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ABSTRACT 

 

Purpose: To investigate the effectiveness of muscle energy technique in increasing 

passive knee extension and to explore the mechanism behind any observed change. 

Procedure: 40 asymptomatic subjects were randomly allocated to control or 

experimental groups.  Subjects lay supine with their thigh fixed at 90° flexion, and the 

hamstring muscle stretched to the onset of discomfort by passive knee extension.  Knee 

range of motion was recorded with digital photography and passive torque recorded with 



a hand-held dynamometer.  The experimental group received muscle energy technique to 

the hamstring muscle, after which the resistance to stretch and the range of motion were 

again measured.  The knee was extended to the original passive torque and the angle at 

the knee recorded.  If the onset of discomfort was not produced at this angle, the knee 

was further extended and the new angle was recorded. 

Results: A significant increase in range of motion was observed at the knee (p< 0.019) 

following a single application of MET to the experimental group.  No change was 

observed in the control group.  When an identical torque was applied to the hamstring 

both before and after the MET, no significant difference in range of motion of the knee 

was found in the experimental group. 

Conclusions: Muscle energy technique produced an immediate increase in passive knee 

extension.  This observed change in range of motion is possibly due to an increased 

tolerance to stretch as there was no evidence of visco-elastic change.  

 

INTRODUCTION 

Muscle energy technique (MET) is a manual technique developed by osteopaths 

that is now used in many different manual therapy professions.  It is claimed to be 

effective for a variety of purposes, including lengthening a shortened or contractured 

muscle, strengthening muscles, as a lymphatic or venous pump to aid the drainage of 

fluid or blood, and increasing the range of motion (ROM) of a restricted joint.1  While 

muscle energy techniques are widely used by osteopaths and other manual therapists, 

there is limited research supporting and validating its use, as well as limited evidence to 

substantiate the theories used to explain the effects of MET.  



  Several researchers have examined the effect of contract-relax techniques (similar 

to MET) on hamstring flexibility, and found that these techniques produced increased 

muscle flexibility.2, , ,  3 4 5 Handel et al.2 identified significant increases in hamstring 

flexibility along with an increase in passive torque (increase in force used to stretch the 

hamstring) after a contract-relax exercise program.  Wallin et al.3 claimed that contract-

relax techniques were more effective than ballistic stretching for improving muscle 

flexibility over a 30-day period, whereas other researchers, however, have reported no 

differences between the two techniques.4

The mechanical component of muscle flexibility during static stretch is better 

understood than the mechanisms of therapeutic action of MET. Resting tension in 

skeletal muscles is taken up mainly by the myofibrils, and as the muscle stretches the 

limit to the range of motion is attributed to the visco-elastic elements of the connective 

tissues.6  Visco-elasticity refers to the response of a tissue to load, a property of elastic 

and viscous components. The elastic component is the ability of the tissue to return to its 

previous form after deformation.  The viscous component relates to the fluid part of the 

muscle, which deviates in response to mechanical forces.    When visco-elastic structures 

are held at constant stretch, the stress or force of the material gradually declines. Taylor 

et al. have demonstrated visco-elastic change in rabbit foreleg muscles.7  In human 

experiments, visco-elasticity seems harder to demonstrate.  While a small number of 

studies have found that visco-elastic stress relaxation is evident in human skeletal 

muscle,5, ,  8 9 both Magnusson et al.5,10,11 and Halbertsma et al.12,13 demonstrated that 

increased muscle extensibility was attributed to use of increased torque. A visco-elastic 

change would have been evident if increased muscle length was achieved using a 



constant torque (force of stretch).  The change in extensibility after stretching can only be 

attributed to an increase in stretch tolerance (the subject can tolerate more force applied 

to the muscle) because increased muscle flexibility resulted only when the torque 

increased. 

Apart from the flexibility of the myofascial tissue itself, other structures are 

involved in the resistance of a muscle to stretch. When measuring the range of motion of 

a joint, the structures surrounding the joint itself – joint capsules, ligaments and physical 

structures of the bone articulation - provide resistance to the overall range of motion of a 

particular joint.  In addition to this, the skin and subcutaneous connective tissue may also 

play a large part in the restriction of a joint’s motion.14, 15 Johns and Wright16 have 

shown that the passive torque that is required to move a joint is contributed by the joint 

capsule (47%), tendon (10%), muscle (41%), and skin (2%). 

Some authors17 have speculated on the neurological mechanisms that may 

produce increased range of motion of a joint after MET, however, there is little research 

to substantiate these theories. Kuchera17 attributed the effectiveness of MET to the 

inhibitory golgi tendon reflex.  This reflex is believed to be activated during isometric 

contraction of muscles, which is claimed to produce a stretch on the golgi tendon organs 

and a reflex relaxation of the muscle.14,   18 This theory, however, is poorly supported by 

research.  Taylor et al.7 showed in rabbit muscles that no difference in response to stretch 

was found between innervated and denervated muscles, suggesting that the neural 

component to muscle flexibility is negligible.   Various studies have shown that passive 

stretch does not influence the electrical activity of the hamstring muscle (using EMG)8, ,19  



20, 21, demonstrating that low level muscle contraction does not limit muscle flexibility,  

disputing the proposal of a neurological mechanism.  

It has been suggested that a viscoelastic change in muscle is responsible for the 

increase in muscle flexibility after MET,22 but this theory remains largely untested. 

Stretching of the connective tissue elements when the muscle isometrically contracts 

from a lengthened position has been offered as another explanation of the observed range 

of motion increase, and explains the greater flexibility achieved with contract-relax 

exercises when compared with static stretch.22 Increased tolerance to stretch, which has 

been demonstrated following passive static stretching of the hamstring muscles,11 may 

also play a role in the apparent increased flexibility of muscles following MET. Handel et 

al.2 suggest that an increased stretch tolerance is a possible mechanism behind the 

increased ROM seen in their study after the contract-relax exercise program. 

Mechanisms underlying improved muscle flexibility following static stretch, 

contract-relax stretching or MET remains obscure, and may be a result of biomechanical 

or neurophysiological changes, or an increase in tolerance to stretching.  The present 

study aimed to determine whether a single application of MET could produce an 

immediate significant change in the flexibility of the hamstring muscle and whether any 

such increase was due to changes in the mechanical property of the muscle, or a result of 

increased tolerance to stretch. Single applications of MET are often used in osteopathic 

practice and it is hoped that this study may clarify the mechanisms behind immediate 

increased flexibility. 

 
 



MATERIALS AND METHODS 

Participants 

The Human Research Ethics Committee of Victoria University approved the 

study. Subjects were recruited from students enrolled at Victoria University, Melbourne 

who volunteered after being informed of the nature and purpose of this study.  40 

volunteers (22 female, 18 male) aged between 18 and 45 (average age 23.4 years) gave 

written consent prior to participation and were free to withdraw at any time from the 

study. The subjects did not exhibit any lower extremity or low back pathology at the time 

of the study.      

 

Experimental design 

The design was a randomised, controlled and blinded experimental study. 

Following recording of the initial measurements (ROMpre and torque 1), subjects were 

moved to a separate room and randomly assigned to either control (n=20; female=11, 

male=9) or experimental group (n=20; female=11, male=9) to which the researcher 

conducting the measurements was blinded. Subjects in the experimental group were 

treated with MET, whereas those in the control group lay on the treatment table for the 

same amount of time. All subjects then returned to the first room for re-measurement. 
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Figure 1: Study design 

 

Measurement techniques 

A Nicholas hand-held dynamometer (Lafyette, USA) (Figure 2) was used to 

assess resistance to stretch (defined as passive torque (Nm) of hamstring muscles) during 

passive knee extension. During the measurement all subjects were supine with the 

randomly selected experimental thigh flexed to 90° at the hip.  The thigh of the opposite 

leg was firmly secured to minimise rotation of the pelvis during measurement (Figure 3). 

 

 
 
 



 

Figure 2: Nicholas hand-held dynamometer 

 
 

Figure 3: Passive knee extension (PKE) measurement procedure 



 

 Measurement of the range of passive knee extension (PKE) was achieved by joint 

marking, pre and post-photography of bony landmarks (greater trochanter, lateral femoral 

condyle and lateral malleolus), and analysis of digital photos by Swinger 1.29 

Professional software.  

 

Muscle ROM was recorded at three stages: 

1. ROMpre – pre-test ROM was recorded with the participant reporting the first sense 

of hamstring “discomfort”.23   

2. ROMpost1 – post-test ROM was recorded with the same amount of passive torque as 

used in ROMpre.    

3. ROMpost2 – post-test ROM was recorded when the hamstring was further extended 

to the first sense of hamstring “discomfort”. 

Measurements of ROMpre and ROMpost2 were completed three times and the 

average recorded. Only one measure of ROMpost1 was conducted to avoid producing 

further visco-elastic change after treatment. Passive torque was recorded in ROMpre and 

repeated for ROMpost1 to ensure the same torque (torque 1) was applied.  Another 

recording (torque 2) was made for ROMpost2 if hamstring discomfort was not produced 

at ROMpost1 and could be extended further.    

 

Muscle Energy Technique 

The muscle energy technique was then applied to the experimental group.   The 

subject’s knee was extended to the first report of hamstring discomfort and a moderate 



isometric contraction (approx 75% of maximal) of the hamstring muscle was then elicited 

for a period of five seconds.1 After a period of three seconds relaxation, the technique 

was repeated three times (for a total of four contractions).  

 

Analysis 

The raw data was collated using Microsoft Excel. Repeated Measures ANOVA 

was used to analyse pre and post test ROM and torque values in both control and 

experimental groups. This analysis was performed using SPSS v11 software. 

 

 

RESULTS 

 

Mean data indicates that there were minimal changes across time for the range of 

motion data (Table 1). However, in both the control and experimental groups, these 

differences were large enough to produce significant results (Table 2). 

On further analysis, it would appear that in the control group, the mean score for 

the first post-test measurement (165.1°), is different to both the pre (167.8°) and second 

post test (167.9°) scores. This result was not expected.  

In the experimental group, there is a difference between the second post-test 

measure (170°) and both the other measures. The difference between the pre-test score 

(167.3°) and the second post-test score indicates an increase in ROM produced by the 

intervention. However, the variability in the data necessitates caution when interpreting 

these results. 



There was a significantly greater amount of torque required to produce end range 

in the experimental group (p=0.047). This would equate to an increase in ROM. 

 

 

Control Experimental 

 ROM  Torque  ROM  Torque  

 Mean SD Mean SD Mean SD Mean SD. 

Pre test  167.8 7.3 14.6 3.3 167.3 7.3 13.7 3.2 

Post test 1 165.1 8.1   166.6 9.7   

Post test 2 167.9 7.0 14.6 3.2 170.0 8.0 14.3 3.4 

 

Table 1: Descriptive statistics of control and experimental groups. ROM measured in 

degrees, torque in N.m 

 

 

 

 F p 

ROM (Con) 6.029 0.005 

ROM (Exp) 4.421 0.019 

Torque (Con) 0.004 0.948 

Torque (Exp) 4.534 0.047 

 

Table 2: Repeated measures ANOVA summary 
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Figure 4: ROMpost – ROMpre mean differences (degrees) 

 

 

 

DISCUSSION 

 
This study demonstrated that a significant increase in hamstring extensibility 

(measured as ROM at the knee following PKE) occurred following MET (when stretched 

to the point of discomfort), but did not occur in the control group.  The data suggests that 

no viscoelastic changes occurred as a result of a single application of MET.  If a 

significant increase in joint angle was observed at the initial pre-test load (Torque1) 

following the MET, a change in tissue property could be the only logical explanation.11 

This was not the case as no significant change in range of motion at the knee occurred in 



the experimental group when the same initial load was applied (ROMpost1 = ROMpre). 

A greater torque (Torque 2) was tolerated in the experimental group before discomfort 

occurred (ROMpost2), supporting the theory that increased flexibility was a result of an 

increased tolerance to stretch. 

A significant decrease in PKE was observed in the control group when the knee 

was extended with the original torque.  There were four outliers within the control group 

that were not excluded.  Measurement error may have occurred as a result of a design 

flaw in the study.  The knee was extended to the torque determined prior to the 

intervention and the angle recorded (ROMpost1) only once in both groups, so as to not 

produce further visco-elastic change and mask a potentially small treatment effect. The 

other measurements (ROMpre and ROMpost2) were performed three times and averaged, 

minimising the influence of individual outliers.  

In the experimental group, there was no significant change in ROM following 

MET at the pre-test torque (Torque 1). If this had occurred, a change in the tissue 

property (visco-elastic change) could be concluded.11   Hamstring stretching at pre-test 

torque, however, did not reproduce the sense of discomfort following MET, and could be 

increased to a greater torque (Torque 2) and range (ROMpost2). This observation 

suggests that the increased PKE (greater ROM at the knee) is a result of an increased 

tolerance to stretch in the absence of any viscoelastic change. 

 

Recommendations 

While the concept of visco-elasticity is accepted in relation to muscle physiology, 

it is likely that a single application of MET is not enough to produce a change in 



biomechanical tissue property.  This is not surprising in light of the research examining 

the effects of static stretching.8,9,11 Future studies should explore whether repeated use of 

MET over a period of time produces any lasting viscoelastic changes, and the effect of 

varying the duration of isometric contraction. It would also be of interest to observe the 

effects of MET in subjects with a history of hamstring injury. It is possible that such 

injuries involve deposition of abnormal fibrous tissue and cross-linkages,22 and may 

respond differently to healthy muscle. It is also recommended that future studies use the 

average of three measurements for the recording of the joint angle at every stage the 

angle is measured, to eliminate the influence of individual measurement outliers.  

 

CONCLUSION 

This study found that a single application of MET produced an increase in passive 

stretch of the hamstring muscle.  When the post-test torque applied to the muscle 

remained constant (the same as used in pre-testing), no significant change in length 

occurred.  This suggested that a single application of MET produced no biomechanical 

change to the muscle, but created a change in tolerance to stretch. 
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