kg−1 BM
in week 5 and to 0.090 kg.kg−1 BM in week 7. During the recovery,
participants remained on the bikes and were allowed to either rest or
cycle against no resistance. Participants started the training with
4 sprints per session and this increased up to 8 sprints per session
in week 7.

Moderate-intensity continuous training (MICT). Eight participants
were from this group (26.8 ± 5.4 year; 175 ± 6 cm; 70.4 ± 9.6 kg;
22.9 ± 2.6 BMI; Supplementary Data 1-Tab 1). The training intensity for
the MICT training group was established as 10% less than the first
lactate threshold (~90% of the lactate threshold 1, LT1 - defined as the
first increaseof≥0.3mmol.L−1 of lactate fromtheprevious stageduring
the submaximal test). The training intensity prescription was reas-
sessed during the first training session ofweeks 3, 5 and 7 and adjusted
accordingly. At the commencement of training, participants com-
pleted 60min per session and this increased up to 120min per session
in week 7.

Testing procedures. Participants were required to avoid any vigorous
exercise for the 48 h preceding each performance test (72 h for the
skeletalmuscle biopsy), and to avoid caffeine consumption for at least
8 h prior to each test. Tests were performed at a similar time of the day
throughout the study to avoid variations caused by changes in circa-
dian rhythm.

GXT. Graded exercise tests (GXTs) were performed on an electro-
nically braked cycle ergometer (Lode Excalibur v2.0, Groningen, The
Netherlands) to determine maximal oxygen uptake (V̇O2max) and
maximal power (Ẇmax). A GXT design of 1-min incremental stages was
utilised, aiming to attain a total testing durationof 9–11min. Breath-by-
breath recordings of Oxygen Consumption (V̇O2), Expired Carbon
Dioxide (V̇CO2) and minute ventilation (V̇E) were acquired throughout
the GXT using a metabolic analyser (Quark Cardiopulmonary Exercise
Testing, Cosmed, Italy). The Ẇmax was determined as the average
power of the last minute completed. After completion of the GXT,
there was a 5-min recovery followed by a verification bout performed
at an intensity equivalent to 90% of Ẇmax until task failure to confirm
the highest measured V̇O2max

83.

Submaximal test. Once the initial GXTwas completed, the ventilatory
parameters obtained (V̇O2, V̇CO2, V̇E) were used to estimate the first
ventilatory threshold (VT1). Once estimated, the submaximal test

Fig. 7 | Normalisation to mitochondrial protein content reduces fibre-type
differences inmitochondrial protein abundances. a Scaled profile plots with the
application of mitochondrial normalisation showing changes in the relative abun-
dance of mitochondrial proteins (grey) pre- and post-training in the moderate-
intensity continuous training (MICT) and sprint interval training (SIT) groups for
eachfibre type. Themeanof each group is indicated by the black line.Data is shown
as Δ mean z-score. b Scaled profile plots with the application of mitochondrial
normalisation showing changes in the relative abundanceof the subunits in each of
the oxidative phosphorylation (OXPHOS) complexes (CI to CV), as well as the
mitochondrial ribosomes, in type I and type II fibre types in response to both types
of training (MICT, n = 16 and SIT, n = 16). The mean of each group (all proteins
identified in eachpathwayusingMitoCarta 3.0) is indicatedby theblack line.Data is
shown asΔmean z-score. * indicates P value for significance (**: P ≤0.001) basedon

two-sided paired t-tests of the pre- to post-training values. c Heatmap displaying
z-score values of protein subunits of the OXPHOS complexes, as well as the mito-
chondrial ribosome, in eachof the two training groups (MICT and SIT), in type I and
type II fibre type pools pre- and post-training, with the applicationofmitochondrial
normalisation. d Scaled profile plots with the application of mitochondrial nor-
malisation showing changes in the relative abundance of proteins involved in Fatty
Acid Oxidation, the tricarboxylic acid cycle and mitochondrial dynamics (all pro-
teins identified in pathway usingMitoCarta 3.0) in type I and type II fibre type pools
in response to both types of training (MICT, n = 16 and SIT, n = 16). The mean of
each group is indicated by the black line. Data are shown as Δ mean z-score. *
indicates P value for significance (*: P ≤0.01, **: P ≤0.001) based on two-sided
paired t-tests of the pre- to post-training values.
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started at 40W lower than the estimated VT1 and the intensity was
increased 10W every 3min (stage length) until the LT1 was surpassed
and identified. The test was stopped at a blood lactate of 2mmol.L−1 as
the LT1 had been reached in all cases. Antecubital venous blood was
taken in the last 15 s of each stage and was instantly analysed in
duplicateusing ablood lactate analyser (YSI 2300STATPlus, YSI,USA).

Physical activity and nutritional controls. Participants were reques-
ted to maintain a normal dietary pattern and physical activity
throughout the study. To minimise the variability in muscle metabo-
lism, participants were provided with a standardised dinner (55 kJ/kg
of bodymass (BM), providing 2.1 g carbohydrate/kg BM, 0.3 fat/kg BM
and 0.6 g protein/kg BM) and breakfast (41 kJ/kg BM, providing 1.8 g
carbohydrate/kg BM, 0.2 g fat/kg BM and 0.3 g protein/kg BM) to be
consumed 15 h and 3 h before the biopsies, respectively.

Muscle biopsies and single muscle fibre isolation. A biopsy needle
with suction was used to obtain vastus lateralis muscle biopsies under
local anaesthesia (1% xylocaine) at pre training and3days post training.
After being cleaned of excess blood, connective tissue and fat, muscle
biopsies were then separated on ice into single fibres. Forty fibres from
each biopsy were individually isolated into single fibre segments and
thenplaced in a Laemmli solution (a solubilising buffer)12. The Laemmli
solution was composed of 4% (v/v) sodium dodecyl sulphate (SDS), a
thiol agent of 10% (v/v) ß-mercaptoethanol, 20% (v/v) glycerol, 0.125M
tris-hydroxymethyl-aminomethane (tris)-HCl; and 0.015 % (v/v) bro-
mophenol blue, pH 6.8. Each fibre was diluted with 5 µL of 3x the
solubilising buffer 2:1 (v/v) with 10 µL of 1x Tris-Cl (pH 6.8)12,23. These
fibre segments were then immediately frozen in liquid nitrogen and
stored at −80 °C.

Single muscle fibre analysis—immunoblotting
Musclefibre typing (dot blotting). To assessmuscle fibre types, PVDF
membranes were activated in 95% ethanol for 15–60 s and then equi-
librated for 2min in transfer buffer (25mM Tris, 192mM glycine, pH
8.3 and 20%methanol). The wetmembrane was then placed on a stack
of filter paper (one to two pieces soaked in transfer buffer on top of
one dry piece). The single-fibre samples in the Laemmli solution were
then thawed and vortexed, but not centrifuged, to avoid pelleting and
hence loss of any of the skeletal muscle protein12. Samples were
spotted to a specific part of the membrane in aliquots equating to ~1/8
of a fibre segment (i.e. 1μL) using a multi-channel pipette. This was
repeated twice, once for type I fibre detection and another time for
type II fibre detection. After complete absorption of samples, the
membrane was placed on top of a dry piece of filter paper to dry for 2
to 5min before being reactivated in 95% ethanol for 15 to 60 s and
equilibrated in transfer buffer for 2min. After three quick washes in
Tris-buffered saline-Tween (TBST), the membrane was blocked in 5%
non-fat milk in TBST (blocking buffer) for 5min at room temperature.
Following blocking, the membrane was rinsed with TBST and then
incubated in MYH2 dilute 1:200 (#A4.74, Developmental Studies
Hybridoma Bank [DSHB]) or MYH7 diluted 1:200 (#A4.840, DSHB)
antibody overnight at 4 °C with gentle rocking. On the second day,
membranes were washed in TBST and then incubated in secondary
antibody IgG (MYH2, #A32723, ThermoFisher Scientific) or IgM
(MYH7, # Cat# A-21042 4, ThermoFisher Scientific) diluted 1:20000 at
room temperature for 1 h with rocking. Lastly, membranes were
washed in TBST and then exposed to Clarity-enhanced chemilumi-
nescence reagent (BioRad,Hercules, CA,USA), imaged (ChemiDocMP,
BioRad) and analysed for signal density (ImageLab 5.2.1, BioRad) (see
example image in Supplementary Fig. 1h). Using images of all the
membranes, it was possible to determine the fibre type of each sample
(I or IIa) or if no MHC protein was present84, which would indicate
unsuccessful collection of a fibre segment. Samples with signal density

in both type I and IIamembranes were discarded (i.e. a I/IIa hybrid, two
different fibre types in the same sample).

Fibre-type pooling. The analysis of how the number of detected
proteins changed with increasing fibre pooling is shown in Supple-
mentary Fig. 1i. An increasing number of peptide and protein identi-
fications was observed with a greater number of pooled fibres.
However, therewas little change in the number of detections from6 to
9 fibre segments and the number of proteins identified plateaued
beyond 6 fibres. A fixed fibre pooling of 6 fibre segments was chosen
for this study to allow for sufficient protein coverage and to provide
reduced heterogeneity with the same number of pooling across all
samples. In addition, this was the maximum number of pooled fibres
available for some participants.

Muscle glycogen fibre-type histochemistry analysis. Muscles were
embedded in O.C.T. compound (Tissue-Tek), frozen in liquid nitrogen-
cooled isopentane, stored at −80 °C and subsequently cut into 10 µm
thick cryosections with a cryostat (Leica) maintained at −20 °C.

Fibre type-specific glycogen depletion was imaged under bright-
field using periodic acid-Schiff stain (PAS), similar to the methodology
described elsewhere85. As such, 10μm thick muscle cryosections were
serially sectioned onto cleaned glass slides and subsequently fixed in
3.7% formaldehyde in 90% ethanol for 60min at 4 °C. After this fixa-
tion, sections were then pre-treated for 5min with 1% periodic acid
(Sigma-Aldrich, Australia) in milliQ-water followed by a washing step
for 1min in tap water and a wash dip for 5 s in milliQ-water. The slides
were then applied with 15% diluted Schiff’s reagent in PBS (Sigma-
Aldrich, Australia) and incubated for 15min at room temperature. The
Schiff’s reagent was diluted to 15% based on prior optimisation, as
when applied without any dilution the dye intensity saturated the
signal. After Schiff’s reagent, the sections werewashed for 5 s inmilliQ-
water followed by a 10-min rinse with tap water. Thereafter, sections
were washed (3 × 5min) in PBS (137mmol.L−1 sodium chloride,
3mmol.L−1 potassium chloride, 8mmol.L−1 sodium phosphate dibasic
and 3mmol.L−1 potassium phosphate monobasic, pH of 7.4). Slides
were then dried before adding ~ 15 µL of PBS per section andmounting
with cover slips. The slides were then viewed and imaged in high
resolution using an Olympus BX51 fluorescencemicroscope (Olympus
Corporation, Tokyo, Japan) and Cell F software (Olympus). All images
were obtained with the x10 objective and captured under bright-
field mode.

The second serially sectioned slide underwent immuno-
fluorescence staining forMHCexpression andwas performedwith 1:25
primary antibodies against MHCI (BA-F8) and MHCIIa (BF-35) (Devel-
opmental Studies Hybridoma Bank, University of Iowa), whereas sec-
ondary antibodies were Alexa fluor 350 IgG2b 1:500 (blue) and Alexa
fluor 488 IgG2b 1:500 (green) (Invitrogen). Antibody cocktail config-
urations and immunofluorescence staining procedures were followed
according to ref. 86. Once completely dry, the sectionswere incubated
(blocked) with 10% goat serum (product no: 50197Z, ThermoFisher
Scientific) for 1 h. The excess goat serum was then removed, and sec-
tions were incubated with primary fibre type antibodies over night at
4 °C. The following morning, the primary antibodies were washed off
in milliQ-water (3 × 5min). Once the slides were fully dry, they were
incubated with fluoro-conjugated secondary antibodies for 90min.
Slides were washed further with milliQ-water (3 × 5min) post incuba-
tion and dried before adding ~15 µL of PBS per section and mounting
with cover slips. The slides were then viewed and imaged in high
resolution using an Olympus BX51 fluorescencemicroscope (Olympus
Corporation, Tokyo, Japan) and Cell F software (Olympus). All images
were obtained with the x10 objective and analysis of images was per-
formed using ImageJ software (National Institutes ofHealth, Maryland,
USA) (See Fig. 3c for example images).
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Citrate synthase (CS) activity assay. Citrate Synthase activity was
analysed on a 96-well plate by combining 5μL of a 2 μg.μL−1 muscle
lysate, 40μL of 3mM acetyl CoA and 25μL of 1mM DTNB to 165μL of
100mMTris buffer (pH8.3). Following this, 15μLof 10mMoxaloacetic
acid was added to the plate mixture, protected from the light, and
immediately placed in the spectrophotometer at 30 °C (xMark
Microplate Spectrophotometer, BioRad Laboratories Pty Ltd, Glades-
ville, NSW, AUS). Absorbance was recorded at 412 nm every 15 s for
6min after 30 s of mixture agitation. CS activity was calculated from
the steepest part of the curve and reported asmol.kg protein−1.h−1. Two
samples from each individual (PRE and POST) were measured in tri-
plicate for Citrate Synthase activity.

Blood lactate and pH measurements. Antecubital venous blood
samples (~1mL) were collected pre and post the first exercise training
session from a cannula inserted in the antecubital vein for the deter-
mination of venous blood [H+] and lactate concentrations using a
blood-gas analyser (ABL 800 FLEX, Radiometer Copenhagen).

Transmission electron microscopy. Skeletal muscle samples were
fixed overnight at 4 °C with 0.2M sodium cacodylate–buffered, 2.5%
glutaraldehyde and 2% paraformaldehyde. Fixed samples were rinsed
with 0.1M sodium cacodylate, and postfixed with ferricyanide-
reduced osmium tetroxide (1% OsO4, 1.5% K3 [Fe(CN)6], and 0.065M
cacodylate buffer) for 2 h at 4 °C. The postfixed samples, processed by
the Monash Ramaciotti Centre for Cryo-Electron Microscopy, were
rinsed with distilled water and then stored overnight in 70% ethanol.
Dehydration was performed by graduated ethanol series (80%, 90%,
95%, 100% and 100%; 10min each) and propylene oxide (100% and
100%; 5min each). Samples were infiltrated with Araldite 502/Embed
812 by graduated concentration series in propylene oxide (25% for 1 h,
33% for 1 h, 50% overnight; 66% for 4 h, 75% for 4 h, 100% overnight;
and 100% for 5 h) and then polymerised at 60 °C for 48 h. Embedded
samples were sectioned using an Ultracut UCT ultramicrotome (Leica
Biosystems) equipped with a 45° diamond knife (Diatome) to cut 75-
nm ultrathin sections. The grids were stained at room temperature
using 2% aqueous uranyl acetate (5min) and Reynolds lead citrate
(3min) before routine imaging. All TEM imaging was performed at
80 kV on a Jeol JEM-1400Plus and recorded with a Matataki flash
camera and DigitalMicrograph (Version 1.71.38) acquisition software.

Twenty images were randomly captured from a minimum of five
fibres in each training group, both before and after training. Eight
individuals from each training type were included in this analysis.
Mitochondrial volume density was determined using the stereological
point counting method as previously described by Broskey et al. 87.
Imagequantificationwas carried out using ImageJ software (NIH,USA),
adhering to published guidelines87. Image acquisition was conducted
in a blinded manner.

Proteome sample preparation. Fibres were placed into 5 µL of 2x SDS
solubilising buffer (0.125M Tris·Cl, pH 6.8, 4% SDS, 10% glycerol, 4M
urea, 5% mercaptoethanol, 0.001% bromophenol blue) diluted 2 times
(vol/vol) with 1x Tris·Cl, pH 6.8. Fibres were pooled according to fibre
type and further lysed with heating at 95 °C for 10min. The pooled
fibreswere then sonicated for 20min (Bioruptor, Diagenode, 20 cycles
of 30 s). Reduction and alkylation of disulphides was performed by
adding chloroacetamide (40mM, CAA, Sigma) and further incubated
for 30min at 50 °C. The SDS lysate was acidified with 12% aqueous
phosphoric acid at 1:10 for a final concentration of ~ 1.2% phosphoric
acid and mixed. This step was essential as the proteins are filtered at
this pH. The high percentage of methanol can then precipitate the
protein out, which will be retained on top of the S-Trap™ (ProtiFi).
Following this, 350 µL of S-Trap™ buffer (90% Methanol (MeOH) and
100mM triethylammounium bicarbonate (TEAB), C7H17NO3) was
added to the acidified lysis buffer (final pH 7.1). A colloidal protein

particulate was instantly formed in this step. With the S-Trap™ micro
column in a 1.7mL tube for flow through, the acidified SDS lysate/
MeOH S-Trap™ buffer mixture was added into the micro column. The
micro column was then centrifuged at 4000 g for 30 s until all SDS
lysate/ S-Trap™ buffer had passed through the S-Trap™ column. Pro-
tein was then trapped within the protein-trapping matrix of the spin
column. The captured protein was then washed with 350 µL S-Trap™
buffer with centrifugation and washing repeated three times. The spin
column was then transferred to a fresh 1.7mL tube (this aided in pre-
venting contamination of the digestion). For best results, the S-Trap™
micro column was rotated 180 degrees between the centrifugation
washes. The S-Trap™ micro column was then moved to a clean 1.7mL
sample tube for the digestion with the protease (trypsin and LysC
added at a concentration of 1:50 in 125 µL of 50mM digestion buffer)
into the top of themicro column. The samplewas then centrifuged at a
low speed of 500 g for 30 s and any solution that passes through is
returned to the top of the column (the protein-trapping matrix is
highly hydrophilic and will absorb the solution; however, it was
important to ensure there was no bubble at the top of the protein
trap). The column was then transferred to another fresh tube and
incubated at 37 °C overnight (~16 h). For 96-well plates, centrifugation
was performed at 1500 g for 2min. The protease combination was
added at a concentration of 1:25 in 125 µL of 50mM digestion buffer
and incubated for 1 h at 47 °C.

Peptides were eluted with 80 µL each of digestion buffer (50mM
TEAB) and then 0.2% aqueous formic acid was added to the S-Trap™
protein trappingmatrix centrifugedat4000 g for60 s for eachelution.
Hydrophobic peptides were recoveredwith an elution of 80 µL 60% (v/
v) acetonitrile containing 0.2% formic acid and then centrifuged at
4000 g for 60 s. Elutions were pooled.

Further peptide purification was performed as required with 2x
SDB-RPS disc stage tips that were prepared and had sample loaded
onto the stage-tip. Peptideswere then centrifuged through the column
at 1500 g for 3min. Stage tips were washed with 100 µL of 90% iso-
propanol (C3H8O) containing 1% TFA and then washed again with 0.2%
TFA in 5% acetonitrile and centrifuged for 4min following each wash.
Peptides were then eluted by adding 100 µL of 60% acetonitrile con-
taining 5% ammonium hydroxide and centrifuged for 4min. Samples
were lyophilised down to dryness with the SpeedVac (CentriVap
Benchtop Centrifugal Vacuum Concentrator, # 7810038, VWR) and
reconstituted for labelling and subsequent MS analysis.

TMTpro labelling. TMTpro Label Reagents (ThermoFisher) were
equilibrated to room temperature and 20 µL of anhydrous acetonitrile
was added to each tube. Dried samples were reconstituted in 0.5M
HEPES buffer, pH 8.5. The desired amount of TMTpro label was added
and incubated at 20 °C for 1 h with shaking (1000 rpm). The reaction
was then quenched by adding a final concentration of 0.25% of
hydroxylamine to the peptide andTMTmixture, and further incubated
at 20 °C for 30min. Sampleswere lyophiliseddown todrynesswith the
SpeedVac and reconstituted in loading buffer. Each sample was frac-
tionated into 16 fractions using basic pH reverse phase C18 liquid
chromatography. Peptides were subjected to basic-pH reverse-phase
high pressure liquid chromatography (HPLC) fractionation. Labelled
peptides were solubilised in buffer A (10mM ammonium hydroxide)
and separated on an Agilent HpH Poroshell120 C18 column (2.7μm
particles, 2.1mm i.d. and 5 cm in length).

TMT labelling strategy. Multiplexing techniques have recently
extended from 11 to 16 plex, which not only increases sample
throughput but accommodates complex experimental designs such as
this training study. This provided the ability to label 16 samples in one
run and then merge as one sample through the LC-MS. A 16-plex also
allows for an expanded number of treatments, such as replicates and
dose-response or time-course measurements can be analysed in the
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same experiment with basically no missing values across all samples
and extending the statistical power across the entire system88. The
main study used TMTpro 16-plex version with a different reporter and
mass normaliser than earlier TMT versions (i.e. TMT-6 plex). A limita-
tion of tag-based proteomic strategies is ion interference-related ratio
distortion resulting from fragmentation and analysis of background
ions co-isolated with those of interest. Each sample is differentially
labelled, such that when pooled the signal-to-noise values of sample-
specific reporter ions represent the relative abundance of each pro-
tein. As such, the degree of ion interference by the level of TMT signal
detected in channels where a specific protein should be absent can be
assessed89. Our sampling strategy was adopted to best accommodate
for possible reporter ion interferences. Reporter ion interference (RII)
targets were classified according to a typical product data sheet for 16-
plex TMTpro Label Reagents from ThermoFisher Scientific.

Liquid chromatography-MS/MS acquisition. Peptides were loaded
onto a 2-cmPepMap trap column (ThermoFisher) and separated using
a PepMap 75μm×50cm column (ThermoFisher) with a gradient of
2–30% MeCN containing 0.1% FA over 120min at 250 nL/min and at
40 °C. The Orbitrap Fusion mass spectrometer was operated with the
following parameters: an MS1 scan was acquired from 375–1575m/z
(120,000 resolution, 2e5 AGC, 50ms injection time) followed by MS2
data-dependent acquisition with collision-induced dissociation (CID)
and detection in the ion trap (4e3 AGC, 150ms injection time, 30 NCE,
1.6m/z quadrupole isolation width, 0.25 activation Q). To quantify
TMTpro reporter ions, a synchronous precursor selection MS3 scan
was performed with higher-energy collisional dissociation (HCD) and
detection in the orbitrap (120–750m/z, 1e5 AGC, 250ms injection
time, 60 NCE, 2.5m/z isolation width). The total cycle time was set to
2.5 s. The acquired raw data was analysed with Proteome Discoverer
2.4 (ThermoFisher) using its implemented SequestHT search engine.
Database searching was performed with the following parameters:
cysteine carbamidomethylation as well as TMTpro at peptide
N-termini and lysine residues was selected asfixedmodification, whilst
oxidation of methionine and acetylation of protein N-termini were set
as variable modifications. Up to 2 missed cleavages were permitted
considering a tryptic digestion pattern and themass tolerance was set
to 20 and 10ppm for precursor and fragment ions, respectively. A false
discovery rate (FDR) of 1% was allowed for both protein and peptide
identifications. A human protein sequence database downloaded in
March 2019 from Uniprot/SwissProt was underlying the searches. The
non-normalised protein reporter intensity was exported to Excel and
further analysed in R (v3.6.3).

Bioinformatic analysis of proteomics data
Clean up and normalisation. Only proteins that had a high FDR con-
fidence, were not deemed a contaminant and had greater than one
unique peptide, were used for analysis. Proteins having >30% missing
data were removed and the remainingmissing data was imputed using
k nearest neighbour (knn) method from the impute package (v1.76.0)
in R (v3.6.3). Normalisation was performed using a combination of
trimmed mean of M values (TMM), sample loading (SL) and ComBat
(v0.0.4)methods90–93. Sample loading adjusts eachTMTexperiment to
an equal signal per channel and TMM uses the average or median
signal that is typically applied to use a single multiplicative factor to
further adjust the samples to each other. Further to this, ComBat
allows users to adjust for batch effects in datasets where the batch
covariate is known, using previously described methodology91.

Differential expression analysis. Differential expression analysis was
performed using the R package limma (v3.48.3)51 on the relative pro-
tein abundances after first performing the normalisation technique
described above. Differential expression values were determined by
comparing relative protein abundances. To focus on proteins

specifically associated with fibre type, the differential expression
comparisons were first filtered to include proteins differentially
expressed between type I and type IIfibres before exercise (Benjamini-
Hochburg adjusted P < 0.05). This established the baseline of the
proteins that were significantly different between the two fibre types
prior to exercise and allowed for comparisons between our data and
the data of refs. 29,30 (Figs. 1 and 2). Following this, comparisons were
made to identify any significant effects (Fusion Factor P < 0.05) exer-
cise produced on each of the fibre types for each type of exercise
(MICT type I Pre vs Post, MICT type II Pre vs Post, SIT type I Pre vs Post,
SIT type II Pre vs Post; Supplementary Data 4). Finally, comparisons
were completed between fibre types on samples post exercise (MICT
Post type I vs type II and SIT Post type I vs type II, Fig. 5a, b, Supple-
mentary Data 5), to distinguish and compare significant (Benjamini-
Hochburg adjusted P < 0.05) differences between the fibre types after
exercise. Mitochondrial proteins were identified by annotation using
both the Integrated Mitochondrial Protein Index (IMPI) and the Mito-
carta 3.0 database94.

The heatmap presented in Fig. 1g was completed using the
ComplexHeatmap package (v.2.8.0), with hierarchical clustering using
the average method. The heatmap presented in Fig. 7c was created
using the native R heatmap function and clustered according to the
OXPHOS complex subunits as identified in MitoCarta 3.0. For visuali-
sations of differential expression comparisons, volcano plots were
presented in Figs. 1f, 5a, b and used the resulting adjusted P values
from the limma analysis, which can be found in Supplementary
Data 1 and S5. Volcanos from Fig. 4c used the P values from the Fusion
Factor calculation found in Supplementary Data 4. Profile Plots pre-
sented in Figs. 6d, 7a, b, d and S2b, c, were created by calculating a
mean of the group in question (complex or functional group as iden-
tified by MitoCarta 3.0) with all proteins identified in that group
coloured and a background displayed of all mitochondrial proteins
(with an exception for Fig. 7a, which displays a mean of the mito-
chondrial proteins with a background of all mitochondrial proteins
identified). Statistical significancebetweenPreandPost training values
within the profile plots was completed using a paired t-test and the
default adjustment for multiple hypothesis testing. Venn diagrams
featured in Figs. 1c, 2a, 5c, d, were created using the Venn Diagram
(v1.7.1) package.

To better characterise the proteomic changes, gene ontology and
enrichment analysis were performed by investigating non-random
associations between proteins and over-represented GO. For Fig. 1b,
we calculated the average number of proteins in each pooled sample,
the proteins identified within the entire dataset of high-confidence
proteins and compared them to the entire human genome to deter-
mine how many were identified in specific GO CC terms compared to
the human genome. Figures 1d and 2b compared the 844 and 314
proteins that were common between the three datasets investigated
and the top five GOCC terms for the 844 proteinswere visualised, with
the top five GO BP terms used for the 314. These analyses were con-
ducted using Database for Annotation, Visualisation and Integrated
Discovery (DAVID)95. Network plots andWikiPathways are presented in
Fig. 5e, f respectively by utilising enrichr (v3.2). The network plot
(Fig. 5f) was completed using only statistically significant (Benjamini-
Hochburg adjusted P < 0.05) results for the comparisons of type I vs II
values post both MICT and SIT, whereas the Wikipathways BubblePlot
uses all results for the same comparisons. These analyses were com-
pleted using the R package ClusterProfiler (v4.0.5).

Mitochondrial normalisation. As the mitochondrial protein expres-
sion identified a difference in the mitochondrial content between the
two fibre types before exercise, we employed a previously reported
normalisation strategy8. This normalisation strategy removes bias
introduced by the differences inmitochondrial content and allows the
investigation of these adaptations when this bias was removed.
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Mitochondrial proteins identified through IMPI and MitoCarta 3.0
were subset from the rest of the data, and the same normalisation
protocol as reported above was applied.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data to interpret, verify and extend this research are provided
with this paper. The mass spectrometry proteomics data has been
deposited in the ProteomeXchange Consortium via the PRIDE partner
repository under accession code PXD036010. Source data are pro-
vided with this paper.

Code availability
The R scripts used for all omics analyses described above are depos-
ited on GitHub and available through https://doi.org/10.5281/zenodo.
7227800. There are no restrictions placed on accessibility of this code.
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