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Abstract

Wireless communications has been so far largely based on centralized control, which in effect has

limited its deployment, coverage and application scenarios. The paradigm of peer-to-peer wire-

less communications is fundamentally to remove this bottleneck and to further expand wireless

communications into new applications. The technical and design challenges in implementing these

networks are however plenty and exist in all the layers of the OSI protocol stack.

In this thesis, we only consider the physical layer model of these networks. We identify multi-

ple antenna systems as a vital component of physical layer solutions. We first investigate the case

of multiple antenna space-time coding techniques to achieve spatial diversity. We observe that when

correlation between the antennas in a local antenna array becomes high due to space constraints in

a terminal, current performance achieving strategies do not actually deliver good results. Moreover,

most mobile terminals are currently equipped with only one antenna. In view of this limitation, we

study the recently proposed user cooperation techniques for exploiting spatial diversity with user

power constraints for a simple three terminal network. We find that these systems are beneficial

even with relatively simple protocols such as selection relaying. Finally, with simulation results,

we demonstrate that the system performance can be improved significantly via near-to optimal

selection relaying.
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Chapter 1

Introduction

4G wireless communication systems are projected to provide a wide variety of new services, from

high quality voice and high-speed data to high-resolution video. The overall vision for this evolving

technology can be summarized in one word: convergence [69]. 4G systems are about seamlessly

integrating terminals, wired, wireless, cellular networks and applications to form a network of

networks. As of now two characteristics have emerged as all but certain components of 4G: end-

end IP protocol and peer-peer networking [70]. For the wireless world, peer-peer networking is

completely a new paradigm which makes wireless ad hoc peer-peer networking the definitive feature

of future wireless systems.

1.1 Overview of Ad hoc networks

Ad hoc networks are typically a collection of wireless mobile nodes dynamically forming temporary

networks without the aid of any established infrastructure or centralized administration[68]. In

principle, distinctive features of these networks include their rapid deployment as well as resulting

robustness. In these networks, network tasks are conceived to be distributed rather than central-

ized, topology is dynamic and routing is adaptive. Much of the ground breaking research in ad

hoc wireless networks was supported by Defense Advanced projects agency (DARPA), the same

organization that developed the Internet. The layered architecture of ad hoc networks is therefore

largely based upon the prevalent wired Internet model.
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Another important characteristic of these networks is mobility of the nodes in the network. Due

to this, these networks are also popularly referred to as Mobile ad hoc networks (MANETS)[71],

packet radio networks [73] or distributed packet radio networks. A large wireless network can

ideally comprise many such ad hoc networks, i.e, it is a network of networks. In ad hoc network

community, these localized networks are commonly categorized as clusters and information flow in a

large wireless network is achieved by communication between clusters or cluster communication [23].

For the reasons pointed out above, ad hoc networks are highly appealing for future telecommuni-

cations. However, there exist numerous design challenges for implementing these networks. The

design challenges exist at each layer in the protocol stack and can be solved either locally at each

layer or in unison. However, amongst other reasons, layer interdependencies arise in a wireless ad

hoc network primarily due to link connectivity problems and radio interference issues, both unique

to the wireless media. As a result, a wireless ad hoc network design is typically considered to be a

cross-layer problem [74].

The upper bound of the aggregate capacity region by multi hopping using intermediate nodes in

arbitrary ad hoc networks with n nodes per unit area has been shown to follow O(
√

n) bit-meters

per second behavior [22], i.e., a transmission rate of O( 1√
n
) bits per second for a source/destination

pair. From this expression we can understand that inspite of being power efficient, multiple hop

routing with too many hops is not desirable for throughput performance. Delay constraints, impact

of bottle neck links, error propagation are few of the other issues in multi hopping which cannot

be neglected. In other words, there exists a engineering trade-off between the number of hops and

range in a wireless network.

Multiple antenna systems, as part of link layer solutions can help achieve this vital trade off in

multi-hop networks. These systems have been shown to improve the spectral efficiency and power

efficiency of point-point wireless links, thus basically facilitating efficient multi-hopping with lim-

ited number of hops. Also, communication in wireless channel happens via electro magnetic waves

which evolve in three dimensions. This means that any user who is willing and is also capable of

2



receiving the signal can tune in to “hear” it. Therefore, with peer-peer links enabled in the wireless

domain, both cascaded and parallel communication processes could be orchestrated amongst the

intermediate nodes. Cascaded topology is popularly referred to as multi hop routing in the liter-

ature while the parallel topology has recently emerged as “cooperative networking”. Ideally, both

topologies need to work in tandem by complementing one’s shortcoming with the other’s advan-

tages in wireless ad hoc networks. In a large scale, cooperation rather than competition between

radio nodes is conceived to be optimal for network performance.

1.2 Literature survey

This chapter summarizes important references from the vast literature that relate to the problems

discussed in this thesis.

1.2.1 Multiple antenna systems

Recently, there has been great interest in the use of physical antenna arrays at the transmitters

and/or receivers in a wireless system. The fundamental observation in [52],[64] is that when the

number of transmit antennas (NT ) and receive antennas (NR) increase, the link capacity grows in

theory as min(NT , NR). Multiple transmit and receiver antennas can also be used for achieving

diversity to combat fading in wireless communication. In the beginning, multiple receiver antennas

were the primary focus of antenna diversity systems. However, because it is normally infeasible to

provide large inter-antenna spacing in mobile terminals due to space limitations in handset designs,

transmitter diversity by using multiple transmit antennas at the base station has attracted atten-

tion recently. The transmit and receiver diversity techniques can be combined in MIMO systems to

achieve reliability in communications rather by sacrificing the capacity gain. This classical problem

of spatial multiplexing-diversity trade off for multiple antenna channels has been addressed in [53].

Space-Time coding [47] is a technique to achieve spatial and temporal diversity using multiple trans-

mit and receiver antennas. A simple form of space-time coding for achieving spatial diversity when

the channel is quasi-static over the block length of the code is space-time block coding. Orthogonal

space-time block codes (O-STBC) employ orthogonal signal transmissions from the transmit an-

tennas over the block length in order to minimize interference between the transmit antennas [48].
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However, full rate O-STBCs do not exist for complex constellations [48]. For full rate, codes called

non-orthogonal (NO-STBC) or quasi orthogonal space time block codes [49],[67] were proposed by

sacrificing the achievable diversity degree of O-STBCs. More recently, full rate constellation rotated

non orthogonal codes (Cr-NOSTBC) [54],[58] have been shown to achieve diversity asymptotically

and outperform non-orthogonal codes in Rayleigh fading channels. However, multiplexing and di-

versity benefits of multiple antenna systems can be realised only when the inter-antenna spacing

is sufficient to provide low spatial correlations. In scenarios where sufficient inter-antenna spacing

cannot be provided, for example, in uplink of a cellular network, cooperation by antenna sharing

between users can be used to achieve better end-end link performance. Such relay cooperations are

promising in both single hop and multi-hop networking scenarios as compared to multiple antenna

systems which have been studied in single hop network scenarios.

1.2.2 Cooperative networking

The classical three terminal relay network which is central for cooperative networking was originally

developed by Van der Muelen in [45]. Cover and El Gamal made further progress by developing

upper and lower bounds on capacity [20]. They broadly categorized forwarding strategies of a

relay as cooperation, facilitation and estimation [20]. Gastpar et al show that wireless network

of n nodes in an unit area with n − 2 nodes acting as relays follows a O(logn) bits per second

per node behavior [30]. Schein introduced a parallel relay architecture and also studied the lower

and upper bounds on capacity in [17]. The classical relay architectures considered above are

based on one node acting as a source with other nodes assisting the source without their own

information to transmit. A cooperative architecture with more than one source is referred to as user

cooperation. Carleial has examined multiple-access channel with generalized feedback from the final

destination [21]. Laneman et al analyzed the diversity gains achievable by simple protocols in user

cooperation diversity and find them to be promising at high SNR’s [3]. Cooperation architectures

for point-point MIMO and multi-user MIMO have also gained attention recently. The idea of

relays mimicking a local antenna array at a user has been termed Virtual Antenna Array (VAA).

Space-Time coding technique extended to these VAAs is termed distributed space-time coding [4].

As an alternative to these rate reducing techniques, distributed turbo coding or coded cooperation

4



has been proposed in [14]. Sendonaris et al considered cooperative diversity for a multiple-access

channel with relaying and fading [4],[5]. They note that the performance criterion is the throughput,

i.e, received bits/second rather than the transmitted bits/second and observe that at high SNR,

cooperation enlarges the achievable rate region for the network.
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1.3 Summary of contributions

The first contribution of this work is to analyze the effect of antenna correlation on full rate full

diversity space-time block codes. To this end, we investigate the performance of a constellation

rotated space-time block code in correlated rayleigh fading channels. We statistically model the

correlation using first order Markov process. Under this model, the loss function on the pair-wise

error probability against correlation coefficient is characterized. We also study the matched filter

output at the receiver to further understand the performance. In the results, we compare the

performance degradation of the NO-STBC and Cr-NOSTBC schemes. It is observed that the per-

formance benefit of constellation rotations reduces as correlation increases. The key observation is

that performance of both robust NO-STBC and Cr-NOSTBC begin to resemble the matched filter

bound as correlation increases.

In highly spatially correlated channel conditons, it has been shown that multiple antenna diversity

benefits are not significant. In scenarios where multiple antenna systems are not always feasible or

when the gains are limited, relay diversity systems are a good alternative way of realising diversity

gains. In addition, the fundamentals of transmit diversity techniques can be extended to the relay

case if the users engage in a simple physical layer antenna sharing strategy. Therefore, we now

move on relay diversity schemes to anaylse the gains that can be achieved using such schemes.

In particular, we investigate low complexity relaying for the simple three terminal network. We

first observe that a blind symbol-wise decode and forward scheme does not achieve any diversity

benefit in Rayleigh fading channels. To overcome this problem, we make use of selection relaying

as a technique to improve relay reliability. For selection relaying, we derive optimal thresholds at

the relay for the three terminal network using channel estimation at the receiver. We observe that

relaying via this means significantly improves the BER performance over the blind decode and for-

ward scheme and thereby demonstrate the sensitivity of threshold levels for achieving performance

benefits. The BER improvement using these thresholds only gets better if the target diversity is

3 in the network. Finally, we analyze the impact of channel estimation errors at the relay on the

performance of selection relaying. It is observed that near-optimality of the threshold cushions the

impact of channel estimation errors on the uncoded BER performance at the destination receiver.

6



1.4 Structure of the thesis

The thesis is organized as follows.

In chapter 2, a literature survey on space-time block coding technqiues is carried out. The funda-

mentals of the theory of space-time block coding is discussed for various techniques. Based on the

literature survey, full-diversity orthogonal schemes, full-rate non-orthogonal schemes are explained

in detail in this chapter. Diversity achieving constellation rotation schemes for full rate-non or-

thogonal schemes are also explained in some detail in this chapter.

Chapter 3 concerns the performance of space-time block coding under spatial correlation. Specifi-

cally, we characterize the performance loss of a full diversity, full rate robust constellation rotated

code in this chapter by using a statistical channel model. We explain the performance loss of the

scheme based on a analytic approach on the PEP.

In chapter 4 we conduct a litertaure survey on the principles of user cooperation. The system

model of the classical three terminal network is introduced in this chapter. Relay node function-

alities and relaying strategies are briefly discussed. Architectures under which user cooperation

becomes feasible and at the same time useful are also outlined. Following this, system models

of relay diversity systems such as n− terminal orthogonal parallel relay network and distributed

space-time coding are addressed. Finally, some useful detection strategies are briefed.

Chapter 5 is dedicated to the derivation of an optimal threshold for a selection relay-three ter-

minal network. Thresholds which minimize the BER under various scenarios in a three terminal

network are presented.
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Chapter 2

Space-Time Block coding

2.1 Introduction

A reliable and power-efficient operation in wireless channels can be achieved when the same data

appears in multiple time instants, frequencies or antennas at the receiver. This is popularly known

as “diversity” and it is the most significant contributor to reliable wireless communications. In most

wireless communication systems, a number of diversity methods are used in order to obtain the

required performance. In the recently developed concepts, multiple transmit antennas are used to

provide diversity at the receiver and is popularly known as ‘transmit diversity’. Transmit diversity

is particularly appealing because of its relative simplicity of implementation and the feasibility of

multiple antennas at the base station. By using multiple transmit antennas, the transmitted signal

can now be arranged in both space (antennas) and time dimensions. This concept is known as

“Space-Time Coding”.

The Alamouti scheme [46] was historically the first scheme to achieve full diversity with two transmit

antennas with a simple maximum-likelihood decoding algorithm. This scheme was generalized to

an arbitrary number of transmit antennas and formally termed “Space-Time Block codes” (STBC)

in [48]. In this chapter, the concept of Space-Time Block coding for achieving diversity is re-

viewed. First, the orthogonal designs which were originally introduced in [48] are described. Then,

non-orthogonal designs which provide higher data rate are discussed, and finally, the concept of

8



constellation rotation for achieving full diversity in non-orthogonal designs is explained in detail.

2.2 Space-time block encoder

Figure 1. shows an encoder structure for space-time block codes. A space-time block code employing

NT transmit antennas and T symbol periods is described by a T ×NT matrix X. In a linear space-

time coded scheme, the space-time transmission matrix X is a linear function of the Q symbols to

be transmitted. A characteristic property of the Space-Time Block codes is that they are defined

as matrices and are typically linear codes over the field of complex numbers without an underlying

trellis structure. In contrast with this, space-time codes used in Space-Time trellis codes (STTC)

and in basic MIMO systems are typically vectors. Also, STTC’s are not linear codes over the field

of complex numbers because they are functions of encoded bits (with memory). A linear space-time

transmission matrix can be expressed as

X =

Q
∑

k=1

Xk(xk;x
∗
k) (2.1)

where Xk is a T × NT matrix with complex entries which are linear functions of symbol xk or x∗
k.

Thus the symbol rate, the number of complex symbols transmitted in time period T is R = Q
T .

X

 
     Source

    Information
Modulator

Space−Time 

Block Encoder

Tx1

Txn
Matrix 

bm
xk

x1(xk;x∗

k
)

xn(xk;x∗

k
)

Figure 2.1: Space-time block code encoder.

Fig 2.1 shows a Space-Time Block code encoder. Information bits bm from a source are mapped

to symbols xk at the modulator. Q symbols are then fed to the space-time block code encoder.

NT transmit antennas transmit according to their transmission vectors xi(xk;x
∗
k) i = 1..NT (of

dimension T ) defined as per the T × NT space-time code matrix X =

[

x1 x2 . . xNT

]

.
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The system model for NR receive antennas for a flat fading channel model then reads

Y =
√

EsXH +
√

NoN, (2.2)

where H is a NT × NR channel matrix with entries hik as the complex channel gain from the ith

transmit antenna to the kth receiver antenna. N is the T × NR noise matrix and Y is the T × NR

matrix of received signals. The nth transmit antenna therefore transmits a column vector xn for T

symbol periods such that xn is a linear combination of symbols xk, xk∗. The average symbol power

is normalized to one, i.e, E[|xi|2] = 1. The total radiated power from the terminal is constrained

to P regardless of the number of transmitter antennas, i.e, Es = P
NT

such that P
No

is the received

SNR at each receiver antenna at a time slot. For reliable detection it is assumed that the channel

coherence time is greater than T symbol periods.

In quasi-static Rayleigh fading channels, minimizing the pairwise error probability of deciding

in favor of an erroneous matrix X̃ when transmitting X leads to the well known rank and determi-

nant criterion. The code difference matrix can be expressed as A = X̃ −X. As a consequence of

linearity in the space-time code design, the codeword difference matrix can be expressed in terms

of the space-time code as A = X(∆). Therefore, the pairwise error probability conditioned on H

can be written as

P (X, X̃|H) = Q(
Es

2No
d2(X, X̃)), (2.3)

where Es is the energy per symbol at each transmit antenna and Q(x) is the complimentary error

function defined by Q(x) = 1√
2π

∫ ∞
x e

−t
2

2 dt and d2(X, X̃) = ||H.A||2F . The conditional pair wise

error probability can be upper bounded by [47],

P (X, X̃|H) ≤ exp(−d2(X, X̃)
Es

4No
). (2.4)

The pair wise error probability has been derived for quasi-static Rayleigh fading channels as [47]

P (X, X̃) ≤
NT
∏

i=1

(1 + λi(A
HA)

Es

4No
)−NR , (2.5)

10



where λi(X) denotes the ith eigen value of a matrix X, or equivalently,

P (X, X̃) ≤ det (INT
+

Es

4No
AHA)−NR . (2.6)

At high SNR’s , this takes the form

P (X, X̃) ≤
s

∏

i=1

(λi(A
HA))−NR(

Es

4No
)−sNR (2.7)

where s is the minimum rank of matrix A over all codeword pairs.

From the above equation we have the well-known rank and determinant criteria [47].

Rank criteria: The transmit diversity of a space-time code is min∆ 6=0 Rank(A). To achieve

maximal diversity, the code difference matrix should have full rank for all code word pairs.

Determinant criteria: To optimize performance, the space-Time code should be designed

to maximize min∆ 6=0

∏r
i=1 λi of matrix A. Note that

∏r
i=1 λi is the absolute value of the sum of

determinants of all the principal co-factors of code distance matrix AHA.

2.3 Orthogonal designs

The Alamouti scheme [46] transmits two orthogonal sequences with the two transmit antennas to

achieve transmit diversity. This scheme was a starting point for similar schemes using more than

two transmit antennas. For more than two transmit antennas, the Alamouti scheme was general-

ized using the theory of orthogonal designs and was termed “Space-Time Block codes”. Therefore,

the term “Space-Time Block code” was originally introduced only for orthogonal designs in [48].

The defining characteristics of orthogonal designs are linearity and unitarity such that

XHX = diag(||x1||2, ||x2||2, ..||xNT
||2), (2.8)

where xi is the transmission sequence from the ith transmit antenna, or simplistically [48]

XHX = c

Q
∑

k=1

|xk|2INT
. (2.9)
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where c ≥ 1 is any integer. A linear space-time transmission matrix can also be expressed as [17]

X =

2Q
∑

k=1

ckG
k, (2.10)

using a set of matrices Gk, where c2k−1, c2k are the real and imaginary parts of the symbol xk. The

signals sequences from any two transmit antennas are orthogonal such that

T
∑

i=1

xi.xj = 0. (2.11)

The transmitted signals form an orthonormal basis for the signal space. Therefore for specific

constellation symbols S, NT transmission vectors x1,x2..xn create a basis for a T -dimensional

space. This means that interference between any two basis matrices is null [62].

Sik = GiHGk + GkHGi = 0 ∀ i 6= k. (2.12)

and also,

GiHGi = INT
∀ i. (2.13)

Code constructions which satisfy Eq(2.13) achieve maximal symbolwise diversity (MSD) [49],[50],[61].

For example, the codes in [3] for real and complex constellations satisfy the maximal symbolwise

diversity criterion.

2.3.1 Example codes

2.3.1.1 Real signal constellations

For any arbitrary real signal constellation, it has been shown that space-time block codes with

NT×NT square transmission matrix exist if and only if the number of transmit antennas NT = 2, 4, 8

[48]. These codes are full rate R = 1 and offer full transmit diversity of NT .

12



The transmission matrices are given by [48] for NT = 2

X =







x1 −x2

x2 x1






, (2.14)

and for NT = 4

X =



















x1 −x2 −x3 −x3

x2 x1 x4 −x3

x3 −x4 x1 x2

x4 x3 −x2 x1



















. (2.15)

It has also been shown that that the minimum number of transmission periods T for a full rate

rectangular design is [48]

min(24c+d) (2.16)

where the minimization is taken over the set

c, d | 0 ≤ c, 0 ≤ d ≤ 4 8c + 2d ≥ NT (2.17)

2.3.1.2 Complex signal constellations

Allowing complex signal constellations severely restricts the number of transmit antennas for which

R = 1 codes exist. Indeed, R = 1 complex space-time block codes exist only for two transmit

antennas [48] and is the well-known Alamouti design given by

X =







x1 −x∗
2

x2 x∗
1






. (2.18)
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For NT = 4 transmit antennas a half rate scheme was presented in [48] as

X =















































x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

x∗
1 x∗

2 x∗
3 x∗

4

−x∗
2 x∗

1 −x∗
4 x∗

3

−x∗
3 x∗

4 x∗
1 −x∗

2

−x∗
4 −x∗

3 x∗
2 x∗

1















































. (2.19)

Apart from the above rate-halving scheme, a R = 3
4 scheme for four transmit antennas was presented

in [48] as

X =



















x1 x2
1√
2
x3

1√
2
x3

−x∗
2 x∗

1
1√
2
x3 − 1√

2
x3

1√
2
x∗

3
1√
2
x∗

3 −<[x1] + j=[x2] j=[x1] −<[x2]

1√
2
x∗

3 − 1√
2
x∗

3 j=[x1] + <[x2] −<[x1] − j=[x2]



















. (2.20)

The above design has also been simplified in [51] as

X =



















x1 x2 x3 0

−x∗
2 x∗

1 0 −x3

−x∗
3 0 x∗

1 x2

0 x∗
3 −x∗

2 x1



















. (2.21)

14



2.3.2 Maximum likelihood decoding

Maximum likelihood detector chooses matrix X̃ which maximizes the likelihood function

Ω = exp[−tr((Y − X̃H)
H

(Y − X̃H))]. (2.22)

From this we obtain the maximum likelihood distance metric

d = tr((Y − X̃H)
H

(Y − X̃H)). (2.23)

This is equivalent to maximizing the metric

d́ = tr(2<(HHX̃HY) − HHX̃HX̃H). (2.24)

For orthogonal designs, this can be rewritten as

d́ = tr(2<(HHX̃HY)) − ||H||2F
Q

∑

k=1

|x̃k|2INT
. (2.25)

Because tr(2<(HHX̃HY)) is a linear function in symbols x̃k, we can observe that in Eq(2.24), d́

is linear in symbols xk and therefore maximum likelihood detection becomes possible with linear

complexity. Infact, because the signals get naturally decoupled in maximum likelihood detection,

orthogonal designs represent the matched filter bound or the MRC bound for transmit diversity

(without any interference).

2.3.3 Equivalent channel representation

Due to linearity of the scheme in real symbols c, the system can be expressed in the form

ŷ = Ĥc + n, (2.26)

where ŷ is (TNR) × 1 vector obtained by re-arranging the received signal matrix Y, the matrix

Ĥ is termed the equivalent channel matrix with dimensions TNR × 2Q and c is a vector of real
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symbols of dimension 2Q. If during one symbol period, only symbols or complex conjugates are

transmitted, then the signal model can be written in terms of complex symbols as

ý = H́x + n, (2.27)

where H́ is a TNR ×Q matrix and ý is (TNR)× 1 obtained by re-arranging matrix Y. Maximum

likelihood detection can also be alternatively carried out using the signals models in Eq(2.26) or

Eq(2.27). From Eq(2.27), it is straightforward to express the likelihood function for decoding

complex symbols as

Ω = exp[−||(ý − H́x̃)||2]. (2.28)

This is equivalent to maximizing

2<(x̃HH́H ý) − x̃HH́HH́x̃. (2.29)

In Eq(2.29), the term z = H́
H
ý represents the sufficient statistics for detection which is the matched

filter outputs of the received signal at the receiver. It can be seen that, if the matched filter outputs

are decoupled, then the maximum likelihood detection is linear in complexity. This is the basic

premise of space-time block coding.

For example, consider the Alamouti scheme in Eq(2.18) for NR = 1. From the maximum like-

lihood detection metric in Eq(2.23) we have

d = |y1 − h1x̃1 − h2x̃2|2 + |y2 + h1x̃2
∗ − h2x̃1

∗|2. (2.30)

Expanding the above metric, it is easy to see that it is equivalent to maximizing

d́ = 2<(x̃1z
∗
1) + 2<(x̃2z

∗
2) − (|h1|2 + |h2|2)(|(x̃1)|2 + |(x̃2)|2) (2.31)

where, comparing with Eq(2.29), z1 = h∗
1y1 + h2y

∗
2, z2 = h∗

2y1 − h1y
∗
2 form the sufficient statistics

from the matched filter output. Therefore we can deduce that if Grammian matrix of X, XHX =
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c
∑Q

i=1 |xi|2INT
or equivalently, if H́HH́ = ||H||2F IQ, then maximum likelihood decoding in linear

complexity with maximal diversity becomes possible.

2.3.4 Capacity and Performance

It has been shown in [52] that MIMO capacity grows linearly with min(NT , NR). This gain is

also popularly known as the spatial multiplexing gain. It is also very clear that multiple transmit

and receiver antennas can be used to provide diversity gain at the receiver. The trade off between

multiplexing gain and diversity gain has been characterized as Diversity-Multiplexing trade off in

[53]. It has also been shown in [53] that the Alamouti scheme achieves this trade off if NR = 1.

This naturally lends itself to that, if a linear full rate complex orthogonal design exists, it will

achieve the trade off for arbitrary number of transmit antennas and for one receiver antenna. In

other words, a complex orthogonal design is capacity optimal if NR = 1. This is in contrast to

the results established in [7] which show that when the transmission scheme is a full rate vector it

reaches capacity for arbitrary number of NT × NR antennas. In addition to this, it turns out that

a full rate linear complex orthogonal design does not exist for NT > 2 [48]. This makes existing

linear complex orthogonal schemes capacity sub-optimal even for NR = 1 if NT > 2.

2.4 Non-orthogonal designs

Space-Time transmission matrices as discussed in the previous section follow three constructions

criteria of linearity, orthogonality and diversity. From the performance viewpoint the above options

translate to a rate-diversity tradeoff in constructing the code.

The Space-Time Block codes [48] achieve full diversity with simultaneous orthogonality and linear-

ity. The most attractive feature of this scheme is that maximum likelihood decoding with linear

complexity becomes possible as the signals get decoupled at the receiver. However, they are not

full rate codes for NT > 2 and therefore make inefficient use of multiple antennas. To increase

the symbol rate, either the diversity gain may be sacrificed retaining orthogonality and linearity,

or orthogonality may be compromised retaining linearity or otherwise linearity could be sacrificed

to achieve diversity gain. Either choice has its own advantages and disadvantages. However com-
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promising on orthogonality or linearity typically results in an increase in decoding complexity.

Linear non-orthogonal designs compromise on orthogonality and retain the linearity in space-time

transmission matrices. Therefore, for a non-orthogonal scheme we have that the Grammian matrix,

XHX 6= diag(||x1||2, ||x2||2, ..||xNT
||2) (2.32)

where x1, x2..xNT
are the transmission sequences from the transmit antennas. The Grammian

matrix of X can therefore be generalized as

XHX = D + XI, (2.33)

where XI trivially characterizes interference caused by the non-orthogonality of signal sequences

between transmit antennas and D = diag(||x1||2, ||x2||2, ..||xNT
||2).

In addition to this, if

D =

Q
∑

k=1

|xk|2INT
(2.34)

or equivalently if

GiHGi = INT
∀i (2.35)

then the non-orthogonal scheme provides maximal symbolwise diversity [49],[50]. From Eq(2.10)

and Eq(2.33), it is easy to see that interference between any two basis matrices of the symbols is

non vanishing for these designs such that

Sik = GiHGk + GkHGi 6= 0 ∀ i 6= k. (2.36)

2.4.1 Maximum likelihood decoding

The maximum likelihood detector metric is similar to Eq(2.24)

d́ = tr(2<(HHX̃HY) − HHX̃HX̃H). (2.37)

18



However, due to non-orthogonality between the transmission sequences, the Grammian matrix of

X is no longer linear in the symbols xk. Therefore, the maximum likelihood detection reads

d́ = tr(2<(HHX̃HY) − HHD̃H + KI(Fn(xi , xj ))), (2.38)

where Fn(xi, xj) indicates that considering all the entries of the matrix X̃I, if symbols which

combine non-linearly in kth entry can be represented by kth set, then there are n such disjoint sets

and KI = HHX̃IH. For example, consider two non-orthogonal designs, the PSK full rank scheme

of [59]

X =



















x1 x2 x3 x4

x2 x3 x4 x1 + x2

x3 x4 x1 + x2 x2 + x3

x4 x1 + x2 x2 + x3 x3 + x4



















. (2.39)

and the “ABBA” scheme of [49]

X =



















x1 x2 x3 x4

−x∗
2 x∗

1 −x∗
4 x∗

3

x3 x4 x1 x2

−x∗
4 x∗

3 −x∗
2 x∗

1



















. (2.40)

In the PSK scheme, computing the Grammian matrix shows that all the symbols combine non-

linearly with each other and therefore n = 0. In contrast, for the ABBA scheme the Grammian

matrix of X has symbols within sets {x1, x3} and {x2, x4} combining non-linearly. This makes

n = 2 for this scheme. Therefore, maximum likelihood detection of the PSK scheme, is typically

joint detection of all the symbols {x1, x2, x3, x4}, while for ABBA scheme, joint detection of symbols

{x1, x3} and {x2, x4} can be carried out separately which reduces the complexity of ML detection.

This “pairwise detection” becomes possible because of the “Quasi-Orthogonal” [67] structure of

the space-time transmission matrix in Eq(2.40) in which two pairs of symbols out of 4 symbols are

mutually orthogonal.
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To illustrate this further, consider the NO-STBC for NT = 4 in [54] given by the matrix

X =



















x1 x2 x3 x4

x∗
2 −x∗

1 x∗
4 −x∗

3

x3 −x4 −x1 x2

x∗
4 x∗

3 −x∗
2 −x∗

1



















. (2.41)

We can easily calculate the Grammian matrix as,

XHX =



















∑4
i=1 |xi|2 0 −2j=(x1x

∗
3) − 2j=(x∗

2x4) 0

0
∑4

i=1 |xi|2 0 2j=(x1x
∗
3) + 2j=(x∗

2x4)

2j=(x1x
∗
3) + 2j=(x∗

2x4) 0
∑4

i=1 |xi|2 0

0 2j=(x1x
∗
3) + 2j=(x∗

2x4) 0
∑4

i=1 |xi|2



















(2.42)

It can be observed from Eq(2.42) that D =
∑4

i=1 |xi|2I4. Therefore we can conclude that this

scheme offers MSD. Also, only symbols within sets {x1, x3} and {x2, x4} combine non-linearly, i.e,

interference is only between symbols in the same set. Therefore, similar to the decoding of ABBA

scheme, the ML decoding for this NO-STBC system also decomposes into decoding of two pairs of

symbols {x1, x3} and {x2, x4}.

The maximum likelihood distance metric for detection with NR = 1 is given by,

d = ||y − X̃h||2 (2.43)

Upon expanding Eq(2.43), the metric conveniently breaks down to a sum d́1 + d́2 where

d́1 = (

4
∑

i=1

|hi|2(|x1|2 + |x3|2)) + 2<(((−h1y
∗
1 + h∗

2y2 + h3y
∗
3 + h∗

4y4)x̃1) (2.44)

+((−h3y
∗
1 + h∗

4y2 − h1y
∗
3 − h∗

2y4)x̃3) + ((h1h
∗
3 − h∗

1h3 + h∗
2h4 − h2h

∗
4)(x̃1 ∗ x̃3

∗))); (2.45)
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and

d́2 = (

4
∑

i=1

|hi|2(|x2|2 + |x4|2)) + 2<(((−h2y
∗
1 − h∗

1y2 − h4y
∗
3 + h∗

3y4)x̃2) (2.46)

+((−h4y
∗
1 − h∗

3y2 − h∗
1y4 + h2y

∗
3)x̃4) + ((−h1h

∗
3 + h∗

1h3 − h∗
2h4 + h2h

∗
4)(x̃2 ∗ x̃4

∗))) (2.47)

In the light of above example we can observe that, increase in symbol rate could be engineered

using a “quasi-orthogonal” design which also significantly reduces the complexity of ML detection.

2.5 Constellation rotation

The concept of signal diversity or modulation diversity was first introduced to realize time diversity

in the spirit of product distance criterion in [54],[55]. An example of this approach to realize time

diversity for PSK signals by symbol interleaving is the constellation rotation technique in [57]. In

this technique, QPSK symbols are rotated and their quadrature components are interleaved to

achieve temporal diversity. The basic idea of this concept is to maximize the distance between

coordinate dimensions in a D-dimensional signal space. This technique can be similarly applied

in space-time coding [54],[58] for realizing spatial diversity based on the rank and determinant

criterion. For this purpose, consider the quasi-orthogonal scheme given by Eq(2.41). It follows from

the rank criteria, that diversity order of the NO-STBC is equal to minimum rank of code distance

matrix. The asymptotic BER performance can therefore be maximized using the space-time code

design principles of maximizing the rank first and then maximizing the minimum determinant.

Due to linearity of the transmission matrix Eq(2.41), the code difference matrix can be easily

expressed as A = X(∆). The code difference vector ∆ between transmitted and received symbols

is ∆ =

[

∆1 ∆2 ∆3 ∆4

]

where ∆i = xi − x̃i, such that

A =



















∆1 ∆2 ∆3 ∆4

∆∗
2 −∆∗

1 ∆∗
4 −∆∗

3

∆3 −∆4 −∆1 ∆2

∆∗
4 ∆∗

3 −∆∗
2 −∆∗

1



















. (2.48)
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According to the rank criterion, to achieve full diversity, the code distance matrix given by

B = AHA should be full rank for all possible error events.

It is easy to show that the determinant of code distance matrix B = AHA is

D = [|∆2
1 + ∆2

3|2 + |∆2
2 + ∆2

4|2+

2(|∆2
1| + |∆2

3|)(|∆2
2| + |∆2

4|) − 8=(∆1∆
∗
3)=(∆4∆

∗
2)]

2,

(2.49)

where =(x + jy) = y.

Denoting ξ1 = |∆2
1 + ∆2

3|2, ξ2 = |∆2
2 + ∆2

4|2, t1 = =(∆1∆
∗
3) and t2 = =(∆4∆

∗
2), D can be rewritten

as

D = [ξ1 + ξ2 + 2
√

ξ1 + 4t21

√

ξ2 + 4t22 − 8t1t2]
2. (2.50)

It can be observed from Eq(2.50) that the matrix B is singular when both ξ1 = 0 and ξ2 = 0,

t1, t2 > 0 or t1, t2 < 0. Since constellation Qi = Qi+1, where Qi denotes the constellation from

which the symbol xi is obtained, all combinations of (∆1,∆3) and (∆2,∆4) are symmetric. There-

fore it suffices to make ξ1 6= 0 ξ2 6= 0 to achieve a non singular B over all possible error events. This

can be achieved by rotating the symbols x3, x4 optimally to x3e
jφ, x4e

jφ respectively. For those

particular combinations of (∆1,∆3), (∆2,∆4) which result in the minima of ξ1, maximizing the

minima of ξ1 using rotations of the type ejφ, minimizes t1 as well. Therefore, it can be observed

from Eq(2.50) that the minima of ξ1 (and simultaneously of ξ2), equivalently maximizes D over all

possible error events.

It is notable that at ξ1 = 0, we have ±∆1 = j∆3, therefore x1 ± jx3 = x̃1 ± jx̃3 leading to

zero Euclidean distance between certain constellation points in the “super symbol” constellations

Q1 ± jQ3, x1 ∈ Q1, x3 ∈ Q3, as in [14]. The plot of minima of ξ1 against angle of rotation φ when

Q1 , Q3 are π/4 QPSK constellations is shown in Fig 2.2. It can also be seen that optimum angle of

rotation is in the vicinity of 0.5 radian for QPSK constellation. The constellation rotation scheme
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Figure 2.2: Minima of ξ against angle of rotation.

can be represented as







x̂3

x̂4






=







exp jφ 0

0 exp jφ













x3

x4






(2.51)

where x̂3, x̂4 are the symbols after rotation. Rewriting the code matrix with rotated symbols, we

have

X =



















x1 x2 x̂3 x̂4

x∗
2 −x∗

1 x̂4
∗ −x̂3

∗

x̂3 −x̂4 −x1 x2

x̂4
∗ x̂3

∗ −x∗
2 −x∗

1



















. (2.52)

and from its Grammian matrix, it is straightforward that

D =

4
∑

i=1

|xi|2I4. (2.53)

Therefore, a constellation rotation of the type given by Eq(2.51) retains the MSD property of quasi-

orthogonal scheme in Eq(2.41). On the other hand, it follows from Eq(2.33) that the interference

caused by non-orthogonality of signal sequences changes but does not vanish by these constellation

rotations. This indicates that due to complete absence of interference in its ML detection, the
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design which sets the rigorous lower limit on BER performance at all SNR’s and the capacity

optimal design for NR = 1 is a full rate orthogonal design, but if only such an object existed.

However, the constellation rotation technique, employed in the light of rank and determinant

criteria, achieves full diversity degree at asymptotic SNR’s.

2.6 Multimodulation scheme

Increasing the symbol rate using non-orthogonal space-time transmission schemes was discussed

in the previous section. It was also seen that the degradation of diversity degree in such non-

orthogonal schemes can be overcome using constellation rotation technique. However, another very

simple technique would be to choose symbols from different modulation alphabets to compensate

for rate loss in orthogonal schemes. This concept has been analyzed and termed “multimodulation”

in [60]. For example, consider a power balanced version [16] of R = 3
4 orthogonal scheme in Eq(2.20)

X =



















x1 x2 x3 x3

−x∗
2 x∗

1 x3 x3

x∗
3 x∗

3 −<[x1] + j=[x2] j=[x1] −<[x2]

x∗
3 −x∗

3 j=[x1] + <[x2] −<[x1] − j=[x2]



















(2.54)

where x1, x2 ∈ Q1 , x3 ∈ Q3 such that Q3 is a bigger constellation to increase the bit rate . For

example, Q1 can be taken as QPSK constellation and Q3 as 16-QAM constellation. For doing this,

symbol x3 has been suitably scaled in Eq(2.54) so that symbols from alphabet Q3 are transmitted

with higher power because they contain more bits. However, upon scaling, the code in Eq(2.54)

does not satisfy the MSD criterion in Eq(2.13). This affects the performance of this scheme for

low-medium SNR’s while for asymptotic SNR’S a diversity degree of 4 is reflected in the slope of

its BER curve.

The multimodulation concept above is employed to compensate for the rate loss in an orthog-

onal code. In the same manner, multimodulation can be employed to compensate for diversity

degree loss in a non-orthogonal code at asymptotic SNR’s. For this purpose, consider the code in
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Eq(2.41)

X =



















x1 x2 x3 x4

x∗
2 −x∗

1 x∗
4 −x∗

3

x3 −x4 −x1 x2

x∗
4 x∗

3 −x∗
2 −x∗

1



















. (2.55)

It was seen that the determinant of the code distance matrix of this code vanishes for certain

code error vectors. It was also established that constellation rotation technique could be employed

to make the code distance matrix non-singular for all code error vectors,∆. However, instead

of constructing new symbol alphabets Q3 ,Q4 for symbols x3, x4 from existing symbol alphabets

Q1 ,Q2 , alphabets Q3 ,Q4 can also be altogether different symbol alphabets but chosen such that

they would guarantee non-vanishing determinant of code distance matrix. For example, if Q1 ,Q2

are QPSK signal constellations then Q3 ,Q4 can be altogether different constellations like 16-QAM

and this will automatically make the determinant in Eq(2.49) non-zero for all code error vectors,

∆. However, symbols from constellations of bigger size would need to be transmitted with higher

power, sacrificing the MSD property of the code in Eq(2.53). This affects the performance of this

scheme at low-medium SNR’S but for asymptotically high SNR’S a transmit diversity degree of 4

dominates the performance of this scheme.

2.7 Conclusion

In this chapter, space-time block coding designs were considered. First, orthogonal designs which

provide the benchmark for BER performance of space-time block codes were briefed. Later, in-

creasing the symbol rate using non-orthogonal designs and increasing the diversity order of such

non-orthogonal designs using constellation rotation technique were explained in detail. It was also

seen that multimodulation concept can be used to increase the rate of an orthogonal design as well

as to maximize the diversity degree of a non-orthogonal design. In the next chapter, we analyse

the performance of the linear space-time block coding techniques which have been discussed in this

chapter in a spatially correlated environment.
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Chapter 3

Space-Time block Coding in

correlated channels

3.1 Introduction

It is well known that the MIMO theoretical link capacity grows linearly with min(NR, NT ), making

it a promising technique for high speed wireless communications. Alternatively, a diversity advan-

tage of NT ×NR can be targeted using NT transmit antennas and NR receive antennas to increase

the reliability in communication. However, the assumption that the transmit and receive anten-

nas are statistically independent is fundamental to the linear capacity growth with min(NR, NT )

observed in [52],[64]. Similarly, the basic idea of antenna diversity is that a combination of inde-

pendent and identically distributed (i.i.d) faded samples of the same signal collected using multiple

antennas can be used to improve the decision statistics at the receiver for signal recovery with

the same transmission power. In fact, the diversity advantage of a space-time code which can be

achieved using the rank and determinant criteria is defined as the exponent of SNR at asymptotic

SNR’s when the fading distributions are Rayleigh and independent [47]. Therefore large spectral

efficiencies promised by MIMO spatial multiplexing and/or power efficiency of space-time coding

can be realized if the fading between transmit and receive antennas follow independent distributions.

In reality however, closely spaced antennas, poor scaterring environment or narrow angular spread
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can cause the individual antennas to be correlated. In the downlink of a cellular network, the fea-

sibility of having sufficiently spaced transmit antennas makes transmit diversity a very attractive

approach. In peer-peer links of an ad hoc networking setup, however, it is not always possible for

small mobile terminals to support sufficiently spaced antennas and therefore fading gains could be

statistically correlated as a result of transmit-side or receive-side antenna correlation. The motiva-

tion of this chapter is to study the effect of transmit-side correlation on a rank achieving full rate

space-time design. For this purpose, constellation rotated non-orthogonal space time block codes

(NO-STBC), which achieve full diversity and full transmission rate are considered for analysis.

These codes have been shown to outperform NO-STBC in link reliability over Rayleigh fading i.i.d

channels. A full rank transmit correlation matrix is employed and the performance of these codes

analyzed in correlated quasi-static Rayleigh fading channels. The effect of spatial correlation on

pairwise error probability(PEP) is analyzed first and then the behavior of code structure over chan-

nel correlation is investigated. The results for BER performance of constellation rotated robust

NO-STBC over highly correlated channels is also presented.

3.2 Channel correlation model

The channel correlation between the transmit antennas can be modelled using the well known

AR(1) process:

hi+1 = αhi +
√

1 − α2wi+1, 1 ≤ i ≤ 3 (3.1)

where α = E[hih
∗
i+1] is the correlation coefficient between two adjacent transmit antennas and wi+1

is an independent complex Gaussian variable with the variance of 1 (0.5 per dimension) and zero

mean. The channel is assumed to be quasi-static within a STBC block and the temporal correlation

is assumed to be zero. Therefore, the fading gains between the first transmit antenna and receive

antenna is an independent complex Gaussian variable with the variance of 1 (0.5 per dimension)

and zero mean. The fading gains of the other transmit antennas can be expressed in terms of h1 as

hi+1 = αih1 +
i−1
∑

k=0

αk
√

(1 − α2)wi−k+1. (3.2)
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From Eq(3.2) is is straight forward to show that

var(hi+1) = 1 ∀i (3.3)

E(hi+1) = 0 ∀i. (3.4)

The channel vector h can be represented based on [66] as

hT = hw
TS1/2, (3.5)

where hw
T =

[

w1 w2 w3 w4

]

. wi is an independent complex Gaussian variable with the

variance of 1 (0.5 per dimension) and zero mean. The vector hw
T thus relates to the independent

and hence perfectly uncorrelated Rayleigh fading condition. From the correlation model in Eq(3.1),

the matrix S1/2 can be determined:

S1/2 =



















1 α α2 α3

0
√

1 − α2 α
√

1 − α2 α2
√

1 − α2

0 0
√

1 − α2 α
√

1 − α2

0 0 0
√

1 − α2



















, (3.6)

where 0 ≤ α ≤ 1. The channel correlation matrix is then Θ = E[hhH ].

Θ =



















1 α α2 α3

α 1 α α2

α2 α 1 α

α3 α2 α 1



















.

Finally, as in [66] the transmit correlation matrix S is defined as S = S1/2SH/2, which has full rank

for 0 ≤ α < 1 and rank 1 when α = 1.
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3.3 Constellation rotation scheme over correlated channels

3.3.1 Effect on the PEP

Consider the quasi-orthogonal scheme given by

X =



















x1 x2 x3 x4

x∗
2 −x∗

1 x∗
4 −x∗

3

x3 −x4 −x1 x2

x∗
4 x∗

3 −x∗
2 −x∗

1



















. (3.7)

It was seen that the code difference matrix of this NO-STBC has a minimum rank 2 and by rotating

symbols x3 , x4 full rank of 4 can be realized. If Y = Ah, where A is the code difference matrix

and h is the channel vector by denoting CY = E(YYH) the pairwise error probability (PEP) can

be expressed, for NR = 1, as [66]

P (X, X̃) ≤
ν

∏

i=1

(λi(CY))−1(
Es

4No
)−ν , (3.8)

where ν is the minimum rank of matrix CY over all codeword pairs and throughout the paper

λi(Z) denotes the ith eigenvalue of a matrix Z.

Using Eq(3.5), the covariance matrix of Y can be written as

CY = ASTAH . (3.9)

Therefore the upper bound of PEP is given by

P (X → X̃) ≤ (Es/4No)
−ν

ν
∏

i=1

λi
−1(AST AH), (3.10)

where ν is the minimum rank of ASTAH . The transmit correlation matrix S exhibits full rank for

0 ≤ α < 1 and from the Sylvester’s theorem it is straightforward that rank(CY) = rank(AAH).

Denoting the minimum rank of the matrix AAH as r, the upper bound on PEP can be rewritten
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for 0 ≤ α < 1 as [66]

P (X → X̃) ≤ (Es/4No)
−r

r
∏

i=1

λ−1
i (S)

r
∏

i=1

λi
−1(AAH). (3.11)

Noting that rank(AAH) = rank(AHA) and nonzero eigenvalues of the matrix AAH are equal to

nonzero eigenvalues of the matrix AHA, this can be further rewritten for NR = 1 as

P (X → X̃) ≤ (Es/4No)
−r

r
∏

i=1

λ−1
i (S)

r
∏

i=1

λi
−1(AHA). (3.12)

The nonzero eigenvalues of S and AHA are arranged in increasing order for discussion.

Comparing Eq(3.12) with Eq(2.7), the loss in PEP due to transmit correlation for NR = 1 can

be characterized by

ω =

r
∏

i=1

λi(S). (3.13)

For the NO-STBC in this paper when ξ1 = 0 and ξ2 = 0 in Eq(2.49), the rank of the matrix AHA

is equal to 2 which is its minimum rank r. An optimal rotation scheme should allow the minimum

rank r to be 4 for all error events and maximize detB =
∏r

i=1 λi(A
HA) .

Since |∆i| = |∆ie
jφ|, we have tr(AHA)rot = tr(AHA) = θ. We can therefore have the optimal

rotation scheme maximize
∏4

i=1 λi(A
HA) with the following constraint,

4
∑

i=1

λi(A
HA) = θ, or equivalently, 0 < λi(A

HA) ≤ θ. (3.14)

Also, for the transmit correlation structure employed in this paper,

tr(S) =

4
∑

i=1

λi(S) = 4, (3.15)
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which is independent of α. Therefore,
∏r

i=1 λi(S) follows the constraint, 0 < λi(S) < 4 and con-

sequently a change in distribution of the eigenvalues of S excites a loss in the PEP. The plot of

ω for NO-STBC (r= 2) and constellation rotated NO-STBC (r= 4) schemes against correlation

coefficient is shown in Fig. 3.1.

It can be observed that as correlation increases ω for both schemes converges to zero. Then
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Figure 3.1: Loss function against correlation coefficient.

intuitively, maximizing
∏r

i=1 λi(A
HA) using a full rank constellation rotation scheme with the

constraint in Eq(3.14) does not absorb the loss in ω at high correlations. This happens for high

channel correlations. Consequently there is no significant performance improvement due to con-

stellation rotations at high spatial correlations.

3.3.2 Analysis

In this section we investigate the behavior of the code structure as the correlation coefficient in-

creases. The equivalent channel matrix for the NO-STBC in Eq(3.7) can be written in the form

used in Eq(2.26) as

H́ =



















h1 h2 h3 h4

−h∗
2 h∗

1 −h∗
4 h∗

3

−h3 h4 h1 −h2

−h∗
4 −h∗

3 h∗
2 h∗

1



















. (3.16)
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The properties of the code is reflected in the matrix H́HH́

H́HH́ =



















Σ 0 c 0

0 Σ 0 −c

−c 0 Σ 0

0 c 0 Σ



















, (3.17)

where Σ =
∑i=4

i=1 |hi|2, and c = 2j(=(h∗
1h3) + =(h2h

∗
4)).

For this NO-STBC , det(H́HH́) 6= 0 for 0 ≤ α ≤ 1 making the equivalent channel matrix full

rank for all correlation coefficients. The interference term c is observed to have a low mean and

decreasing variance at high channel correlations and becomes 0 when α = 1. Due to this the above

NO-STBC is robust [65] and its matched filter output properties tend to the O-STBC properties

at high correlation coefficients.

From Eq(3.2), the term Σ can be rewritten as

Σ(α) =

i=3
∑

i=0

|αiχ +
√

1 − α2iµi|2, (3.18)

where χ and µi are zero mean, unit variance complex Gaussian variables denoting the correlating

component and the spatial diversity component of ith antenna respectively. It can be seen that as

the correlation coefficient α increases, occurrences of deep fade in χ lead to a smaller signal power

at the decoder, thereby deteriorating the performance at medium to high SNR. Moreover, power

preserving constellation rotations do not increase the Euclidean distance between signal points

and hence the performance of constellation rotated NO-STBC scheme becomes identical to the

performance of NO-STBC without rotation as α approaches 1. The NO-STBC has diversity degree

of 2 and the constellation rotated NO-STBC diversity degree of 4. However, in the absence of

diversity at high spatial correlations, the performance of both the schemes become similar to each

other.
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3.4 Numerical examples

In this section numerical examples are used to illustrate the performance of the schemes under

transmit side correlation. The system is π/4 QPSK modulation. The symbol power has been nor-

malized to 1. 560000 QPSK symbols are transmitted per SNR point using 4 Tx antennas and 1 Rx

antenna . The NO-STBC scheme in Eq (3.7 )[54] with and without optimal rotation is investigated.

Example 1: Uncorrelated channels

In this example, the channels are mutually independent: α = 0. Fig.3.2 shows the uncoded BER

performance as a function of SNR for the NO-STBC in Eq(3.7) with and without optimal rotations.

We observe that constellation rotation of 0.5 radians significantly improves the BER performance of

the space-time code. At low SNR’S, because both the schemes offer maximal symbolwise diversity

there is not a significant difference in the performance. However, at asymptotically high SNR’s,

performance is determined by the codeword difference matrix. The codeword difference matrix has

a minimum rank 2 in the event of multiple symbol error events making ξ1 = 0 or ξ2 = 0 in Eq(2.49).

This determines the slope of the BER curve at high SNR’S. Constellation rotation scheme provides

better diversity protection against rank deteriorating error events and maximizes the minimum

rank of code difference matrix. Therefore, the slope of BER curve upon employing such rotations

improves significantly and makes the constellation rotated scheme more power efficient.

Example 2: Correlated channels

The BER performance of the NO-STBC in Eq(3.7) when the transmitter antenna gains are cor-

related is illustrated in this example. Two cases of channel correlations with α = 0.9 and α = 1

are considered. The results are plotted in Fig.3.3 and Fig.3.4 respectively. The performance degra-

dation due to the effect of loss function in Eq(3.13) is significant at these correlation coefficients.

The property of full rank code distance matrix in the PEP is masked by the loss function due to

channel correlation. It can be observed from the matched filter output that the BER performance

of constellation rotated NO-STBC scheme tends to the BER of NO-STBC without rotation and

eventually becomes exactly the same when the antennas are perfectly correlated. If the MSD prop-

erty of the code is disturbed by using arbitrary weights w1 to x1, x2 and w2 to x3, x4 such that
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w2
1 + w2

2 = 2, then the performance would only get worse. It can also be verified using Eq (3.17)

that when α = 1, this code resembles the matched filter bound or the MRC bound which rigorously

sets the lower limit on BER performance. An interesting observation is that the performance gap

between this NO-STBC and the matched filter bound reduces as the correlation increases. The lack

of spatial diversity in channel realization at the receiver eventually degrades the BER performance.
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Figure 3.2: Uncoded bit error rate for QPSK modulation for uncorrelated antennas (α = 0).
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Figure 3.3: Uncoded bit error rate for QPSK modulation for uncorrelated antennas (α = 0.9).
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Figure 3.4: Uncoded bit error rate for QPSK modulation for uncorrelated antennas (α = 1).

3.5 Conclusion

The performances of NO-STBC and constellation rotated NO-STBC schemes were compared and

analyzed using a correlation model between four transmit antennas represented by a full rank

transmit correlation matrix. The loss function on the PEP which causes degradation in BER

performance has been characterized. It has been shown that power preserving scalar constellation

rotation schemes do not provide any significant performance benefit at high correlation coefficients

in spite of providing better diversity protection at rank deteriorating error events. Simulations

establishing these results have also been presented in this chapter. Overall, it has been seen

that open loop transmit diversity schemes do not yield significant performance benefits when the

channels between multiple antennas are highly correlated. In the next chapter, we introduce relay

diversity systems formed by users who share their resources and imitate a multiple antenna system.

These relay systems are useful in scenarios where channels between multiple transmit antennas are

highly correlated or when many users are equipped with only one antenna in the network. However,

as we would see in the rest of the thesis, although they promise rich spatial diversity, relaying

systems are fundamentally limited by noise propagation or error propagation along the relay route.
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Chapter 4

User Cooperation

4.1 Introduction

Relaying between radio nodes has been observed to reduce the aggregate path loss and improve

performance in wireless channels. This concept exploits the inherent broadcast [19] nature of a

wireless channel and is popularly referred to as multi-hopping. Relays can also be used to assist

communication between two hops in a multiple hop wireless route. This concept exploits the par-

allel topology available when peer-peer links are allowed in cellular networks and in wireless ad hoc

networks. The relay channel formulation and protocols [3], [20] have been studied in various works

recently in which the gains achievable with cooperation are observed to be promising.

In addition to relaying, if users have their own information to transmit, then they form a “user

cooperation” channel [4]. In fact, a classical relay channel is a special case of “user cooperation

channel” when only one terminal has information to transmit to one receiver with others assist-

ing it. The diversity realized when different nodes transmit each other’s information has been

termed “cooperative diversity” [40],[3]. The relay channel first studied by van der Meulen [45] in

his pioneering work in is central to user cooperation in multiple-access, broadcast and interference

channels. Since then, user cooperation has found more interest among researchers due to the fol-

lowing motivations.
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1) They are a very attractive means of reliable communication in the upcoming ad hoc network

scenarios. Radio nodes are more likely to be found distributed as clusters [23] in large wireless

networks which makes user cooperation even more feasible and beneficial in large networks. The

power gains due to shorter wireless links formed by relaying is a main incentive to investigate such

systems. Cooperative communications combines the usual power advantages of multiple hop net-

working with the cooperative diversity achievable via multiple route relaying and therefore holds

promise to improve the throughput in such networks. Moreover, cooperative diversity is vital to

the framework of cooperative communications to try and reduce the number of hops and thereby

reduce end-end latency in a multiple hop network. This can be achieved by complementing multi

hopping transmit power savings with the cooperative diversity gain .

2) If the channel between two communicating terminals is deeply faded, occurrence of outages

can be reduced by routing the information via a relay [13]. Multi hop packet radio networks

(MPRN) is an attractive architecture on these lines that could accommodate such scenarios by

organizing cooperation between mobile radio nodes. This benefit is also relevant to the uplink of

cellular network [13] where there are strict transmit power constraints. Information can then be

routed from the mobile terminal around the obstacles to the base station.

3) The recent developments in MIMO technology has also fueled interests for cooperative com-

munications. The idea of using radio nodes to resemble an antenna array at a single user based

on cooperation was proposed in [16] and termed “Virtual Antenna Array” (VAA). User terminals

equipped with only one antenna can enjoy the benefits of multiple antenna communications when

other terminals “share” their antennas. MIMO channels formed by VAA’s also promise good spatial

multiplexing gains as the channels are potentially rich in rank [33] due to large spatial separation

between collaborating users. Therefore, with user collaboration and antenna sharing, multiple

antenna techniques which improve spectral efficiency and power efficiency can be used for single

antenna users, albeit, there is additional delay in communication due to the need for information

transfer between cooperating terminals.
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At this point, it is vital to point out that the process of neighbor discovery [32], establishing a

dynamic route or implementing a “network code” [30] are typically network layer issues. How-

ever, the broadcast nature of wireless channels, issues of radio interference and wireless channel

impairements make link layer solutions relevant at the network and MAC layers. Similarly, rate

adaptation, power control and coding at link layer would largely depend on the network conditions

and the MAC layer protocols. These layer interdependencies makes cross-layer design imperative

to meet the application requirements of these networks.

In this chapter, link layer relay channel model widely used in literature is first presented. Then few

forwarding strategies and user cooperation techniques are briefed and the schematic of cooperative

diversity is explained in detail. Finally, conditional SNRs of the cooperative diversity schemes are

compared.

4.2 Multihop network

An example of a wireless multiple hop model with 3 hops is shown in Fig.4.1.

In this model, every radio receiver decodes the signal it receives from the previous hop and

  Destination         T2  T1     +    +     +Source x x x

h10 n1

x1

h12 h23n2 n3

Figure 4.1: Multihop network with 3 hops.

forwards it to the next hop. hij is the zero-mean fading gain between hops i and j with variance

σ2
ij and ni is AWGN noise at ith radio receiver with variance N0. The shorter wireless links because

of hopping reduces the effective path loss between a source-destination pair and therefore reduces

the total transmission power in a wireless network containing many such source-destination pairs.

To explain this further, consider the setting with n hops as shown in Fig 4.2.

Here di is the Euclidean distance between two adjacent hops and the wireless link between a source

and destination consists of n hops formed by n− 1 collinear radio nodes willing to cooperate. The
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Destination

Source

d1 d2 d3

dsd

Figure 4.2: Multihop model with n hops.

distance between source and destination can then be written as

dsd =

n
∑

i=1

di. (4.1)

The path loss between two wireless nodes separated by a Euclidean distance dij is simplistically

given by

σ2
ij =

1

dr
ij

, (4.2)

where r is the path loss exponent of the wireless channel model. If Pti is the average transmitted

power from ith node to its neighbor, then the average received power at the i + 1th node is Pri =

Ptiσ
2
ii+1. In addition, if all radio nodes employ a minimum threshold average received power of

Pri = P ′ before codeword detection, then the above setting would allow us to characterize the

transmit power savings available using multi hopping. From Eq(4.1) the gain g can be shown to

be,

g =
P

∑n
i=1 Pti

=
dr

sd
∑n

i=1 dr
i

=
[
∑n

i=1 di]
r

∑n
i=1 dr

i

. (4.3)

Eq(4.3) shows that increasing the number of hops increases the transmit power savings in the

network.

4.3 Three terminal model

In a wireless multi-hop link, each receiver in the route can decode information using transmissions

from all or some preceding hops to increase the achievable rates in the network. Based on the above

idea, the classical three terminal relay channel model was originally introduced and examined by

Van der Meulen in [45]. Cover and El Gamal [20] made further progress by theoretically developing
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the lower and upper bounds of capacity for AWGN channels via random coding. The cooperation

strategy between the source and relay nodes for coding in [20] is shown in Fig.4.3.

 Relay receiver/encoder

Decoder 
 
 Source Encoder     +

   +

x1x1 (wi|si)

(si) x2x2

N1

Nd

wi−1

Figure 4.3: Three terminal model.

The scheme in [20] operates as follows. At time index i, current message wi arrives at the source

encoder for transmission. wi−1 denotes the previous message and si is the index of the partition

S in which the message wi−1 is contained. Then the source superimposes wi and si at its encoder

and transmits x1(wi|si), thereby maintaining a steady flow of information. The relay obtains si by

correctly decoding message wi−1 and transmits signal x2(si) to the destination. The destination

uses multiple receptions of si to identify the cell S and successfully decode wi−1. In this scheme,

the source and the destination use superposition block Markov encoding and backward decoding

respectively. If repetition coding is used at the relays to achieve the aforementioned relay assisted

decoding, then a diversity channel is formed by relaying.

4.3.1 Relay diversity

Relaying can be used to realize diversity using multiple receptions of the same signal from different

cooperating users. This form of diversity has been termed “multi-user spatial diversity” [13] and has

superficial similarities to antenna diversity concepts. The three terminal model for relay diversity

is shown in Fig 4.4.

The wireless relay system consists of a source node, a destination node and a relay node. Two
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Destination (d)

u

Relay  [ u ]

Source [v x]

[v x]

Figure 4.4: Three terminal relay diversity.

orthogonal subspaces are assumed for the received and transmitted data from a radio node to

preclude the terminals from receiving and transmitting at the same time in the same frequency

band [1],[3]. The orthogonal subspaces for transmission and reception can be formed for example,

by a two time frame transmission scheme explained below.

Frame i

In the first frame, digitally encoded symbols x ∈ C1 of unit modulus is transmitted by the source,

where C1 is a modulation alphabet. Let x be the transmission vector at the source. The received

signal at the destination in the first subchannel is

rd
(1)(i) =

√

P1h
(1)
sd1x +

√

N0 nd
(1)(i), (4.4)

and the received signal at the relay is

rr
(1)(i) =

√

P1h
(1)
sr x +

√

N0 nr
(1)(i), (4.5)

where h
(1)
sd1, h

(1)
sr are the channel gains from the source to destination and relay respectively in

the first orthogonal subchannel and nd
(1)(i), nr

(1)(i) are noise vectors whose entries are complex

Gaussian with zero mean and unit variance (0.5 per dimension).
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Frame i + 1

In the second frame, the source optionally transmits x again while the relay transmits vector u based

on the reception rr
(1)(i). For medium access control, the source-destination channel and the relay-

destination channel are orthogonal to each other to avoid interference between the transmitting

terminals. The destination receives the signal

rrd
(2)(i + 1) =

√

Pruh
(2)
rd +

√

N0 nd
(2)(i + 1) (4.6)

from the relay in the second subchannel, where h
(2)
rd is the channel gain between the relay and

destination in the second orthogonal subchannel. It also receives the signal

rsd
(1)(i + 1) =

√

P2xh
(1)
sd2 +

√

N0 nd
(1)(i + 1) (4.7)

from the source, where h
(1)
sd2 is the channel gain between source and destination in the frame i + 1

over the first orthogonal sub channel. The channel gains are assumed to be zero mean complex

Gaussian variables with variances σ2
sr, σ

2
rd and σ2

sd respectively and are assumed to be quasi-static

over a frame length. nd
(1)(i + 1) is the noise column vector and entries of nd

(1)(i + 1) are additive

white Gaussian with zero mean and a variance of 1.

The destination receiver then carries out symbol detection as shown in Fig 4.5.

Combiner Detector

rd
1(i)

rsd
1(i+1)

rrd
2(i+1)

Figure 4.5: Destination receiver.

At the combiner, the destination combines the signals rrd
(2)(i+1), rd

(1)(i), rsd
(1)(i+1) before sym-

bol detection. It can be intuitively seen from Eqs (4.4) - (4.7) that if the signals are maximal ratio

combined then the performance benefit will be totally dependent on source-relay channel quality.
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On this basis, a weighted combining scheme has been proposed in [1],[5]. An expression for the

post-combining conditional SNR for weighted combining scheme is presented in Section 4.7.2.1.

In the three terminal relay diversity model which has been discussed in this section, the relay

nodes do not hear each other’s transmission. For completeness, in the next section we outline the

schematic of a generalized multiple-relay mechanism in which relays can also ‘hear’ each others

transmissions.

4.3.2 Multiple relay network

In the landmark paper by Gupta and Kumar[22], the upper bound of aggregate capacity of wireless

networks consisting of n nodes per unit area with point to point coding has been shown to follow a

bit-distance product of O(
√

n) bit-meters per second behavior, or equivalently a maximum trans-

mission rate of O( 1√
n
) bits per second per node. Gastpar [30] considers a traffic pattern in which

all other nodes in the network act simply as relays for a source-destination communication. It is

shown that a transmission rate behavior of O(log n) bits per second per node can be achieved if

the relay network allows cooperation such as multiple access cooperation or broadcast cooperation

and also allows coding for networking between the nodes. This concept of coding in the network,

is well known as “network coding”[30] and a significant body of research work from the networking

community is focussed on this concept.
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Figure 4.6: Multiple relay model.
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Fig 4.6 shows a multiple relay model of a wireless network with 2 relays where each node

can “hear” transmissions from all other nodes. aij is the path loss between two radio nodes and

Ni is AWGN noise at ith receiver node. The received signal in node k in the network is linear

superposition of faded transmission signals from all other nodes and AWGN noise. The network

model depicts a scenario in which a source-destination communication takes place with all other

nodes at their service but without any kind of feedback from the final destination to the other

nodes. The source repeats the signal X1 unrestricted and the approach is to consider set of all

feedfoward graphs to the destination. However, in a restricted system as discussed in section 4.3.1,

the source node transmits a signal X1 only for half of the time. This signal is also received by relay

nodes T2 and T3 and they re-transmit the signal to the final destination in the next half of the

time without hearing each other. This network called the parallel relay network for multiple relay

case is discussed in the next section.
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4.3.2.1 Parallel relay network

A multiple relay network simplifies to the “parallel relay” architecture [17],[32],[39] when the relays

do not hear each other and when the source is oblivious to relay transmissions. Such an architecture

consisting of n + 1 transmitting nodes is shown in Fig 4.7.
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Figure 4.7: Parallel relay model.

The source terminal has information to transmit and n other user nodes act as relays for the source

terminal. For medium access control, n + 1 orthogonal channels are allocated for the n + 1 trans-

mitting terminals. In addition, due to the half duplex constraint, each channel is further divided

into two orthogonal subspaces for signal transmission and reception.

As in the three terminal relay diversity model, at time index i the source transmits a vector x

of digitally modulated symbols x ∈ C to the destination and all the relays in the first subchannel,

where C is the modulation alphabet. The received signal at the destination is

rd
(1)(i) =

√

P1h
(1)
sd1x +

√

N0 n
(1)
0 (i), (4.8)
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where h
(1)
sd1 is the complex fading coefficient between the source and destination in the first sub-

channel and n
(1)
0 is AWGN noise vector with zero mean and unit variance entries.

The received signal at the kth relay receiver is then

r
(1)
k (i) =

√

P1h
(1)
k x +

√

Nk n
(1)
k (i), (4.9)

where h
(1)
k is the complex fading coefficient between the source and kth relay in the first subchannel

and n
(1)
k is the AWGN noise at the relay with zero mean and unit variance entries. If vk is the

information transmitted by the kth relay based on its received signal from the source, then the

received signal at the destination over the kth orthogonal channel from the relay is

rrd
(k)(i + 1) =

√

Prkv
kh

(k)
kd +

√

N0 n
(k)
kd (i + 1). (4.10)

The source optionally re transmits the information over the first subchannel again which is received

by the destination as

rsd
(1)(i + 1) =

√

P2xh
(1)
sd2 +

√

N0 n
(1)
2 (i + 1). (4.11)

The signal receptions over the n+1 orthogonal channels are then combined before symbol detection

similarly to Fig 4.5. Intuitively, relay diversity can be understood as a form of receiver diversity

with n relays imitating n receiver antennas for signal detection. Also, it can also be noted that

the first phase of communication resembles a broadcast channel (BC) while the second phase

of communication resembles a multiple access channel (MAC). This BC-MAC combination is an

interesting feature of the parallel relay architecture.

4.4 Relay node functionality

In user cooperation, each assisting node has a certain functionality associated with it for extending

cooperation. The functionality of the relay node would indeed depend on the coding strategy,

cooperation architecture and the decoding technique at both the relay receiver and the destination

receiver [24]. However, all forwarding functionalities of the relay node can be argued to be one of

either facilitation, cooperation or transmitting “alternate information” [20].
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The facilitation scheme is simple. The relay does not interfere in source transmissions and therefore

relay assisted communication degenerates to a single hop communication between the source and

destination.

The cooperation scheme in [20] is also popularly known as “decode and forward” (DF) [1],[36]

or “regenerative relaying” and is a variant of multi hopping in wireless networks. Here, in addition

to information routing via selected hops, decoding at every radio receiver along the route is car-

ried out in a assisted manner based on all or some cooperative transmissions. The relays usually

wait for the source to transmit the entire codeword for error checking [36] and error correction. If

the information is successfully decoded, relays either apply repetition coding or use more powerful

codes to assist the decoder at successive receivers.

A variant of the decode and forward technique which is often considered in relay case is the “symbol

decode and forward” technique as in [1], [4], [5],[13, [15]. In this approach, rather than waiting

for correct reception of the entire codeword from the source, relays cooperate by making an hard

estimate of the received signal, encoding it again digitally and forward it to the destination. The

vector u in Eq(4.6) for symbol decode and forward strategy is then simply

u = x̂, (4.12)

where x̂ is the hard estimate of x.

Also, if along a multi-hop route as in Fig 4.2, signal transmissions ui i = 1..m from m pre-

ceding hops are used for realizing diversity at each successive receiver then a “decode and forward

multi hop diversity channel”[15] is formed.

In the “alternate information” class of forwarding, the relays convey a representation of their

received signal to the destination so that the destination can effectively fuse its own received signal
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with the signal from relay to decode the message. The alternate information is useful when it is a

high quality representation of the signal. This strategy is also termed as “estimate and forward”

[20], “compress and forward” [31] or “observe and forward” [2] by different authors. For example,

a relay could “amplify and forward” (AF) [1],[26] the information when the channel between it and

the source is not noisy and deeply faded. The vector u in Eq(4.6) for amplify and forward strategy

will be

u = βrr(i), (4.13)

where β is the amplification factor at the relay.

4.5 Cooperation schemes

4.5.1 Virtual antenna array

Cooperative communications by adopting techniques from multiple antenna systems is the funda-

mental idea of VAA architecture. By exchanging messages and then sharing their antennas with

the other users, cooperating users can form a VAA. The recent advances made in MIMO, multi-user

MIMO and space-time coding for local antenna arrays can then be suitably extended for the VAA

case [25],[29]. A brief overview of the cooperative techniques under the VAA concept is given below.

4.5.1.1 Transmitter cooperation

If the transmitters were allowed to jointly encode their messages then the channel becomes a

multiple antenna broadcast channel [41]. For such a channel, the sum capacity has been shown

to be achieved by dirty paper coding technique [27],[28]. Users employing transmitter cooperation

can also jointly encode the data using techniques like zero forcing beam forming.

Figure 4.8 shows two transmitting terminals T1 and T2 collaborating to form a multiple antenna

broadcast channel. The receivers do not collaborate for joint detection. T1 and T2 exchange

information in codewords for reliable information transfer. The messages are precoded and then

transmitted by the terminals.
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Figure 4.8: Transmitter cooperation: Broadcast channel.

4.5.1.2 Receiver cooperation

If receivers cooperate to decode independent messages transmitted by user terminals as in Fig

4.9, the channel then resembles a multiple antenna multiple access channel (MAC) [41]. Joint

detection based on cooperation would achieve a diversity order of number of receiver nodes for this

case. Alternatively, for interference cancellation, iterative detection like in V-BLAST [76] can be

carried out. Also, it can be observed that if the channels between the nodes are all symmetric,

then the information decodable at the relay node from the source is same as at the destination.

For this reason, receiver cooperation usually involves the “alternate information” [20],[31] class of

forwarding. For instance, cooperating users can amplify and forward the message or can use a

“compress and forward” scheme [31].

 (X1,X2)

X1

X2

T1

T2

R1

R2  (X1,X2)

Figure 4.9: Receiver cooperation: MAC.
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4.5.1.3 Cooperative MIMO

If both the transmitting terminals and the receving terminals cooperate then the topology resem-

bles a point-point MIMO link as show in Fig 4.10.

 (X1,X2)
 

 (X1,X2)

R2

R1

T2

T1

X2

X1 h11

h12

h21

h22

Figure 4.10: Cooperative MIMO.

This scenario can be realized in communication between clusters with node collaboration within

a cluster. A topology of cluster communication is shown in Fig 4.11 where nodes Ai, Bi, Ci,Di in

cluster i communicate to nodes Aj , Bj , Cj,Dj in cluster j, mimicking a point-to-point MIMO com-

munication link between clusters i and j.

Destination
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A3
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D2

A2

D1
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B1

A1

Source

Cluster 1 Cluster 2 Cluster 3

Figure 4.11: Cluster cooperation.

4.5.2 User cooperation in MAC

4.5.2.1 Repetition coding

User cooperation in multiple access channels via generalized feedback from the final receiver has

been considered by Carleial in [21]. More generally, multiple access channels with cooperative di-
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versity are special cases of multiple access channels with generalized feedback. The feedback signals

in “user cooperation” case are the channel outputs of user transmissions at the partners’ encoders

and not a “feedback” about other user’s transmission from the final receiver based on channel

outputs at its decoder. Sendonaris et.al [4],[5] consider cooperative diversity for a faded multiple

access channel using relaying and show that significant power savings and robustness to channel

variations could be achieved upon using user cooperation diversity. This translates to increase in

data rate and/or extra cell coverage. In Fig 4.12, X1, X2 are the user encoder outputs based on
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x
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   +     x
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W1

X1

X2
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Y2

N12

N21

N0

h10

h12

h20
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Figure 4.12: User cooperation in MAC.

user information signals W1, W2 and cooperative signals Y1 and Y2 respectively. The transmitters

thus exchange messages and relay the messages and under the condition of high SNR between

cooperating terminals, cooperative diversity of this form has been shown to enlarge achievable rate

region for ergodic channels and improve outage performance for non-ergodic channels.

From Fig 4.12 [4], we have the following equations for cooperation in multiple access channel

Y0(t) = h10X1(t) + h20X2(t) + N0(t) (4.14)

Y1(t) = h21X2(t) + N21(t) (4.15)

Y2(t) = h12X1(t) + N12(t) (4.16)
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A CDMA implementation of this scheme has been presented [4]

X1(t) = a11b
(1)
1 c1(t), a12b

(2)
1 c1(t), a13b

(2)
1 c1(t) + a14b̂2

(2)
c2(t) (4.17)

X2(t) = a21b
(1)
2 c2(t), a22b

(2)
2 c2(t), a24b

(2)
2 c2(t) + a23b̂1

(2)
c1(t), (4.18)

where the parameter aij controls power allocation, bi
j denotes user j’s ith bit, cj(t) is user j’s

spreading code.

The cooperation strategy employed above is a two-user generalization of the cooperation scheme in

[20] where the transmitters and receivers employ block Markov encoding and backward decoding.

The CDMA scheme makes use of orthogonal spreading codes to maintain orthogonality while al-

lowing superpositioning of signals at transmitter. This in turn lets the scheme implement a simple

symbol-wise decode and forward relaying as relay node functionality. Further, phase knowledge at

the transmitting terminals [6] is used to coherently combine the signals at the destination receiver.

4.5.2.2 Coded cooperation

Cooperation via channel coding methods instead of direct relay or repetition coding is known as

“coded cooperation” [11],[12],[14]. In this approach, cooperation occurs through partitioning of

a user’s codeword such that a part of codeword is transmitted by user itself while the remainder

is transmitted by the partner through partial or complete decoding. The relay upon successful

decoding of the channel output, re-encodes the information to get additional parity bits that was

not transmitted by the source node. This method shows better use of bandwidth as compared to

repetition coding at the relay.

Fig 4.13 shows two users cooperating by time sharing [11],[12],[14]. Each user transmits the parity

bits of the other user to the destination and the two users transmit in a TDMA manner. x2 and

x1 are the partitions of the codeword. User 2 obtains x2 based on correct reception of x1 and

transmits it to the base station. The above scheme is very efficient when the coherence time of the

source-destination channel is greater than block length of the codeword.
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Figure 4.13: Coded cooperation.

The above discussions show that user cooperation can be implemented with a view of either forming

a multiple antenna BC/MAC channel or for assisting an already existing BC/MAC channel.

4.6 Distributed space-time coding

Relay diversity topology shown in Fig 4.7 uses repetition coding at the relays with the relays trans-

mitting at mutually orthogonal channels. The advantage of orthogonalizing signal transmissions is

that the received signal at the receiver antenna(s) is not a phasor addition of signals transmitted

from the relays. This avoids the inter-relay interference which would arise if there is time delay

between the relay transmissions. However, orthogonal channel allocation makes inefficient use of

bandwidth. The bandwidth efficiency of a time switched parallel relay scheme in Eq(4.8)-(4.9)

which has n relays assisting a source is given by

η =
m

n + 1
bits/s/Hz, (4.19)

where 2m is the size of signal constellation. A way of removing this inefficiency is to allow superpo-

sitioning of signals at the destination by letting the relays transmit in the same subchannel. The

parallel relay case with superpositioning at the receiver is shown in Fig 4.14.

However, superpositioning of repetition coded signals does not achieve diversity gain at the desti-

nation receiver and transmit-side phase information is required to transmit beamform the repetition
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Figure 4.14: Parallel relay case with superpositioning.

coded signals to the destination receiver [4],[18].

If reliable transmit-side phase information cannot be acquired by the transmitting terminals then

a way for achieving diversity gain is to use space-time coding instead of repetition coding at the

relays. This approach of space-time coding by making use of VAAs has been termed distributed

space-time coding [2].

Fig 4.15 shows a distributed space-time coding architecture [7]-[10] with n relays where a space

time code defined by n+1 transmission vectors is used to achieve diversity at the destination using

n relays.

Therefore, we see that a space-time code defined as

X =

[

v0 v1 . . vn

]

(4.20)

can be utilized even by a single antenna user if vectors vi can be transmitted by the relays on behalf

of the source to the destination in a symbol level synchronized manner. Space-Time coding based

on algebraic code constructions [42]-[44] make efficient use of both temporal and spatial diversity

available in the relay architecture.
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Figure 4.15: Distributed space-time coding.

4.6.1 Distributed Alamouti coding

A simple space-time code that can be used for the three terminal relay model in Fig 4.4 is the

Alamouti space-time block code given by

X =







x1 x2

x∗
2 −x∗

1






. (4.21)

For this purpose, consider a wireless relay system which consists of a source node, a destination

node and a relay node. The system as in [2] operates under the following two-frame mechanism. It

can be noted that all transmissions occur over the same subchannel in this scheme.

Frame i

Two unit modulus symbols x1 and x2, or x =

[

x1 x2

]T

are transmitted to the destination and

relay by the source. The received signal at the destination is

rd(i) =
√

P1hsd1x +
√

N0 nd(i), (4.22)

and the received signal at the relay is

rr(i) =
√

P1hsrx +
√

N0 nr(i), (4.23)
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where hsd1, hsr are the channel gains from the source to destination and relay respectively. nd(i),

nr(i) are noise vectors whose entries are complex Gaussian with zero mean and unit variance. The

relay then detects x from rr(i) and maps it to vector u =

[

x2 −x∗
1

]

while the source maps it to

vector v =

[

x1 x∗
2

]T

such that X =

[

v u

]

is an Alamouti matrix.

Frame i + 1

The source transmits v while the relay transmits u (imitating the two antennas in the conventional

Alamouti scheme). Assuming perfect symbol synchronization at the destination, we have

rd(i + 1) = XPh +
√

N0 nd(i + 1), (4.24)

where h =

[

hsd2 hrd

]T

, hsd2, hrd are the channel gains from the source to destination and relay

destination during frame i+1 and P = diag(
√

P2,
√

Pr). The channel gains are assumed to be zero

mean complex Gaussian variables with variances σ2
sr, σ

2
rd and σ2

sd respectively and are assumed to

quasi-static over a frame length. nd(i + 1) is the noise column vector and entries of nd(i + 1) are

additive white Gaussian with zero mean and a variance of 1 ( 0.5 per dimension). The schematic

at the destination receiver for the aforementioned scheme is shown in Fig 4.16.

DetectorCombiner
Matched filter

Weighted Alamoutird(i+1)

rd(i)

Figure 4.16: Receiver schematic.

4.7 Detection techniques

The destination receiver can employ various block decoding strategies based on the cooperation

architecture and the coding strategy between the transmitting terminals. For example, in [20]

57



the terminals employ block superposition Markov encoding and backward decoding. Cooperating

nodes can also engage in joint decoding in a broadcast channel scenario [37],[38] or can coordinate

for joint detection in cooperative MIMO architecture. The above detection techniques are however

useful only if the terminals exchange information in block lengths employing error checking and

error correction.

In the case of symbol-wise decode and forward strategy, due to finite transmission power at the

source it is possible that the relaying terminals might detect few symbols incorrectly. The relaying

terminals as well as the destination would not be aware of the error which then results in error

propagation along the route.

4.7.1 Maximum likelihood detection

If the input symbols are equally likely, then it is straightforward that minimum probability of error

detection is achieved by ML decoding at the destination receiver. However, ML decoding at the

destination by taking into account the likelihood of decision errors at the terminals could be high

in complexity. Moreover, even if such a detection technique is used at the destination, closed form

expressions for the error bounds at the receiver are hard to obtain.

For example, consider the simplest of all relay networks, the three terminal relay network with

the system model in 4.3.1 simplified as given below. The source transmits a unit modulus symbol

x ∈ C to the relay, where C represents the BPSK constellation. The source transmitted signal is

white and is equally likely to take values x0 and x1. The received signal at the relay is then

r1(i) =
√

P1h1x +
√

N0n1(i), (4.25)

where h1 represents complex fading coefficient, n1(i) represents complex AWGN noise of unit

variance and N0 is the average noise power at the receiver. Relay then does an hard estimate x̂

using r1(i) and forwards x̂ to the destination in the next orthogonal time slot. For simplicity, we

assume that source-destination communication takes place only via the relay and the source does
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not communicate directly to the destination. The received signal at destination in the next time

slot is then given by

r2(i + 1) =
√

Prh2x̂ +
√

N0n2(i + 1), (4.26)

The relay decision process can be characterized by a random variable ai defined as

ai =















1 : x̂ = x

0 : x̂ 6= x

with E[ai] = 1 − ε. It can be observed that the above model is akin to a binary symmetric

channel with average error probability ε. Therefore by extending the total probability theorem to

probability densities and using Eqs(4.24)-Eq(4.25), we have that

f(r2|h2, x1) = P (ai = 1)f(r2|h2, x̂ = x1) + P (ai = 0)f(r2|h2, x̂ = x0). (4.27)

Therefore the conditional PDFs at the destination for x = x1 and x = x0 can be written as

f(r2|h2, x = x1) = (1 − ε)
1

πN0
exp [−|r2 −

√

Prh2x1|2] + ε
1

πN0
exp [−|r2 −

√

Prh2x0|2] , (4.28)

and

f(r2|h2, x = x0) = (1 − ε)
1

πN0
exp [−|r2 −

√

Prh2x0|2] + ε
1

πN0
exp [−|r2 −

√

Prh2x1|2] . (4.29)

Maximum likelihood decoding based on Eq(4.27)- Eq(4.29) can be simplistically written as

max
∀xi

ln [[(1 − ε)
1

πN0
exp [−|r2 −

√

Prh2xi|2] + ε
1

πN0
exp [−|r2 −

√

Prh2x
′
i|2]] i = 0, 1, (4.30)

where x′
i = x0 for xi = x1 and x′

i = x1 for xi = x0. It can be observed from Eq(4.30) that the ML

detection at the destination for the relay case is high in complexity.
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4.7.2 Weighted combiner

As an alternative to the high complexity ML detection a low complexity weighted combiner scheme

has been proposed in [1] and [5].

4.7.2.1 Orthogonal relaying

For this purpose, consider Eq(4.4)-Eq(4.7) for decode and forward case such that u = x̂, where x̂

is a hard estimate of x.

If the combiner in Fig 4.5 uses weights wi to combine the received signal sample from node i,

then the output of the combiner can be given as

yc = w0h
(1)∗
sd1

√
P1

N0
rd

(1)(i) + w0h
(1)∗
sd2

√
P2

N0
rsd

(1)(i + 1) + w1h
(2)∗
rd

√
Pr

N0
rrd

(2)(i + 1). (4.31)

Eq(4.31) can also be equivalently written as

yc = h
(1)∗
sd1

√
P1

N0
rd

(1)(i) + h
(1)∗
sd2

√
P2

N0
rsd

(1)(i + 1) + w′
1h

(2)∗
rd

√
Pr

N0
rrd

(1)(i + 1). (4.32)

From Eq(4.32) it is easy to deduce that the conditional SNR at the detector assuming correct

symbol detection at the relay is

SNRi =
1

N0

[|h(1)
sd1|2P1 + |h(1)

sd2|2P2 + w′
1|h

(2)
rd |2Pr]

2

|h(1)
sd1|2P1 + |h(1)

sd2|2P2 + w′2
1 |h

(2)
rd |2Pr

. (4.33)

Extending this for the case of n parallel relays with orthogonal channel allocation we have the

conditional SNR as

SNRi =
1

N0

[|h(1)
sd1|2P1 + |h(1)

sd2|2P2 +
∑n

i=1 w′
i|h

(i+1)
id |2Pri]

2

|h(1)
sd1|2P1 + |h(1)

sd2|2P2 +
∑n

i=1 w′2
i |h

(i+1)
id |2Pri]

. (4.34)

By observing the term w′
i|h

(2)
id |2 in the conditional SNR in Eq(4.34) , the transmitted power of

the ith relay transmitter can be weighted by a factor
√

wi. This, apart from achieving a weighted
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combing naturally, also reduces the average transmit power from the relays. Upon doing this, the

conditional SNR is

SNRi =
1

N0
[|h(1)

sd1|2P1 + |h(1)
sd2|2P2 +

n
∑

i=1

w′
i|h

(i+1)
id |2Pri] (4.35)

4.7.2.2 Distributed Alamouti coding

For distributed Alamouti scheme, weighting at the receiver would decrease the conditional SNR

at the destination receiver because of the inter symbol interference caused by imperfect matching

when a weighting factor wi is used at the destination. To explain this further, consider a distributed

Alamouti scheme in Eqs(4.21)-(4.23) with BPSK transmissions such that the source transmitted

symbols take values 1 and −1 with equal probability. Then the output of the combiner in Fig 4.16

is

yc =

√
P1

N0
[h∗

sd1rd(i) + Hw
Hrd(i + 1)], (4.36)

where

Hw =







√
P2hsd2 w′

1

√
Prhrd

−w′
1

√
Prh

∗
rd

√
P2h

∗
sd2






. (4.37)

From Eq(4.36)-Eq(4.37), the conditional SNR for symbol x1 at the output of the combiner

assuming correct detection at the relay can be written as

SNRi ≈
1

N0

|P1|hsd1|2 + P2|hsd2|2 + w′
1Pr|hrd|2

|(w1 − 1)
√

P2Prh
∗
sd2hrd|2 + |2P1|hsd1|2 + P2|hsd2|2 + w′2

1 Pr|hrd|2
. (4.38)

Therefore we see that the detection technique in Eq(4.36) reduces the conditional SNR at the

receiver for distributed Alamouti case resulting in poor BER at the receiver. This problem can be

overcome by pre-multiplying the transmission vector u at the relay by
√

w1 and modifying Eq(4.37)
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as

Hw =







√
P2hsd2

√

Prw
′
1hrd

−
√

Prw′
1h

∗
rd

√
P2h

∗
sd2






. (4.39)

Upon doing this, the conditional SNR then increases to

SNRi = |hsd1|2
P1

N0
+ |hsd2|2

P2

N0
+

n
∑

i=1

w′
i|hrdi|2

Pri

N0
, (4.40)

which is similiar to that of orthogonal relaying. However, it could be observed that the conditonal

SNR in Eq(4.40) assumes the case of perfect symbol detection at the relay. It is straightforward

that averaging the conditional SNR over both correct and incorrect symbol detections will further

reduce the conditional SNR. The interference caused by incorrect symbol detection by the relay

is larger in a distributed space-time block coding scheme (DSTBC) than in a orthogonal relaying

scheme. Therefore, it is natural that the conditional SNR of DSTBC is less than that of orthogonal

relaying scheme when averaged over both correct and incorrect symbol detections by the relay.

However, for realizing good BER at the receiver it is imperative that w′
1 = f(ε) = g(|hsr|), i.e,

the value of 0 ≤ w′
1 ≤ 1 should show the confidence the destination receiver has on the relay.

For example, the optimal weight for simple BPSK transmissions in a three terminal network by

combining the expectation of symbols is given as [1]

w′
1 =

(1 − 2ε)

ε(1 − ε)|x1 − x0|2γr + 1
, (4.41)

where γr = |hrd|2
√

Pr

N0
.

4.7.2.3 Coherent combining

For the case of coherent combining, we assume that all transmitting terminals acquire transmit side

phase information. Then Eqs(4.8)-(4.9) modify as follows. The received signal at the destination

is

rd(i) =
√

P1h0x +
√

N0 n0(i), (4.42)
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where h0 is the real fading coefficient between the source and destination and no is AWGN noise

vector with zero mean, unit variance entires.

The received signal at the kth relay receiver is

rk(i) =
√

P1hkx +
√

Nk nk(i), (4.43)

where hk is the real fading coefficient between the source and kth relay and nk is the AWGN

noise vector at the relay with zero mean and unit variance entries. Then every ith relay makes a

hard estimate x̂i based on its received signal from the source rk(i). The relay transmitters use their

transmit-side phase information to phase-offset the transmitted symbol. All relay transmissions take

place in the same subchannel such that the signals are superimposed at the destination receiver.

The received signal at the destination is then

rrd(i + 1) =
√

P2hsd2x +

n
∑

i=1

√

Prihidx̂i +
√

N0 nd(i + 1), (4.44)

where hsd2 and hid is modeled as a real fading coefficient between the ith relay and the destination

and nd(i+1) is the AWGN noise vector at the destination with zero mean and unit variance entries.

The output of the combiner is then given by

yc = h0

√
P1

N0
rd(i) + w(

√

P2hsd2 +

n
∑

i=1

√

Prihid)rrd(i + 1). (4.45)

From Eq(4.42), the conditional SNR at the output of the combiner assuming correct detection at

the relay is given as

SNRi =
[h2

0P1 + w(
√

P2hsd2 +
∑n

i=1

√
Prihid)

2]2

N0[P1h
2
0 + w2(

√
P2hsd2 +

∑n
i=1

√
Prihid)2]

. (4.46)

4.8 Simulation example

We compare the performance of various strategies mentioned in section as a part of our literature

survey for BPSK modulation. The performance of the schemes is then logically verified with the

conditional SNRs presented above. In the example, we assume equally balanced channels in a
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three terminal network. In the simualtion example it can observed than performance of orthogonal

relaying with weighting at receiver and orthogonal relaying with weighting at transmitter perform

almost identically. This is in line with the conditional SNR derivations in Eq(4.34) and Eq(4.35).

The conditional SNRs are approximately equal for both the techniques eventhough transmitter

weighting technique uses less transmit power in average.

The performance of transmitter weighted- DSTBC technqiue is slightly worse than transmitter-

weighted orthogonal relaying technqiue. As was pointed out earlier in section 4.7.2.2, this can

be attributed to the stronger interference caused in DTSBC technique if the relay detects the

symbol incorrectly. The performance of receiver-weighted DSTBC technique is worse than all

other schemes. This is due to the lower conditional SNR realised at the receiver as in Eq(4.38).

Finally, the performance of an ideal mutliple antenna second order diversity technique is depicted.

A performance gap is observed to exist between relay diversity schemes and the multiple antenna

diversity. This is clearly due to the error propagation caused by incorrect symbol detections by the

relay.
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Multiantenna 2nd order diversity

Figure 4.17: Distributed Alamouti scheme with channel estimation errors at the relay.
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4.9 Conclusion

The schematics of a three terminal relay model, parallel relay architecture and an overview of

various cooperative architectures based on VAA concept and user cooperation in MAC channels

have been presented in this chapter. Cooperative diversity using orthogonal channel allocation

and distributed space-time coding were also explained. Finally, conditional SNRs achieved by

a weighted combiner for different cooperative diversity schemes were analytically compared and

logically verified using simulation results. The performance gap between relay diversity scheme

and multiple antenna transmit diversity scheme has also been shown. In the next chapter, we

consider a simple transmitter weighting scheme with weights of just 0 or 1 at the transmitter. As

we would see later, this simple “on-off” relaying technique provides good performance gains over

blind relaying.
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Chapter 5

Selection Relaying

5.1 Introduction

Relaying between radio nodes can be used to assist decoding at every successive radio receiver in

a multiple terminal communication link. This form of diversity, called multi-user spatial diversity

can be used along with or instead of hopping in a wireless network. The relay diversity formulation,

however, has a fundamental limitation. The source-relay channel is normally noisy and fading and

therefore relay communication to the destination is not always a high quality representation of the

source transmitted information. This means that regenerative relays could communicate erroneous

sequences to the destination receiver and non regenerative relays could amplify noise along the route.

Indeed, for regenerative relays, error propagation along the route can be controlled by employ-

ing error checking, error correction and ARQ protocols for the source-relay communication but

this could increase end-end latency in the network and is not always desirable. To reduce com-

plexity, regenerative relays can employ a simple symbol decode and forward technique and let the

error checking, correction and ARQ messaging be accomplished at the destination. But maximum

likelihood decoding at the destination incorporating the likelihood of decision errors at the relays

involves logarithmic computations and again incurs high complexity. On the other hand, if the

destination were to assume perfect detection at the relay to implement ML decoding, decoding

is simple but performance benefits of cooperation turns out to be completely dependent on the
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source-relay channel conditions.

In view of the above problem, in this chapter, we consider a simple thresholding method that

can be adopted by the relay to try and communicate “high quality signals” to the final receiver.

In this approach known as “selection relaying”[3], the relay “facilitates”[20] source transmissions

by not communicating to the destination whenever the source-relay channel is deeply faded. We

consider thresholding at the relay for the simple three terminal network using the knowledge of

channel variances in the network to maximize performance at the destination and observe that this

can provide good performance benefits with low complexity detection.

Here, we also note a subtle difference between user diversity and transmit diversity systems. In

transmit diversity, it is direct and straightforward that employing additional resources such as

transmit power would increase reliability in communication. However in user diversity systems, it

is not so. The challenge in the relay diversity setup here is therefore to use the additional resources

such as user battery power for good benefit. Accordingly, we refrain from imposing a transmit

power constraint for transporting a bit over the network but instead impose user power constraints

and concentrate on maximizing the benefit given these additional resources. Nevertheless, the basic

belief behind these relay systems is that if a user acted as a relay for the benefit of some other

user at one time, he would inturn be benefited some other time. Therefore, we perceive that unless

network power is a performance criteria, transmit power constraint is not entirely necessary for

investigating single source systems.

5.2 Optimal threshold for orthogonal relaying

We consider the simple three terminal relay network with orthogonal channel allocations to investi-

gate optimal thresholding for the relay case. A half-duplex constraint is imposed at all radio nodes

to avoid simultaneous transmission and reception. The channel is assumed to be quasi-static over

a frame length. Also, transmitting terminals do not possess any transmit side channel information

but the fading process is known to the receiver. A prior global knowledge of long-term fading or

the channel variances between the radio nodes is assumed to determine the threshold. For clarity,
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we repeat the system model for orthogonal relaying which was explained earlier in Chapter 4.

The source transmits a symbol x ∈ C to the relay and destination in frame i. The received signals

in time index i are

rd
(1)(i) =

√

P1h
(1)
sd1x +

√

N0 n
(1)
d (i). (5.1)

rr
(1)(i) =

√

P1h
(1)
sr x +

√

N0 nr
(1)(i). (5.2)

The relay makes an estimate x̂ based on its reception from the source which can be written as

x̂ = a1x + (1 − a1)x
′, (5.3)

where

a1 =















1 : relay decodes symbol x correctly

0 : relay decodes symbol x incorrectly

and x′ 6= x with x′ ∈ C. The relay forwards its estimate x̂ to the destination in the next frame

i + 1 in an orthogonal channel while the source optionally re-transmits x to the destination.

The destination receives the signal

rrd
(2)(i + 1) =

√

Prx̂h
(2)
rd +

√

N0 nd
(2)(i + 1) (5.4)

from the relay in the second subchannel, where h
(2)
rd is the channel gain between the relay and

destination in the second orthogonal subchannel. The channel gains are assumed to be zero mean

complex Gaussian variables with variances σ2
sr, σ

2
rd and σ2

sd respectively and are assumed to quasi-

static over a frame length. n
(1)
d (i), nd

(1)(i + 1) and nd
(2)(i + 1) represent additive white Gaussian

noise with zero mean and unit variance and N0 is the noise power at all receivers. The output of

the combiner is then,

yc = h
(1)∗
sd1

√
P1

N0
rd

(1)(i) + h
(2)∗
rd

√
Pr

N0
rrd

(2)(i + 1). (5.5)
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Using Eq(5.1)-(5.3) in Eq(5.5) the decision statistics can be written as

x̃ = (a1
Pr

N0
|hrd|2 +

P1

N0
|hsd2|2)x + (1 − a1)

Pr

N0
|hrd|2x′ + h

(1)∗
sd1

√
P1

N0
n

(1)
d + h

(2)∗
rd

√
Pr

N0
nd

(2)(i + 1).

(5.6)

If the conditional probability P (a = 0|hsr) = ε, then we have

E[x̃|hsr, hrd, hsd2] = ((1 − ε)
Pr

N0
|hrd|2 +

P1

N0
|hsd2|2)x + ε

Pr

N0
|hrd|2x′. (5.7)

The destination then makes an hard estimate xd of the symbol x based on its received signals over

the two time frames. The probability of bit error P (xd 6= x) at the destination denoted as P (ed)

throughout this chapter is given by

P (ed) = P (a1 = 1)P (ed|a1 = 1) + P (a1 = 0)P (ed|a1 = 0). (5.8)

5.2.1 Thresholding

It was seen that maximum likelihood detection incorporating the possibility of detection errors at

the relay is high in complexity even for a simple three terminal network with BPSK transmissions.

In view of this complexity, a thresholding scheme is used at the relay followed by a traditional com-

biner at the destination. Upon threshold testing, the relay decodes a symbol only if the estimated

quasi-static channel gain is greater than a certain threshold. If the channel gain is below a certain

threshold, the relay does not decode the symbol for transmitting to the destination and the des-

tination assumes that the relay-destination channel gain is zero for its decoder. The thresholding

decision process at the relay can be represented by a random variable b such that

b =















1 : |hsr|2 ≥ T

0 : |hsr|2 < T,

where T is the threshold for channel gain. The idea of thresholding at relays is in essence to mini-

mize the effect of deep fades in the source-relay channel.
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A threshold To based on outage probability has been provided in [3]: To = (22R − 1)/γ̄, where

R = rs

W b/s/Hz, is the spectral efficiency, rs is the transmission rate of source node, W is the

continuous-time bandwidth available for transmission and γ̄ is the signal to noise ratio (SNR) at

the source. However, this threshold does not incorporate the wireless path loss between the radio

nodes represented by the channel gain variances (i.e., the network geometry) and therefore is not

designed to minimize the BER at the destination.

In view of the above limitation, we now derive a new threshold.

The probability of bit error at the destination upon using a threshold at the relay is given by

P (ed) = P (b = 0)P (ed|b = 0) + P (b = 1)P (a1 = 0|b = 1)P (ed|b = 1, a1 = 0)

+P (b = 1)P (a1 = 1|b = 1)P (xd 6= x|b = 1, a1 = 1).

(5.9)

Investigating Eq(5.9) termwise, we have from [75],

P (b = 1)P (a1 = 0|b = 1) =
1

σ2
sr

∫ ∞

T
e−β/σ2

sr [Ps(β.γ̄)] dβ, (5.10)

and

P (b = 1)P (a1 = 1|b = 1) =
1

σ2
sr

∫ ∞

T
e−β/σ2

sr [1 − Ps(β.γ̄)] dβ, (5.11)

where γ̄ = P1
N0

is the transmit SNR at source in frame index i, T is the threshold (no units), Ps(β.γ̄)

is the symbol error probability at the relay and β = |hsr|2(β ≥ T ).

By denoting P (b = 0) = λ1(T, γ̄), P (ed|b = 0) = Ω(γ̄), P (b = 1)P (a1 = 0|b = 1) = λ2(T, γ̄), P (ed|b =

1, a1 = 0) = C(γ̄, γ̄r), P (b = 1)P (a1 = 1|b = 1) = λ4(T, γ̄), P (ed|b = 1, a1 = 1) = Ψ(γ̄1, γ̄r) where

γ̄r = Pr

N0
σ2

rd is the average received power at the destination from the source in frame i+1, γ̄1 = γ̄σ2
sd

is the average received power at the destination from the source in frame index i. we can rewrite
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Eq(5.9) as

P (ed) = λ1(T, γ̄)Ω(γ̄1) + λ2(T, γ̄)C(γ̄1, γ̄r) + λ4(T, γ̄, γ̄r)Ψ(γ̄1, γ̄r). (5.12)

We now treat this as a constrained optimization problem, i.e, we obtain the threshold T which

minimizes the BER by treating the other variables as constants. This can be achieved by

∂P (ed)

∂T
= 0. (5.13)

Using ∂(λ1(T,γ̄))
∂T = ( 1

σ2
sr

)e
( −T

σ2
sr

)
, ∂(λ2(T,γ̄))

∂T = ( −1
σ2

sr

)e
( −T

σ2
sr

)
Ps(T.γ̄), from Eq(5.10) and Eq(5.11), and

λ1(T, γ̄) + λ2(T, γ̄) + λ4(T, γ̄) = 1, and then solving for Ps(T.γ̄) we obtain

Ps(T.γ̄) =
Ω(γ̄1) − Ψ(γ̄1, γ̄r)

C(γ̄1, γ̄r) − Ψ(γ̄1, γ̄r)
. (5.14)

Ps(T.γ̄) is now the threshold for instantaneous symbol error probability at the relay for the source’s

transmission.

5.2.2 Additional diversity

The source can optionally re-transmit x in frame index i + 1 using the first orthogonal subchannel

to the destination. The destination receiver can make use of temporal diversity, if available in the

channel, to achieve a higher diversity in its signal detection. The distributed Alamouti scheme

targets a diversity degree 2 with one receiver antenna and with temporal diversity the target

diversity becomes 3. The received signal at the destination is then

rsd
(1)(i + 1) =

√

P2xh
(1)
sd2 +

√

N0 nd
(1)(i + 1) (5.15)

from the source, where h
(1)
sd2 is the channel gain between source and destination in the frame i + 1

over the first orthogonal sub channel.
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The output of the combiner is then,

yc = h
(1)∗
sd2

√

(P2)

N0
rd

(1)(i + 1) + h
(1)∗
sd1

√

(P1)

N0
rd

(1)(i) + h
(2)∗
rd

√

(Pr)

N0
rrd

(2)(i + 1). (5.16)

Accordingly, the solution of instantaneous symbol error probability threshold Ps(T.γ̄) modifies to

Ps(T.γ̄) =
Ω′(γ̄1, γ̄2) − Ψ′(γ̄1, γ̄2, γ̄r)

C ′(γ̄1, γ̄2, γ̄r) − Ψ′(γ̄, γ̄2, γ̄r)
(5.17)

where γ̄2 = P2
N0

σ2
sr and Ω′(γ̄1, γ̄2),Ψ

′(γ̄1, γ̄2, γ̄r)), C
′(γ̄1, γ̄2, γ̄r) are the new error bounds suitably

modified for this case.

5.3 Optimal threshold for Alamouti relaying

The threshold scheme explained in 5.2.1 can also be used for distributed Alamouti relay diversity.

For clarity, we first describe the Alamouti relay scheme before proceeding to present the thresholds

for this case. For this purpose, consider a wireless relay system which consists of a source node, a

destination node and a relay node cooperating using the Alamouti space-time block code given by

X =







x1 x2

x∗
2 −x∗

1






. (5.18)

The system as in [2] operates under the following two-frame mechanism. For clear exposition, we

repeat the system model that was explained in Chapter 4 . It can be noted that all transmissions

occur over the same subchannel in this scheme.

Frame i

Two unit modulus symbols x1 and x2, or x =

[

x1 x2

]T

are transmitted to the destination and

relay by the source. The received signal at the destination is

rd(i) =
√

P1hsd1x +
√

N0 nd(i), (5.19)
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and the received signal at the relay is

rr(i) =
√

P1hsrx +
√

N0 nr(i), (5.20)

where hsd1, hsr are the channel gains from the source to destination and relay respectively. nd(i),

nr(i) are noise vectors whose entries are complex Gaussian with zero mean and unit variance. The

relay then detects x from rr(i) and maps it to vector u =

[

x2 −x∗
1

]

while the source maps it to

vector v =

[

x1 x∗
2

]T

such that X =

[

v u

]

is an Alamouti matrix.

Frame i + 1

The source transmits v while the relay transmits u (imitating the two antennas in the conventional

Alamouti scheme). Assuming perfect symbol synchronization at the destination, we have

rd(i + 1) = XPh +
√

N0 nd(i + 1), (5.21)

where h =

[

hsd2 hrd

]T

, hsd2, hrd are the channel gains from the source to destination and relay

destination during frame i+1 and P = diag(
√

P2,
√

Pr). The channel gains are assumed to be zero

mean complex Gaussian variables with variances σ2
sr, σ

2
rd and σ2

sd respectively and are assumed to

quasi-static over a frame length. nd(i+1) is the noise column vector with entries nd1(i+1), nd2(i+1)

which are additive white Gaussian with zero mean and a variance of 1 ( 0.5 per dimension).

5.3.1 Detection at the destination node

The above distributed Alamouti scheme setup leads to the following structure for X

X =







x1 a2x2 + (1 − a2)x4

x∗
2 −a1x

∗
1 − (1 − a1)x

∗
3






(5.22)

where,

ai =















1 : relay decodes symbol xi correctly

0 : relay decodes symbol xi incorrectly
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and x3 and x4 are the incorrectly decoded symbols corresponding x1 and x2 respectively. In a view

that Pr (ai = 0) could be minimized by thresholding or by other means such as channel coding, a

low complexity detection similar to [1] normally carried out at the destination.

The output of the combiner is

yc = HHrd(i + 1) (5.23)

where

H =







√
P2

N0
hsd2

√
Pr

N0
hrd

−
√

Pr

N0
h∗

rd

√
P2

N0
h∗

sd2






. (5.24)

From Eq(5.24), the decision statistics are

x̃1 = (a1
Pr

N0
|hrd|2 +

P2

N0
|hsd2|2)x1 +

√
P2Pr

N2
0

h∗
sd2hrd(1 − a2)(x4 − x2)+

(1 − a1)
Pr

N0
|hrd|2x3 +

√
P2√
N0

h∗
sd2nd1(i + 1) −

√
Pr√
N0

hrdnd2(i + 1).

x̃2 = (a2
Pr

N0
|hrd|2 +

P2

N0
|hsd2|2)x2 +

√
P2Pr

N2
0

hsd2h
∗
rd(1 − a1)(x1 − x3)+

(1 − a2)
Pr

N0
|hrd|2x4 +

√
Pr√
N0

h∗
rdnd1(i + 1) +

√
P2√
N0

hsd2nd2(i + 1).

(5.25)

As can be observed from the above equation, the system is interference limited when the relay

decodes incorrectly (ai = 0). The probability of bit error at the destination for this system is given

by

P (ed) = P (a1 = 0, a2 = 1)P (ed|a1 = 0, a2 = 1) + P (a2 = 0, a1 = 1)P (ed|a2 = 0, a1 = 1)+

P (a1 = 0, a2 = 0)P (ed|a1 = 0, a2 = 0) + P (a1 = 1, a2 = 1)P (ed|a1 = 1, a2 = 1).

(5.26)
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5.3.2 Thresholding

The Space-Time Alamouti code when distributed and thresholded becomes

X =







x1 a2bx2 + b(1 − a2)x4

x∗
2 −a1bx

∗
1 − b(1 − a1)x

∗
3






(5.27)

where,

b =















1 : |hsr|2 ≥ T

0 : |hsr|2 < T.

and T is the threshold for channel gain.

The decision statistics at the destination when a threshold is used at the relay is given by,

x̃1 = (a1b
2 Pr

N0
|hrd|2 +

P2

N0
|hsd2|2)x1 +

√
P2Pr

N2
0

h∗
sd2hrdb(1 − a2)(x4 − x2)+

b2(1 − a1)
Pr

N0
|hrd|2x3 +

√
P2√
N0

h∗
sd2nd1(i + 1) − b

√
Pr√
N0

hrdnd2(i + 1).

x̃2 = (a2
Pr

N0
b2|hrd|2 +

P2

N0
|hsd2|2)x2 +

√
P2Pr

N2
0

bhsd2h
∗
rd(1 − a1)(x1 − x3)+

(1 − a2)
Pr

N0
b2|hrd|2x4 +

√
Pr√
N0

bh∗
rdnd1(i + 1) +

√
P2√
N0

hsd2nd2(i + 1).

(5.28)

The bit error probability at the destination upon using a threshold at the relay is then simply

P (ed) = P (b = 0)P (ed|b = 0) + P (b = 1)P (a1 = 0, a2 = 1|b = 1)P (ed|b = 1, a1 = 0, a2 = 1)

+P (b = 1)P (a2 = 0, a1 = 1|b = 1)P (ed|b = 1, a2 = 0, a1 = 1) + P (b = 1)P (a2 = 0, a1 = 0|b = 1)

P (ed|b = 1, a2 = 0, a1 = 0) + P (b = 1)P (a1 = 1, a2 = 1|b = 1)P (ed|b = 1, a1 = 1, a2 = 1).

(5.29)
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Investigating Eq(5.29) termwise, we have from [75] for Rayleigh fading channels,

P (b = 1)P (a1 = 0, a2 = 1|b = 1) = P (b = 1)P (a2 = 0, a1 = 1|b = 1) =

1

σ2
sr

∫ ∞

T
e−β/σ2

sr [Ps(β.γ̄)(1 − Ps(β.γ̄))] dβ,
(5.30)

and

P (b = 1)P (a1 = 0, a2 = 0|b = 1) =
1

σ2
sr

∫ ∞

T
e−β/σ2

sr [Ps(β.γ̄)]2 dβ, (5.31)

where γ̄ = P1
N0

is the transmit SNR at source, T is the threshold (no units), Ps(β.γ̄) is the symbol

error probability at the relay and β = |hsr|2(β ≥ T ).

By denoting P (b = 0) = λ1(T, γ̄), P (b = 1)P (a1 = 0, a2 = 1|b = 1) = λ2(T, γ̄), P (b = 1)P (a1 =

0, a2 = 0|b = 1) = λ3(T, γ̄), P (ed|b = 0) = Ω(γ̄2), P (ed|b = 1, a1 = 0, a2 = 1) = P (ed|b =

1, a2 = 0, a1 = 1) = C1(γ̄r, γ̄2), P (ed|b = 1, a2 = 0, a1 = 0) = C3(γ̄r, γ̄2), P (b = 1)P (a1 = 1, a2 =

1|b = 1) = λ4(T, γ̄), P (ed|b = 1, a1 = 1, a2 = 1) = Ψ(γ̄r, γ̄r), where γ̄r = Pr

N0
σ2

rd and γ̄2 = P2
N0

σ2
sd

in frame index i + 1, we can rewrite Eq(5.29) as

P (ed) = λ1(T, γ̄)Ω(γ̄2) + 2λ2(T, γ̄)C1(γ̄r, γ̄2) + λ3(T, γ̄)C3(γ̄r, γ̄2) + λ4(T, γ̄)Ψ(γ̄r, γ̄2). (5.32)

Following the same approach as before, we have

∂P (ed)

∂T
= 0. (5.33)

Using ∂(λ1(T,γ̄))
∂T = ( 1

σ2
sr

)e
( −T

σ2
sr

)
, ∂(λ2(T,γ̄))

∂T = ( −1
σ2

sr

)e
( −T

σ2
sr

)
Ps(T.γ̄)(1−Ps(T.γ̄)), ∂(λ3(T,γ̄))

∂T = ( −1
σ2

sr

)e
( −T

σ2
sr

)
[Ps(T.γ̄)]2

from Eq(5.30) and Eq(5.31), λ1(T, γ̄) + 2λ2(T, γ̄) + λ3(T, γ̄) + λ4(T, γ̄) = 1, solving the resulting
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quadratic equation in Ps(T.γ̄) and dropping those variables in the brackets for clarity, we have

Ps(T.γ̄) =















(C1−Ψ)−
√

(C1−Ψ)2−(2C1−C3−Ψ)(Ω−Ψ)

2C1−C3−Ψ , C3 ≥ C1 ≥ Ψ,Ω ≥ Ψ.

(Ω−Ψ)
(2C1−Ψ) C3 = 2C1 − Ψ

(5.34)

such that the real valued solution of ∂P (ed)
∂T = 0, if it exists will be within (0, 1]. We now denote

Ps(T.γ̄) = k ∈ (0, 1]. The solution k is then the threshold for instantaneous symbol error probabil-

ity at the relay.

We now show that k does minimize the bit error probability at the destination. For this purpose,

we have ∂2P (ed)
∂T 2 = ( 1

σ2
sr

)e
( −T

σ2
sr

)
[−2∂Ps(T.γ̄)

∂T (C1(γ̄r, γ̄2) − Ψ(γ̄r, γ̄2)) − 2Ps(T.γ̄)∂Ps(T.γ̄)
∂T (C3(γ̄r, γ̄2) −

2C1(γ̄r, γ̄2) + Ψ(γ̄r, γ̄2))] when ∂P (ed)
∂T = 0.

Since ∂Ps(T.γ̄)
∂T < 0 (i.e., when γt = T.γ̄ increases, error probability decreases in an AWGN channel),

we have that ∂2P (ed)
∂T 2 > 0 if |Ps(T.γ̄)| < | C1(γ̄r ,γ̄2)−Ψ(γ̄r ,γ̄2)

2C1(γ̄r ,γ̄2)−C3(γ̄r ,γ̄2)−Ψ(γ̄r ,γ̄2) |. We can see from Eq(5.34),

that the solution Ps(T.γ̄) = k ∈ (0, 1] does satisfy the above condition. Therefore,

∂2P (ed)
∂T 2 |Ps(T.γ̄)=k > 0 and hence the solution k of ∂P (ed)

∂T = 0 minimizes P (ed).

5.3.3 Additional diversity

The information sent by the source in frame index i could be MRC combined at the destination to

provide a greater diversity degree. This leads to,

r̄ =

√
P1

N0
h∗

sd1rd(i) + HHrd(i + 1) (5.35)

where H =







hsd2 bhrd

−bh∗
rd h∗

1






.

To obtain a threshold for this case, we follow the same method as before and after suitably replacing

Ψ(γ̄r, γ̄2) with Ψ′(γ̄r, γ̄2, γ̄1), Ω(γ̄2) with Ω′(γ̄1, γ̄2), C1(γ̄r, γ̄2) with C ′
1(γ̄r, γ̄2, γ̄1), C3(γ̄r, γ̄2) with

77



C ′
3(γ̄r, γ̄2, γ̄1), where γ̄1 = γ̄σ2

sd and dropping those variables in the brackets for clarity, we have,

Ps(T.γ̄) =















(C′

1−Ψ′)−
√

(C′

1−Ψ′)2−(2C′

1−C′

3−Ψ′)(Ω′−Ψ′)

2C′

1−C′

3−Ψ′
, C3 ≥ C ′

1 ≥ Ψ′,Ω′ ≥ Ψ′.

(Ω′−Ψ′)
(2C′

1−Ψ′) C ′
3 = 2C ′

1 − Ψ′
(5.36)

such that a real solution, ∈ (0, 1], if it exists. We denote this solution as Ps(T.γ̄) = k′.

It could be noted from Eq(5.36) that upon MRC combining, the instantaneous symbol error prob-

ability threshold Ps(T.γ̄) now changes.

In all the above discussions, Ω(γ̄1, γ̄2) represents the BER at the destination for non-cooperative

single hop communication and Ψ(γ̄1, γ̄r, γ̄2) represents BER at the destination when the cooper-

ation is ideal which then resembles an m− branch MRC combiner with different channel fading

powers[75]. C1(γ̄1, γ̄r, γ̄2), C3(γ̄1, γ̄r, γ̄2) are the BER at the destination in the interference limited

case when the relay decodes one or both the symbols incorrectly. For network topologies with

P1σ
2
sd ≤ P2σ

2
rd, i.e, at the destination receiver the average received power from the relay is equal

to or more than the average received power from source, it can be seen from Eq(5.6), Eq(5.25)

that the system becomes highly interference limited and therefore C1(γ̄r, γ̄2) ≈ C3(γ̄1, γ̄r, γ̄2) ≈ 0.5.

Also, convenient bounds for Ω(γ̄1, γ̄2) and Ψ(γ̄1, γ̄r, γ̄2) as discussed in [2] would give the threshold

region which contains the optimal threshold.

To determine channel gain threshold T from the solution of Ps(T.γ̄), we need closed form ex-

pression for Ps(T.γ̄) which depends on the modulation/detection combination and can be found in

[75].

For coherent BPSK [75], Ps(T.γ̄) = Q(
√

2T.γ̄), where Q(x) = 1√
2π

∫ ∞
x e

−t
2

2 dt, and therefore

T =
1

2γ̄
[Q−1(k)]2. (5.37)
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For coherent M -QAM [75], Ps(T.γ̄) = 4(
√

M−1)√
M

Q(
√

3T.γ̄
M−1) − 4(

√
M−1√

M
)2Q(

√

3T.γ̄
M−1)2, and therefore

we can obtain

T =
M − 1

3γ̄
[Q−1[

√
M

2(
√

M − 1)
[1 −

√
1 − k]]]2. (5.38)

For coherent M -PSK [75], we have from the well-known union bound, Ps(T.γ̄) ≈ 2Q(
√

2T.γ̄ sin ( π
M )),

which gives

T ≈ 1

2γ̄
[csc (

π

M
)Q−1(k/2)]2. (5.39)

The thresholds provided above minimize the BER at the destination when the channels between

the radio nodes are Rayleigh fading, the channel variances are globally known and when the relay

transmit power P2 is fixed.

5.4 Channel estimation errors

Relaying based on thresholding scheme discussed in this paper rely on the channel estimation of

the source-relay channel. Also, for regenerative relaying, imperfect channel estimation at the relays

would increase the symbol decoding errors at the relays. It is therefore important to account for

channel estimation errors at the relays and its impact on relaying protocols.

Channel estimation at the relay can be modeled as

h̃ = h +
√

m − 1

√

N0

P1
he, (5.40)

where he is a zero mean, unit variance complex Gaussian variable. The relay receiver uses the

above channel estimate for its combiner before detection. If the received signal at the relay is

rr(i) =
√

P1hsrx +
√

N0 nr(i), (5.41)

79



then the output of the combiner becomes

yc =

√
P1

N0
h̃srrr(i). (5.42)

Using Eq (5.40) and Eq (5.41) in Eq (5.42), we obtain

yc =
P1

N0
|hsr|2x +

√

(m − 1)P1

N0
h∗

srhex +

√

P1

N0
hsrnr(i) +

√
m − 1henr(i). (5.43)

It can be observed from Eq(5.43) that imperfect channel estimation increases the average noise

power at the output of combiner but does not change the average signal power. The average noise

power is now

Nav = E[N0(m|hsr|2 + (m − 1)
N0

P1
)] = N0σ

2
sr[m + (m − 1)γ−1

r ]. (5.44)

where γr = P1
N0

σ2
sr. For (m − 1)γ−1

r << 1, Eq(5.44) approximates to

Neff ≈ mσ2
srN0. (5.45)

Note that, under perfect channel estimation the average noise power at the output of combiner is

σ2
srN0. From Eq (5.45) we see that the ratio of average signal power to average noise power has a

loss factor 1
m .

The conditional SNR is given by

SNRi = |hsr|2
P1

N0
[

1

m + (m − 1)γ−1
r

]. (5.46)

For (m − 1)γ−1
r << 1, the conditional SNR can be somewhat simplistically written as

SNRi = |hsr|2
P1

N0
[
1

m
]. (5.47)

Note that the conditional SNR with perfect channel estimation is |hsr|2 P1
N0

. Therefore we see that

an approximate loss factor 1
m is introduced for the conditional SNR due to increase in the noise

power. Expressing SNRi = |h2
sr|γ̄eff , we have ¯γeff = 1

m γ̄ implying that 1
m is the SNR penalty in
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the source-relay channel due to imperfect channel estimation. Then by replacing γ̄ with γ̄
m in the

source-relay channel for Eq(5.37)-Eq(5.39) it can be easily seen that the thresholds become,

Te = mT. (5.48)

where Te is the new threshold when there are channel estimation errors at the relay.

5.5 Numerical examples

We now construct several thresholds based on the theoretical derivation of an optimal threshold.

We consider the case of distributed Alamouti relaying for this purpose. The system was simulated

with π/4 QPSK modulation. The symbol power has been normalized to 1. The total transmit

energy by source is twice the energy per frame i.e, P1 = P2. Relay transmit power Pr is equal

to the source transmit power P2 in frame i + 1. Quasi-static, Rayleigh fading channels have been

assumed. We consider a network topology with σ2
sd = σ2

rd = 1 i.e, the source-destination and relay-

destination channels are equally balanced and σ2
sr = 2 i.e, the relay is closer to the source than

destination. In the simulations, ‘blind DF’ represent a symbol decode and forward (DF) scheme

without any thresholding, error checking or weighting and To = (22R−1)
γ̄ is the threshold based on

the outage probability as discussed in [3] where R = 1 for QPSK modulation. It is recalled here

that γ̄ = P1
N0

is the transmit SNR at the source in frame i, γ̄1 = P1
N0

σ2
sd is the received SNR at

destination from source in frame i, γ̄2 = P2
N0

σ2
sd is the received SNR at destination from source in

frame i + 1, γ̄r = Pr

N0
σ2

rd is the received SNR at destination from relay in frame i + 1. For the

examples below we have γ̄1 = γ̄2 = γ̄r = γ̄x and BER results are plotted against γ̄x.

Example 1: Distributed Alamouti without MRC

Fig. 5.1 shows the BER performance comparison of distributed Alamouti scheme for three cases.

The instantaneous symbol error probability threshold k is obtained using Eq(5.34) and T2 is the

channel gain threshold obtained by substituting k and M = 4 in Eq(5.38). For doing this we use the

well known closed form expression for BER of a single hop single antenna rayleigh fading channel
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as Ω(γ̄x) = 0.5(1 −
√

γ̄x

(γ̄x+2) ) and the BER expression of a 2-branch MRC combiner with equal

channel fading powers as Ψ(γ̄x) = (0.5(1 −
√

γ̄x

(γ̄x+2) ))
2[2 +

√

γ̄x

(γ̄x+2) )] [75]. We also approximate

C1(γ̄x) = C3(γ̄x) ≈ 0.5 noting that if the relay decodes even one symbol incorrectly in a frame, the

decision statistics of both the symbols in the frame at the destination become highly interference

limited and is therefore deleterious for communication. It can be noted that this approximation is

close numerically and therefore eventhough it might not yield an exact optimal numerical value of

threshold, it would still yield a close to optimal numerical value. It can be observed in the plots

that a ‘blind DF’ scheme does not achieve any significant benefit and therefore makes inefficient

use of system resources. For low-medium SNR’s To lies in the close vicinity of T2 and it can be seen

from the figure that their performance is therefore similar over this SNR region. However at high

SNR’s T2 collects diversity better than To and outperforms it. The curve “multiple antenna 2nd

order diversity” depicts the performance when multiple transmit antennas are used or equivalently,

when there are no symbol detection errors made by relay (the transmit power has not been halved

on each transmit antenna for fair comparison). This performance gap between multiple antenna

systems and relay systems can be further reduced using ML detection as in example Eq(4.30),

by sacrificing linear complexity in detection which is a very attractive feature of space-time block

coding.

Example 2: Distributed Alamouti without MRC - with channel estimation errors at

the relay

Channel estimation at the relay is modeled as h̃ = h +
√

1
γ̄ he, where he is a zero mean, unit

variance complex Gaussian variable. Therefore for this model we have m ≈ 2 from Eq(5.40) and

γ−1
r = 0.5γ−1

x << 1. In the plot T2 is the threshold obtained as in Example 1, and T3 = Te obtained

from Eq(5.48), is the new threshold after accounting for the estimation errors. We retain the same

modeling for other parameters as in Example 1 to obtain T3. The results are plotted in Fig. 5.2

showing the effect of channel estimation errors on the schemes. The ‘blind DF’ scheme has a small

performance loss as a result of imperfect channel estimation at the relay. The impact is significant

on the performance of threshold To demonstrating the sensitivity of system performance of the

threshold value. Due to near-optimality of threshold T2, its performance does not deteriorate very
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much, and the performance is further improved by threshold T3 which accounts for estimation errors

and shows almost the same performance as when there are no channel estimation errors at the relay.

Example 3: Distributed Alamouti with MRC

Fig.5.3 shows the BER performance of distributed Alamouti scheme after MRC combining with

information in frame index i. k′ is obtained using Eq(5.36) and T2 = T is the threshold ob-

tained by substituting k′ and M = 4 in Eq(5.38) in this paper. To obtain T2, we use the closed

form expressions for 2-branch MRC combiner and 3-branch MRC combiner respectively as Ω′(γ̄x) =

(0.5(1−
√

γ̄x

(γ̄x+2) ))
2[2+

√

γ̄x

(γ̄x+2) )], Ψ′(γ̄x) = (0.5(1−
√

γ̄x

(γ̄x+2) ))
3[2+

√

γ̄x

(γ̄x+2) )+3(0.5(1+
√

γ̄x

(γ̄x+2)))
2]

[75] and C1(γ̄x) = C3(γ̄x) ≈ 0.5. From the results we see that a ‘blind DF’ scheme again makes

inefficient use of resources and is far away from a target diversity 3 performance. Threshold To

does not improve the performance significantly either. The threshold T2 achieves a better perfor-

mance because it collects the additional diversity available at the destination. The curve “multiple

antenna 3rd order diversity” depicts the matched filter bound performance when multiple transmit

antennas are used or, equivalently, when there are no symbol detection errors made by the relay

(the transmit power has not been halved on each transmit antenna for fair comparison),.

Example 4: Distributed Alamouti with MRC - with channel estimation errors at the

relay

The results in this case are shown in Fig. 5.4 Channel estimation at the relays are modeled as in

Example 2 (m = 2) and we retain the same modeling of parameters as in Example 3. In the plot,

T2 is the threshold as obtained in previous Example 3 and T3 is the threshold which accounts for

channel estimation errors at the relay. We see that when ‘blind DF’ scheme has a further perfor-

mance loss and To suffers from a significant performance loss due to estimation errors at relay, T2

does not show a significant performance loss. The performance is further improved by T3, which

has the lowest performance loss.
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Figure 5.1: Distributed Alamouti scheme.

5 10 15 20 25

10
−4

10
−3

10
−2

SNR(dB)

B
E

R

π/4 QPSK

Blind DF
T

o
 

T
2

T
3

Figure 5.2: Distributed Alamouti scheme with channel estimation errors at the relay.
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Figure 5.3: Distributed Alamouti scheme after MRC combining with information in frame index i.
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Figure 5.4: Distributed Alamouti scheme when MRC combined but with channel estimation errors
at the relay.

5.6 Conclusion

Selection relaying for realizing relay diversity in a three terminal relay network was considered

in this chapter. Optimal thresholding which would minimize the BER at the destination was

analyzed and expressions for the optimal threshold have been derived. Thresholds constructed
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based on the derivation is observed to provide better BER performance at the destination. Selection

relaying when the relay receiver channel estimation is not perfect has also been considered in this

chapter. The sensitivity of system BER performance on threshold selection is thereby demonstrated.

Further, it is seen that certain degree of imperfect channel estimation at the relay does not affect

the performance of the system significantly when the threshold is close to optimal. We conclude by

noting that the approach adopted in this chapter is only a small step towards the larger problem

of achieving the relay complexity-reliability tradeoff for practical wireless relay systems.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

The rising demand for speed in wireless communications has received widespread attention world-

wide in recent years and much of research focus and energy has been dedicated to meeting this

requirement. Wirelesss ad hoc peer-peer networking is a new dimension to wireless communications

which would require high speed communication links in its mechanism to be able to cater for con-

sumer performance demands. The end-end performance of these networks will also depend largely

on the “reliability” of the component wireless links which form the network. This is because the

true measure of achieved rate or throughput in various networks is the received symbols/second

rather than transmitted symbols/second.

This thesis mainly dealt with two systems for improving reliability:- multiple antenna diversity

systems and multi-user diversity systems.

In Chapter 2, we discussed transmit diversity using space-time block coding and focussed ex-

clusively on orthogonal and non-orthogonal codes. It was shown that constellation rotations on a

full rate non-orthogonal code achieves full diversity in the light of rank and determinant criteria

(which are the design criteria for space-time codes at asymptotic SNR’s). We then critically exam-

ined the impact of spatial correlation on the performance of this scheme in Chapter 3. Specifically,
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the impact of transmit-side correlation was analyzed and characterized and not surprisingly it was

observed that correlation deteriorates the performance due to lack of diversity in the channel. How-

ever, the interesting result there was that the performance gap between the non-orthogonal code

in discussion and the matched filter bound closes down as the correlation increases.

In contrast to antenna diversity, a scenario where diversity is available in abundance is multi-

user diversity. In Chapter 4, a concise description of user cooperation architecture was presented.

User cooperation in general and relay diversity in particular were briefly explained followed by an

analysis of few detection techniques for these systems.

Chapter 5 focussed on low complexity high reliability relaying. We showed that selection relaying

partly solves this problem for a simple three terminal network although there is still some perfor-

mance gap between antenna diversity and multi-user diversity systems as illustrated in section 5.5.

We developed closed form expressions of optimal thresholds for this network and demonstrated

their utility in various scenarios. These observations also suggest that the utility of user diversity

systems will vary largely with the channel model and system characteristics. Based on the sim-

ulation results, we conclude that relay diversity systems are a promising means to make use of

additional resources and increase reliability in communications.

6.2 Perspectives

• The thesis considered only a simple three terminal network for selection relaying. Selection

relaying for an arbitrary n − terminal relay network with independent path loss coefficients

therefore remains an open problem. We however at this stage conjecture that the gains

available by selection relaying would decrease with the number of relaying terminals.

• Adaptive rate and power allocation for cooperating nodes in fading channels is a promising

and practical problem that could be considered in future work.

• In current work, space-time coding for cooperative networks assumes symbol level synchro-

nization. However, imperfect synchronization is a practical issue which has been neglected in
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these protocols throughout the literature. This problem should be addressed while designing

diversity achieving protocols.

• Current relaying protocols neglect user mobility and migration between strategies based on

this mobility. Cooperative protocols which could adapt to such dynamic network topologies

is an interesting scenario which could be further investigated.

• This thesis considered only the physical layer perspective of relaying. However, in the big

picture, ad hoc network designs are very much incomplete without a cross layer solution.

Potential benefits and challenges in cooperative networking by using a cross-layer approach

should be studied in future work.
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