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Abstract 
 

 
Substation Automation (SA) is a rapidly increasing area of interest in Electrical 

Engineering these days embracing numerous benefits to utilities. It is clearly the most 

dynamic and exciting new development in the substation industry with the ultimate goal 

of efficiently managing operations, maintenance and capital assets with minimal human 

intervention [1-4]. Intelligent Electronic Devices (IEDs), which are Instrumentation & 

Control (I&C) devices built using microprocessors, are the most important elements of a 

SA system. An IED is primarily used as a monitoring, control, protection or data 

processing device with at least a single serial communication interface.  

 
Substation IED networking requires the ability to remotely control, manipulate and 

monitor newly connected devices through the use of an effective communication system 

used to link various IEDs in a substation. The existence of a wide variety of vendor 

specific and hardware-oriented solutions as well as different communication techniques 

used for the communication between devices had previously stopped utilities from 

achieving a fully integrated and interoperable SA system. The idea of standardising the 

language of communication between IEDs has evolved as the key for the advancement 

of connectivity and interoperability within a SA system. As a consequence, Institute of 

Electrical and Electronics Engineers (IEEE) and International Electrotechnical 

Commission (IEC) have been developing SA standards based on Object-Oriented (OO) 

technologies. IEC 61850, the main topic of discussion in this thesis, is such a standard 
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developed by the IEC Technical Committee (TC) 57. It describes how devices are to 

communicate in a substation as well as the related system requirements. It features 

support for all substation functions and their engineering with the use of OO data and 

service models [5]. However, it has only been abstractly modelled meaning that it 

focuses on describing what the OO models are indented to provide rather than how they 

are built. Consequently, the IEC 61850 standard can only be operational when mapped 

to a specific concrete application layer protocol such as the Manufacturing Message 

Specification (MMS) or ISO/IEC 8802-3, which are the two communication services 

put forward by the IEC 61850 standard.  

 
The primary objective of this research is the OO implementation of the IEC 61850 

standard as a concrete application layer protocol running on a middleware platform 

designed and implemented in a communication processor environment. In this research, 

the IEC 61850 implementation is founded on the C/C++ programming language 

development of the standard’s Abstract Communication Service Interface (ACSI) 

Object and Service Models (OSMs) as concrete programs based on their published 

definitions, hence transforming the IEC 61850 standard into a solid protocol. An 

alternative to the present implementation practice, the mapping process as proposed in 

the IEC 61850 standard, is recommended where virtual representations of real devices 

can be modelled and implemented at the application layer of a communication processor 

making use of the OO implemented OSMs of the standard itself rather than using the 

equivalent models of another application layer protocol.           

 
Middleware is a software layer that resides between the operating system and the 

applications allowing multiple processes running on different machines to interact over 
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a network. Middleware design is based on architectural issues concerned with the 

organisation, overall structure and communication patterns dictated by applications as 

well as the middleware itself [6-7]. This thesis describes the design and implementation 

of a new middleware architecture aimed at providing diverse communication methods 

to IEC 61850 related applications. The designed middleware is of the Message-Oriented 

Middleware (MOM) category and considers the fact that communicating entities may 

take on different roles such as client/server or peer-to-peer, therefore allowing for 

different interaction modes such as synchronous invocations and asynchronous message 

passing. Several simulation studies are also presented in this thesis to demonstrate how 

IEC 61850 applications can be built at the application layer of a communication 

processor as well as to test and evaluate the performance of the middleware architecture 

implemented within the same communication processor environment.           

  
Time synchronisation, which involves synchronisation of the date and time of all 

devices in a network, is another key topic discussed in this thesis. Time synchronisation 

is crucial in time-sensitive substation applications and its importance has been clearly 

acknowledged by the IEC 61850 standard as a requirement. The implementation and 

integration of the Simple Network Time Protocol (SNTP) and its applications into the 

overall communication processor architecture is another feature proposed in this thesis 

in order to facilitate the time synchronisation of applications designed in this research. 

Ultimately, the development of a gateway capability that permits for the testing and 

evaluation of the designed components over a real network is described. The designed 

and implemented “Hardware in the Loop” (HITL) capability mainly provides the 

necessary interface between the real Ethernet network and the simulation environment 

enabling two or more simulations running on separate computers to be linked together.  
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Chapter 1 
 
Thesis Overview 
 
  

1.1 Introduction  
 

Substation Automation (SA) is a supervisory management and control system for 

industrial electrical distribution systems. The interest on SA has been increasing rapidly 

due to its numerous benefits to utilities. It has advanced further than a traditional 

Supervisory Control and Data Acquisition (SCADA) system providing additional 

capability and information that can be used to further improve operations, maintenance 

and efficiencies in substations [8]. The most significant elements of a SA system 

include relays and/or Intelligent Electronic Devices (IEDs) that perform various control, 

monitoring and protection related operations.    

 
The success of a SA system relies heavily on the use of an effective communication 

system to link the various control, monitoring and protection elements within a 

substation. There are large numbers of protocols for communication, a matter that has 

lead to the problem of devices from different manufacturers and even devices from 

different generations from the same manufacturer not being able to communicate with 

each other or only with disproportionate expenditure. Standardisation is the key for the 

advancement of the connectivity and interoperability within a system. Through 
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standardisation, both users and suppliers arrive at economically suitable and reliable 

solutions. For the last decade, there has been lot of work done on standardising the 

language of communication between IEDs and relays [9-10]. As a result, two main 

protocols have evolved: the existing Utility Communication Architecture (UCA) [9] and 

the new International Electrotechnical Commission (IEC) 61850 [10]. The latter is 

expected to dominate the communications in the substation environment in the near 

future. 

 
IEC 65850 is an international standard for substation automation that has started out as 

the Electric Power Research Institute’s (EPRI’s) UCA 2.0. IEC 61850 is bound to have 

a significant impact on how electric power systems are to be designed and built for 

many years to come. It effectively reduces the diversity and complexity of utility 

automated solutions minimising operating, maintenance and engineering costs. The 

model-driven approach of the IEC 61850 standard describes the communication 

between devices in a substation and the related system requirements. It supports all 

substation functions and their engineering by using Object-Oriented (OO) data models 

that describe the processes to be implemented and controlled, e.g. the functionality of a 

circuit breaker or a feeder equipment etc. The use of the OO approach gives more 

flexibility to the developer and the user simplifying engineering tasks. IEC 61850 

contains device models that describe the properties and allocation of functions in a 

physical device. In addition to the OO data models, it defines a set of generic services 

for the client/server interactions between devices in a substation and also for the transfer 

of all sorts of data with regards to diverse transmission requirements such as speed, 

reliability and security. The Generic Object Oriented Substation Event (GOOSE) is 

widely accepted as the most important one of the data transmission services defined in 



 
Chapter 1: Thesis Overview 

 
 

 3

IEC 61850. GOOSE is a fast connection-less communication service used for the 

transfer of time-critical data where high speed and security are achieved by the 

repetition of messages a number of times.                   

 
One of the most significant architectural constructs of the IEC 61850 is the adoption of 

an “abstracting” technique, which involves the creation of objects that are independent 

of any underlying protocol. The isolation of the information models and information 

exchange services from the underlying on-the-wire protocols is usually seen as one of 

the most powerful capabilities of the IEC 61850 standard. The abstract nature of the 

definitions permits the mappings of the data objects and services to any other protocol, 

which provides adequate communication procedures meeting the data and service 

requirements of the IEC 61850 standard [11]. Currently, IEC 61850 only specifies 

mappings on a communication stack that includes the Manufacturing Message 

Specification (MMS) over the Transmission Control Protocol/Internet Protocol 

(TCP/IP) and Ethernet. However, the potential need to support mappings to different 

communication models has clearly been recognised in the industry and examples do 

exist in the literature detailing such mappings.  

 
Middleware is a software layer that resides between the operating system and the 

applications on each system site with the function of mediating interactions between 

applications running on different machines [6]. The use of a middleware architecture 

that is specifically adapted to the constraints that the Telecontrol world imposes in 

accordance with the IEC 61850 standard has numerous benefits such as reduced 

development time and increased interoperability, portability and reusability of 

distributed electrical systems [12].        
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1.2 Aim of This Research  
 

The overall goal of this research is the OO implementation of the IEC 61850 standard as 

a concrete application layer protocol running above a middleware layer specifically 

designed and implemented in a real-time communication processor environment to 

support all the communication needs required by the standard. The term 

“communication processor” is referred to a device, which has a set of network protocol 

layers that work together in controlling the connection, communication and data transfer 

between two computing endpoints. In this research, the software based design and 

implementation of various layers of a communication processor protocol stack is 

described. The specific tasks to achieve a successful completion of this research are: 

 
• Object-oriented implementation of the IEC 61850 standard: This task involves the 

OO implementation of the IEC 61850 Abstract Communication Service Interface 

(ACSI) Object and Service Models (OSMs) as concrete programs. The 

implementation of the ACSI OSMs based on their published definitions in the 

standard involves a two-stage procedure. First the OSMs that form the standard’s 

application-view constituent are implemented followed by those, which form the 

standard’s device-view constituent. The main aim is therefore the transformation of 

the IEC 61850 standard from an abstract nature into a solid protocol with the 

development of the smaller components forming the standard. Overall, a standard 

C/C++ language based implementation is proposed. 

 
• Design and implementation of IEC 61850 application layer modules: This task is 

primarily centred on the design and implementation of two application layer 

http://www.webopedia.com/TERM/P/network.html
http://www.webopedia.com/TERM/P/protocol.html
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Data
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modules as part of a communication processor protocol stack where IEC 61850 

client and server applications can be modelled and configured. The software based 

design and implementation of two application layer modules is presented for this 

purpose, one where ACSI clients can be constructed and the other where ACSI 

servers can be constructed. The designed modules permit the use of the developed 

OSMs from the first task when constructing various representations of real devices 

at the application layer. 

 
• Design and implementation of a data delivery network middleware: This task 

includes the design and implementation of a data delivery network middleware, the 

IEC-MOM, as a separate module between the application and network access layers 

of a communication processor. The designed Message-Oriented Middleware 

(MOM) architecture enables IEC 61850 processes running on different machines to 

interact over a network by providing various communication procedures for the 

transmission of IEC 61850 related messages. It supports all messages types 

specified by the IEC 61850 standard and incorporates various communication 

techniques such as unicast and multicast providing a unique stand-alone 

communication interface to the IEC 61850 processes running at the application layer 

of the same communication processor. It also considers stringent IEC 61850 specific 

Quality of Service (QoS) requirements such as the need of repeating GOOSE 

messages a number of times to achieve higher reliability and integrates solutions in 

its architecture for such requirements. 

 
• Implementation and incorporation of a time synchronisation protocol into the 

communication processor architecture: Time Synchronisation (TS), which involves 
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the harmonisation of the local clocks of all communicating nodes within a network, 

is also crucial in time-sensitive substation applications. This task focuses on the 

implementation of a Commercial off-the Shelf (COTS) TS protocol, the Simple 

Network Time Protocol (SNTP), and its incorporation into ACSI applications. The 

SNTP is implemented making use of the Object Oriented Programming (OOP) 

techniques and SNTP client applications are integrated into the designed ACSI 

application layer modules. On the other hand, SNTP server applications are 

configured in stand-alone communication processors. The IEC-MOM middleware is 

also modified such that it provides support for the SNTP request/reply messages as 

well as the QoS requirements concerned with TS applications. An adaptive filtering 

technique and a lower-layer time stamping technique are proposed and demonstrated 

to be beneficial in meeting the TS accuracy requirements imposed by the IEC 61850 

standard. 

 
• Design and implementation of a “Hardware in the LOOP” (HITL) capability: The 

objective of this task is to develop a capability that will permit for the testing of the 

designed components over a real network. The proposed HITL capability acts as a 

gateway between the simulation environment and the real Ethernet network 

establishing a link between the virtual simulation and the real network and enabling 

message passing between the two. 

 

1.3 Research Methodologies and Techniques  
 

This research targets the implementation of the IEC 61850 standard with the 

development of its OO models transforming it into a concrete application layer protocol 
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that runs on exclusively designed middleware architecture. The design, implementation, 

simulation and testing of various components will be carried out using appropriate 

software development and network design tools. The details of proposed methodology 

and techniques to achieve the requirements of this research project are as follows: 

 
(i) Literature review 

 
To start with, the IEC 61850 standard is to be examined in detail as well as identifying 

the most appropriate software development technique to achieve the successful 

implementation of the standard. The communication requirements set by the IEC 61850 

standard will be investigated and the currently available communication architectures 

will be analysed in order to recognise their strengths and weaknesses. Finally, the exact 

detailed specifications for the middleware architecture will be drawn. 

 
(ii) Implementation of the IEC 61850 standard 

 
Implementation of the IEC 61850 standard is at the core of this research. Several 

components of the standard need to be examined, assessed and implemented based on 

their OO definitions. The OO features of the C++ programming language, its popularity 

and widespread use in engineering applications make it the most suitable candidate for 

this task. Therefore, this task will be carried out using Microsoft Visual C++ 6.0, which 

is part of Microsoft’s software development suite, the Visual Studio. 

 
(iii) Design and implementation of IEC 61850 application layer modules 

 
Once all the building blocks of the IEC 61850 standard are developed, two application 

layer modules will be designed and implemented using a suitable network simulation & 
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design package. Optimised Network Engineering Tools (OPNET) has been chosen for 

this purpose, which is an OO discrete-event network simulator allowing for the 

modelling, implementation, simulation and performance analysis of communication 

networks and distributed applications. 

 
(iv) Design and implementation of the middleware architecture 

 
The design and implementation of a data delivery network middleware architecture with 

respect to the identified design constraints needs to follow and will be carried out once 

more making use of the OPNET network simulation & design package. Once this task is 

concluded, the overall communication system will be tested with regards to the 

identified communication requirements to evaluate the performance of the designed 

architecture in terms of speed, reliability and efficiency.  

 
(v) Implementation of the time synchronisation protocol 

 
This task comprises a two-stage procedure. First, the software development of various 

components of the SNTP TS protocol needs to be accomplished followed by the 

incorporation of the developed components into the designed application layer modules 

where TS processes can be modelled and constructed. Once successfully completed, 

simulations will be carried out to test the overall design with respect to TS accuracy 

requirements. 

 
(vi) Design and implementation of the HITL capability 

 
This task will be accomplished using Windows Winsock mechanisms jointly with 

OPNET. It involves the design and implementation of gateway modules, which will act 
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as converters between the virtual simulation environment and the real Ethernet network. 

Once completed, the overall design will be tested for a real network scenario involving 

the use of real Ethernet links, switches, routers, etc. 

 

1.4 Originality of the Thesis  
 

This research will contribute to the knowledge in substation communication system 

design since it tackles major issues related to standardisation efforts and establishment 

of open and standard working environments following the path initiated by the UCA 

2.0. This research will contribute to knowledge in the following specific areas:  

 
(1) Contributes to the knowledge by addressing a previously neglected area that is 

the transformation of the IEC 61850 standard into a solid application layer 

protocol with the development of concrete programs for the standard’s 

application and device-view OSMs. No other such OO implementation of the 

standard exists in the literature other than implementation through the mapping 

processes. The proposed research will be immensely beneficial to power 

protection and control engineers since it further enhances the understanding of 

the IEC 61850 standard and simplifies its use by illustrating how the OO models 

discussed in the standard can as well be implemented using the OOP techniques. 

This research is significant since it fully isolates the standard from the 

underlying protocols by providing a standard universal OO implementation 

removing the standard’s dependency on the mapping process. 

 
(2) Contributes to the knowledge by identifying the critical issues behind the 

development and design of a specific communication service aimed at providing 
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all sorts of communication mechanisms to IEC 61850 based applications 

running within substations. This research is significant since it proposes a 

middleware architecture that integrates all required message distribution 

mechanisms in its architecture eliminating the need for the multiple 

communication service mappings that exists as a burden in the existing IEC 

61850 standard. The proposed middleware only provides a communication 

interface to IEC 61850 and does not include any object or service models. 

 
(3)  The proposed research is significant since it further integrates a TS protocol into 

the communication processor architecture, which makes it possible to harmonise 

the local clocks of all the communicating IEDs within a substation network 

relative to a chosen reference so that sensing and actuation of time-sensitive data 

can be coordinated accurately across multiple nodes. 

 
(4) Contributes to knowledge by describing a preliminary work carried out to 

demonstrate how the software design can be interfaced to a real network.  

 

1.5  Organisation of the Thesis 
 
 
This thesis contains eight chapters and is organised as follows:  

 
Chapter 1 has provided a basic introduction about the research as well as the aims of 

this research, the research methodologies and techniques and the contribution of this 

research to the knowledge. Chapter 2 presents a literature review of power system 

communications, recent standardisation developments and the use of protocols and 

middleware architectures in substations. Previous and current trends of middleware 
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technologies are discussed highlighting the importance of middleware in the strategy of 

establishing an open and standard working environment. 

 
The development implications and implementation details of all application-view 

constituent components of the IEC 61850 standard are presented in Chapter 3. The 

typical building blocks of the IEC 61850 application view comprise logical nodes, data, 

data sets, etc., where logical nodes are the key elements comprising all other building 

blocks. In-dept study of the standard and the use of OOP techniques and methodologies 

in the implementation of various ACSI OSMs are presented. Chapter 4 looks at the 

modelling and implementation aspects of the standard’s device-view constituent 

components such as logical devices. 

 
Chapter 5 presents the software based design and implementation of the various 

protocol layers of a communication processor stack including the application layer 

modules and the middleware architecture. The design and implementation details of 

these components are individually discussed. Performance analysis of the overall 

communication system will be considered to justify proper function of the designed 

components as well as the appropriateness of design techniques and methodologies.  

 
The implementation of the SNTP and its incorporation into the overall architecture is 

discussed in Chapter 6 along with performance analysis indicating the effectiveness of 

the design in meeting the time synchronisation accuracy requirements. Chapter 7 covers 

the development of a HITL capability focusing on the design and implementation 

details as well as performance analysis. The conclusions and future scope for this 

research are discussed in Chapter 8. 
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Chapter 2 
 
Literature Review 
 
 

2.1 Introduction  
 

The purpose of this chapter is to provide the necessary background required to 

understand the concepts that relate to power system communications, recent 

standardisation developments and the use of protocols and middleware architectures in 

substations. When designing any type of middleware, it is important to learn from past 

research experience, which has resulted in many contrasting middleware technologies 

with different strengths and weaknesses [13]. The evolution of the recent standards such 

as UCA 2.0 and IEC 61850 will eventually lead to the replacement of various existing 

proprietary solutions with a standard communication approach for all future equipment 

from all around the world [14, 15]. The use of middleware technologies is fundamental 

to the strategy of establishing an open and standard working environment 

complementing the works of the standardisation developments.  

 
Consequently, this chapter is structured in a similar fashion starting with an overview of 

power system devices in Section 2.2 followed by the discussion of power system’s 

automation, integration and communications aspects in Section 2.3. Subsequently, in 

Section 2.4, protocols are discussed in general and with regards to power systems. 
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Section 2.5 discusses the recently developed application layer protocols. The chapter 

follows with Section 2.6, which reviews the state-of-the-art middleware architectures 

with special attention given to their use in power system communications.    

 

2.2 Intelligent Electronic Devices 
 
 
Many of today’s electric utility substations include digital relays and other Intelligent 

Electronic Devices (IEDs) that record and store a variety of data in relation to their 

control interface, internal operation and about the power system they monitor, control 

and protect. Instrumentation & Control (I&C) devices, which are built using 

microprocessors, are commonly referred to as IEDs. Microprocessors are single-chip 

computers that can process data, accept commands and communicate information. 

Nowadays, digital relays are widely replacing the aging electromechanical and solid-

state electronic component-type relays and relay systems [16].  

 
Figure 2.1 shows a digital relay with its target interfaces. Digital relay’s popularity 

comes from their low price, reliability, functionality and flexibility. However, the most 

important feature that separates a digital relay from previous devices is its capability of 

collecting and reacting to data and then using this data to create information. Such 

information includes [16, 17]: 

 
 

Figure 2.1 Digital relay with target interfaces [16] 
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• Protection Data: Fault location and fault type, 

• Metering Data: Pre-fault, fault and post-fault currents and voltages, 

• Breaker and relay operation data, and 

• Diagnostic and historical data [18]. 

 
IEDs can also run automatic processes while communications are handled through a 

serial port similar to the communication ports on a computer. Some examples of IEDs 

used in a power system are [19]: 

 
• Instrument transformers, 

• Remote Terminal Units (RTUs), and 

• Digital fault recorders. 

 

2.3 Automation, Integration and Communications 
 
 
Power system automation is the act of automatically controlling the power system via 

I&C devices whereas Substation Automation (SA) refers to the use of IED data and 

control commands from remote users to control the power system devices within a 

substation. Power system integration, on the other hand, refers to communicating data 

to, from, or amongst IEDs in an I&C system. Finally, Substation Integration (SI) stands 

for combining IEDs’ local data in a substation so that there is a single point of contact in 

the substation for all of the I&C data [19, 20]. 

 
The performance of power systems have always been improved with the use of 

communication principles. Without the use of a proper communication channel, power 

system protection suffers from a major disadvantage of not being able to accurately 
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diagnose faults. When voltages and currents are analysed only from one terminal, it 

cannot be concluded whether a fault near the far end terminal is internal or external to 

the protected line segment. This requires delayed tripping for such faults, which can 

endanger system stability or increase vulnerability. At the far end terminal, the decision 

whether the fault is internal or external is obvious not from a distance measurement but 

from the knowledge of the direction of the fault. This information can be transmitted to 

the other terminal enabling it to decide whether to send signal to trip or not to trip [21]. 

 
Power utilities are focused on increasing productivity and making electric power safer, 

more reliable and economical by providing innovative, simple to use and robust 

technologies. Development of appropriate communication technologies and protocols is 

at the heart of this strategy. When relays and IEDs are integrated together, they form a 

powerful and economical I&C system capable of supporting all aspects of electric 

power protection, automation and control [22]. Figure 2.2 shows how IEDs and relays 

can be interconnected together forming protection schemes for power systems.  

 

 
 

 

 

Figure 2.2 Typical integrated substation protection and control system [23] 
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The relaying and measurement tasks have been well understood and standardised. On 

the other hand, the technical methods and operating impact of data communications 

continue to evolve dramatically. There is a wide variety of incompatible communication 

approaches and systems in the marketplace. Competing manufacturers have been 

following unique approaches when designing their communication interface circuits. As 

a result, the users could not directly interconnect competing products and had to provide 

a different communication system for each vendor. However, the use of competing 

products from different vendors offers a variety of protection and monitoring 

capabilities for users although they are often frustrated by the communication related 

variations [15].  

 
The desire and the need of merging the communication capabilities of all relays and 

IEDs in a substation has thus been clearly recognised, which is capable of providing not 

only data gathering and setting capability but also remote control. Furthermore, multiple 

IEDs can share data or control commands at higher speeds to perform new distributed 

protection and control functions [15]. Interoperability [24, 25] needs to be achieved in a 

substation between protective relays from different manufacturers so that substation 

level interlocking, protection and control functions can be realised improving the 

efficiency of microprocessor based relay applications [26].    

 
For the last few years, the advancements in microprocessor based IEDs networked over 

high-speed communication networks using standardised communication protocols is 

leading the evolution of power system control technology. The introduction of UCA 2.0 

and IEC 61850 has made it possible and justifiable to integrate station IEDs on a high-

speed peer-to-peer communication network (Ethernet) through standardisation.  The use 
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of existing standards and commonly accepted communication principles together with 

the new standards such as IEC 61850 and UCA provides a solid base for interoperability 

leading to more flexible and powerful protection and control systems [27].  

 

2.4 Protocols 
 
 
A protocol is basically a set of rules that must be obeyed for orderly communication 

between two or more communicating parties [28]. The International Standards 

Organisation (ISO) has divided the communication process into seven basic layers as 

shown in Figure 2.3, which is commonly referred to as the Open Systems 

Interconnection (OSI) model [28-30].   

 

 

 

 

 

 

 

 

 

Figure 2.3 The OSI reference model 

 
Each level operates independently of the others and has a certain function to perform. 

However, the successful operation of one level is mandatory for the successful 
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communication network to another and vice versa. Two devices can only communicate 

if each layer in the model at the sending device matches with each layer in the model at 

the receiving device [29, 30]. Communication between data processing systems from 

different manufacturers has often been particularly difficult due to the fact that there has 

been separate development of data processing and data communication techniques, 

often resulting in complex and expensive interfaces.  

 
2.4.1 The Ethernet Protocol  
 
 
The Ethernet protocol [31, 32], a network concept illustrated in Figure 2.4, is one of the 

most widely used data link layer protocols designed for carrying blocks of data called 

frames as described by the IEEE 802.3 standard [33]. Ethernet uses an access method 

called Carrier Sense Multiple Access/Collision Detection (CSMA/CD) [33], which is a 

system where each host listens to the medium before transmitting any data to the 

network.  

 
 

 

 

 

 

 
 

 

 

Figure 2.4 The Ethernet network concept [34] 

 
If the network is clear, the host will transmit. However, if some other node is 

transmitting, it will wait and try again when the network becomes clear. Collisions 

occur when two hosts try to transmit at the same instant forcing each other to back off 
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and wait a random amount of time before attempting to re-transmit. Although collisions 

affect the total throughput, the delay caused by the re-transmissions is very small 

normally not affecting the speed of transmissions on the network. Ethernet allows for 

the transmission of data from a speed of 10 Mbps to 1000 Mbps [35].    

 
2.4.2 The TCP/IP Internet Protocol Suite  
 
 
The Internet Protocol (IP) is a network layer protocol, which uses datagrams to 

communicate over a packet-switched network [36, 37]. It provides datagram services 

for transport layer protocols such as Transmission Control Protocol (TCP) and User 

Datagram Protocol (UDP). It is one of the subset protocols of the TCP/IP suite as 

illustrated in Figure 2.5. 

 

Figure 2.5 TCP/IP protocols and functional layers [26] 
 
The IP forms a computer network by connecting computers assigning each one a unique 

IP address [38]. Each IP packet carries an IP address [39], which consists of two parts: a 
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the packet. Routers, switches make use of the destination address when forwarding 

packets across interconnected networks.  

 
The major concern with IP is that it makes no attempts to determine if packets reach 

their destination or to take corrective action if they do not. Therefore IP does not 

provide guaranteed delivery. This problem can be avoided in some applications where a 

transport protocol that carries out such a function is used. The best example for the latter 

is TCP [40], which makes up for IP's deficiencies by providing reliable, stream-oriented 

connections that hide most of IP's shortcomings. However, other applications requiring 

best effort services (faster transmission times) usually use UDP [41], which is a simple 

connection-less transport layer protocol without any real mechanisms for reliable 

delivery. UDP packets are delivered the same as the IP packets and may even be 

discarded before reaching their destinations.    

 
Although the transmission of data requires the best-effort service in some substation 

applications, reliability is also a major concern. The best effort service requires the use 

of UDP, which has no support whatsoever for reliable transmission. This implies that 

certain primitives need to be implemented to achieve higher reliability in cases where IP 

is to be used alongside UDP. This is one of the major concerns being looked at in this 

research with a model being proposed in this thesis to solve this problem.           

   
2.4.3 Protocols in Substations  
 
 
There are literally thousands of combinations of protocol agreements that can be created 

with the large domain of existing pieces. The main protocols that have found 

widespread use in the substation environment are [21]: 
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• MODBUS: A popular master-slave protocol with industrial users, which has 

become popular in substations. It issues simple READ/WRITE commands to 

addresses inside an IED. 

• Distributed Network Protocol (DNP): An increasingly popular master-slave 

protocol mainly used in North America. DNP can run over multiple media, such 

as RS-232 and RS-485 and can issue multiple types of READ/WRITE messages 

to an IED. 

• IEC-870-5-101: is considered as the European partner to DNP. It differentiates 

itself from DNP with its slightly different messaging structure and the ability to 

access object information from the IED. 

 

2.5 Standardisation Developments 
 
 
The introduction of higher-level protocols in IEDs has only enabled communication 

between devices from the same manufacturer. However, the potential to communicate 

between varieties of devices from different vendors enables utilities with a variety of 

protection, monitoring and automation capabilities. Currently, this can only be achieved 

with the use of protocol converters or gateways. Worldwide, electric utility deregulation 

has expanded and created demands to integrate, consolidate and disseminate real-time 

information quickly and accurately with and within substations [27, 42]. Hence, a non-

proprietary and high-speed protocol was required to facilitate a robust and integrated 

substation communication network by standardising the language of communication 

within substation. Using the standardised high-speed communication between IEDs, 

utility engineers can eliminate many expensive stand-alone devices and use the 

sophisticated functionality and available data to their full extent [27]. The utilities are 
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aimed at creating a framework for not only common communication but also an 

architecture that will provide for interoperability. The ability to “plug and play” is 

referred to as interoperability, also meaning to be able to “share” data and functions 

[24].    

 
UCA [9] was commissioned by the EPRI in 1994 to identify the requirements, overall 

structure and specific communication technologies to implement the standardisation 

scheme. The adopted approach defined the technical requirements for a system to 

control and monitor substations of any size [15]. The Technical Committee (TC) 57 of 

the IEC began work on IEC 61850 [10] in 1996 with a similar target. In 1997, the two 

groups joined together to define a common international standard that would combine 

the work of both groups. The result of the harmonisation process is the IEC 61850 

standard, which is a superset of UCA 2.0 as shown in Figure 2.6 while offering some 

additional features [43].  

 

Figure 2.6 The merging process [43] 

 
2.5.1 The UCA Substation Communications Project 
 

UCA targets to reduce the engineering, monitoring, operation and maintenance costs 

while increasing the agility of the whole life cycle of a substation by improving device 

data integration into the information and automation technology [44]. Many relay and 

IED manufacturing companies showed their interest in UCA work and joined in the 
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effort to define and demonstrate a communication network stack [15]. With continued 

EPRI support, vendors have built UCA-compliant versions of their products. The 

equipment makers continue to modify and update the implementations in each of the 

products. Many US and overseas utilities have signed up to demonstrate UCA 

substation systems. The users can see an impressive and elaborate demonstration of 

interoperability amongst a broad variety of equipment from competing manufacturers in 

meetings held several times a year. The importance of achieving interoperable 

communication has forced collegial cooperation among competitors, who see the 

individual-product features and performance as the proper ground for competition [45]. 

 
The UCA is comprised of data object models, service interfaces to these models and 

communication profiles as illustrated in Figure 2.7 [44]. Data object models are at the 

highest level, i.e. at the application layer. Service interfaces include operations such as 

defining, retrieving and logging of process data.  
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Figure 2.7 Three levels of UCA [44] 

 
Within the UCA framework, a device object model is referred to as the definition of 

data and control functions made available by the device along with the associated 
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algorithms and capabilities [9]. Device models describe the communication related 

behaviour of devices by making use of a common set of services. The detailed 

interoperable structure for utility field devices can be fully specified by mapping these 

services onto the UCA Application Layer Protocol (ALP) when used in conjunction 

with the device models. The services and their mappings to the Manufacturing Message 

Specification (MMS) are defined in UCA Common Application Service Models 

(CASM) [46]. Device models can be specified independent of the underlying protocol. 

Active participation of groups outside the UCA activities has been encouraged due to 

this feature of protocol independence, which also simplifies migration through the 

construction of getaways to older existing protocols [44-46].    

 
2.5.2 IEC 61850 Project 
 
 
IEC 61850 is based on the need and opportunity for developing standard 

communication protocols to permit interoperability of IEDs from different 

manufacturers [47, 48]. IEC 61850 makes use of existing standards and commonly 

accepted communication principles, which allows for the free exchange of information 

between IEDs. It focuses on neither standardising the functions involved in substation 

operations nor their allocation within the substation automation systems. It only 

identifies and describes impact of the operational functions on the communication 

protocol requirements [27]. IEC 61850 allows applications to be designed independent 

from the communication theory enabling them to communicate using different 

communication protocols. Therefore, it provides a neutral interface between application 

objects and their related application services as shown in Figure 2.8 allowing a 

compatible exchange of data among components of a SA system [27].   
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Figure 2.8 The basic reference model [27] 

 
One of the most important features of IEC 61850 is that it covers not only 

communication, but also qualitative properties of engineering tools, measures for 

quality management and configuration management. This is necessary since when 

utilities are planning to build a substation automation system with the intention of 

merging IEDs from different vendors, they expect not only interoperability of functions 

and devices, but also a homogenous system handling [27].    

 
IEC 61850 proposes the concept of standardising IED data using data objects referred to 

as logical nodes. This makes it possible to achieve the “plug and play” capability so that 

information and commands can be shared on a single network [27, 49]. By using 

standardised data, it is feasible to define applications without any knowledge in relation 

to the actual device itself since the data contained in the device and the data available on 

the network for further use will be known up front. Hence, it becomes possible to know 

the exact data present from a communication point of view provided that all logical 

nodes and other data elements are implemented in line with the standard. The “plug and 
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play” capability becomes possible after adding the self-description of logical nodes and 

hence those of the devices [27]. The relationship between the application and 

communication views of the IEC 61850 standard is shown in Figure 2.9, which 

illustrates how applications can be defined using the standardised data and how this data 

can be retrieved or manipulated by using a number of specific services.   
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Figure 2.9 Relationship between the application and communication interfaces [27] 

 
With the “plug and play” capability embedded in the standard and the immediate 

endorsement of the concept in pilot projects, IEC 61850 promises to be a great step 

forward in the development and acceptance of substation automation systems world-

wide. This has brought the real benefits of automation and integration to utilities that 

were originally promised years ago [27].   

 

2.6 Middleware Architectures 
 
 
The wide spread utilisation of object technology has enabled the use of object oriented 

paradigm in distributed environments [50]. A distributed environment is a network of 
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distributed objects that seamlessly communicate with each other [51]. Distributed 

objects, which can be subject of remote procedure calls, are objects distributed over the 

network residing in separate address spaces [50, 52 and 53]. A typical distributed 

processing environment consists of several nodes interconnected by means of a 

communication network. Each node consists of a CPU and a network interface board.  

 
In some cases where distributed systems need to operate in a heterogeneous 

environment, it is high likely that different nodes will consist of different hardware and 

operating systems [53]. In such cases, there is a need for a layer of software as shown in 

Figure 2.10, which sits above the heterogeneous operating system in order to provide a 

uniform platform about which the distributed applications can run.   

 

 

 

 
 
 
 
 
 
 
 
 

Figure 2.10 Protocol stack incorporating the middleware layer 

 
Middleware software is a layer between the networking and application codes of a 

protocol stack. The function of the middleware is to insulate the application 

programmer from the raw networking code thus providing an easier way to 

communicate [54]. In addition, it supplies a set of common services to perform various 

general purpose functions. There are two main types of middleware architectures, which 

are the client/server and publish/subscribe architectures [54, 55].   
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2.6.1 Client/Server Architectures 
 
 
In a client/server model shown in Figure 2.11, the communication between the 

requesting client and the replying server exhibits a synchronous type of messaging since 

the client will be blocked once it makes the request until the corresponding reply arrives 

[56, 56]. 

Client 
Request 

Reply 

  
 
 

            ….  

Service1 

Service n 

Server 

 

Figure 2.11 A client/server communication model 

 
Client/server architectures are useful when the nodes on the network need to access 

centralised information. Substation database of configuration parameters and transaction 

processing between two relay IEDs are two common examples of this type of 

architecture [54]. 

 
2.6.2 Publish/Subscribe Architectures 
 
 
A publish/subscribe system, illustrated in Figure 2.12, is a communication model 

supporting an asynchronous style of many-to-many communication [58] in contrast to 

the request/response type of synchronous approach of object invocation. It relies on the 

preferences expressed by subscribers to deliver messages from one publisher to one or 

many subscribers instead of the publisher relying on specific destination addresses. A 

publisher can be referred to as a producer or a sender. Similarly, subscribers are most 

often referred to as consumers or receivers. 
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Figure 2.12 Publish/subscribe communication model 

 
Subscribers make subscriptions using definitions of the information they are interested 

in. Publishers create instances of information, which get forwarded to the subscribers of 

this information. Distributed real-time communication in the substation environment 

can as well be realised using the publish/subscribe communication model.  

 
IEDs perform two main tasks in a distributed publish/subscribe system enabling direct 

message exchange between the communicating IEDs. An IED will either [54]: 

 
• Subscribe to data that it needs, or 

• Publish information that it produces. 
 

Any authorised IED may add itself as a subscriber to a particular publisher's list. That 

subscribing IED will then receive the publications directly from that publisher IED as 

they become available. Publish/subscribe systems are useful since [54]: 

 
• They are good and quick distributors of large quantities of time-critical 

information even when unreliable delivery mechanisms are present, 

• They can handle very complex data flow patterns, and 

•  The many-to-many model is very efficient in both bandwidth and latency [59]. 
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One of the important properties of the publish/subscribe middleware is that the 

applications running in publishers and subscribers are kept independent of each other. 

The most important of all is that it handles connections, failures and changes in the 

network only delivering the data that has been requested by the application software 

[54]. Although the publish/subscribe model is the best option for use in distributed 

substation systems, real-time substation systems have other unique needs that can not be 

served by a multi-purpose designed architecture. Specific architectures are needed to 

cater for the special needs and requirements of such systems. This is one of the issues 

being investigated in this thesis discussed in detail in the successive chapters.  

 
2.6.3 Popular Middleware Platforms 
 
 
Object-Oriented (OO) middleware is the current trend in developing open distributed 

system environments. It separates object interfaces from their implementations and 

supports the integration of various software technologies such as operating systems, 

programming languages and databases. The most important OO middleware platforms 

are usually listed as Common Object Request Broker Architecture (CORBA), Java-

Based Remote Method Invocation (RMI) and Manufacturing Message Specification 

(MMS).      

 
2.6.3.1 Common Object Request Broker Architecture 
 

CORBA is an OO standard for distributed systems, which is implemented using the 

Object Request Broker (ORB) specification of the Object Management Architecture 

(OMA). It supports distributed OO computing across heterogeneous hardware devices, 

operating systems, network protocols and programming languages [60-62]. Figure 2.13 
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illustrates the components of the CORBA standard. Some of the main parts of the 

CORBA framework are: 

Interface
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Figure 2.13 Basic CORBA Architecture [63] 

 
Object Request Broker (ORB): The ORB [60, 61] forms the core of the middleware 

facilitating communication between objects by providing a number of services. Such 

services include resolving object references to locations and marshalling/unmarshalling 

of parameter and return values when invoking a method on a remote object [13]. 

CORBA relies on a protocol called the Internet Inter-ORB Protocol (IIOP) for invoking 

methods on objects [64]. The General Inter-ORB Protocol (GIOP) is a standard protocol 

that enables interoperability among different CORBA-compliant ORBs [62].  

 
Interface Definition Language (IDL): CORBA IDL [60, 61] specifies the interface of 

an object so that stubs for the client applications and skeletons for the server 

applications can be created. It is language independent and supports various bindings 

[13]. The client-stubs are responsible for providing all the functionality for the 

implementation of an object within a client such as the functionality of forwarding 

method invocations. On the other hand, the functionality of a server object can be 

implemented within the framework formed by the server-skeleton [65].     
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Dynamic Invocation Interface (DII): DII permits clients to directly access the 

underlying request mechanisms at run time to generate dynamic requests to objects, 

whose type were not known at the time of the client compilation [62].   

 
Interface and Implementation Repositories: The interface repository contains the 

IDL definitions of interfaces for type-checking remote method calls. Correspondingly, 

the implementation repository contains all implementations of a remote interface at the 

server-side so that remote objects can be activated on demand [13]. 

 
Object Services: These services, also known as CORBA services, add to the basic 

capabilities of ORB. They address different aspects of a distributed computing 

environment ranging from transactional support to security. The two most important 

ones are the CORBA Naming Service [66] and the CORBA Event Service [67]. The 

former associates object references with names so that clients and servers can use this 

for the purpose of locating and advertising CORBA objects. Whereas the latter enables 

many-to-many communication amongst the CORBA clients through the use of an event 

channel.    

 
CORBA’s success is related to its well adaptation to heterogeneous distributed systems, 

the extensibility of the platform with the use of services and most importantly its main 

feature of being programming language independent. However, many-to-many 

communication is not part of the basic services provided by the ORB but made possible 

by the CORBA event service which is less efficient. Regarding efficiency, Reference 

[68] has shown that the expected delay for sending a data of a basic type from a client 

object to a server object ranges from 0.6 to 3.5 milli seconds (ms) for CORBA 

compliant middleware infrastructures.  
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Although CORBA has found widespread use in the business sector, it offers a lot for 

industrial applications as well. The use of CORBA in substation automation systems has 

drawn some attention particularly after the introduction of the UCA 2.0 and IEC 61850 

protocols. A number of papers [69, 70] in the literature exploit the use of CORBA 

technology for implementing the IEC 61850 standard. Although these studies 

undertaken in [69, 70] have evaluated the use of CORBA as beneficial, the lack of its 

support for critical real-time requirements is also questioned.  

 
2.6.3.2 Manufacturing Message Specification 
 

MMS [71] is an application layer middleware used for exchanging real-time data and 

supervisory control information. Virtual Manufacturing Device (VMD), model 

representation shown in Figure 2.14, is the basic MMS component defining the 

behaviour of MMS servers from an external MMS client application point of view [72].  
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Figure 2.14 The VMD Architecture [71] 
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MMS provides a rich set of generic services, which can be used by a wide variety of 

applications independent of their type and industrial area [71, 73]. MMS clients use 

these services to manipulate objects residing in the servers. MMS objects can be divided 

into the following categories: variable and type objects, program control objects, event 

objects, semaphore objects, journal objects, operator station objects and files [74]. 

 
Each one of the MMS object types represents a different entity diverse in context and 

functionality. Each entity is associated with attributes and a simple set of services. For 

example, journal objects represent time based records contacting the state of an event, 

or the value of a variable. Clients can make use of the journal services to create, read, 

delete and clear journal objects [71, 74].  

 
Interoperability and independence are the two most important advantages concerned 

with the MMS architecture. Interoperability is the ability of network applications to 

exchange data amongst themselves without the need to create the communication 

environment. Independence refers to the fact that interoperability can be achieved 

independent of the developer of the application, network connectivity and the type of 

function being performed [71]. However, there are also significant drawbacks 

associated with MMS such as the lack of any explicit support for publish/subscribe 

architectures. Although MMS preserves many technical advantages, it has not been 

completely successful. Main criticism to the MMS architecture includes the complexity, 

the poor performance and the high cost of ISO protocol stacks.   

 
Mainly due to technical advantages it provides, MMS application layer middleware has 

risen to become the first option to be adopted by the UCA [75] and IEC [76] working 

groups for the implementation purposes. The most important feature of MMS, making it 
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suitable for such a purpose, is the fact that it provides provisions for supporting both 

centralised and distributed architectures. 

 
The past few years have witnessed several successful studies based on the 

implementation of the UCA 2.0 and IEC 61850 application layer protocols making use 

of the MMS architecture. Quite few research papers exist in the literature detailing such 

implementations [77-80]. These papers all describe practical applications where the 

UCA 2.0 and IEC 61850 standards are implemented by means of mapping their abstract 

objects and services to the MMS object and services. Although MMS is widely believed 

to be the best option, the mapping process can still get very complex and tedious due to 

the massive effort that needs to be spent when modifying MMS Object and Service 

Models (OSMs) to match with the UCA 2.0 or IEC 61850 OSMs. Moreover, an 

application engineer with the desire of using either one of the standards will not only 

need to master himself in that standard but also in the use of MMS as well.  

 
Therefore, the mapping process creates extra burden for the application engineers. A 

solution to this problem will be presented in this thesis eliminating the necessity of the 

mapping process. The solution involves the OO implementation of the IEC 61850 

standard transforming it from an abstract nature into a concrete form. Once the standard 

is implemented, it will become a real communication mechanism and there will be no 

need for mapping it on either CORBA or MMS. 

 

2.7 Conclusion 
 

This chapter has outlined background information and some research that is relevant to 

the design and implementation of a communication processor architecture that includes 
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an OO implementation of the IEC 61850 communication standard and an underlying 

middleware architecture designed to provide communication related support to IEC 

61850 applications.  

 
The chapter began with an overview of devices that are used in substation systems 

mainly focusing on IEDs. Subsequently, automation, integration and communications 

aspects of substation systems were reviewed. Special attention was given when 

describing the desire and need to merge the communication capabilities of all devices in 

a substation achieving interoperability through the use of standardised application and 

communication protocols. Consequently, some of the physical and application layer 

protocols that have found widespread use in substation communication systems over the 

past decade were re-examined.  

 
The chapter followed by briefly describing the recently evolved application layer 

protocols, namely the UCA 2.0 and IEC 61850. Both UCA 2.0 and IEC 61850 are 

aimed at standardising the language of communication between IEDs and relays making 

it possible to integrate station IEDs from a range of manufacturers on a high-speed peer-

to-peer communication network.  

 
Finally, a survey of various middleware architectures was given concentrating on the 

two most frequently used platforms in substation systems. The suitability of 

publish/subscribe architectures for all data transfer requirements of distributed real-time 

substation systems was revealed along with the necessity for a specific implementation 

to support some of the more scarce needs. CORBA and MMS architectures were 

explained with the centre of attention being on the use of such architectures for 

implementing the UCA 2.0 and IEC 61850 application layer protocols.  
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Chapter 3 
 
IEC 61850 Application View 
 
 

3.1 Introduction  
 

The general aim of this research is two-fold. The IEC 61850 Abstract Communication 

Service Interface (ACSI) Object and Service Models (OSMs) are to be implemented 

followed by the design and implementation of a suitable data delivery network 

middleware. As highlighted in Chapter 2, IEC 61850 is an abstract application layer 

protocol that can only be useable when mapped to specific communication services such 

as the Manufacturing Message Specification (MMS). The mapping process involves 

implementation of the standard’s object models by using the existing models of an 

underlying communication service. 

 
The focus in this chapter is on the implementation of the standard’s application-view 

models making use of the techniques of Object-Oriented-Programming (OOP). The 

proposed research describes how the OSMs are built based on their IEC 61850 

descriptions. Section 3.2 gives an overview of the IEC 61850 standard and its use 

Substation Automation Systems (SASs). IEC 61850 application-view modelling and 

implementation is presented in Section 3.3. The conclusions of this chapter are given in 

Section 3.4.     
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3.2 Substation Automation Systems 
 
 
Substation Automation Systems (SASs), used for controlling substations, are usually 

composed of a number of Intelligent Electronic Devices (IEDs) interconnected through 

a network of high-speed communications with widespread routers and switches [20]. 

IEC 61850 [81], a recently published communication standard, has the objective of 

enabling interoperability between IEDs within a substation by defining standard object 

(information) models for IEDs and functions within a SAS [82-83]. As a result, it 

standardises the language of communication between the SAS devices allowing for the 

free exchange of information. Although the IEC 61850 set of documents is comprised of 

10 parts, the most important contents are found in Parts 7-x: 

 
• IEC 61850-7-1: Principles and models [84], 

• IEC 61850-7-2: Abstract Communication Service Interface (ACSI) [85], 

• IEC 61850-7-3: Common Data Classes (CDCs) [86], and 

• IEC 61850-7-4: Compatible logical node classes and data classes [87]. 

 
Functions in a SAS are defined by modelling the syntax and semantics of the 

exchangeable application-level data in devices and also the communication services 

required to access this data. An important point to clarify is that the IEC 61850 standard 

only attempts at standardising the communication visible behaviours of functions rather 

than their actual internal operations. Parts 7-2, 7-3 and 7-4 form the three levels of this 

process. Part 7-2 specifies the basic layout for the definition of the substation-specific 

information models and information exchange service models. Part 7-3 specifies CDCs 

and common data attribute types, which are the main building blocks of the LN and 
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Data classes described in Part 7-4. The LN and Data classes form the elements that 

allow the creation of the information model of a real substation device. They are the 

most vital concepts used in the standard to describe real-time substation systems. 

               
The complexity of the standard should be apparent to the reader from the few lines used 

to describe Parts 7-x. The whole standard consists of various models that exhibit various 

relations and inheritance amongst each other. Object-Oriented Modelling (OOM) [88-

89] is a widely adopted technique in the development of software systems. The 

necessity of using OOM to represent the various models was acknowledged in [90-92] 

where the Unified Modelling Language (UML) [93-95] was used for the model 

representations. The same approach is also used throughout this chapter contributing to 

a better understanding of the standard by making the complexity of the standard’s object 

models more manageable for the human eye. UML was also chosen in this study as it is 

widely believed to be the de facto modelling standard in software engineering. Object-

Oriented-Programming (OOP) [96], a technique that was developed more than 30 years 

ago, is essentially building a program around self-contained collections of data (classes) 

and code to modify the data (services). It is a popular mode of software development 

and implementation technology supported by Java [97-98], C++ [99-100] and many 

other programming languages. In this study, the C++ programming language was 

chosen particularly due to its ease and popularity in engineering applications.            

 
Nevertheless, the main aim in this chapter is to discuss the transformation of the IEC 

61850 into a real protocol by the implementation of its OSMs as concrete programs. 

This is the main feature separating this study from the previous ones [90-92] in that no 

other published work exists in the literature detailing such an implementation.   



 
         Chapter 3: IEC 61850 Application View 
 
 

 40

 
HMI 

CircuitBreaker1       
 
 
 
 

                                              Position 
      
Circuit switch model in a real device 

           
 

Network 

“CLOSE” Command

Report (closed)

Real devices in 
the substation 

Bang

3.3 IEC 61850 Application View 
 
 
A simple example of an interoperable function within the substation is to switch a 

circuit breaker via a computer. Such a case is depicted in Figure 3.1. The task of the 

Human Machine Interface (HMI) in this example is to send control commands to an 

IED, which implements the tasks of a circuit breaker, requesting the IED to switch the 

position of the switch [84].  

 
 

 

 

 

 

 

 

Figure 3.1 An example of an application-view interoperable function 

 
Once the request has been processed by changing the position of the switch, the IED 

may send a reply signal back to the HMI indicating the new position of the switch. In 

addition to sending control commands, the HMI might also query about the information 

content of the IED, which causes the IED to forward data about its information content 

such as the nameplate and ratings. To be able to successfully send its command and 

receive replies, the HMI needs to know [84]: 

 
• The name of the switch implemented in the IED, 

• How to express its request of changing the position of the switch? and 

• How to read reply data? 
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From this application point of view, IEC 61850 aims to assist substation devices and 

their communications amongst them by: 

 
• Standardising abbreviated names for substation functions and equipment, 

• By naming and describing functions and information, and 

• By describing how to access functions and how to exchange information. 

 
IEC 61850 identifies all known functions in a SAS and splits them into sub-functions or 

so called logical nodes. A Logical Node (LN) is a sub-function located in a physical 

node, which exchanges data with other separate logical entities. LNs are virtual 

representations of real devices [84, 92]. In IEC 61850, the standardised name of the LN 

implementing the task of a circuit switch is “XSWI”. Figure 3.2 shows an example case 

of virtualisation where an air-break switch, a real device, is modelled as a LN in a 

virtual device. The LN, in this case, is called XSWI1 (circuit switch1).      

 
 
 
 
 

 

 

 
 

Figure 3.2 Virtualisation   

 
3.3.1 Logical Nodes   
 

In IEC 61850, all LNs have been grouped according to: 

 
• Their most common application area,  

Virtual Device 
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Controller 
  Air-break switch

Virtual World Real World
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• A short textual description of the functionality, 

• A device function number if applicable, and  

• The relationship between LNs and functions [84].  

 
IEC 61850 decouples applications to design them independently from the 

communication theory so that they can communicate making use of different 

communication protocols. Hence, LNs are simply the functional models of real devices. 

Different protection, control and monitoring functions in SASs are constructed by 

gathering multiple instances of different LNs [82]. Figure 3.3 shows an example case 

[90], an over-current protection function, being realised by the partnership of four LNs.  

           Physical Device

XCBR

TCTR

PIOC

CSWI

current
transformer

circuit
breaker

 
 

  Figure 3.3 A simple protection and measurement example    

 
When the current measured by the current transformer (TCTR) exceeds an acceptable 

limit, it will be detected by PIOC. Once CSWI is signalled about the sudden increase, it 

will activate XCBR that closes the high voltage switch [90].           

  
3.3.1.1 Modelling Logical Nodes 
 
 
Each LN can be thought of as an object with attributes and operations. Every object is 

an instance of a class, which describes the properties and behaviour of that object. 

Therefore for every object type, there needs to be a defined class model. Part 7-2 

XCBR: circuit breaker 
PIOC: instantaneous overcurrent device 
CSWI: switch controller 
TCTR: current transformer 
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specifies the general definition of such a class model, the LN class model shown in 

Figure 3.4, which is simply a template for the creation of LN objects [85]. 

Trial Version   EA 5.0 Unregiste

Trial Version   EA 5.0 Unregiste

Trial Version   EA 5.0 Unregiste

Trial Version   EA 5.0 Unregiste

LOGICAL_NODE

+ LNName:  CosNaming::NameComponent
+ LNRef:  char [1..255] ([255])
+ Data:  DATA*
+ DataSet:  DATA_SET*
+ BufferedReportControlBlock:  BRCB_Class*
+ UnbufferedReportControlBlock:  URCB_Class*
+ LogControlBlock:  LCB_Class*

+ GetLogicalNodeDirectory() : void
+ GetAllDatavalues() : void**  

Figure 3.4 LN class diagram 

 
The LN class is a composition of a number of attributes that describe the characteristics 

of the LN objects. These attributes not only include data that contain the information 

required by a specific function but also various control blocks, data sets and others as 

shown in Figure 3.4. All LN objects created with the above template are referred to as 

Domain Logical Nodes (DLNs) and are divided into 12 groups. There are an overall 

number of about 90 DLNs. Nevertheless, two specific infrastructure LNs have been 

defined in IEC 61850, which are the Physical Device Logical Node (LPHD) and the 

Logical Node Zero (LLNO). LPHD is used for accessing hardware related data of an 

IED, whereas LLNO is used for accessing Logical Device (LD) related data of an IED 

[92]. In addition to inheriting all the attributes and operations of the LN class, LLNO 

can also include:  

 
• A Setting-Group-Control-Block (SGCB),  

• A Log, 

•  GOOSE-Control-Blocks (GoCBs),  

• GSSE-Control-Blocks (GsCBs),  
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• Multicast-Sampled-Value-Control-Blocks (MSVCBs), and 

• Unicast-Sampled-Value-Control-Blocks (USVCBs). 

 
ACSI allows the attributes of the LN and LLNO class models to be expressed as classes 

as well. Figure 3.5 shows a conceptual class model illustrating the several types of 

relations that exist between these classes.   

 
 

Figure 3.5 Conceptual class models showing the LN and LLNO classes and their 
attributes 

 
One of the main elements used in the conceptual class model of Figure 3.5 is the 

composition aggregation (black diamond) indicating that the LN class is composed of 

one-to-many Data classes. Associations are the straight lines connecting classes. Figure 

3.5 shows the LN class to be associated with four other classes signifying the possibility 

that it might be composed of zero-to-many Buffered-Report-Control-Blocks (BRCBs), 

Unbuffered-Report-Control-Blocks (URCBs), Log-Control-Blocks (LCBs) and 

DataSets. Composition aggregation was not used in this case since the LN class does 

not necessarily need to include any of these classes.  

 
LLNO is a specialisation of the LN class (depicted with a hollow arrow) inheriting all 

the attributes, operations and associations of the LN class. It is also associated to six 
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other classes with the possibility of containing zero-to-many of each one of the class 

types.      

 
3.3.1.2 Implementing the Logical Node class  
 
 
In this section, the software implementation of the LN class model is described. The 

software used for the construction phase is Visual C++ [101], which is an application 

development tool developed by Microsoft for C++ programmers. It is also possible to 

generate such code directly from the class diagram making use of tools such as Rational 

Rose [102]. Figure 3.6 shows the C++ class definitions of the LN and LLNO models. 

From this point onwards, the C++ class definitions of all the models described in this 

thesis will be listed in Appendix A.  

  

 

 

 

 

 

 
 

Figure 3.6 LN and LLNO class definitions 
 

 
All attributes of the LN and LLNO classes, except for the Logical Node Name 

(LNName) and Logical Node Reference (LNRef), are also modelled as classes. The 

LNRef attribute, a string up to 255 characters long, is the unique path-name of a LN. 

The LNName attribute, on the other hand, identifies a LN within the scope of a LD. 

Table 3.1 depicts an example where the LNName of a LN, which implements the 

class Logical_Node 
 
{      
       public: 
 

CosNaming::NameComponent LNName; 
char LNRef[255]; 
Data *Data;  
URCB *UnbufferedReportControlBlock; 
LCB *LogControlBlock; 
DataSet *DataSet; 
BRCB *BufferedReportControlBlock; 
 
void GetLogicalNodeDirectory (); 
void** GetAllDatavalues (); 

}; 

class LLNO : public Logical_Node 
 
{      
        public: 

 
GsCB *GSSEControlBlock; 
GoCB *GOOSEControlBlock; 
SGCB *SettingGroupControlBlock; 
MSVCB *MulticastSampledValueControlBlock; 
USVCB *UnicastSampledValueControlBlock; 
Log *Log; 

 
}; 
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functionality of a circuit switch, is ‘XSWI1’. The LNRef of the same LN becomes 

‘Melbourne_HV1/XSWI1’. The general format for the LNRef is ‘LDName/LNName’.   

 
Object Names (ObjectNames), commonly called Instance Names (InstanceNames), are 

the unique names given to instances of a class. Object References (ObjectReferences) 

are constructed by the concatenation of all the ObjectNames comprising the whole path-

name of an instance identifying the instance uniquely [85].     

Table 3.1 ObjectNames of LNs and LDs 
 

 Logical Device Logical Node 

Object Name Melbourne_HV1 XSWI1 
Description High voltage station 1 Circuit switch 1 

 

The operations in a class describe the services it offers. Thus, they could be seen as an 

interface to the class [99]. The LN class offers two services that are also inherited by the 

LLNO. These are the GetLogicalNodeDirectory and GetAllDataValues services [84-

85]. In ACSI, only the abstract definitions of the services are provided. Their 

descriptions along with their input/output parameters are given without any discussion 

on the implementation aspects of these services. This is due to the fact that in IEC 

61850, object models and services are not intended to be implemented directly but 

mapped onto an existing real communication stack that provides useable data models 

and services. Yet one of the key intentions in this study is to transform IEC 61850 into a 

real protocol eliminating the need for the mapping process. Hence, the services offered 

by the ACSI object models also required to be implemented along with the data models. 

In this thesis, flowcharts [103] have been used to describe the operation of the services. 

Services are referred to as functions or routines in some parts of this thesis.  
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3.3.1.2.1 GetLogicalNodeDirectory Service  
 
 
Clients use this service to get the ObjectNames of all the instances contained within a 

LN. The input/output parameters for this service are shown in Table 3.2 [85]. The 

descriptions of input and output parameters of all services covered in this thesis are 

provided in Appendix B. 

Table 3.2 Parameters of the GetLogicalNodeDirectory service 
 

 
 
Figure 3.7 shows the flowchart diagram of the GetLogicalNodeDirectory service. The 

GetLogicalNodeDirectory service starts by declaring and initialising local variables 

used throughout the program. If the LNReference parameter is not correctly assigned 

with a string, the service exits with an appropriate service error message. Otherwise, it 

moves on to search the LD list of the current server to locate the LD specified in the 

LNReference. As described earlier, the LNReference consists of two parts: LNName 

and LDName. The service runs through the LD list comparing each member’s name 

with the LDName specified by the LNReference. If the end of the LD list is reached 

without the target being located, the service exits with another appropriate service error 

message. Otherwise, it advances to search the LN list of the recently located LD to find 

the LN specified by the LNReference. Next, the ACSIClass input parameter is evaluated 

to determine the ACSI class type for which ObjectNames need to be returned. The 

ObjectNames of all the matching instances are copied to the InstanceName [0...n] return 

parameter. 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

LNReference InstanceName[0...n] 
ACSIClass Response+ 

Response- 
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START

Declare and initialize all variables
found = false, i = 0 , j =0

 LNReference
 == NULL

Response -
(LNReference can

not be NULL)

END

While (found
== false)

If (The end of
Servers' s

LD list reached)

F

T

If(LDName of LD [i]
== LDName)

found = true

T

F

While (found
== false)

If(The end of LD' s
LN list reached)

F

T

If(LNName of LN [j]
== LNName)

found = true

T

F

T

F

  If(ACSIClass ==
DATA)

InstanceName[0..n] =
DataNames[0..n]

 If(ACSIClass ==
DATA_SET)

InstanceName[0..n] =
DataSetNames[0..n]

T T

F If(ACSIClass ==
...........)

InstanceName[0..n]  =
........Names[0..n]

F

T

Split LNReference into two : LDName
and LNName

Response -
(LD can not be

found)

T

i ++

found = false

j ++

Response -
(LN can not be

found)

END

END

F

T

END

Response +
(Service Request

Succeed)

F

 If (A valid
ACSIClass

specification)

T

Response -
(ACSIClass
incorrectly
specified)

F

 

    Figure 3.7 Flowchart diagram of the GetLogicalNodeDirectory service 
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3.3.1.2.2 GetAllDataValues Service  
 
 
Clients use this service to retrieve the data attribute values (DataAttributeValues) of all 

data contained within a LN. Table 3.3 shows the input/output parameters for this service 

[85]. Figure 3.8 shows the flowchart diagram of the GetAllDataValues service.  

Table 3.3 Parameters of the GetAllDataValues of the service 
 

 
 

END

  If (An acceptable
FC specified) F

T

While (Not
the end LN Data

list)

move pointer to
Data[k]

While (Not
the end Data[k]'s

DataAttribute
list)

DataAttributeReference [index]  = ObjectReference of DataAttribute [z]
DataAttributeValue [index]  = Value of DataAttribute [z]
index = index +1

z= z+1

T

T

k =k+1

F

Response + Service
Request Succeed

F

If (FC of
DataAttribute[z]
== request FC)

T

F

Response -
( FC incorrectly

specified)

 
 

Figure 3.8 Flowchart diagram of the GetAllDataValues service 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

LNReference LNReference 
FunctionalConstraint [0..1] DataAttributeReference[1...n] 

Response- 

 DataAttributeValue [1...n]  
 Response+  
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The initial parts of the GetAllDataValues service, where the local variables are declared 

and LNReference parameter is verified, are exactly the same as the previous service. 

Hence, they have been excluded in the flowchart of Figure 3.8. Once the target LD and 

LN are located, the service searches all DataAttributes within the data members of the 

target LN and filters out the ones that have a Functional Constraint (FC) value matching 

the value of the FC received in the request. ObjectReferences and values of the filtered 

DataAttributes are copied to the return parameters.  

 
3.3.2 Data   
 
 
Data and LNs are the most important concepts used to describe real time system and 

their functions. LNs are containers of data that represent meaningful and exchangeable 

application specific information. Each LN builds up a specific functionality by grouping 

several Data classes [84]. For example, the XCBR LN implements the functionality of a 

circuit breaker by grouping a total number of sixteen Data classes as shown in Figure 

3.9. IEC 61850-7-4 defines a total number of some 500 Data classes usually referred to 

as Compatible Data Classes (CDCs). 

 
XCBR

Mod Beh Health

CBOpCap

SumSwARa

ChMotEna

MaxOpCap

BlkOpen

Pos OpCnt

EENameEEHealth

Loc

NamPlt

POWCap BlkCls

 
 

       Figure 3.9 Data Classes of the XCBR LN 
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In addition to representing application specific information, the data also builds the 

basis of most information exchange over the network interacting with the environment 

through services. This is depicted in Figure 3.10, which shows services that operate on 

data. Some of the services shown in Figure 3.10 are the Data class assigned services 

while others are the services of various other ACSI models that operate on data. Control 

and substitution services fall into this category. A control service is used to group data 

into data sets for reporting or logging purposes and a substitution service is used for 

replacing values of DataAttributes contained in data. Get/Set and Dir/Definition are the 

Data class assigned services used for reading/writing data values and retrieving 

directory/definition information of a particular data instance [84-85].       

Logical Node

Data Set

Data

 Response          Control

 Response         Get/Set

 Response   Substitution

 Response Dir/Definition

Report

Log

 
 

       Figure 3.10 Services operating on data 

 
3.3.2.1 Modelling Data and Data Attributes   
 
 
The Data class represents meaningful information of applications located in automation 

devices. Figure 3.11 shows the conceptual class model of the Data class illustrating the 

inheritance and relations between the Data class and its building blocks. The Data class 

includes the DataName, DataRef and Presence attributes. The DataName attribute 

defines the InstanceName of a data object whereas the DataRef attribute is the unique 
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path-name of a data object. The Boolean type Presence attribute states if the data object 

is mandatory or optional. The Data class is also a composition of Simple Common Data 

Classes (SimpleCDCs), Composite Common Data Classes (CompositeCDCs) and data 

attributes (DataAttributes) as shown in Figure 3.11. Each data may be a composition of 

zero or more instances of CompositeCDCs, SimpleCDCs or DataAttributes. However, it 

must contain at least one of these elements [82, 85].   

 
 

     Figure 3.11 Data conceptual class model 

 
The relationship between the Data and DataAttribute classes is the easiest to explain. A 

composition aggregation exists between these simply indicating that each instance of 

the Data class can be a composition of zero-to-many DataAttributes. Composition 

aggregation is used in this case since in the absence of CompositeCDCs and 

SimpleCDCs, the data object must have at least one DataAttribute.  

 
The relationship between CompositeCDCs and the Data class is rather confusing. Each 

CompositeCDC is a specialisation of the Data class indicated by the solid line with a 

hollow triangle at the end. A specialisation is a relationship between the more general 

element and a more specific element. In this case, the CompositeCDC happens to be the 
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more specific element that is fully consistent with the more general element (Data) 

containing additional information. The structure of the Data class is recursive since 

CompositeCDCs are also of type Data class. However, the number of levels of recursion 

of CompositeCDCs is usually limited to 1. SimpleCDCs are of type CommonData, 

which is a subclass of the Data class. This subclass relationship was once gain indicated 

by the solid line with a hollow triangle connecting the SimpleCDC and Data classes.  

 
The Data and CommonData class models can be defined as shown in Figures 3.12 and 

3.13 respectively. Although the Data class diagram shows the possibility of including 

zero-to-many CompositeCDCs, in practice this is limited to only 1 [85]. Part 7-3 lists a 

total number of 29 CDCs [86].  Examples are: Single Point Status (SPS) and Measured 

Value (MV).    
 

stered Trial Version   EA 5.0 U

stered Trial Version   EA 5.0 U

stered Trial Version   EA 5.0 U

stered Trial Version   EA 5.0 U

DATA

+ DataName:  CosNaming::NameComponent
+ DataRef:  char [1..255] ([255])
+ Presence:  bool
+ Data_att:  DataAttribute*
+ CompositeCDC:  DATA*
+ SimpleCDC:  COMMON_DATA*

+ GetDataValues() : void**
+ SetDataValues() : void
+ GetDataDirectory() : void
+ GetDataDefinition() : void  

Figure 3.12 Data class diagram 
 

tered Trial Version   EA 5.0 U

tered Trial Version   EA 5.0 U

tered Trial Version EA 5 0 U

DATA
COMMON_DATA

+ DataName:  CosNaming::NameComponent
+ DataRef:  char [1..255] ([255])
+ Data_att:  DataAttribute*
+ Presence:  bool

 

Figure 3.13 CommonData class diagram 
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Figure 3.14 shows the conceptual model of the DataAttribute struct illustrating the 

inheritance and relationships between the DataAttribute struct and its building blocks. 

Each DataAttribute has a DataAttributeType, a Functional Constraint (FC) and zero-to-

many Trigger Options (TrgOps) as shown in Figure 3.14. DataAttributes are used for a 

broad range of purposes; for example, for measurement indication, for controlling 

purposes and for reporting. The FC is used to classify DataAttributes according to their 

specific area of use. ACSI defines 18 FCs that can be used for this purpose. For 

instance, “ST” is used for DataAttributes that represent status information whilst “MX” 

is used for DataAttributes that represent measurement information. TrgOps, of type 

TriggerConditions, are used to indicate the trigger conditions related to a DataAttribute 

that may cause the transmission of a report or a new log entry into a log. There are 3 

trigger conditions defined in ACSI for DataAttributes. They are the data-change (dchg); 

quality-change (qchg) and data-value-update (dupd) trigger conditions [85].  

 
A specific data type, the DAType, has been defined as the data type of the 

DataAttributeType attribute. The DAType is also a class with a number of attributes. 

Figure 3.14 also shows the detailed conceptual class diagram of the DAType class. The 

DATName attribute identifies a DAType object within the scope of a DataAttribute 

whereas the DATRef attribute is the pathname of the DAType object. The Boolean type 

Presence attribute indicates whether the DataAttribute is compulsory or optional. As 

demonstrated in the conceptual class diagram of Figure 3.14, the DAType class may 

contain either a single Primitive Component (PrmCmp) or zero-to-many Composite 

Components (CmpCmps). The structure of the DAType class is recursive as well since 

CmpCmps are of type DAType. Therefore, DataAttributes can be nested, as shown in 

Figure 3.15, with the number of levels of nesting being normally no greater than 3 [85].    
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Figure 3.14 DAType conceptual class model 
 

DATA Instance

DataAttribute1 DataAttribute2

PrCmp

CmpCmp2CmpCmp1

PrCmp

CmpCmp2CmpCmp1

PrCmpPrCmp

Level 1

Level 2

Level 3

 

Figure 3.15 Nested DataAttributes 

 
PrmCmps have primitive data types such as BOOLEAN, INT8, FLOAT32 or VISIBLE 

STRING. On the contrary, CmpCmps have complex data types constructed from 

primitive data types (BasicTypes). The structure of the complex data types can get 

extremely compound due to the recursive property of the DAType class. As illustrated 

in Figure 3.15, each CmpCmp can further be a composition of a number of CmpCmps 

each having either a primitive type or a complex type (further nesting). However, the 
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number of levels of recursion of CmpCmps is generally no greater than 2. The identical 

recursive property is also experienced when constructing Functionally Constraint Data 

Attribute Types (FCDATypes). The DATypes of first level DataAttributes are often 

called FCDATypes, which are created from primitive and complex data types as shown 

in Figure 3.16. In ACSI, complex data types are defined either as Common ACSI Types 

in Part 7-4 [87] or as Common Data Attribute Types in Part 7-3 [86].      

 

 

Figure 3.16 FCDAType conceptual class model 

 
Figure 3.17 depicts an excerpt of a data instance contained in the XCBR1. The XCBR1 

LN instance (instantiated from XCBR) is composed of ‘Pos’, which is an instantiation 

of the Controllable Double Point (DPC) CDC. The ‘Pos’ Data class is used to represent 

switch status or position and contains the DataAttribute ‘q’. The DataAttribute ‘q’ 

includes information on the quality of the information received from the server. It 

comprises the CompositeComponent ‘detail-qual’, a bit string containing quality 

identifiers. ‘Overflow’ is one of these identifiers. The DataAttribute ‘q’ has the FC 

value of “ST” (status) and the TrgOp value of “qchg” (quality change).  
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XCBR1

              XCBR1.Pos.q.detail-qual                 BitString

             XCBR1.Pos.q                               Quality [ST] [qchg]

XCBR1.Pos

              XCBR1.Pos.q.detail-qual.overflow                Bit

Compatible LN Class

Composite CommonData Class

CompositeComponent

CompositeComponent

PrimitiveComponent

XCBR

DPC

Basic TypeCommon DataAttribute type

Instances Classes/types

LN Instance

Compatible Data Class

DataAttribute

DataAttributeComponent  
 

Figure 3.17 Example of a data instance 

 
3.3.2.2 Implementing Data and Data Attributes   
 

The C++ definitions of the DataAttribute struct and the DAType class model are 

included in Appendix A. The FC type was implemented as an enumeration that contains 

all of the 18 possible FC values. The TriggerConditions type was implemented as a 

struct with all trigger conditions as its members. The C++ definitions of the Data and 

CommonData class models can also be viewed in Appendix A. The Data class offers 

four services that are also inherited by the CommonData class [85].  

3.3.2.2.1 GetDataDirectory Service 
 
 
Clients use this service to retrieve the DataAttributeNames of all DataAttributes 

contained within the referenced data. Table 3.4 shows input/output parameters for this 

service [85]. Figure 3.18 shows the flowchart diagram of the GetDataDirectory service 

Table 3.4 Parameters of the GetDataDirectory service 
 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

DataAttributeName[0...n] 
DataReference 

Response+ 
Response- 
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Find target LD using LDNameand LN using LNName

Split DataReference into three strings : LDName,
LNName and DataName

While (found
== false)

    If (The end of LN' s
DataList reached)

F

T

     If (The
DataName of Data [z]

== DataName)

found = true

T

T

F

END

F

While(The end of Data
[z][0] 's DataAttributeList

not reached)

DataAttributeName[index] =
DatName of the DataAttribute[k]

k++, index++

Response +
(Service Request

Succeed)

T

F

Response -
(Data can not

be found)
z++

While (The end of Data
[z][0] SimpleCDCList not

reached)

T

F

While(The end of
SimpleCDC [m] 's

DataAttributeList not
reached)

DataAttributeName[index] =
DatName of the DataAttribute[k]

k++, index++

T

F

m++

k = 1

 

 

 

Figure 3.18 Flowchart diagram of the GetDataDirectory service 

 
The service splits the DataReference input parameter received in the request into three 

strings: LDName, LNName and DataName. After the target LD and LN are located as 

described in detail in the previous flowcharts, the program continues by searching the 

target LN’s data list in order to find a matching data member. The DataNames of all 

members are compared one by one with the desired DataName and if a match is found 

before the end of LN’s data list is reached then the service jumps to the next stage. By 

this stage, the pointed member will be: LD[i].LN[j].Data[z] 
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The Data [z] itself does not contain any DataAttributes or SimpleCDCs. All attributes 

and SimpleCDCs are included within the CompositeCDC component of Data [z]. 

Considering this rule, the service jumps directly to the member: LD [i].LN [j].Data 

[z].CompositeCDC [0], which will be referred to as Data [z] [0] in this thesis for 

simplicity. The final stage includes two tasks. First the possibility of the presence of any 

SimpleCDCs has to be considered, which is carried out by processing the Data [z] [0]’s 

SimpleCDC list and copying the DatNames of all first level DataAttributes to the return 

parameter. Similarly, the Data [z] [0]’s DataAttribute list is also processed and 

DatNames of all first level DataAttributes are copied to the return parameter.  

3.3.2.2.2 GetDataDefinition Service 
 

Clients use this service to retrieve the definitions of all DataAttributes contained within 

the referenced data. Table 3.5 shows the input/output parameters for this service [85].  

Table 3.5 Parameters of the GetDataDefinition service 
 

 

3.3.2.2.3 GetDataValues Service 
 
 
Clients use this service to retrieve the values of DataAttributes contained within the 

referenced data. Table 3.6 shows the output parameters for this service [85]. Figures 

3.19 and 3.20 show the flowchart diagrams of the GetDataValues service.  

Table 3.6 Parameters of the GetDataValues service 
 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

DataAttributeDefinition[0...n] 
DataReference 

Response+ 
Response- 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

DataAttributeValue[1...n] 
FCDA 

Response+ 
Response- 
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START

Declare and
 initialize all variables

FCDA
 == NULL

Response -
( FCDA

can not be
 NULL)

Find target  LD, LN ,and Data

Seperate FCDA into 8 strings :  FC, LDName,
 LNName, DataName,SimpleCDCName
DataAttributeName, CompositeDataAttributeName,
CompositeCompositeDataAttributeName

While (The end of
Data[z][0]'s

DataAttributeList not
reached)

 if (DatName of
DataAttribute [k] ==
DataAttributeName)

found = true

Response -
(DataAttribute can

not be found)

 if (DataAttribute
CompositeName

== NULL)

k ++

DataAttributeValue
[0] = Value of the
DataAttribute[k]

Response -
(FC incorrectly

Specified)
 if (FC of

DataAttribute [k] ==
Target FC

While (The end of
DataAttribute[k]'s

Composite
DataAttributeList

not reached)

l ++

 if (DAComponentName of
Composite DataAttribute [l] ==
CompositeDataAttributeName)

found = true

    if (
  CompositeCompositeDataAttribute

Name == NULL)

DataAttributeValue
[0] = Value of the

Composite
DataAttribute[l]

Response -
(FC incorrectly

Specified)

if (FC of
Composite

DataAttribute [l] ==
Target FC

While (The end of Composite
DataAttribute[l]'s Composite

DataAttributeList not reached)

m ++

 if (DAComponentName of
CompositeComposite DataAttribute

[m] ==  CompositeComposite
DataAttributeName)

found = true

if (FC of
CompositeComposite
DataAttribute [m] ==

Target FC

DataAttributeValue
[0] = Value of the

CompositeComposit
e DataAttribute[m]

Response -
(FC incorrectly

specified)

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Response -
(Composite

DataAttribute can
not be found)

N

N

N

N

N

N

N

N

N

N

N

Response -
(Composite
Composite
DataAttribute
can not be
found)

N

While (The end of
Data[z][0]'s

SimpleCDCList not
reached)

 if (DataName of
SimpleCDC [p] ==
SimpleCDCName)

p ++

Y

N

SimpleCDCfound
= true

Y

SECOND
FLOWCHART

N

Y

 

Figure 3.19 Flowchart diagram of the GetDataValues service 
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Once the target LD, LN and data are located, the target Data [z] [0]’s SimpleCDC list is 

processed comparing the DataName of every member to the desired SimpleCDCName. 

If a match is not found, the service moves on to locate a matching DataAttribute [k] in 

the Data [z] [0]’s DataAttribute list. If a matching DataAttribute [k] is found, the service 

determines whether a first, second, or third level data attribute is searched for by 

validating the values of the CompositeDataAttributeName (CDAN) and 

CompositeCompositeDataAttributeName (CCDAN).  

While (The end of
SimpleCDC[p]'s

DataAttributeList not
reached)

 if (DatName of
DataAttribute [k] ==
DataAttributeName)

found = true

Response -
(DataAttribute can

not be found)

 if (DataAttribute
CompositeName

== NULL)

k ++

DataAttributeValue
[0] = Value of the
DataAttribute[k]

Response -
(FC Incorrectly

Specified)

 if (FC of
DataAttribute [k] ==

Target FC

  While (The end of
DataAttribute[k]'s

Composite
DataAttributeList

not reached)

if (FC of
CompositeComposite
DataAttribute [m] ==

Target FC

DataAttributeValue
[0] = Value of the

CompositeComposit
e DataAttribute[m]

Response -
(FC incorrectly

Specified)

Y

Y

Y

Y

Y

Response -
(Composite

DataAttribute can
not be found)

N

N

N

N

N

N

Y

l ++

found = true

    if (
  CompositeCompositeDataAttribute

Name == NULL)

DataAttributeValue
[0] = Value of the

Composite
DataAttribute[l]

Response -
(FC incorrectly

Specified)
if (FC of

Composite
DataAttribute [l] ==

Target FC

While (The end of Composite
DataAttribute[l]'s Composite

DataAttributeList not reached)

m ++

 if (DAComponentName of
CompositeComposite DataAttribute

[m] ==  CompositeComposite
DataAttributeName)

found = true

Y

Y

Y

Y

Y

N

N

N

N

Response -
(Composite
Composite
DataAttribute
can not be
found)

 if (DAComponentName of
Composite DataAttribute [l] ==
CompositeDataAttributeName)

N

 

Figure 3.20 Continued flowchart diagram of the GetDataValues service 
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After the service determines how many levels to advance, it progresses that many levels 

and locates the DataAttribute comparing its FC value with the value of the FC specified 

in the FCDA. If they are the same, it copies the value of the DataAttribute to the return 

parameter. The program of GetDataValues service steps into the code illustrated by the 

flowchart of Figure 3.20 only if a matching SimpleCDC [p] entry was found earlier.  

3.3.2.2.4 SetDataValues Service 
 
 
Clients use this service to set the values of the DataAttributes contained within the 

referenced data. Table 3.7 shows the input/output parameters for this service [85]. 

Table 3.7 Parameters of the SetDataValues service 
 

 
 
This service involves setting the value of the DataAttribute specified in the FCDA 

making use of the value of the input parameter (DataAttributeValue [0]). Such as: 

 
Value of DataAttribute [k] = DataAttributeValue [0] 

Value of CompositeDataAttribute [l] = DataAttributeValue [0] 

Value of CompositeCompositeDataAttribute [m] = DataAttributeValue [0] 

 
3.3.3 Data Sets   
 
 
The DataSet class model is used to initiate data set (DataSet) objects that hold the 

ObjectReferences of DataAttributes in an organised manner as shown in Figure 3.21. 

The use of DataSets brings ease to the client as the current values of data and 

DataAttributes referenced in each DataSet can be retrieved without difficulty as long as 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

FCDA 
DataAttributeValue[1...n] Response+ Response- 
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membership and order of ObjectReferences is known both to the client and the server. 

Besides being as a safe and quick means of retrieving data and DataAttribute values, 

DataSets are also used by the control models such as reporting and logging [84 -85].  
 

 
 

Figure 3.21 DataSet members 

 
3.3.3.1 Modelling and Implementing Data Sets 
 
 
Figure 3.22 shows the DataSet class diagram, which is based on the DataSet class 

definition provided in Part 7-2. Unlike the Object Models (OM) described earlier, 

DataSets contain only simple attributes. The DSName attribute identifies a DataSet 

within the scope of a LN while the DSRef attribute represents the unique path-name of 

the DataSet object. The attribute DSMemberRef holds the ordered ObjectReferences of 

data and DataAttributes. The C++ definition of the DataSet class model is included in 

Appendix A as well. Other than the attributes, the DataSet class model supports five 

services that can be used by the clients to perform DataSet related operations.  

 
 

 

 
 
 
 
 
 
 

Figure 3.22 DataSet class diagram 

DataSet  
  
LDName/XCBR1.Pos.ctlVal 
LDName/XCBR1.Pos.stlVal 
LDName/XCBR1.Pos.q 
LDName/XCBR1.Pos.operTim 
LDName/XCBR1.Pos.t 
……………….

cd Use Case View
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EA 5.0 Unregistered Trial Version   EA 5.0 Unregistered Trial Version   
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EA 5.0 Unregistered Trial Version   EA 5.0 Unregistered Trial Version   
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EA 5.0 Unregistered Trial Version   EA 5.0 Unregistered Trial Version   

DATA_SET

+ DSName:  CosNaming::NameComponent
+ DSRef:  char [1..255] ([255])
+ DSMemberRef:  char**

+ CreateDataSet(char*, char**, char**, char**) : void
+ DeleteDataSet(char*, char**, char**) : void
+ GetDataSetDirectory(char*, char**, char**, char**) : void
+ SetDataSetValues(char*, void**, char**, char**) : void
+ GetDataSetValues(char*, void**, char**, char**) : void
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3.3.3.1.1 CreateDataSet Service 
 
 
Clients can use this service to request servers to create DataSets or configure DataSets. 

The input/output parameters for this service are shown in Table 3.8 [85]. Figure 3.23 

shows the flowchart diagram of the CreateDataSet service.          

Table 3.8 Parameters of the CreateDataSet service 
 

 

END

T

T

F

T

F

Any DataSets previously
created for

this LN

create a new
DataSet for this

LN

While(found1 == false )

if (DSRef of DataSet[k]
== DataSetReference )

found1 = true

DSMemberRef of DataSet [k] = DSMemRef

DSName of DataSet[k] = DataSetName
DSRef of DataSet[k] = DataSetReference
DSMemberRef of DataSet[k] = DSMemRef

k ++ if (The end of this LN's
DataSetList reached)

T

F

Response +
(DSMemberReference

has been updated)

Response +
(A new DataSet

created)

 
 

Figure 3.23 Flowchart diagram of the CreateDataSet service 

 
If DataSets have not been previously created for the current LN, then a new DataSet 

with the index of “zero” is created and its attributes are set. Otherwise, the DataSet is 

created with the smallest available index.        

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

DataSetReference 
DSMemRef [1…n] 

Response+ Response- 
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3.3.3.1.2 DeleteDataSet Service 
 
 
Clients can use this service to request servers to delete a DataSet. The input/output 

parameters for this service are shown in Table 3.9 [85]. Figure 3.24 shows the flowchart 

diagram of the DeleteDataSet service. 

Table 3.9 Parameters of the DeleteDataSet service 
 

 

END

T

F

 if (The end of this LN 's
DataSetList reached)

 if (DSRef of DataSet[k]
== DataSetReference )

k ++

Response -
(DataSet can not be

found)

F

found = true
break

TWhile (The end of
 this LN's DataSetList not

reached)

DataSet[k] = DataSet[k+1]

Response +
(Service Request

Succeed)

T

While (found == false)

k ++

F

T

 
 

Figure 3.24 Flowchart diagram of the DeleteDataSet service 

 

3.3.3.1.3 SetDataSetValues Service 
 

Clients can use this service to set the values of all referenced DataAttributes contained 

within the DataSet. Table 3.10 shows the input/output parameters for this service [85].  

Table 3.10 Parameters of the SetDataSetValues service 
 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

DataSetReference Response+ Response- 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

DataSetReference 
DataAttributeValue [1…n] 

Response+ Response- 
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Figure 3.25 shows the flowchart diagram of the SetDataSetValues service. After the 

DataSet [k] referenced by the DataSetReference is located, the service copies current 

values of all the DataAttributes referenced by the DSMemberRef attribute of the 

DataSet [k] to a dummy variable (OldDataValues [1...n]) for later use in the control 

blocks. After this is accomplished, the service changes the values of all DataAttributes 

to the new values contained within the DataAttributeValue [1...n] input parameter. 

found = true
break

T

F

z ++

while (The end of DataSet[k] ' s
DSMemberList not reached )

T

OldDataValues [z] = Value of the DataAttribute
referenced by DSMemberRef [z]

z ++

while (The end of DataSet[k] ' s
DSMemberList not reached )

T

Value of the DataAttribute referenced  by
DSMemberRef [z] = DataAttributeValue[z]

z = 0

F

 

Figure 3.25 Flowchart diagram of the SetDataSetValues service 

 

3.3.3.1.4 GetDataSetValues Service 
 

Clients can use this service to get the values of all DataAttributes contained within the 

referenced DataSet. Table 3.11 shows the input/output parameters for this service [85]. 

Table 3.11 Parameters of the GetDataSetValues service 
 

 
 
The flowchart diagram of the GetDataSetValues service is similar to the flowchart 

diagram shown in Figure 3.25 except that in the final stage, the values of the 

DataAttributes referenced by the DSMemberRef [1...n] attribute of the DataSet are 

copied to the return parameter (DataAttributeValue [1...n]).  

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

DataAttributeValue [1…n] 
DataSetReference 

Response+ 
Response- 
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3.3.3.1.5 GetDataSetDirectory Service 
 
 
Clients can use this service to retrieve the list of the ObjectReferences of all data and 

DataAttributes referenced by the DSMemberRef [1...n] attribute of the referenced 

DataSet. The input/output parameters for this service are shown in Table 3.12 [85].  

Table 3.12 Parameters of the GetDataSetDirectory service 
 

 
 

3.3.4 Reporting and logging   
 

The internal events called DataObjects, grouped by DataSets as shown in Figure 3.26, 

form the basis for reporting and logging. 
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Figure 3.26 Reporting and logging model 
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Logging makes it possible to store data for future enquiries. Logs are used to store data 

values in the form of log entries.The logging model is composed of four building 

blocks, which are the: event monitor, log handler, log control and log. The event 

monitor checks the values and state of the DataAttributes and data referenced within a 

specified DataSet and determines the time when to inform the log handler of the 

occurrence of an internal event. A filtering mechanism within the log handler is used to 

reduce the amount of data to be stored in a log based on pre-configured conditions. The 

log handler carries out the task of formatting data values as log entries storing them into 

the log. Finally, the log control block is used to set/get log control attributes, which 

control the operation of the log handler and event monitor [84-85].  

 
Reporting enables a LN to transfer values of data to a client either immediately or after 

some buffer time. The operation of the reporting model is quite similar to the one of the 

logging model. The report control block is used to set or read the attribute values that 

control the operation of the event monitor and report handler. Event monitor observes 

the values and state of the DataAttributes and data informing the report handler when 

changes occur. The report handler formats the data values into a report structure and 

decides when to forward the report to the subscribed client. The report may be 

transferred immediately or after being buffered for a while. Similarly, a filtering 

mechanism within the report handler reduces the amount of data to be reported [84-85].  

 
3.3.4.1 Reporting    
 

The principle condition for report generation is the changes or updates in the values of 

the member DataAttributes of a particular DataSet. Three types of changes, which are 

also referred to as attribute TrgOps, can be expected. They are the: 
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(1) Data-change: a change in a value of a DataAttribute representing process-related 

data is referred to as data-change. The data-change trigger option (TrgOp = 

dchg) signifies such a change. 

(2) Quality-change: a change in a quality value of a DataAttribute is called quality-

change (TrgOp= qchg). 

(3) Data-update: a freeze event in a value of a DataAttribute is called data-update 

(TrgOp= dupd). A change or update in a value of a DataAttribute with the same 

value as before represents a freeze event.  

 
As indicated in the previous section, a report control block is used for controlling the 

procedures necessary to transmit values of data and DataAttributes from a LN to a 

client. In Part 7-2, two types of report control blocks are defined. These are the: 

 
(1) Buffered Report Control Block (BRCB) – changes in the values of DataAttributes 

and data caused by trigger options data-change, quality-change and data-update issue 

immediate or buffered transmission of values. Buffering is useful when there is a loss of 

connection or the transport data flow is not fast enough to support the immediate 

transmission. The transmission of the values can be delayed to some practical limit by 

buffering and the report can be sent soon after the transmission media becomes 

available. Thus, the likelihood of values getting lost is fairly low [85].          

 
(2) Unbuffered Report Control Block (URCB) – changes in the values of DataAttributes 

and data caused by trigger options data-change, quality-change and data-update can 

only issue immediate transmission of values. The values may get lost if the transmission 

media cannot meet the transmission needs of the immediate transfer. The key advantage 

concerned with the URCB is that values are transmitted on a “best effort” service soon 
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after the event occurs without any delay [85]. It is hard to justify the need for URCB 

since an instance of a BRCB can simply be configured to perform the task of an URCB 

that is to issue immediate transmission of values. For this reason, in this study, only the 

BRCB class has been explored in detail. 

3.3.4.1.1 Modelling and Implementing the Buffered Report Control Block   
 

The BRCB class model is shown in Figure 3.27 [85]. Other than the attributes, the 

BRCB class model supports three services that can be used by the clients to perform 

BRCB related operations. The C++ definition of the BRCB class model can be found in 

Appendix A.  
g

on   EA 5.0 Unregistered Trial 

on   EA 5.0 Unregistered Trial 

on   EA 5.0 Unregistered Trial 

on   EA 5.0 Unregistered Trial 

on   EA 5.0 Unregistered Trial 

on   EA 5.0 Unregistered Trial 

EA 5 0 U i t d T i l

BRCB_Class

+ BRCBName:  CosNaming::NameComponent
+ BRCBRef:  char [1..255] ([255])
+ RptID:  char [1..65] ([65])
+ RptEna:  bool
+ DatSet:  char [1..255] ([255])
+ ConfRev:  unsigned _int32
+ OptFlds:  PACKET_LIST_BOOLEAN
+ BufTm:  unsigned _int32
+ SqNum:  unsigned _int64
+ TrgOp:  TriggerConditions
+ IntgPd:  unsigned _int32
+ PurgeBuf:  bool
+ EntryID:  bool
+ TimeOfEntry:  Time_Stamp
+ GI:  Time_Stamp

+ SetBRCBValues() : void
+ GetBRCBValues() : void
+ Report() : void  

       Figure 3.27 BRCB class diagram 

3.3.4.1.1.1 SetBRCBValues Service     
 
 
Clients can use this service to request servers to create BRCBs or configure BRCB 

attribute values. Table 3.13 shows the input/output parameters for this service [85]. 
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Table 3.13 Parameters of the SetBRCBValues service 
 

 

Figure 3.28 shows the flowchart diagram of the SetBRCBValues service.  

END

If (BRCBRef of BRCB[k] ==
BRCBReference )

k ++

F

found = true

T

If (ReportIdentifier == "NULL" )

ReportIdentifier = BRCBRef of BRCB[k]

Set all the attribute
values of the

BRCB according
to the input
parameters

Response +
(SetBRCBValues
Service Request

Succeed)

if (The end of this LN's
BRCBList reached)

F

T

F

If (ReportIdentifier == "NULL" )

ReportIdentifier = BRCBReference

Create a new BRCB for this LN
and then set all the attribute

values of the BRCB according
to the input parameters

T

F

T

Response +
(A new BRCB created)

 
 
 

Figure 3.28 Flowchart diagram of the SetBRCBValues service 
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SetBRCBValues service is quite similar to the previously described CreateDataSet 

service. Once the target LD and LN are located, the program searches the current LN’s 

BRCB list to determine whether a BRCB with the given BRCBReference has 

previously been created or not. If created before, its attributes are updated. Otherwise, it 

will first be created and then its attributes will be set according to the input parameters. 

In both cases, if a valid ReportIdentifier is not specified, it is set as the BRCBReference.     

3.3.4.1.1.2 GetBRCBValues Service     
 
 
Clients can use this service to retrieve the attribute values of the referenced BRCB. The 

input/output parameters for this service are shown in Table 3.14 [85]. 

Table 3.14 Parameters of the GetBRCBValues service 
 

 

3.3.4.1.1.3 Report Service     
 

The report service is used for sending the reports generated by the BRCBs to clients. In 

this project, the report service uses the mechanisms provided by the data delivery 

network middleware (discussed subsequently in Chapter 5) to accomplish this task. As 

soon as a report is generated, it will be forwarded to the appropriate client. Reports have 

the format shown in Figure 3.29.   

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

BRCBReference ReportIdentifier Response- 
FunctionalConstraint ReportEnable  

 DataSetReference  
 ConfigurationRevision  
 OptionalFields  
 BufferTime  
 SequenceNumber  
 TriggerConditionsEnabled  
 IntegrityPeriod  
 EntryIdentifier  
 Response+  
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RpdID
(VISIBLE STRING65)

OptFlds
(OptionalFields)

If sequence-number == TRUE

SubSqNum
(INT16U)

SqNum
(INT16U)

MoreSegmentsFollow
(BOOLEAN)

If dat-set-name == TRUE

DatSet
(ObjectReference)

If buffer-overflow == TRUE

ConfRev
(INT32U)

BufOvfl
(BOOLEAN)

Entry

If report-time-stamp == TRUE
&& entryID == TRUE

TimeofEntry
(TimeStamp)

EntryID
(OCTET STRING)

EntryData [1..n]

If data-reference == TRUE

DataRef
(ObjectReference)

Value
(*)

If reason-for-inclusion == TRUE

ReasonCode
(TriggerConditions)

 

Figure 3.29 Report format 

 
The report format specifies the information to be included in the report based on the 

OptFlds attribute of the BRCB. As pointed out earlier, the OptFlds attribute contains 

Boolean type sub-attributes that when set to TRUE indicate the specific fields to be 

included in the report. These specific fields are [85]: 

 
a) The RptID, which is the only field included in all cases, is derived from the 

respective attribute in the BRCB,  

b) The SqNum is also no different from the respective SqNum attribute of the 

BRCB. While the report is being generated, the SqNum attribute of the BRCB is 

copied to the SqNum field in the report. However, it is included in the report 

provided that sequence-number sub-attribute of the BRCB is set to TRUE. The 

inclusion of the SubSeqNum and MoreSegmentsFollow fields are also based on 
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the same condition. In some cases, long reports not fitting into a single message 

are divided into sub-reports sent individually. In such cases, the SubSeqNum 

field is used to denote the segment number of each sub-report. The 

MoreSegmentsFollow field is also related to this situation. When set to TRUE, it 

indicates that more report segments (sub-reports) should be expected, 

c) If the dat-set-name sub-attribute is set to TRUE, then the name of the DataSet 

being monitored by the BRCB also needs to be included within the report, 

d) The inclusion of the BufOvfl and ConfRev fields depend on the buffer-overflow 

and conf-revision conditions as shown in Figure 3.32. BufOvfl, when set to 

TRUE, indicates that a buffer overflow has occurred. ConfRev is derived from 

the respective attribute of the BRCB, and  

e) The most important field of the report is undoubtedly the Entry field, which 

consists of the real data (EntryData [1...n]) to be sent to the client. If the report-

time-stamp and entryID sub-attributes are both set to TRUE, the TimeofEntry 

and EntryID fields, copied from their respective attributes in the BRCB, are 

included at the beginning of the Entry field. Each EntryData contains the 

DataRef and Value of a specific member of the DataSet accompanied by the 

ReasonCode set according to the TrgOp that caused the internal event. 

Conditions do exist for the inclusion of the DataRef and ReasonCode fields.    

3.3.4.1.2 Procedures for report generation  
 
 
In this section, implementation issues related to event monitoring and report handling 

are covered. The values and state of DataAttributes and data need to be continuously 

observed by the event monitor, which informs the report handler when changes occur. 
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The report handler, on the other hand, is in charge of creating and forwarding reports 

immediately or after some buffer time based on the BRCB’s BufTm setting. ACSI 

solely describes principles related to event monitoring and report handling. However, no 

concrete services have been defined or documented for these principles. In this project, 

the intention is to define and develop such services.     

3.3.4.1.2.1 Event_Monitor_Reporting Service  
 
 
As illustrated in Figure 3.30, in case of a change produced by the DataAttribute ‘q’ of 

the data ‘MyLD/XCBR.Pos.q’, this change will be detected by the event monitor and 

reported to the report handler. The value for this member will be included in the report 

only if the BRCB’s TrgOp attribute has been enabled and set to qchg.     

  

MyLD/LLNO.TestRpt1
-MyLD/XCBR.Pos.stVal[dchg]

-MyLD/XCBR.Pos.q[qchg]
-MyLD/XCBR.Pos.t[dupd]

DataSet member to be
reported

q changed produces
internal event

Report 
DataSetReference = MyLD/LLNO.TestRpt1 

MyLD/XCBR1.Pos.q 

3 individual DataSet
members

 
 

Figure 3.30 DataSet members and reporting 
 
It is the task of the event monitor building block of the reporting model to detect such 

changes in the values of member DataAttributes of a DataSet. A C++ routine was 

designed and implemented in this study in order to model the tasks of the event monitor. 

The flowchart representation of this routine is shown in Figure 3.31.  
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START

Declare and initialise variables
DataSetReference = DataSetReference from the input argument

OldValues= Values of DataAttributes from the input argument

Obtain the new DataAttribute values using the GetDataSetValues
service

GetDataSetValues(DataSetReference, NewValues)

Call the Report_Handler service passing the set of new values and
old values

Report_Hadler(DataSetReference, OldValues,NewValues)

Pause for 10us

Create the thread passing the DataSetReference and NewValues to
the thread

_beginthread (Event_Monitor, (void*) dummy)

The new thread executes
the Event_Monitor service

passing the
DataSetReference and

NewValues to the service

 

Figure 3.31 Event_Monitor_Reporting service 

 
Once a BRCB is created and its attribute values are set using the SetBRCBValues 

service, the Event_Monitor_Reporting service is called internally. The ObjectReference 

of the DataSet monitored by this BRCB and the current values of its member 

DataAttributes are passed to the Event_Monitor_Reporting service as input parameters. 

The Event_Monitor_Reporting service makes use of the ObjectReference of the DataSet 

to periodically acquire the values of all referenced DataAttributes within the DataSet. 

When a new set of values is obtained, they are passed to the report handler together with 

the older values from the previous run. Therefore, the Event_Monitor_Reporting service 

periodically calls the report handler with the new and old set of DataAttribute values. 

The periodic run is achieved with the use of Multi-Threading. Visual C++ provides the 

Microsoft Foundation Class Library (MFC) to support for the multi-threaded 

applications. A “thread” is a path of execution within a process. The 

Event_Monitor_Reporting service uses the “_beginthread” function to create a thread 

that begins the execution of the routine at periodic intervals of 100 ms.  
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3.3.4.1.2.2 Report_Handler Service  
 
 
The task of the report handler is filtering the data received from the event monitor 

formatting it into a report structure for transmission. In the example depicted in Figure 

3.30, the value for the MyLD/XCBR.Pos.q will go through the filter only if the BRCB’s 

TrgOp attribute is set to dchg. The flowchart for this service is shown in Figure 3.32.    

T

F

While (found == false)

If (DatSet of BRCB[p]==
DataSetReference )

p ++

F

found = true

T

If (The end of LN ' s
BRCB reached ) T

Get all the BRCB
attribute values

While (m < index)

If (olddata ==
newdata)

z++
m++

T

If (TrgOp of the
DataAttribute == TrgOp

of the BRCB)

F

EntryData[l].DataRef =
DSMemberReference of the DataAttribute

EntryData[l].DataRef =  Value of the
DataAttribute

l++

T

F

If (ReportEnable
== true)

m++

T

F

If (BufTm ==0)

Add new entry to
the report

send the report

else if (BufTm > 0)

Response -
(Report can not be set)

BRCB not enabled
T

F

F

Add new entry to
the report

If (TimerTime >
BufTm)

Send the report

T

Response -
(BufTm not set)

T

F

T

 
 

Figure 3.32 Report_Handler service 
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The Report_Handler service searches the BRCB list of the located LN until a matching 

entry is found. After this is accomplished, all attribute values of the located BRCB [p] 

are acquired with the use of the GetBRCBValues service.  

 
The most critical stage is the subsequent stage where the old and new values reported by 

the event monitor are compared. For each set of inconsistent values, the new values and   

DSMemberReferences of the DataAttributes are copied to the appropriate sub-fields of 

the EntryData header field of a report structure. If the ReportEnable attribute of the 

BRCB is set to TRUE and the BufTm attribute is set as zero, the remaining fields of the 

report structure will be formatted before the report is sent with the use of the Report ( ) 

service. In cases where the specified BufTm attribute is a non-zero value, the EntryData 

header field is updated with the new values despite the fact that the report is not sent 

immediately. If this is the first internal event, an internal timer is started for the duration 

of the BufTm. For all subsequent events, the condition of the timer gets checked. As 

soon as the timer expires (timer time equals to BufTm), the report gets sent. The timer is 

restarted as soon as a new internal event occurs. If the PurgeBuf attribute is set to TRUE 

at any point in time, all the previously buffered events will be discarded.           

            
3.3.4.2 Logging   
 
 
A log control block is used for controlling the procedures necessary to store values of 

data and DataAttributes in a log as log entries that can be enquired at any time by 

clients. Unlike reporting, which does not use any media for storage; logging makes use 

of a log, a circular buffer, to store events for later retrieval. Event monitor, log handler, 

log control and log are the main building blocks of the logging model as previously 

indicated in Section (3.3.4). Class models have been defined in Part 7-2 for only the log 



 
         Chapter 3: IEC 61850 Application View 
 
 

 79

control and log building blocks [84-85]. Although the tasks of the remaining two are 

clearly outlined in Part 7-2, no specific models have been put forward for those building 

blocks. This subsection focuses on the two class models and additional services 

designed and implemented to perform the tasks of event monitoring and log handling.       

3.3.4.2.1 Modelling and Implementing the Log Control Block  
 
 
The Log-Control-Block (LCB) class model, a template for the creation of LCB 

instances, is shown in Figure 3.33. Each LCB associates a DataSet with a Log where 

changes in values of members of the DataSet are stored as Log entries [85]. The C++ 

class definition of the LCB class is presented in Appendix A. In addition to the 

attributes, the LCB class model supports two services that can be used by clients to 

perform LCB related operations. These are the GetLCBValues and SetLCBValues 

services, which are described in the following sections. 
 sion   EA 5.0 Unregistered Tri

sion   EA 5.0 Unregistered Tri

sion   EA 5.0 Unregistered Tri

sion   EA 5.0 Unregistered Tri

sion   EA 5.0 Unregistered Tri

LCB_Class

+ LCBName:  CosNaming::NameComponent
+ LCBRef:  char [1..255] ([255])
+ LogEna:  bool
+ DatSet:  char [1..255] ([255])
+ OptFlds:  PACKET_LIST_BOOLEAN
+ TrgOp:  TriggerConditions
+ IntgPd:  unsigned _int32
+ LogRef:  char [1..255] ([255])

+ SetLCBValues() : void
+ GetLCBValues() : void  

       Figure 3.33 LCB class diagram 
 

3.3.4.2.1.1 SetLCBValues Service  
 
 
Clients use this service to request servers to create LCBs and configure their attribute 

values.  The input/output parameters for this service are shown in Table 3.15 [85].  
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Table 3.15 Parameters of the SetLCBValues service 
 

 

3.3.4.2.1.2 GetLCBValues Service  
 
 
Clients use this service to retrieve the attribute values of the referenced LCB. The 

input/output parameters for this service are shown in Table 3.16. The GetLCBValues 

service is identical to the GetBRCBValues service in methodology.   

Table 3.16 Parameters of the GetLCBValues service 
 

 

3.3.4.2.2 Modelling and Implementing the Log  
 
 
The log is filled on a First-In First-Out (FIFO) basis. Although LCBs can reside within 

any LN, the log itself must reside within the LLNO. Each LLNO is allowed only a 

single log that can be controlled and used by multiple LCBs for data storage [84-85]. 

The Log class diagram is illustrated in Figure 3.34. The C++ definition of the Log class 

can also be viewed in Appendix A.   

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

LCBReference Response+ Response- 
FunctionalConstraint   

LogEnable   
DataSetReference   

OptionalFields   
IntegrityPeriod   
LogReference   

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

LCBReference Response+ Response- 
FunctionalConstraint LogEnable  

 DataSetReference  
 OptionalFields  
 IntegrityPeriod  
 LogReference  
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LOG_Class

+ LogName:  CosNaming::NameComponent
+ LogRef:  char [1..255] ([255])
+ OldEntryTm:  Time_Stamp
+ NewEntryTm:  Time_Stamp
+ OldEntry:  unsigned _int32
+ NewEntry:  unsigned _int32
+ Entry:  entry*

+ QueryLogByTime() : void
+ QueryLogAfter() : void
+ GetLogStatusValues() : void  

Figure 3.34 Log class diagram 
 

 3.3.4.2.2.1 QueryLogByTime Service  
 
 
Clients use this service to retrieve a range of log entries from a log based on 

RangeStartTime and RangeStopTime time ranges. The input/output parameters for this 

service are shown in Table 3.17 [85].  

Table 3.17 Parameters of the QueryLogByTime service 
 

 

The QueryLogByTime service can quickly progress to the address space of the log 

without the usual procedure of looping. Once the service is pointing to the address space 

of the log contained within the LD [i], it evaluates the entire log entries based on the 

criteria of having a TimeOfEntry in between the range RangeStartTime and 

RangeStopTime. Those matching the criteria will be copied to the return parameter.  

3.3.4.2.2.2 QueryLogAfter Service  
 
 
Clients use this service to retrieve a range of log entries from a log based on a start time 

specified by the RangeStartTime and an ID specified by the Entry parameter. The 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

LogReference ListOfLogEntries [1…n] Response- 
RangeStartTime Response+  
RangeStopTime   
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input/output parameters for this service are shown in Table 3.18 [85]. The 

QueryLogAfter service is almost identical to the QueryLogByTime service with the 

exception that the log entries are evaluated for a TimeOfEntry equal to or larger than the 

RangeStartTime. The starting index (a) is also specified by the Entry parameter.  

Table 3.18 Parameters of the QueryLogAfter service 
 

 

3.3.4.2.2.3 GetLogStatusValues Service  
 
 
Clients use this service to retrieve the attribute values of the referenced log parameter. 

The input/output parameters for this service are shown in Table 3.19 [85]. 

Table 3.19 Parameters of the GetLogStatusValues service 
 

 

3.3.4.2.3 Procedures for logging 
 
 
The procedures for logging are similar to the ones of the report generation. First of all, 

an event monitor is used to monitor the values of DataAttributes and data. Secondly, a 

log handler is utilised for filtering the DataAttributes and adding entries into the log. 

3.3.4.2.3.1 Event_Monitor_Logging service 
 
 
The same service described in Section (3.3.4.1.2.1), after a small modification, can also 

be used for the purposes of logging. The Event_Monitor_Reporting service of Section 

Input Parameters Output Parameters (if successful) Output Parameters (if unsuccessful) 

LogReference ListOfLogEntries [1…n] Response- 
RangeStartTime Response+  

Entry   

Input Parameters Output Parameters (if successful) Output Parameters (if unsuccessful) 
LogReference OldestEntryTime Response- 

FunctionalConstraint NewestEntryTime  
 OldestEntry  
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(3.3.4.1.2.1) was modified such that the log handler service gets called instead of the 

report handler. All the remaining details between the two are identical. Once a LCB is 

created and its attribute values are set using the SetLCBValues service, the 

Event_Monitor_Logging service is called internally by the SetLCBValues service. The 

ObjectReference of the DataSet monitored by this LCB and the current values of its 

member DataAttributes are passed to the Event_Monitor_Logging service as input 

parameters. The Event_Monitor_Logging service makes use of the DataSetReference to 

periodically acquire the values of all referenced DataAttributes within the DataSet. 

When a new set of values is obtained, they are passed to the log handler together with 

the older values from the previous run.  

3.3.4.2.3.2 Log_Handler service 
 
 
The main task of the log handler is filtering the data received from the event monitor 

formatting it into a Log entry (Entry [1...n]) structure for storage within the log. The 

values of the DataAttributes will pass through the filter only if the LCB’s TrgOp 

attribute is same as the DataAttribute’s TrgOp.  

 
The flowchart description for this service is shown in Figure 3.35. Once the target LD, 

LN and DataSet are located based on the DataSetReference, the service jumps into the 

stage where the old and new DataAttribute values reported by the event monitor are 

compared. For each set of differing values satisfied that the TrgOp of the DataAttribute 

is the same as the TrgOp of the LCB, the new value(s) and DataSetReference(s) of the 

DataAttributes get copied to the appropriate sub-fields of the EntryData header field of 

a log entry structure. If the LogEnable attribute of this LCB is set to TRUE, the 

TimeOfEntry and EntryID attributes of the log entry are set before it is inserted into the 
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log. The remaining attributes of the log such as the OldEntryTm, NewEntryTm, OldEntr 

and NewEntr are updated where necessary as appropriate.     

START

Declare and initialize all variables. k=0, z=0

  DataSetReference
 == NULL

Response -
(DataSetReference can

not be NULL)

Find target LD
using LDName

Find target LN
using LNName

Split DataSetReference into three strings : LDName,
LNName and DataSetName

END

T

F

While (m < index)

If (olddata ==
newdata)z++

m++

T

If (TrgOp of the
DataAttribute == TrgOp

of the LCB)

F
EntryData[l].DataRef =

DSMemberReference of the
DataAttribute

EntryData[l].DataRef =  Value of the
DataAttribute

l++

F

m++

T

F

T

F

While (found == false)

If (DSRef of DataSet[k] ==
DataSetReference )

k ++

Response -
(DataSet can not be

found)

F

T

If (The end of LN ' s
DataSetList reached )

T

   If (LogEnable
== true)

Response -
(Logging not enabled)

F

add a new entry into the Log
Log.Entry[a].EntryData = EntryData

a++
Set the Log attribute values where

necessary as appropriate

Response +
(A new entry

successfullly added)

T

T

 

 

Figure 3.35 Flowchart diagram of the Log_Handler service 
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3.4 Conclusion 
 
 
This chapter has presented the modelling and implementation of the IEC 61850 

standard’s application-view OSMs. IEC 61850 provides a solid base for interoperability 

between IEDs in the substation environment leading to more flexible and powerful 

protection and control systems. The IEC61850 ACSI models are abstract definitions of 

common utility communication functions in field devices mainly describing 

communication between clients and remote servers. However, due to their abstract 

structures, ACSI models can only become practical when implemented by being 

mapped to the existing models and services of an underlying communication service.     

 
The work presented in this chapter has involved the transformation of the IEC 61850 

standard into a solid protocol by the implementation of its application-view OSMs as 

concrete programs. The LN, Data, DataAttribute and DataSet class models are the most 

important building blocks constituting the IEC 61850 standard’s application-view 

constituent. This chapter has provided broad discussion on the OO implementation of 

these class models and their associated services based on their descriptions given in the 

standard. In addition to the information models, the IEC 61850 standard’s application-

view constituent comprise of information exchange service models such as the reporting 

and logging models. Reporting enables the transfer values of data to clients either 

immediately or after some buffer time. Logging, on the other hand, makes it possible to 

store this data for future enquiries. In this study, the modelling and implementation 

aspects of these information exchange models have also been explained with the centre 

of attention being on the procedural services such as monitoring and filtering that have 

been designed and implemented for their successful internal operations.  
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Chapter 4 
 
IEC 61850 Device View 
 
 

 

4.1 Introduction  
 

A detailed analysis of the IEC 61850’s application-view modelling and implementation 

has been provided in Chapter 3 where the OSMs constituting the standard’s application-

view component have been implemented based on their descriptions and object oriented 

models provided in the IEC 61850 documentation.  

 
This chapter is a continuance of the previous chapter looking at the standard’s device-

view constituent. It presents the modelling and implementation aspects of the standard’s 

device-view models and their related services. The need for device-view modelling 

surfaced when the application-view models, by themselves, failed to provide the entire 

required substation related information. Device-view models provide the remaining 

information by describing the relevant device functionality. Special attention has been 

taken when describing models such as the Generic Object Oriented Substation Event 

(GOOSE), which enable the IED related data to be shared across the network within a 

substation. Section 4.2 discusses the need for device modelling and moreover presents 

the IEC 61850 device-view modelling and implementation concepts. The chapter 

concludes in Section 4.3 where the final remarks are given.   
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4.2 IEC 61850 Device View 
 
 
IEC 61850 application-view models such as LNs and data, which represent information 

related to real application functions within substations, have so far been discussed in 

Chapter 3. However, these models are not by themselves sufficient to express all the 

necessary details and issues concerning substations. This has resulted in the need for 

further components to be defined and modelled, a concept referred to as device-view 

modelling. The main aim in this chapter is discuss the IEC 61850 device-view models 

and their implementation making use of the techniques of OOP.        

 
One of the primary challenges in standardisation is to describe device functionality by 

specifying the syntax and semantics of the data exchanged and also the dynamic 

behaviour of devices. Device-view models are object models that contain terms with 

associated semantics and a description of the dynamic behaviour. Device-view 

modelling serves to define re-usable parts to be used when specifying the data models 

and behavior of various types of industrial devices. The objective is to make the 

specification and implementation of information exchanges easier for the user. The re-

usability of common definitions is the main benefit it provides [104-105].          

 
4.2.1 Logical Devices   
 
 
The Logical Device (LD) model was introduced when a clear need arose for a specific 

component to represent information about the resources of the host itself including real 

equipment connected to that host device and also the common communication aspects 

applicable to a number of LNs. Each LD can be defined as a “virtual device that exists 

to enable aggregation of related LNs and DataSets” [75]. Each LD must definitely be 
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Server Logical Device Data
DAType 

Logical Node

TriggerCo

FC 

DataSet

Server@<address

XCBR1 XCBR1.Pos 

XCBR1.Pos.ctlVal 
XCBR1.Pos.stlVal 
XCBR1.Pos.q 
XCBR1.Pos.operTim 
XCBR1.Pos.t 
XCBR1.Pos.origin 
XCBR1.Pos.sctlNum 
XCBR1.Pos.d 
 
……………. 
 

Other Other 

composed of a single LLNO (Logical Node Zero), a single LPHD (Logical Node 

Physical Device) and at least one other LN. A LD can also be considered to function as 

a gateway (proxy) making itself transparent from a functional point of view so that it 

can be identified independently of its location. LDs reside within physical devices that 

are usually defined and modelled as servers within the IEC 61850 framework. Server, 

containing all the communication visible and accessible models, represents the visible 

behaviour of an IED in terms of communication. Each server is usually modelled with a 

single LD. Nevertheless, it may contain more than a single LD [84-85]. Figure 4.1 

shows a conceptual model of a server as represented by ACSI. As shown, the server 

consists of one or more LDs, each being a composition of a number of LNs.     

 
 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 4.1 Server conceptual model 

 
In addition to being a container of a group of LNs, each LD contains additional services 

such as the Generic Object Oriented Substation Event (GOOSE), Sampled Values (SV) 

exchange and setting groups as shown in Figure 4.2 [84-85]. These services are in fact 

Atlanta HV

XCBR1.Pos.ctlVal 
XCBR1.Pos.stlVal 
XCBR1.Pos.q 
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not directly included within the LD model but within the LLNO model. However, since 

every LD must contain a LLNO, these services are often associated with the LD model. 

  
Logical Device

Logical Node

Data Set

Data

 Response          Control

 Response         Get/Set

 Response   Substitution

 Response Dir/Definition

Report

Log

Setting GroupActivate
GOOSE/GSSE

Sampled
measured values

GOOSE
GSSE

SMV

 

Figure 4.2 Logical device building blocks 

 
4.2.1.1 Modelling and Implementing Logical Devices   
 
 
Figure 4.3 shows the LD class diagram, which is based on the LD class definition 

provided in Part 7-2 [85].  

al Version   EA 5.0 Unregiste

al Version   EA 5.0 Unregiste

al Version EA 5 0 Unregiste

LOGICAL_DEVICE

+ LDName:  CosNaming::NameComponent
+ LDRef:  char*
+ LogicalNode:  LOGICAL_NODE*

+ GetLogicalDeviceDirectory() : void
 

 

 Figure 4.3 LD class diagram 

 
The LDName attribute identifies a LD within the scope of a system whilst the LDName 

attribute represents the unique path-name of the LD. Unlike the previous models, which 

contained more than a single type of building block, the LD class model includes only 



 
                 Chapter 4: IEC 61850 Device View 
 
 

 90

LNs and a single service, the GetLogicalDeviceDirectory service. The C++ definition of 

the LD class model can be viewed in Appendix A.  

4.2.1.1.1 GetLogicalDeviceDirectory Service 
 
 
Clients use this service to retrieve the ObjectReferences of all LNs within the referenced 

LN. The input/output parameters for this service are shown in Table 4.1 [85]. Figure 4.4 

shows the flowchart diagram of the GetLogicalDeviceDirectory service.  

Table 4.1 Parameters of the GetLogicalDeviceDirectory service 
 

 

END

While (found
== false)

  If (The end of
Servers' s

LD list reached)

F

T

  If (LDName of LD
[i] == LDReference)

found = true

T

F

F

Response -
(LD can not be

found)
T

i ++

k ++

while (The end of LD[i] ' s LN list
 not reached )

T

LNReference [k] = LNRef of the LD[k]

F Response +
(Service Request

Succeed)

 

Figure 4.4 Flowchart diagram of the GetLogicalDeviceDirectory service 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

LDReference LNReference[3..n] Response- 
 Response+  
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Once the LDReference input parameter is verified, the GetLogicalDeviceDirectory 

service searches the LD list of the current Server comparing each member’s name with 

the LDReference input string. When the target LD is located, it progresses to the final 

stage where the ObjectReferences of all LNs contained within the LD will be copied to 

the LNReference return parameter until the end of LD [i]’s LN list is reached.          

 
4.2.2 Server   
 

Server is the most distant model containing all the ACSI models so far described as 

shown in Figure 4.5. It also contains the association, time synchronisation and file 

transfer models as illustrated.  

 
Server

Logical Device

Logical Node

Data Set

Data

 Response          Control

 Response         G et/Set

 Response   Substitution

 Response D ir/Defin ition

Report

Log

Setting GroupActivate
GO O SE/G SSE

Sam pled
m easured values

GO O SE
G SSE

SM V

File Transfer Tim e SynchronisationAssociation

 

Figure 4.5 Server building blocks 
 
The Server model uses the association model to establish and maintain connections 

between devices and also to implement access control mechanisms. It uses the time 
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synchronisation model to synchronise its time with that of a time server for more 

accurate time tagging in applications such as reporting and logging. The file transfer 

model allows the server to manage file stores as well as the ability of transferring files 

between them. The server resides within a physical device representing the application 

data modelling view to the outside world. A physical device may host one or more 

servers [84-85].  

 
4.2.2.1 Modelling and Implementing Servers   
 

Figure 4.6 shows the Server class diagram, which includes the attributes illustrated as 

well as a single service. Unquestionably, LDs are the most important components of a 

server. The file storage areas used by the server are also included in its description.  

Trial Version   EA 5.0 Un

Trial Version   EA 5.0 Un

Trial Version   EA 5.0 Un

T i l V i EA 5 0 U

SERVER

+ LogicalDevice:  LOGICAL_DEVICE*
+ File:  File_Class*
+ ServiceAccessPoint:  SerAccPoi*
+ TPAppAssociation:  TPAppAss*
+ MCAppAssociation:  MCAppAss*

+ GetServerDirectory() : void  
 

Figure 4.6 Server class diagram 

 
The ServiceAccessPoint is used to identify a server within the scope of a system, e.g. its 

IP address. All clients with which the server establishes and maintains a two-party 

application association are identified by the TPAppAssociation attribute. Subscribers, 

on the other hand, are identified by the MCAppAssociation attribute. Although the 

ServiceAccessPoint, TPAppAssociation and MCAppAssociation attributes are included 

in the Server class definition, they have not been explicitly defined in ACSI even 

though example class definitions for their implementations are given. Their definitions 
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are comprehensively dependent on the type of the communication service used. In Part-

7-2, their concrete implementations are explained to be dependent on the Specific 

Communication Service Mapping (SCSM), which describes how to map ACSI OSMs to 

MMS. Since a new middleware architecture has been designed and implemented in this 

study, those class definitions are not entirely relevant and have not been considered. The 

C++ class definition of the Server model is accessible in Appendix A.  

4.2.2.1.1 GetServerDirectory Service 
 

Clients use this service to retrieve the names of all LDs or Files within the referenced 

Server. The input/output parameters for this service are shown in Table 4.2 [85]. Figure 

4.7 shows the flowchart diagram of the GetServerDirectory service. 

Table 4.2 Parameters of the GetServerDirectory service 
 

 

END

i ++

While
(The end of Server's LD list

 not reached )

T

Reference[i] = LDName of the LD[i]

F

Response +
(Service Request

Succeed)

If (ObjectClass ==
LOGICAL-DEVICE)

   else if (ObjectClass
== FILE)

i ++

While
(The end of Server's File list

 not reached )

T

Reference[i] = FileName of the File[i]

F

else

Response -
(Service Request  Failed. An
appropriate ObjectClass has

not been chosen)

T

F

T

F

 
 

Figure 4.7 Flowchart diagram of the GetServerDirectory Service 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

ObjectClass Reference[0...n] Response- 
 Response+  
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The GetServerDirectory service can right away point to the address space of the server 

due to the fact that server resides at the top of the object tree. Although each physical 

device may contain more than a single server, one server per physical device is the 

common approach. The service continues by checking the ObjectClass input parameter. 

If it holds the string “LOGICAL-DEVICE”, then the ObjectReferences (LDNames) of 

all LDs contained within the server will be copied to the return parameter until the end 

of server’s LD list is reached. Yet, if it holds the string “FILE”, then the FileNames of 

all Files contained within the server will be copied to the return parameter. Otherwise, 

the service exists indicating that an appropriate ObjectClass has not been chosen.     

 
4.2.3 The Generic Substation Event     
 

The Generic Substation Event (GSE) model makes it possible to distribute 

DataAttribute values efficiently to more than one device in a simultaneous fashion 

through the use of multicast/broadcast services. ACSI defines two models for the 

exchange of values of a collection of DataAttributes. These are the [84-85]: 

 
(1) Generic Object Oriented Substation Event (GOOSE) model for a wide range of 

data exchange, and 

(2) Generic Substation State Event (GSSE) model for the exchange of status 

information in bit pairs. 

 
The information exchange in both models is based on a publisher/subscriber (multicast) 

communication model, which is to be discussed in broad detail in the following chapter 

when discussing the middleware design and implementation. Figure 4.8 shows the 

building blocks of the GOOSE model.  
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Figure 4.8 GOOSE model 

 
The initiation of the message exchange is identical to the case presented for logging and 

reporting. When the values of one or several DataAttributes referenced within a DataSet 

change, these values will be formatted into a GOOSE message structure to be 

transmitted to a number of recipients. The GOOSE Control Block (GoCB) controls and 

regulates the exchange of the GOOSE messages. Hence, the reporting and GOOSE 

models have numerous similarities as well as differences. While the reporting model 

uses the “point-to-point” communication model, the GOOSE model uses the 

“publish/subscribe” counterpart. There is no filtering involved in GOOSE since all 

changes regardless of their type are to be included in the GOOSE message. When IEDs 

capture the effects of abnormal system conditions within a substation, they express the 

details in the form of GOOSE messages. GOOSE replaces the mechanism of 

exchanging control signals between IEDs using a fixed, hardwired and sequential data 

acquisition infrastructure, which is not capable of meeting the requirements of real time 

substation communication systems. IEDs use the information within GOOSE messages 

to decide on suitable protection responses to take in response to a particular state change 

described by the GOOSE message.  
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The GSSE model is almost identical to the GOOSE model with the only difference 

being the format of the information it provides. It can only provide a simple list of status 

information expressed in bit pairs. In fact, GGSE model is the GOOSE model described 

in UCA 2.0. The whole concept described above for the initiation and transmission of 

GOOSE messages is also applicable to the GSSE model.  

 
4.2.3.1 Modelling and Implementing the GOOSE Control Block   
 

The GoCB is used by clients to get/set attributes controlling the operation of the event 

monitor and GOOSE handler. Figure 4.9 shows the GoCB class model and its attributes 

as defined in Part 7-2 [85]. The C++ class definition of the GoCB model is also 

included in Appendix A. The GoCB class model supports five services that permit 

clients to perform GoCB related operation such as configuring its attributes.   
g

n   EA 5.0 Unregistered Trial Ve

n   EA 5.0 Unregistered Trial Ve

n   EA 5.0 Unregistered Trial Ve

n   EA 5.0 Unregistered Trial Ve

n EA 5 0 Unregistered Trial Ve

GoCB_Class

+ GoCBName:  CosNaming::NameComponent
+ GoCBRef:  char [1..255] ([255])
+ GoEna:  bool
+ AppID:  char [1..65] ([65])
+ DatSet:  char [1..255] ([255])
+ ConfRev:  unsigned _int32
+ NdsCom:  bool

+ SetGoCBValues() : void
+ GetGoCBValues() : void
+ GetGoReference() : void
+ GetGOOSEElementNumber() : void
+ SendGOOSEMessage() : void  

 Figure 4.9 GoCB class diagram 

4.2.3.1.1 SetGoCBValues Service   
 

Clients use this service to set the attribute values of the referenced GoCB. The 

input/output parameters for this service are shown in Table 4.3 [85]. Figure 4.10 shows 

the flowchart diagram of the SetGoCBValues service. 
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Table 4.3 Parameters of the SetGoCBValues service 
 

 

END

T

While (found == false)

   If (GoCBRef of GoCB[a] ==
GoCBReference )

a ++

F

found = true

T

If (GoEna == FALSE )

Set all the attribute values of
the GoCB according to the

input parameters

Response +
(SetGoCBValues
service request

succeed)

If (the end of this LN's
GoCBList reached)

F

T

F

Create a new GoCB for this LN
and then set all the attribute
values according to the input

parameters

T

Response +
(SetGoCBValues
service request

succeed)

Set only the GoEna attribute
of the GoCB according to the

GoEnable input parameter

 

 
Figure 4.10 Flowchart diagram of the SetGoCBValues service 

 
Once the target LD and LN are located, the SetGoCBValues service searches the current 

LN’s GoCB list to determine whether a GoCB with the given GoCBReference has 

previously been created or not. If created before and the value of its GoEna attribute is 

set to “FALSE”, then all of its attributes are updated. However, if the GoEna attribute is 

set to “TRUE” then no changes in the attribute values are allowed except for the GoEna. 

Alternatively, if a GoCB can not be located, a new one will be created and added to the 

GoCB list of the current LN. Its attribute values will also be initialised based on the 

corresponding input parameters 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

GoCBReference Response+ Response- 
FunctionalConstraint   

GoEnable   
ApplicationID   

DataSetReference   
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4.2.3.1.2 GetGoCBValues Service   
  

Clients use this service to get the attribute values of the referenced GoCB [85]. The 

input/output parameters for this service are shown in Table 4.4. Figure 4.11 shows the 

flowchart diagram of the GetGoCBValues service. 

Table 4.4 Parameters of the GetGoCBValues service 
 

 

ENDT

T

While (found == false)

   If (GoCBName of
 GoCB[a] == GoCBName )

a ++

F

found = true

T
copy all the attribute values of the GoCB[a]  to

the output parameters, e.g.
NeedsCommissioning = NdsCom of GoCB[a]

Response +
(Service Request

Succeed)

If (The end of this LN' s
GoCBList reached)

F

 

Figure 4.11 Flowchart diagram of the GetGoCBValues service  

4.2.3.1.3 GetGoReference Service   
 

Clients use this service to retrieve the ObjectReferences of specific members of the 

DataSet monitored by the referenced GoCB [85]. Table 4.5 shows the input/output 

parameters for this service. Figure 4.12 shows the flowchart diagram of the 

GetGoReference service.  

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

GoCBReference GoEnable Response- 
FunctionalConstraint ApplicationID  

 DataSetReference  
 ConfigurationRevision  
 NeedsCommissioning  
 Response+  
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Table 4.5 Parameters of the GetGoReference service 
 

 

ENDT

T

While (found == false)

   If (GoCBName of
 GoCB[a] == GoCBName )

a ++

F

found = true

T

DataSetReference = DatSet of GoCB[a]

if (The end of this LN' s
GoCBList reached)

F

  DataSetReference
 == NULL

Response -
( DataSetReference
can not be NULL)

Find target LD
using LDName

Find target LN
using LNName

Split DataSetReference into three strings : LDName,
LNName and DataSetName

T

F

T

F

While (found == false)

If (DSRef of DataSet[k] ==
DataSetReference )

k ++

Response -
(DataSet can not

be found)

F

If (The end of LN ' s
DataSetList reached )

T

While (The end of MemberOffset
parameter not reached)

MemberReference[y] =
DsMemberRef[MemberOffset[a]] of the DataSet[k]

a++
y++

T

T

Response +
(Service Request

Succeed)

F

 

Figure 4.12 Flowchart diagram of the GetGoReference service 

The GetGoReference service attains a pointer to the address space of the GoCB making 

use of the GoCBReference parameter. It then copies the value of its DatSet attribute to 

the DataSetReference dummy variable thus acquiring the ObjectReference of the 

DataSet being monitored by this GoCB. Afterwards, it uses this dummy variable when 

pointing to the address space of the DataSet. The final stage includes copying the 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

GoCBReference GoCBReference Response- 
MemberOffset [1...n] ConfigurationRevision  

 MemberReference [1...n]  
 Response+  
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ObjectReferences of the members of the DataSet, but only those having the index 

numbers specified by the MemberOffset input parameter.  

4.2.3.1.4 GetGOOSEElementNumber Service   
 

Clients use this service to retrieve the member positions (index) of specific 

DataAttribute members of the DataSet associated with the GoCB. Table 4.6 shows the 

input/output parameters for this service.  

Table 4.6 Parameters of the GetGOOSEElementNumber service 
 

 
 

Figure 4.13 shows the flowchart diagram of the GetGOOSEElementNumber service. As 

the definition implies, the GetGOOSEElementNumber service is the opposite of the 

GetGoReference service where index numbers were given and MemberReferences were 

sought. Here, MemberReferences of the DataAttributes are provided and their index 

numbers are sought. It points to the GoCB specified by the GoCBReference input 

parameter acquiring the value of its DatSet attribute and then using that value to point to 

the address space of the DataSet monitored by the GoCB. The final stage involves 

searching the DSMemRef list of the pointed DataSet to determine index numbers of the 

members specified by the MemberReference parameter. For every single member, the 

DSMemRef list is searched until a matching entry is found when its index number is 

copied to the return parameter. This service ends once all the members specified in the 

MemberReference [1...n] parameter are dealt with.          

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

GoCBReference GoCBReference Response- 
MemberReference[1...n] ConfigurationRevision  

 MemberOffset[1...n]  
 Response+  
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END

While (The end of MemberReference
list not reached)

T

F

    While (The end of DataSet[k]'s
DSMemRef list not reached)

If (DSMemRef[t] ==
MemberReference[a])

MemberOffset[y] = t
y++

t++a++

T

F

Response-
The MemberReference[a]

couldnot be located

F

T

Response +
(Service Request Succeed)

 
 

Figure 4.13 Flowchart diagram of the GetGOOSEElementNumber service 

4.2.3.1.5 SendGOOSEMessage Service   
 

The SendGOOSEMessage service is used by servers to multicast GOOSE messages, 

which have the format shown in Figure 4.14. 

AppID
(VISIBLE STRING65)

SqNum
(INT32U)

DatSet
(ObjectRef erence)

Conf Rev
(INT32U)

GoCBRef erence
(ObjectRef erence)

T
(TimeStamp)

StNum
(INT32U)

Test
(Boolean)

NdsCom
(Boolean)

GOOSEData [1..n]

Value
(*)

 

Figure 4.14 GOOSE message definition 

The SendGOOSEMessage service makes use of the publish/subscribe communication 

model provided by the underlying data delivery network middleware to accomplish this 

task. As soon as a GOOSE message is generated within the server, this service is called 

to forward the GOOSE message to the network. The various fields of the GOOSE 

message format are as follows [85]: 
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(1) The AppID, a string of 65 characters, is the identifier of the LD where the GoCB 

is located, 

(2) The DatSet, a string of 255 characters, specifies the DataSetReference of the 

DataSet whose values are to be transmitted, 

(3) The ConfRev, an unsigned integer of 32 bits, indicates the number of times that 

the configuration of the DataSet referenced by the DatSet has been changed, 

(4) The SqNum points out the sequence number of each GOOSE generated and sent 

by this GoCB. The first GOOSE is to have a SqNum of 1, the second report 2 

and so on, 

(5) The StNum also an integer contains the counter number, which is incremented 

each time a GOOSE message has been sent and a change in the value of a 

DataAttribute within the referenced DataSet has been detected,     

(6) The GoCBRef contains the ObjectReference of the GoCB, 

(7) The T indicates the time when the StNum was incremented, 

(8) The Test, if set to TRUE, indicates not to use the contents of the message for 

operational purposes, 

(9) The NdsCom contains the respective NdsCom attribute of the GoCB, and 

(10) The GOOSEData [1...n] contains the values of the DataAttribute members of 

the DataSet referenced by the DatSet. Unlike reporting and logging, the DataRef of 

the members and ReasonCodes are not included in the GOOSEData. 

 
4.2.3.2 Procedures for GOOSE messaging  
 

This section describes the procedures of event monitoring and GOOSE handling in the 

case of GOOSE messaging. The Event_Monitor_GOOSE service carries out the same 
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tasks as its reporting and logging equivalents. Once a GoCB is created, it passes the 

ObjectReference of the associated DataSet and the current values of its member 

DataAttributes to the Event_Monitor_GOOSE service. The Event_Monitor_GOOSE 

service periodically attains the DataAttribute values and calls the GOOSE_Handler 

service to format data into a GOOSE message structure in case of changes in the values 

of the referenced DataAttributes. The GOOSE_Handler service is much simpler than its 

reporting and logging equivalents due to the absence of a filtering mechanism. All types 

of changes must be considered equally by the GOOSE model. Hence, new values of the 

DataAttribute members of a DataSet are transmitted irrespective of the DataAttributes’ 

TrgOps. The DataAttribute values constitute the GOOSEData field of a GOOSE 

message. All the remaining fields also get filled as appropriate by the GOOSE_Handler 

service before the message can be multicast using the SendGOOSEMessage service.              

 
4.2.4 The Transmission of Sampled Values     
 

The transmission of Sampled Values (SV) relates to the fast and cyclic transfer of 

samples of measured values from sensor devices such as Current Transformers (CTs) 

and Voltage Transformers (VTs). Although reporting and GOOSE models can be used 

for any set of data, special attention needs to be paid to the time constraints when 

transmitting SV. This has caused the introduction of a new model, the Sampled Values 

Model (SVM), for the organised and time-controlled exchange of SV reducing the 

combined jitter of sampling and transmission [84-85]. The conceptual illustration of the 

SVM is shown in Figure 4.15. The exchange of values of a DataSet is once again at the 

heart of this model. However, in this case, the DataAttribute members of the DataSet in 

concern are limited to the samples of measured analogue values such as amps and volts. 
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DO 

DO 

DO 

DO 

DO 

DO 

DO 

DO 

DO 

Samples of measured
values in a DataSet

SVM
SV Control

SV Handler

Formatting

controls

Get/Set
Request

Get/Set
Response has association to

periodic
unicast or

multicast SV
messages

 

Figure 4.15 SV Model   

IEC 61850 defines two control blocks for controlling the exchange of SV. These are the 

[85]: 

 
(1) Multicast Sampled Value Control Block (MSVCB) for the transmission of 

sampled values using multicast, and 

(2) Unicast Sampled Value Control Block (USVCB) for the transmission of 

sampled values using unicast. 

 
The multicast mode of transmission is once again based on the publish/subscribe 

communication model where subscribers need to add themselves to the subscriber list of 

a publisher to be able to receive the periodic updates. In contrast, the unicast mode is 

based on a two-party application association that is the client/server model. Each 

subscriber, interested in receiving sampled values from a particular publisher, needs to 

establish an association with that publisher creating and configuring either a MSVCB or 

a USVCB class instance enabling the transmission by setting the SvEna attribute to 

TRUE. In both modes, time stamps are added to the values so that subscribers can 
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verify the timeliness of the values. The MSVCB and USVCB classes defined in Part 7-2 

are almost identical to each other. Except for the inclusion of a single additional 

attribute in the USVCB class, all the remaining attributes and services are common. 

Therefore, the only real distinction between the two is the mode of transmission.  

 
4.2.4.1 Modelling and Implementing the Sampled Value Control Block 
 

Clients use the MSVCB model to create and configure instances of MSVCBs for 

controlling the communication procedure. Figure 4.16 shows the MSVCB class and its 

attributes [85]. The C++ definition of the MSVCB model can be viewed in Appendix A. 

The MSVCB class supports three services; two that permit clients to perform MSVCB 

related operations and one used by publishers when forwarding SV messages.  

Version   

Version   

Version   

Version   

Version   

MSVCB_Class

+ MsvCBNam:  CosNaming::NameComponent
+ MsvCBRef:  char [1..255] ([255])
+ SvEna:  bool
+ MsvID:  char [1..65] ([65])
+ DatSet:  char [1..255] ([255])
+ ConfRev:  unsigned _int32
+ SmpRate:  unsigned _int16
+ OptFlds:  PACKET_LIST_SV

+ SetMSVCBValues() : void
+ GetMSVCBValues() : void
+ SendMSVMessage() : void  

Figure 4.16 MSVCB class diagram 

 

4.2.4.1.1 SetMSVCBValues service     
 

Clients use this service to set the attribute values of the referenced MSVCB. The 

input/output parameters for this service are shown in Table 4.7. The same procedure 

described for the case of SetGoCBValues service is also followed precisely when 

creating a MSVCB instance and setting its attributes [85].     
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Table 4.7 Parameters of the SetMSVCBValues service 
 

 

4.2.4.1.2 GetMSVCBValues service     
 

Clients use this service to retrieve the attribute values of the referenced MSVCB. The 

input/output parameters for this service are shown in Table 4.8. The GetMSVCBValues 

service follows the identical procedure as the GetGoCBValues service. Once the 

MSVCB referenced by the MsvCBReference parameter is located, its attribute values 

will be copied to the corresponding output parameters. The ConfigurationRevision 

parameter returns the value of the ConfRev attribute [85]. 

Table 4.8 Parameters of the GetMSVCBValues service 
 

 

4.2.4.1.3 SendMSVMessage service     
 
 
The SendMSVMessage service is used by publishers to periodically multicast the SV 

messages based on the SmpRate making use of the publish/subscribe communication 

model provided by the middleware. SV messages have the format shown in Figure 4.17.    

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

MsvCBReference Response+ Response- 
FunctionalConstraint   

SvEnable   
MulticastSampleValueID   

DataSetReference   
SampleRate   

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

MsvCBReference SvEnable Response- 
FunctionalConstraint MulticastSampleValueID  

 DataSetReference  
 SampleRate  
 ConfigurationRevision  
 Response+  
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MsvID
(VISIBLE STRING65)

ConfRev
(INT32U)

DatSet
(ObjectReference)

Sample[1..n]
Value

(*)

OptFlds
(PACKET_LIST_SV)

SmpCnt
(INT16U)

If refresh-time == TRUE
RefrTm

(EntryTime)

If sample-synchronized == TRUE
SmpSynch

(BOOLEAN)

If sample-rate == TRUE
SmpRate
(INT16U)

 

Figure 4.17 SV message format 

 
The various fields of the SV message format are as follows [85]: 

 
(1) The MsvID, a string of 65 characters, contains the value of the corresponding 

MsvID attribute of the MSVCB, 

(2) The OptFlds is derived from the respective OptFlds attribute of the MSVCB, 

(3) The DatSet, a string of 255 characters, specifies the DataSetReference of the 

DataSet whose values are to be transmitted, 

(4) The Sample [1...n] contains the values of the DataAttribute members of the 

DataSet referenced by the DatSet sampled at a given time, 

(5) The SmpCnt, an unsigned integer of 16 bits, indicates how many samples of an 

analogue value have been taken. Each time a new sample is taken, SmpCnt will 

be incremented. ConfRev contains the value of the corresponding ConfRev 

attribute of the MSVCB, 

(6) The RefrTm points out the last transmission buffer update time, and 

(7) The SmpSynch, if set to TRUE, indicates that the sampled values have been 

synchronised by the clock signals and the SmpRate contains the value of the 

corresponding SmpRate attribute of the MSVCB. 



 
                 Chapter 4: IEC 61850 Device View 
 
 

 108

4.2.4.2 Procedures for SV messaging   
 

The design and implementation details of the MSV_Handler service, designed to 

perform the tasks of the SV handler, are provided in this subsection. The main task of 

the SV handler is to sample the values of the DataAttribute members of a DataSet at 

periodic intervals based on the SmpRate attribute of the MSVCB formatting them into a 

SV message structure. As it was in the case of GOOSE messaging, there is no need for 

any filtering. Unlike reporting and GOOSE, the information exchange is not initiated by 

changes in the values of the DataAttribute members of the DataSet associated with the 

MSVCB. Whether values change or not, they get sampled periodically and forwarded to 

subscribers. Figure 4.18 shows the flowchart diagram of the MSV_Handler service.  

 
When a MSVCB is created, it calls the MSV_Handler service and passes the value of its 

DatSet attribute to the service as an input argument. Subsequently, the DataSet list of 

the target LN is searched until a successful DataSet entry is located. The successful 

entry would have the value of its DSRef attribute set same as the value of the received 

DatSet attribute. The service then searches the MSVCB list of the LLNO until an entry 

associated with the located DataSet is found. The service moves on and copies the 

values of all the attributes of the located MSVCB to a number of local variables. It also 

obtains the values of all the DataAttribute members of the DataSet, which was 

previously located. Finally, it creates a SV message and copies the previously obtained 

values to the necessary fields of the message. Once all the fields are filled, the SV 

message gets forwarded to the subscribers using the SendMSVMessage service.  

 
The concept of Multi-Threading, which was described in detail in Chapter 3, is also 

utilised by the MSV_Handler service. A new thread is created at the end of each run 
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that starts the execution of the same service after a fixed interval. The interval depends 

on the SmpRate attribute of the MSVCB. As a result, the MSV_Handler service 

continues its execution in the background periodically obtaining the values of the 

DataAttribute members of the DataSet and forwarding them to the subscribers.               

Find target LD using LDName and target LN using LNName

END

T

F

While (found == false)

If (DSRef of DataSet[l] ==
DataSetReference )

l ++
Response -

(DataSet can not be
found)

F

T

If (The end of LN ' s
DataSetList reached )

T

T

F

While (found == false)

If (DatSet of MSVCB[a] ==
DataSetReference )

a ++

Response -
(MSVCB can not

be found)

F

T

If (The end of LLNO ' s
MSVCBList reached )

T

Get the values of all the attributes of the
MSVCB[a], e.g.

ConfRev= ConfRev of MSVCB[a]

Get the values of all the members of the
DataSet[l]

create the SV message
fill all the fields as appropriate, e.g.
SmpRate = SmpRate of MSVCB[a]

Sample[1..n] =  values of all the members of the DataSet[l]

pause for 1/SmpRate

create a new thread and pass the
DataSetReference to the thread

_beginthread  (.........)

 
 

Figure 4.18 Flowchart diagram of the MSV_Handler service 
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4.2.5 The Setting Group Control Block Model      
 

The Setting Group Control Block (SGCB) model is a special treatment for setting data 

contained in LNs. Although an instance of a data can only have a single value, it might 

be necessary to store several values for that instance that can be used one at a time. The 

SGCB model makes it possible to store and edit several values for one or more data and 

also to switch between the values. A set of values defined for several data form a 

Setting Group (SG). The setting data can have as many values as the number of defined 

SGs.  The values of a specific SG can only be set when that group is in the “EDIT” 

state. Once the values are set, they can be selected for use by the application by 

switching that group to the “ACTIVE” state. The SGCB model is depicted in the 

example shown in Figure 4.19 [84-85].  

 

LN PPAM
......
    Settings

Phase Start Value              PhsStart
Ground Start Value            GndStart
Operate Delay Time            OpTimDel
Reset Delay Time                RsTimDel
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Figure 4.19 Basic model of the SGCB  
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The PPAM (phase angle relay) LN comprises four settings data:  

• PhsStart,  

• GndStart, 

• Primed, and 

• RsTimDel.  

 
The SGCB “SG Control” provides three SGs (#1, #2, #3) each with independent values 

for the three data. The members of the active SG are referenced by the 

ObjectReferences of the data with functional constraint “SG” and members of the SG in 

the edit buffer are referenced by the ObjectReferences of the data with functional 

constraint “SE”. The values of the data are derived from the values of one of the three 

SGs by using the multiplex on the left. The SelectActiveSG service determines the 

values of which SG should be copied to the active buffer to be used by the PPAM LN. 

In the example, SG #1 has been set to be in the “ACTIVE” state. The SelectEditSG 

service determines the values of which SG should be copied to the edit buffer. When in 

the edit buffer, the values of a SG can be set and get (SetSGValues and GetSGValues). 

Once the new values are set, the client has to confirm using the ConfrimEditSGValues 

service before the new values can be taken over by the selected SG (SG #3). 

 
4.2.5.1 Modelling and Implementing the Setting Group Control Block      
 

Figure 4.20 shows the SGCB class model and its attributes. Clients use the SGCB class 

to create SGCB instances, which allow them to control the operation of the SGCB 

model through a number of services. SGCB instances enable clients to create SGs, edit 

their values and choose which SG to be in the edit buffer and which SG to be in the 

active buffer [85]. The C++ definition of the SGCB class can be viewed in Appendix A.  
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on   EA 5.0 Unregistered Trial

on   EA 5.0 Unregistered Trial

on   EA 5.0 Unregistered Trial

on   EA 5.0 Unregistered Trial

on   EA 5.0 Unregistered Trial

SGCB_Class

+ SGCBName:  CosNaming::NameComponent
+ SGCBRef:  char [1..255] ([255])
+ NumOfSG:  unsigned _int8
+ ActSG:  unsigned _int8
+ EditSG:  unsigned _int8
+ CnfEdit:  bool
+ LActTm:  Time_Stamp

+ SelectActiveSG() : void
+ SelectEditSG() : void
+ ConfirmEditSGValues() : void
+ SetSGValues() : void
+ GetSGValues() : void
+ GetSGCBValues() : void  

Figure 4.20 SGCB class diagram 

 

4.2.5.1.1 SelectActiveSG Service      
 

Clients use this service to set the value of the ActSG attribute of the referenced SGCB 

loading the values of the specified SG into the active buffer [85]. The input/output 

parameters for this service are shown in Table 4.9.   

Table 4.9 Parameters of the SelectActiveSG service 
 

 
 
Figure 4.21 shows the flowchart diagram of the SelectActiveSG service. Once the LD is 

located, the service progresses into setting the value of the ActSG attribute of the SGCB 

to the value of the SettingGroupNumber parameter. There is no need to search for either 

the LN or the SGCB since only a single SGCB resides within the LLNO and the 

location of the LLNO is known to the program. Hence, the program can straight away 

jump to the address space of the single SGCB contained within the LLNO. Once the 

ActSG attribute is set, the values of the SG having the index number 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

SGCBReference Response+ Response- 
SettingGroupNumber   
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“SettingGroupNumber” will be moved into the active buffer where the DataAttribute 

values are overwritten with these values.          

  SGCBReference
 == NULL

Response -
(SGCBReference can

not be NULL)

Find target LD
using LDName

Seperate SGCBReference into three strings : LDName,
LNName and SGCBName

T

F

ActSG = SettingGroupNumber

Values of the SG #SettingGroupNumber --> active
buffer

Values of the DataAttributes = Values in the active
buffer

Response +
(Service Request

Succeed)

END

 

Figure 4.21 Flowchart diagram the SelectActiveSG service      

 

4.2.5.1.2 SelectEditSG Service      
 

Clients use this service to set the value of the EditSG attribute of the referenced SGCB 

loading the values of the specified SG into the edit buffer. The input/output parameters 

for this service are shown in Table 4.10 [85]. This service is similar to the previous one 

except that the value of the EditSG attribute will be set and values of the SG with the 

index number “SettingGroupNumber” will be moved into the edit buffer. 

Table 4.10 Parameters of the SelectEditSG service 
 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

SGCBReference Response+ Response- 
SettingGroupNumber   
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4.2.5.1.3 SetSGValues Service      
 

Clients use this service to set the values of the SG in the edit buffer [85]. The 

input/output parameters for this service are shown in Table 4.11. Figure 4.22 shows the 

flowchart diagram of the SetSGValues service.  

Table 4.11 Parameters of the SetSGValues service 
 

 

Response -
(The referenced Data can not be

located in the edit buffer)

END

If (DataName [x] in the edit buffer
== FCDA )

break

T

Edit_Buffer [x]  = DataAttributeValue

for (x=0; x< 30; x ++)

F

Response +
(Service Request Succeed)

T

F

If ( FC == "SE") Response -
(Check the FC value)

F

T

 
 

Figure 4.22 Flowchart diagram of the SetSGValues service     

 
Once the target LD is located, the service moves its pointer to the edit buffer of the 

SGCB contained within the referenced LD. Since there is a single SGCB in each LD 

and each SGCB is associated with a single edit buffer, this can be accomplished without 

looping, in other words, without needing to search any lists. The service continues by 

searching the edit buffer to find the data specified by the Reference parameter. A “for” 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

Reference Response+ Response- 
DataAttributeValue    
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loop was used for this purpose as shown in Figure 4.22. If a matching entry is located in 

the edit buffer, its value will be adjusted relative to the DataAttributeValue parameter 

once the service confirms that the FC received in the request holds the string “SE”. If a 

matching data can not be located, the service exits with an appropriate service error.      

 

4.2.5.1.4 ConfirmEditSGValues Service      
 
 
Clients use this service to confirm that the new values of the SG set using the 

SetSGValues service should overwrite its old values. The input/output parameters for 

this service are shown in Table 4.12 [85]. Figure 4.23 shows the final part of the 

flowchart diagram of the ConfirmEditSGValues service.  

Table 4.12 Parameters of the ConfrimEditSGValues service 
 

 
 

CnfEdit attribute of the SGCB = true

Response +
(Service Request Succeed)for (x=0; x< 30; x ++)

T

F

SGValues [ EditSG] [x] = Edit_Buffer [x]
 

Figure 4.23 Flowchart diagram of the ConfirmEditSGValues service     

 
Once the target SGCB is located based on the SGCBReference parameter, the service 

attains a pointer to the SGCB. First, the CnfEdit attribute of the SGCB is set to true 

confirming the editing process. Then, all values of the SG with the index number 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

SGCBReference Response+ Response- 
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“SettingGroupNumber” will be updated based on the values in the edit buffer. The 

SettingGroupNumber is not an input parameter, yet its value can be obtained from the 

EditSG attribute of the SGCB. A “for” loop was used once again because the maximum 

number of values a SG can hold is known to be 30.     

4.2.5.1.5 GetSGCBValues Service      
 

Clients use this service to retrieve the attribute values of a referenced SGCB. The 

input/output parameters for this service are shown in Table 4.13 [85]. Once the target 

SGCB is located and the value of the FC received in the request is verified, the service 

copies the attribute values of the referenced SGCB to the output parameters to be 

returned to the caller program.      

Table 4.13 Parameters of the GetSGCBValues service 
 

 
 

4.2.5.1.6 GetSGValues Service      
 

Clients use this service to get the value of a particular DataAttribute of a SG [85]. The 

input/output parameters for this service are shown in Table 4.14. Figure 4.24 shows the 

flowchart diagram of the GetSGValues service.  

Table 4.14 Parameters of the GetSGValues service 
 

 

 

 

 

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

SGCBReference Response+ Response- 
FunctionalConstraint NumberOfSettingGroup  

 ActiveSettingGroup  
 EditSettingGroup  
 LastActiveTime  

Input Parameters Output Parameters 
(if operation successful) 

Output Parameters 
(if operation unsuccessful) 

Reference Response+ Response- 
 DataAttributeValue  
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Response -
(The referenced Data can not be

located in the edit buffer)

END

If (DataName [x] in the edit buffer
== FCDA )

break

T

DataAttributeValue = Edit_Buffer [x]

for (x=0; x< 30; x ++)

F

Response +
(Service Request Succeed)

T

F

If ( FC == "SE")

T

If ( FC == "SG") Response -
(Check the FC value)

DataAttributeValue = Active_Buffer [x]

T

F F

 

Figure 4.24 Flowchart diagram of the GetSGValues service     

 
Once the target LD is located, the service searches the edit buffer to find the position 

number (x) of the data specified by the Reference parameter. All data have the same 

line-up whether in the edit buffer or the active buffer. Hence, the found position number 

will be the same regardless whether the edit buffer or the active buffer is searched. The 

service then checks the value of the FC received in the request. If it equates to “SE”, 

then the value of the data in the edit buffer will be copied to the DataAttribute return 

parameter. However, if it equates to “SG”, then the value of the data in the active buffer 

is copied to the output parameter. Otherwise, the service ends indicating that the value 

of the FC received in the request has been incorrectly specified.             
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4.3 Conclusion 
 
 
In this chapter, the modelling and implementation of the IEC 61850 standard’s device-

view OSMs has been presented. Chapter 4 carries on from Chapter 3 and completes the 

discussion of the standard’s ACSI models. In this chapter, the main centre of attention 

has been on the ACSI device-view models and their associated services as well as the 

standalone service models defined in ACSI for the peer-to-peer distribution of time 

critical IED data. Device-view models describe device functionality by specifying the 

syntax and semantics of the data exchanged and also the dynamic behaviour of devices. 

The Logical Device (LD) and Server class models are the two important building blocks 

constituting the IEC 61850 standard’s device-view constituent. This chapter has 

provided broad discussion on the OO implementation of these class models and their 

associated services.     

 
In addition to the Server and LD class models, the IEC 61850 standard’s device-view 

constituent comprise of additional standalone service models for which special attention 

needs to be paid. The most significantly valued of all, the GOOSE model, enables fast 

and reliable transmission of IED state change and control signals in a simultaneous 

fashion to a number of recipients. The Sampled Values Model (SVM), on the other 

hand, is related to the organised and time-controlled exchange of samples of measured 

analogue values. Finally, the SGCB model enables ACSI applications to store and edit 

several values for one or more data as well as the capability to switch between the 

values. In this study, special care has been taken when describing the modelling and 

implementation aspects of these information exchange models focusing not only on 

their class associated services but also on their internal procedures.  
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Chapter 5 
 
Communication Processor Design 
 
 
5.1 Introduction  
 

In this chapter, the design and implementation details of the IEC-MOM middleware are 

presented. IEC-MOM is a Message-Oriented Middleware (MOM) architecture that 

integrates various functionalities as a means of satisfying the unique behaviour and 

communication needs of the IEC 61850 standard. It is located between the IEC 61850 

application and network access layers of a communication processor and provides 

various message distribution mechanisms for the transmission of messages to and from 

the application layer. In addition to the middleware architecture, two application layer 

modules are also proposed in this chapter. The designed and implemented application 

layer modules enable the configuration of ACSI client and server operations at the 

application layer and together with the middleware architecture form the upper layers of 

a communication processor protocol stack.         

 
The chapter starts in Section 5.2 with an overview of the IEC 61850 standard’s 

communication-view constituent. Then in Section 5.3, the architecture and components 

of the overall communication processor architecture are discussed. Section 5.4 focuses 

on the design and implementation details of the IEC-MOM middleware while Section 
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5.5 focuses on the design and implementation details of the application layer modules. 

Performance analysis of the designed communication model is presented in Section 5.6. 

The conclusions of this chapter are given in Section 5.7.  

 

5.2 IEC 61850 Communication View  
 
 
In this section, the IEC 61850 standard’s communication-view constituent is examined. 

Although IEC 61850 allows discrete devices to share data and services, it is only an 

abstract application layer protocol outlining two main groups of communication models 

in [84, 85]. These are the client/server and publish/subscribe models that provide 

mechanisms for sending and receiving data as shown in Figure 5.1. 

 

Figure 5.1 IEC 61850 communication models [84] 

 
The client/server model is required for ACSI services, eg. get data values or get 

directory information. The publish/subscribe model, on the contrary, is needed for the 

information exchange service models such as GOOSE that require fast and reliable 
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transmission of data to multiple receivers. Finally, the reporting model makes use of a 

one-way communication model that involves transmission of the available reports to 

ACSI clients making use of their IP addresses.   

 
IEC 61850 defines abstract data and object models as a standardised method of power 

system device description enabling data to be described using identical structures. The 

IEC 61850 ACSI models are set of services and responses to these services that regulate 

identical network behaviour for all IEDs. Although the abstract models are an important 

step towards interoperability, they can only be usable when operated over a set of real 

protocols. The IEC 61850 standard describes this in IEC 61850-8-1 [76] as the Specific 

Communication Service Mapping (SCSM) on specific communication services such as 

the MMS and ISO/IEC 8802-3 as shown in Figure 5.2 [11].        

 

Figure 5.2 IEC 61850 communication profiles [11] 

 
In this research, a standard Object Oriented (OO) implementation of the ACSI OSMs 

was accomplished as described in Chapters 3 and 4. Although the latter eliminated the 

need for the mapping process, ACSI OSMs do not themselves provide the required 
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communication models. Consequently, there still existed the need for a data delivery 

network middleware architecture to be designed for serving the special communication 

requirements of the IEC 61850 standard such as the need to support: 

 
1. Client/server communication model, 

2. Publish/subscribe communication model, 

3. Fine grained time synchronisation [106], 

4. The ability to trade off delivery reliability against delivery delay [54], and 

5. The ability to identify differing Quality of Service (QoS) requirements of the 

different message types supported by the application layer.    

 
The designed middleware had to be small and fast adding only minimal overhead to the 

underlying network communication stack. Furthermore, it needed to be much more 

efficient than MMS or CORBA. Although MMS preserves many technical advantages, 

it has not been completely successful. Main criticism to the MMS architecture includes 

the complexity; poor performance and lack of any explicit support for publish/subscribe 

architectures. The latter item explains the reason why a second communication stack, 

the ISO/IEC 8802-3, had to be proposed in [76] for the mappings of peer-to-peer 

communication capability requiring models such as the GOOSE.        

 
Clearly, there were many challenges such as aforesaid, which had to be solved. 

However, the need to design a real-time communication model to run with a 

communication processor was evident. The term “real-time” means that an application 

should respond to events within a prescribed range of time even under failure and 

extreme load conditions. Overall, the real-time communication model had to support the 

following features:  
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• Support for the client/server communication model, 

• Support for the publish/subscribe communication model, 

• Modelling time and time-stamping each transaction [54], 

• Allowing for the trade-off between delivery delay and reliability [54], 

• Working in a real-time communication processor environment [54], 

• Support for the different QoS requirements.     

 

5.3 The Proposed Model  
 
 
The overall architecture of the proposed communication processor is shown in Figure 

5.3. On the network access side of the communication processor protocol stack, an 

Ethernet based Internet network is utilised offering different levels of guarantees for 

network performance such as fast delivery times or guaranteed delivery.  
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Figure 5.3 The overall communication processor architecture 

 
On the application side, the designed communication processor contains an application 

layer module where ACSI applications can be configured. The application layer 

processor can be modelled either as an ACSI server or an ACSI client. The modelling of 
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an ACSI server has to be carried out making use of the C++ class and service 

descriptions developed in Chapters 3 and 4. This clarifies the reason behind the need for 

the OO implementation of ACSI OSMs so that they can be used in the process of 

implementing various representations of real devices at the application layer.   

 
An end-system based middleware, which decouples applications from network 

processes, is located between the network access and application layers as shown in 

Figure 5.3. The designed middleware, IEC-MOM, does not provide any object or 

service models but only message distribution mechanisms. It uses the principles of 

MOM for timely message delivery across the network [107-109]. MOM is based on the 

model of message passing or queuing between a sender and a receiver. One of the most 

important principles of MOM is message queuing [110], which provides strong 

reliability guarantees in case of failure by storing messages on disk. Originally, MOMs 

used to have only client/server architectures. Yet, nowadays they have been extended to 

include publish/subscribe features as well. This is one of the most significant features of 

the IEC-MOM middleware that helps to eliminate the need and disadvantages that arose 

from the use of multiple communication stacks as illustrated in Figure 5.2.  

 
IEC-MOM operates above the TCP-UDP/IP stack and provides a single common 

interface to all IEC 61850 profiles including core ACSI services, GOOSE and SV. The 

TCP/IP stack is used for the core ACSI services whereas the UDP/IP stack is utilised for 

the GOOSE and SV profiles. IEC-MOM enables applications to exchange messages 

with other applications without having to know what kind of platform the other 

application resides on, thus increasing the flexibility of the whole architecture. The 

following sub-sections describe the individual features of the IEC-MOM middleware.     
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5.3.1 The Client/Server Communication Model   
 

This sub-section covers various aspects of the client/server communication model of the 

designed middleware. The client/server is based on MOM’s asynchronous message 

passing between a client and a server application as demonstrated in Figure 5.4. 

Asynchronous means that the client application will not be blocked until server’s 

response arrives and it can continue to issue requests to other applications. In contrast to 

synchronous mechanisms employed by Remote Procedure Call (RPC) [111, 112], an 

infrastructure type attempted earlier on in [113, 114], the use of an asynchronous 

request-reply mechanism in MOM does not require the client and server to be available 

all the time. If the destination application is unavailable or busy, the messages will be 

held in a temporary store location, a message queue, until they can be processed.     

Client Application Server Application

IEC-MOM IEC-MOM

Server
Object (e.g

Logical
Node 1)

Server Object (e.g Logical
Node n or DATA)

Request                Confirm

Communication Services

Response             Indication

Communication Services

Communication Stack/ Profile  
 

Figure 5.4 Interaction between a client and a server 

 
The client/server communication model is used for transferring messages that originate 

at the application layer due to service requests such as get data values or get data 

directory information, etc. Such services require a communication processor to receive 

every step in the command sequence properly, which can only be guaranteed with 

reliable delivery. One of the fundamental advantages of the asynchronous client/server 
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MOM is reliable message delivery through the use of message queues [115]. The use of 

the TCP protocol, which is very popular for its reliable transmission, for such messages 

further supports the quarantined delivery of messages.      

 
TCP is a connection-oriented transport layer protocol that requires the name of the 

destination node when establishing an application session with that node. Hence, the IP 

addresses must always be included in the request-reply messages originating from the 

application layer. This is not a major concern since in IEC 61850 applications, the 

communicating nodes are required to be aware of the names of the destination nodes 

with which they need to communicate. The IEC-MOM middleware makes use of these 

IP addresses when establishing connections with the destination nodes.            

 
5.3.2 The Publish/Subscribe Communication Model   
 

This sub-section covers various aspects of the publish/subscribe communication model 

of the designed communication processor. It focuses on the design constraints behind 

the design of a suitable real-time publish/subscribe model for substation communication 

systems. The publish/subscribe communication model is basically an added feature to 

the client/server model formerly described. The main difference is that multicast group 

addresses are used instead of IP addresses. In this section, design issues are described 

for successfully distributing mission and time critical information within the substations 

to legitimate parties in a timely, reliable and accurate manner. A number of issues need 

to be considered simultaneously when building an appropriate publish/subscribe 

communication model. These involve the choice of a suitable routing mechanism and a 

number of techniques for the tasks of binding, filtering and making subscriptions.  



 
    Chapter 5: Communication Processor Design 

 
 

 127

5.3.2.1 The routing problem 
 
 
The main approaches for solving the routing problem are:  

 
1) Sending a number of points to point messages, 

2) Sending a multicast message, and 

3) Sending a broadcast message. 

 
GOOSE and SV are the main profiles requiring indirect peer-to-peer asynchronous 

delivery. The IEC 61850 standard has specified the use of the multicast alternative, 

shown in Figure 5.5, for this purpose.  
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Figure 5.5 Multicast transmission 

 
Multicast represents a unidirectional and connectionless communication between a 

server and a selected set of clients as defined in IEC 61850. The multicast concept is 

crucial for power system applications in which a given analogue value, state change, or 

command may be communicated to several peers at the same time. Multicast messaging 
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[116, 117] allows the sender to send a single copy to the data stream, which will then be 

replicated by switches or routers and forwarded to receivers that have previously 

signalled their interest in that message. Receivers, also called subscribers, indicate their 

interest by joining a particular multicast session group. The key advantage of multicast 

messaging is that it reduces the amount of traffic over the network yielding an increased 

efficiency for both the publisher and network with a number of other key performance 

improvements. Multicast oriented communication enables nodes to join or leave groups 

as a local activity unambiguously creating group membership and group wide 

awareness.   

 
The major disadvantage concerned with multicast transmission, on the other hand, is the 

fact that it can be unreliable. However, it is possible to multicast GOOSE and SV 

messages due to the fact that they can be repeated a number of times until their time-to-

live expire to achieve higher reliability and they need not to be acknowledged.  

 
5.3.2.2. The subscription mechanism 
 
 
In ACSI, GOOSE messages are put forward as a means of expressing all required 

protection scheme information of an individual protection IED. The status of the 

functional elements in an IED is reported in the form of a state machine. Once IEDs 

capture the effects of abnormal system conditions within a substation, they express the 

details in the form of GOOSE messages. The power quality monitoring and recording 

devices are the type of devices that are usually interested in receiving such GOOSE 

messages [82]. However, in order to receive such messages, they need to have a 

mechanism for registering and subscribing to the publishing device’s multicast group. 

This suggests that each subscribing device needs to be aware of its publishers and their 
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relative IP Multicast Group Addresses (MGAs). Figure 5.6 shows a distribution feeder 

protection relay, the PIED, publishing to a subscribing device that is a power quality 

monitoring and recording (PQMR) IED. When the feeder detects a fault, it will trigger 

the operation of the PQMR by sending a multicast message to various destinations 

including the PQMR itself.  

 

Figure 5.6 Feeder IED publishing to the subscribing IED [82] 

 

Reference [54] discusses that each publishing node must not only be aware of its own 

subscribers but also a complete list of publishers each one of its subscribers subscribes 

to. Similarly, reference [54] also states that in the case of a subscribing node, each 

subscriber needs to be aware of its own publishers and a complete list of the subscribers 

each one of its publishers publishes to.  

 
The designed real-time publish/subscribe model associates a logical handle to each 

publishing device. The logical handle can simply be a variable length ASCII string 

containing the address and name of each publishing device and names of its subscribers. 

Each subscriber interested in receiving GOOSE messages from a particular publisher 

needs to subscribe itself in the “subscribers” list of the publishing device with a 

subscription message containing its name, address and the names of the other devices it 
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has subscribed to. Thus, each publisher will have a list of its own subscribers and a list 

of the other publishers they have subscribed to as stated as a necessity in reference [54]. 

Each published GOOSE message will be tagged with the logical handle information of 

its publisher. Subscribers upon receiving GOOSE messages will be able to filter the 

logical handle to acquire the name and address of the publisher as well as the list of 

subscribers it publishes to. The subscribers will then be able to keep a record of not just 

their publishers but also a list of the other subscribers that subscribe to same publishers.  

 
5.3.2.3. Binding and filtering 
 
 
The problem of binding can be overcome very easily by using the publisher-based 

subscription mechanism. Publisher-based subscription mechanism requires subscribers 

to subscribe to publishers providing their details such as node name, node address and 

protocol etc. Once a subscription is processed, a publisher will add the relative 

subscriber into its “subscribers” list. When a GOOSE message becomes available at the 

publisher, it can be multicast to all the subscribers by the source making use of the IP 

MGA instead of individual subscriber addresses. However, since the GOOSE message 

is to be tagged with a logical handle, the task of binding includes the processing of the 

subscriptions in order to fetch the subscriber addresses forming a “subscribers” list to 

accompany the GOOSE message. This has to be repeated before the delivery of every 

GOOSE message updating the list of subscribers taking into account the possibility of 

new subscriptions and unsubscriptions.  

 
While binding takes place at the publisher, filtering needs to be carried out at each 

subscriber to filter out unwanted messages. Although the possibility of receiving 

unsubscribed GOOSE messages at the subscriber is quite low, it would still be desirable 
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to include a filtering mechanism. The relative overhead of the filtering is quite small 

when the publisher-based subscription mechanism is used. Each GOOSE message is 

tagged with a logical handle, which includes information about its publisher. The 

complexity of the filter and hence the overhead will be reduced since the filter only 

needs to evaluate the logical handle rather than the whole message content. The 

evaluation of the logical handle includes matching the publisher’s name with one of the 

names in the subscriber’s list of publishers. If a match is found, then the message will be 

accepted and processed. Otherwise, the message will be rejected and destroyed.     

 
5.3.2.4 QoS 

 
 

Publish/subscribe systems usually address mechanisms for message ordering and 

reliability of message delivery. One such example is “Priority Queuing”. Priority 

queuing uses multiple queues as shown in Figure 5.7, which are serviced with different 

priority levels. 

 

Figure 5.7 Priority queuing [118] 

 
As depicted in Figure 5.7, the highest priority queue containing the highest priority 

messages is usually serviced first. In the case of any congestion, packets residing in the 
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lower priority queues will be dropped [118]. This kind of queuing is perfectly suitable 

for the delivery of GOOSE state change messages, which are certainly to have the 

highest priority level on a substation network. Therefore, priority queuing along with an 

appropriate scheduling mechanism is beneficial in the publish/subscribe communication 

model that needs to be designed for substation communications. Besides the use of 

congestion management mechanisms such as priority queuing, the use of congestion 

prevention mechanisms such as the Weighted Random Early Detection (WRED) [119] 

for congestion avoidance is also favourable. WRED prevents congestion by starting to 

drop low priority packets only in the case of a future congestion detection to ensure the 

delivery of mission critical messages such as GOOSE messages. 

 
In this research, the synchronised use of the User Datagram Protocol (UDP) and the 

Resource Reservation Protocol (RSVP) [120] is proposed to satisfy the most important 

QoS parameter concerned with the delivery of GOOSE messages, which is the 

maximum application-to-application delay requirement of 4 ms [121, 122]. The 4 ms 

delivery delay requirement implies that the total delivery delay between the 

communicating devices should not exceed 4 ms. It includes the delay on the wire as 

well as the delay the message encounters while travelling through the protocol stack 

from the application layer all the way to the hardware [122].  

 
According to the published IEC 61850 standard, GOOSE and SV profiles do not use the 

ISO network layers UDP/IP as illustrated in Figure 5.2. However, in this research, the 

use of the UDP/IP stack is seen as a benefit. The main criticism to this decision is high 

likely to include the fact that GOOSE and SV messages will be introduced to extra 

delays when passing through these layers. Although correct, this delay is relatively 
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small and will not exterminate the 4 ms timing determinism. Moreover, considering the 

advantages gained from the use of the UDP/IP stack, this decision can be justified. UDP 

is a connectionless transport layer protocol, which has a very fast response time and a 

very low overhead. It is well suited for real-time applications where messages can be 

multicast efficiently and datagram boundaries are respected. The greatest advantage of 

utilizing IP is that security and encryption can be built into the communications. The IP 

multicasting technology has been proven over the years and presents many advantages 

to the users. One such example is the fact that it is well optimised and packets are only 

sent to the routers that need them. In addition, using the RSVP protocol, each publisher 

can easily specify the upper bound of the delay, which in the case of GOOSE messages 

will be 4 ms. Once the specifications are given, then the delivery of GOOSE messages 

takes place taking the traffic specification into consideration at every step along the 

network.   

 
However, the mechanisms described above are not adequate when addressing some 

other issues concerned with substation communication systems. With the synchronised 

use of UDP and RSVP, it is quite possible to satisfy the 4 ms delay condition. However, 

the reliability of messages becomes a major concern in this case since UDP cannot 

provide reliable messaging at all. There is a different interpretation in substations for the 

relationship between reliability and delivery delay. Timely and reliable transmission of 

messages implies that GOOSE messages need to be repeated in the case of failures until 

their hold time expires whilst not exceeding the 4 ms application-to-application delay 

criteria. This can be achieved by a mechanism, which trades off delivery delay against 

delivery reliability. What is needed is a guaranteed delivery mechanism operating above 

the level of the UDP transport protocol. Such a mechanism running above UDP will be 
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superior to TCP since it will prevent the uncontrollable communication latency that 

results in the case of TCP.  Moreover, by limiting the number of re-transmissions, the 

necessary trade-off can be achieved since UDP will not get stuck trying to re-transmit 

the messages forever destroying the timing determinism completely.    

 

5.4 The Design and Implementation of the IEC-
MOM middleware  

 

This section focuses on the architectural design and implementation of the IEC-MOM 

middleware. First, the architectural overview of the middleware is given followed by its 

implementation details.  

 
5.4.1 IEC-MOM Architectural Overview  
 
 
Figure 5.8 depicts the detailed architectural overview of the IEC-MOM middleware.  
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Figure 5.8 IEC-MOM architecture 
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The middleware layer consists of several components such as Interrupts Manager, 

Queue Manager, Connection Manager and Delivery Manager. These components take 

care of many communication details and handle the interaction of IEC 61850 

applications. The tasks of the individual components are described below: 

 
Interrupts Manager: The interrupts manager is responsible for receiving interrupts and 

determining their type when the middleware module is interrupted as a result of a new 

event. For example, the arrival of a new message (packet) at the input stream of the 

middleware module triggers a stream interrupt. In such cases, the interrupts manager 

needs to detect whether the packet is an application layer or a transport layer packet. If 

the packet is coming from the application layer, then it will be forwarded to the queue 

manager of the transmission queue. Otherwise, it will be forwarded to the queue 

manager of the application queue.  

 
Queue Manager: The queue manager is responsible for associating an incoming packet 

with an appropriate queue. It is possible to define a number of internal subqueues in 

which packets can be inserted and sorted, and from which packets can be extracted for 

transmission according to a general user-defined method. If the arriving packet is from 

the transport layer, it will be stored in the application subqueue that contains packets 

headed to the application layer. However, if the packet is from the application layer, 

then queue manager decodes the packet in order to determine its type. Three subqueues 

have been reserved for messages arriving from the application layer: subqueue 1 for 

GOOSE Messages, subqueue 2 for SV messages and subqueue 3 for the remainder 

including service requests and reports. The vital aim here is to assign different priority 

levels to the subqueues to make sure that highest priority messages are serviced first. 
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Rationally, in this project, the highest priority has been assigned to subqueue 1, then 

subqueue 2 with subqueue 3 having the least priority. Once the newly arrived packet is 

inserted into the relevant subqueue, then the queue manager hands of the control to the 

delivery manager. 

 
Delivery Manager: The delivery manager is responsible for handling the flow of 

messages in the IEC-MOM module. As soon as the control is passed to the delivery 

manager, it starts removing messages from the subqueues beginning from subqueue 1. 

As soon as all the messages in subqueue 1 have been catered for, it moves on with 

subqueue 2 and so on. Besides removing messages from the subqueues, the delivery 

manager is also responsible for creating and invoking a new transport mechanism thread 

(connection manager) for each removed message. 

 
The use of a dedicated transport mechanism thread for each individual message is much 

useful in stopping problems that arise during the delivery of a single message from 

affecting the transmission of other messages. Whilst the connection manager is being 

invoked, a number of transmission specific details are passed to the connection manager 

along with the original message. Such information includes: 

 
1 The application service name, 

2 The transport protocol to be used , 

3 Whether the transmission needs to be unicast or multicast, and  

4 Type of service (TOS) and RSVP parameters. 

 
Therefore, for each message, the delivery manager informs the connection manager 

about the constraints to be used when establishing a connection. For example, for 
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GOOSE messages from subqueue 1, the delivery manager sets the application service 

name as “GOOSE Messaging” and indicates that a multicast session needs to be 

established using the UDP transport protocol. The TOS and RSVP parameters will be 

set to their highest priority/best effort values since GOOSE messages require highly 

deterministic delivery. 

 
The delivery manager follows two different approaches to maintain the reliable delivery 

of messages. Undelivered service request from subqueue 3 will be reinserted into 

subqueue 3 by the delivery manager and their priorities will be increased. It is also 

possible to assign different priorities to messages within the same subqueue and then 

sort the subqueue based on increasing priority. On the other hand, for GOOSE messages 

from subqueue 1, a delivery delay against delivery reliability trade-off mechanism is 

utilised. It simply involves the invocation of a number of transport mechanism threads 

for the same GOOSE message at different intervals given by the following formulae 

until a maximum delay time of 4 ms is reached. 

 
)1.5(0001.0)1( 1 equationnt R ×+= −  

 

where t is the delay time, in milliseconds, between the successive retransmissions, n is a 

setting between two and seven inclusive while R is the sequential repeat number of the 

message [123]. For example, when a setting number (n) of five is used, the delay 

between the first event-driven message and the second retransmission is 0.6 ms.  

 
The whole process is much simpler for the application subqueue messages. In that case, 

the delivery manager simply removes messages from the application subqueue and 

forwards them to the application layer module. There is no need for any reliability 
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concern in this case since the likelihood of a message being unsuccessfully transmitted 

between two modules in the same processor is extremely low.     

 
Connection Manager: The connection manager or otherwise called the transport 

mechanism thread manages the unicast and multicast transmissions. It is basically used 

for opening a connection with the underlying Transport Protocol Application Layer 

(TPAL) to start an application. While establishing the connection, all the constraints 

regarding the transmission of the message will be forwarded to the TPAL layer. TPAL 

is a basic and uniform interface between the middleware layer and different transport 

protocols. It establishes a connection with the transport protocol specified by the 

connection manager virtually linking the middleware module with the specified 

protocol. Once TPAL gives “OPEN” confirmation, the packet received from the 

delivery manager will be sent to TPAL to be forwarded to the chosen transport protocol.  

 
5.4.2 IEC-MOM Implementation  
 

Software based implementation of the IEC-MOM middleware was carried out by using 

the OPNET Modeller from MIL3. OPNET [124] is an object-oriented simulator that 

allows for modelling, simulating and analysing the performance of communication 

networks, computer systems, applications and distributed systems. It contains a set of 

networking protocols and analysis environments such as: 

 
1 Client-Server Analysis Environment, 

2 Transmission Control Protocol (TCP),  

3 User Datagram Protocol (UDP), and 

4 Internet protocol (IP). 
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It also contains many tools for designing and collecting data on network models such as: 

 
1 Network Editor (creating network model), 

2 Node Editor (creating node models), 

3 Process Editor (creating process models), and 

4 Analysis Tool (analysing simulation results). 

 
The IEC-MOM middleware has been implemented in a queue module between the 

TPAL and application layers of a communication processor as shown in Figure 5.9. 

 

 

Figure 5.9 Communication processor node model 

 
Figure 5.9 shows the general node model of a communication processor. A node model 

is a collection of modules representing district functional areas of the node. The use of a 

queue module for the IEC-MOM middleware allows for the creation of subqueues in 

which packets can be stored in an organised manner for later use. In OPNET, process 
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models are used to specify the behaviour of processor and queue modules that exit in 

the node domain. An individual process or groups of processes implement a particular 

task when placed in a process model. A single process is an instance of a process model 

defined within the process editor. Figure 5.10 shows the process model of the queue 

module that was used to implement the behaviour model of the IEC-MOM middleware. 

 

Figure 5.10 Process model of the IEC-MOM middleware module 

 
OPNET process editor provides a powerful and efficient method based on State 

Transition Diagrams (STDs) for describing the behaviour of discrete event systems. 

STDs, also referred to as Finite State Machines (FSMs), are used in specifying and 

developing a wide range of software and hardware systems. A STD consists of two 

basic component types: states and transitions as illustrated in Figure 5.10. States 

represent top-level modes that a process can enter. Transitions show the possible state 

changes of the process. The IEC-MOM STD consists of 4 states and transitions between 

these as illustrated in Figure 5.10. The description of each state is provided below 

examining the tasks performed in each state. 
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• Init State: The main task performed in this state is the initialisation of the 

process model of the IEC-MOM middleware module. After the initialisation of 

the lower layers is completed, the “Init” state schedules an interrupt in order to 

perform the initialisation of the middleware module. OPNET processes are 

event-driven. An interrupt is a terminology given to an event that is actually 

delivered to a process. Most transitions between states occur once a certain 

interrupt is received. The process remains in the “Init” state until a confirmation 

is received indicating the completion of the initialisation process after which the 

process proceeds to the next stage that is the “Start” state. 

 
• Start State: The main tasks performed in this state include initialisation of all 

the state variables used by this process model as well as service registration. 

Service registration is the act of issuing a service registration command to TPAL 

for each supported service. A service registration command basically includes 

the name of the service, the protocol and port index through which it can be 

accessed. Examples of services, an IEC 61850 node may support, include the 

transmission of GOOSE, SV and service request messages. Besides the tasks 

described above, the statistics that are maintained by this process model are also 

registered in this state. Once all this tasks are accomplished, the process 

proceeds to the “Idle” state. 

 
• Idle State: The interrupts manager is the sole component running in this state. 

The functions of the interrupts manager were previously described in detail. The 

IEC-MOM process model stays in the “Idle” state until a stream interrupt is 

received triggered by the arrival of a new packet. If the received packet is 
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coming from the TPAL layer, the process proceeds to the “RECEIVE” state. 

Otherwise, it proceeds to the “SEND” sate. 

 
• RECEIVE State: The main components running in this state are the queue 

manager of the application subqueue and the delivery manager. The queue 

manager inserts the packets arriving from the TPAL layer into the application 

subqueue. The packets are shortly removed from the application subqueue one 

by one by the delivery manager to be processed and forwarded to the application 

layer. After all the packets in the application subqueue are removed and 

forwarded to the application layer, the process proceeds back to the “Idle” state. 

 
• SEND State: The queue manager of the transmission subqueues and the 

delivery manager are the main components running in this state. The queue 

manager processes the incoming packets from the application layer inserting 

them into the relevant subqueue based on their type. The delivery manager 

removes all the packets from the transmission subqueues starting from the 

highest priority one. For each message, it creates and invokes a new connection 

manager thread running in the child process model shown in Figure 5.11 passing 

the transmission specific requirements to the thread along with the original 

message. Once all the packets in the transmission subqueues have been catered 

for, the process proceeds back to the “Idle” state. 

 

Figure 5.11 IEC-MOM child process model   
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The process model shown in Figure 5.11 is referred to a child process with respect to 

the process model that creates it. The use of a separate child process for the connection 

manager is useful in stopping the failure of a single transport mechanism thread from 

affecting the parent process. The connection manager running in the child process 

establishes a TPAL connection and sends the packet to the TPAL module subsequent to 

receiving an “OPEN” confirmation. These actions are all carried out in the “open” state. 

If the connection manager fails to receive an open confirmation from TPAL for the 

service request messages (core ACSI services), the packet will be reinserted into 

subqueue 3. The connection manager closes the TPAL connection in the “close” state 

where the child process also terminates itself. 

 

5.5 The Design and Implementation of the 
Application Layer Modules  

 

This section focuses on the architectural design and implementation of two different 

application layer models. The first application layer model has been designed as a 

module where ACSI servers can be configured whilst the second for the configuration 

of ACSI clients. The application layer is the seventh layer of the seven-layer OSI model. 

Common application services for the application processes are performed in this layer.  

 
5.5.1 Server Application Layer Design and Implementation  
 

In this sub-section, the architectural design of a standard application layer module built 

on top of IP-TCP/UDP, where ACSI servers and virtual representations of real devices 

can be configured, is proposed and described in detail. The core ACSI services using the 

client/server communication model do not require any complex mechanisms. It is 
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sufficient that the requesting node knows about the IP address of the destination node. 

However, this is not the case for the publish/subscribe communication model requiring 

information exchange service models such as GOOSE. The success of these services 

relies on the ordered use of mechanisms for the tasks of registering, binding, filtering 

and making subscriptions. The key behind the design of the real-time publish/subscribe 

communication model can be briefly summarized as follows. Non-real time activities 

such as getting publication or subscription rights happen outside the real time loop 

ideally at the start-up. Conversely, the generation, transfer and reception of messages 

are real-time activities happening in the real-time loop requiring very fast response 

times. There are two types of nodes. Subscriber nodes can only subscribe to messages 

whereas “publisher-subscriber” nodes can publish messages as well as subscribe to 

messages published by other nodes. The following sub-sections describe how the tasks 

of registering, binding, filtering and making subscriptions are accomplished at the 

server application layer module. The architectural components, which play part in the 

carrying out of these tasks and others including the sending, reception and execution of  

IEC 61850 associated messages, are also described.        

 
5.5.1.1 Registering 
 
 
Ideally at the start-up, each publishing node must be associated to a multicast group 

each having a unique label, which is referred to as the IP Multicast Group Address 

(MGA). The Multicast Membership Service (MltcMS) is responsible for storing IP 

MGAs. Entries within the MltcMS contain publishers’ IP host names and MGAs. 

Various nodes on the network communicate with the MltcMS to create/delete entries 

and to add/delete their publication/subscription rights.   
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A node interested in publishing messages gets its publication right by creating an entry 

in the MltcMS’s IP MGAs table. On the other hand, those nodes interested in receiving 

messages from a particular publisher have to make use of the publisher’s IP MGA in 

order to join themselves to the multicast group associated with that publisher. This is 

referred to as registering. Any node interested in subscribing to messages gets its 

subscription right by retrieving the IP MGA for the multicast group it seeks to join from 

the MltcMS. Once the subscriber obtains the IP MGA, it can complete its registration 

and join a multicast group by following the subsequent sequence:     

 
1.   The registry manager process running within the subscriber joins a multicast group, 

Group 1, by sending a join request to its IP module using a remote interrupt,     

2. The IP module forwards an IGMP membership report message to the neighbouring 

multicast router, and 

3. The multicast router sets up a distribution tree for Group 1 adding the interface 

details of the joining subscriber so that it can receive packets sent to Group 1.    

 
5.5.1.2 Subscription, binding and filtering 
 
 
Registering has to be followed with a subscription request sent to the relevant publisher. 

It should be kept in mind that registering basically serves the purpose of setting up a 

distribution tree for each multicast group within the multicast router. In applications 

where publishers need not to be aware of their subscribers, the process of registering is 

by itself adequate. However, as indicated previously, each publisher in a substation 

network is required to hold detailed information related to its subscribers. Thus, the 

mechanism of sending subscription requests and receiving confirmation messages in 

return has been designed and implemented in this project in order to solve this problem. 
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Subscription requests are sent immediately after the subscriber registers for any 

multicast group. One subscription request has to be sent to each one of the publishers.  

 
A subscription request is no more than a packet containing a number of fields. By 

setting the fields of a subscription request, a subscriber can inform any publisher over 

the network about its own local details such as the node name and IP address in addition 

to information specifying whether it wants to subscribe for GOOSE and/or MSVCB 

messages produced by that node. Hence, a combined approach of publisher and subject 

based subscription mechanism has been adopted, which has a number of advantages 

when used in conjunction with the registering process. 

 
Strictly speaking, the task of binding in publishers is unnecessary since each publisher 

uses a Multicast Group Address to publish its messages. However, each publisher still 

produces a list of its own subscribers to be tagged onto the outgoing multicast message. 

This serves two purposes. First of all, such a list can be cross-examined by the router 

against its own registry list reducing the possibility of unwanted messages from being 

sent to nodes showing no interest in them. Secondly, when a multicast message reaches 

its destination, the subscriber can access to the tagged information and store the names 

of the other subscribers that subscribe to the same publisher as required in substation 

applications. Similarly, the task of filtering can also be fully avoided since after all the 

measures taken, the chances of an unwanted message reaching at any node is fairly low. 

However, with the intention of being precautious, a fairly simple filtering process has 

been implemented that checks the source of messages comparing it to the entries in the 

node’s list of publishers. In cases where a match can not be found, the packet will 

simply be destroyed.       
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5.5.1.3 Architectural components 
 
 
Figure 5.12 depicts the detailed architectural overview of the server application layer 

module. Such a model is appropriate and efficient for client/server requests as well as 

periodic and synchronous updates between sources and sinks. It exclusively supports the 

publish/subscribe model as it makes use of the previously discussed mechanisms.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.12 Architectural components of the ACSI server application layer module 

 
 
The following sequence of events occurs when a source (publisher) pushes multicast 

packets out of its output interface destined for a particular multicast group:  

Local  
Manager 
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1. The application running within the source multicasts a packet using the Multicast 

Group Address (MGA) that is also referred to as the multicast membership address, 

2. When the packet reaches its rendezvous point (IP address of the router responsible 

for distributing multicast traffic to the specified multicast group), the router’s IP 

process forwards the multicast packet to the “ip_pim_sm” process, and   

3. The “ip_pim_sm” process is one of the child processes of the IP module, which 

makes multiple copies of the multicast data and sends one copy to each one of the 

subscribers listed in the multicast route table. 

 
All the architectural components shown in Figure 5.12 assist in the successful operation 

of the application layer communication model in one way or another. An individual 

discussion for each one of the architectural components is provided below: 

 
Local Manager: Local manager executing in every publisher and subscriber is 

responsible for the creation/deletion of publication or subscription rights. One of the 

tasks of the local manager is to periodically update its “multicast membership 

addresses” list based on the periodic info received from the MltcMS regarding the status 

of the publication/subscription rights.   

 
Registry Manager: Subscribers interested in joining any multicast session group do 

this with the help of the registry manager, which simply contacts the IP module 

expressing the subscriber’s interest in joining a multicast session group. Registry 

manager also handles the process of sending subscription requests. In cases where 

publishers subscribe to other publishers’ multicast session groups, it also performs the 

task of updating the “publishers” component of the MyPublishersSubscribers list.     
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Execution Manager: Execution manager is responsible for determining the type of the 

packet arriving from the IEC-MOM middleware module. After it determines the type of 

the packet, it executes the relevant packet execution/destroy mechanism. Examples of 

the packet types expected at an ACSI server application layer include reports, GOOSE 

messages, ACSI service requests, GOOSE or MSVCB subscription requests, MSV 

messages and etc. Individual packet execution/destroy mechanisms have been designed 

and implemented for various packet types. The packet execution/destroy mechanism are 

mainly used for accessing the relevant fields of the received packet obtaining the 

information stored within its fields. Once this is concluded, they execute a response 

based on the information acquired. For example, in the case of service requests received 

from ACSI clients, the information stored within the packet include the name of the 

service to be performed and input parameters to be passed to the service. The ACSI 

service request execution/destroy mechanism accesses this information executing the 

relevant service with the input parameters received in the request. The names and 

possible input parameters of ACSI services were previously covered in Chapters 3 and 

4. After the packet is executed, the packet execution/destroy mechanism updates a 

number of statistics such as the application-to-application delay statistic of the packet 

before destroying it.  

 
Delivery Manager: The delivery manager thread is executed shortly after the execution 

of a service request received from an ACSI client. Each service request needs to return a 

reply back to the calling client. This task is accomplished by the delivery manager, 

which creates and sets the fields of a reply packet headed to the requesting client. All 

the output parameters returned by the executed service are inserted into the same packet 

along with a timestamp designating the current time and date.  
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ACSI Configuration Manager: The ACSI configuration manager basically acts as a 

device parameter configuration tool. It is mainly used for configuring an ACSI server at 

the server application layer module. Substation configuration describes which of the 

optional information is used in a specific device, what the instance names of all LNs 

are. IEC 61850-6 has specified a description language for the configuration of electrical 

substation IEDs. This language is called the Substation Configuration Description 

Language (SCL), which is based on the XML schema language. However, in this study, 

the SCL has not been utilised. Instead, the LNs, LDs, data and data attributes as well as 

the services used and provided by an IED are configured utilising the C++ programs 

described in Chapters 3 and 4. 

 
5.5.1.4 Server Application Layer Implementation  
 

Software based implementation of the ACSI server application layer module was once 

again carried out using the OPNET Modeler software. Figure 5.13 shows the process 

model of the processor module where the general behavioural model of an ACSI server 

was implemented. 

 

 

Figure 5.13 ACSI server application layer module process model 
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Processor modules are the primary building blocks of node models. They can be 

connected to other modules via a number of packet streams. They can act as traffic 

generators and/or sinks. As illustrated, the STD of the server application layer module 

consists of 5 states and transitions between these. The actions performed in each state 

are listed below: 

 
• Init State: The ACSI configuration manager and the local manager are the two 

components executing in the “Init” state. The ACSI configuration manager 

configures an ACSI server whilst the local manager updates the “multicast 

membership addresses” list of the node with the information it receives from the 

MltcMS. The state variables used by this process model are also initialised in 

this state. The process proceeds to the “P_Subs” state once all these tasks are 

accomplished.  

• P_Subs State: Registry manager is the sole component executing in the 

“P_Subs” state. It carries out the registering and sends subscription requests to 

the publisher nodes.  

• Inactive State: The process stays in the “Inactive” state until a stream interrupt 

is received triggered by the arrival of a new packet. Only then, the process 

model proceeds to the “Decide” state.  

• Decide State: Execution manager is the main component running in this state. It 

determines the type of the received packet and calls the relevant packet 

destroy/execution mechanism. If the packet is a service request message, the 

process proceeds to the “Generate” state. Otherwise, for all other message types, 

it defaults back to the “Inactive” state where it waits the arrival of the next 

packet.        
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• Generate State: The “Generate” state is where a reply (confirmation) packet is 

created for the executed service, its fields set and forwarded to the ACSI client 

where the service request initially originated from.   

 
5.5.2 Client Application Layer Design and Implementation   
  

This sub-section presents the architectural design and implementation of an application 

layer module, where the ACSI client operations can be modelled. The IEC 61850 

standard only defines the ACSI server role including the roles of the LNs, data, control 

blocks and etc. located in the server. Clients and their internal structures have not been 

defined in the standard. Therefore, in this project, the design of the ACSI client model 

has been based on the role a client characterises within the context of the standard.       

 
5.5.2.1 Design of the ACSI Client application layer module  
 

The design of the ACSI client application layer module has been based on the various 

tasks a client can perform. These include: 

 
1 Issuing service requests and receiving confirmations of the services after they 

have been processed in the ACSI servers, 

2 Subscribing to publishers’ GOOSE or SV messages, 

3 Receiving GOOSE or SV messages, and  

4 Receiving report indications.  

 
The ACSI client application layer is also required to have supporting mechanisms for 

both the client/server and publish/subscribe communication models as some client 

applications rely on the client/server communication model and some others rely on the 
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publish/subscribe communication model. Therefore, the issues of registering, binding, 

making subscriptions and filtering described while presenting the design of the server 

application layer module are also relevant in the design of the ACSI client application 

layer module. Similarly, all the manager threads, discussed in section (5.5.1.3) except 

for the ACSI configuration manager, are also utilised. It should also be noted that ACSI 

clients can only subscribe to multicast messages produced by other nodes and they can 

not publish any multicast messages.   

 
5.5.2.2 Client Application Layer Implementation  
 
 
This sub-section covers the implementation details of the ACSI client application layer 

model, which was also implemented in a processor module. Figure 5.14 shows the 

process model of the processor module that was used to implement the general 

behavioural model of an ACSI client.     

 

Figure 5.14 ACSI client application layer module process model 

 
The STD of the client application layer consists of 4 states and transitions between them 

as shown in Figure 5.14. The tasks performed in each state are listed below: 
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• Init State: The state variables used by this process model as well as the 

statistics maintained by this model are initialised and registered in this state. 

The local manager updates the “multicast membership addresses” list of the 

node, which can be used later when determining the IP MGA of any publisher 

node. The ACSI client node itself does not have an associated MGA as it can 

not publish any messages. 

• Service State: In the “Service” state, the ACSI client application fetches the IP 

addresses of the surrounding nodes. The registry manager registers the client 

application in the multicast session groups of the publisher nodes from which 

multicast messages are desired. It also sends subscription requests to these 

publisher nodes.  

• Generate State: The “Generate” state is where service requests are assembled 

and forwarded to the underlying middleware. The process model stays in this 

state until a stream interrupt is received. If the received packet is a multicast 

message or a report, the process proceeds to the “Received” state. However, if 

it is an ACSI service reply message, it will be processed in this same stage. In 

such cases, the process stays in the “Generate” state and moves on with 

sending the nest request message.  

• Received State: The “Received” state is entered when a GOOSE, SV or report 

message is received. After executing such a message, the process stays in the 

“Received” state until a stream interrupt is received. If an ACSI service reply 

message is received, it will be processed in the “Received” state before the 

process proceeds back to the “Generate” state. Otherwise, the process stays in 

this state and processes the received multicast message or the report.   
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5.6 Performance Analysis of the System  
 

This section discusses the simulations that were carried out to test the IEC 61850 

standard and evaluate the performance of the implemented communication processor 

architecture, which consists of the designed application layer and IEC-MOM 

middleware modules. The idea for the simulation test set-ups presented in this chapter 

was taken from references [125-127].    

 
5.6.1 The Bay Devices and Station Controller Simulation 
 
 
The Bay Devices and Station Controller (BDASC) simulation was carried out to test the 

implemented OSMs of Chapter 5 and evaluate the client/server communication model 

of the implemented architecture. Figure 5.15 shows the test set-up built for this 

simulation. It consists of a Station Unit Controller (SUC) and two protection and control 

devices at the bay level. The configuration of representations of devices may be done 

either using ACSI services or using the ACSI configuration manager, which is the 

substitute of the XML schema language in this project.  

  

 
 

Figure 5.15 BDASC simulation test set-up 
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One of the devices at the bay level was configured as an ACSI server representing the 

functionality of a circuit breaker (XCBR). It contained a single LD, the LD1, and was 

configured as a composition of the LNs: LLNO, LPHD and XCBR. Figure 5.16 depicts 

the nested structure of this ACSI server only showing the components relevant to this 

simulation. This simulation also intended to test and evaluate the reporting and logging 

models of the IEC 61850 standard. Therefore, a DataSet and a BRCB were also 

configured for the Circuit_Breaker making use of the ACSI services “CreateDataSet” 

and “SetBRCBValues”.    

ACSI Server

LD1

LLNO LPHD XCBR

stValctVal

ModePos

LN Instances

Compatible Data Class (CDC)

DataAttributes  
 

Figure 5.16 Nested structure of the Circuit_Breaker  

 
The DataSet and BRCB of the Circuit_Breaker were configured as follows:   

 
DataSet: 

DSName: DataSet1 

DSRef: LD1/LLNO.DataSet1 

DSMemberRef [0]: LD1/XCBR.Pos.ctVal [st] 

DSMemberRef [1]: LD1/XCBR.Pos.stVal [sv] 

      

BRCB:  

BRCBName: BRCB1 
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BRCBRef: LD1/LLNO.BRCB1 

RptID: BRCB1 Report Identifier 

RptEna: TRUE 

DatSet: LD1/LLNO.DataSet1 

BufTm: 0  

PurgeBuf: FALSE 

TrgOp: data-change = TRUE 

IntgPd: 0 

OptFlds: sequence-number = TRUE, report-time-stamp = TRUE, reason-for-inclusion = 

TRUE, data-set-name = TRUE, data-reference =TRUE, buffer-overflow =TRUE, 

entryID = TRUE, conf-revision = TRUE    

 

The second device at the bay level was configured as an ACSI server that represented 

the virtual behaviour of a switch controller (CSWI). The Switch_Controller also 

contained a single LD, the LD1, which was a composition of the LNs: LLNO, LPHD 

and CSWI. Figure 5.17 shows the nested structure of the Switch_Controller illustrating 

only the components with relevance to this simulation.  
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DataAttributes
 

Figure 5.17 Nested structure of the Switch_Controller  

 
The Switch_Controller was moreover configured with a DataSet and a LCB to enable 

the testing of the logging model. Unlike the Circuit_Breaker, all configuration of the 
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Switch_Controller was carried out using the offline method that’s by making use of the 

ACSI Configuration Manager. The DataSet and LCB were configured as follows: 

 
DataSet: 

DSName: DataSet1 

DSRef: LD1/LLNO.DataSet1 

DSMemberRef [0]: LD1/CSWI.Pos.ctlNum [op] 

 

LCB:  

LCBName: lcb 

LCBRef: LD1/LLNO.lcb 

LogRef: LD1/LD1 

LogEna: TRUE 

DatSet: LD1/LLNO.DataSet1 

IntgPd: 0 

TrgOp: data-change = TRUE 

OptFlds: reason-for-inclusion = TRUE    

 
The following code segment shows the ACSI service requests that were issued to the 

devices by the Station Unit Controller (SUC).  

  
// Issue a “GetServerDirectory” ACSI request 
 
GetServerDirectory ("LOGICAL_DEVICE");  
strcpy (Addr1->server, "Circuit_Breaker");     // Destination = Circuit Breaker PD 
 
// Issue a “GetLogicalDeviceDirectory” ACSI request 
 
GetLogicalDeviceDirectory ("LD1"); 
strcpy (Addr1->server, "Circuit_Breaker");     // Destination = Circuit Breaker PD 
 
// Issue a “GetLogicalNodeDirectory” ACSI request 
 
GetLogicalNodeDirectory ("LD1/XCBR", "DATA"); 
strcpy (Addr1->server, "Circuit_Breaker");     // Destination = Circuit Breaker PD 
 
// Issue a “CreateDataSet” ACSI request 
 
char** reff = new char*[2];   // Declare a variable for the DSMemberRef [1..2] 
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reff [0] = "LD1/XCBR.Pos.ctVal[st]";                 // Set the value of DSMemberRef [0]  
reff [1] = "LD1/XCBR.Mode.stVal[sv]";             // Set the value of DSMemberRef [1] 
 
CreateDataSet ("LD1/LLNO.DataSet1", reff);      // Issue the request 
strcpy (Addr1->server, "Circuit_Breaker");        // Destination = Circuit Breaker PD 
 
// Declare and initialise variables for the BRCB creation 
  
enum FC FunctionalConstraint = br; 
char ReportIdentifier[65] = "BRCB1 Report Identifier";  
bool ReportEnable = true;  
char DataSetReference[255] = "LD1/LLNO.DataSet1"; 
PACKET_LIST_BOOLEAN OptionalFields; 
unsigned _int32 BufferTime =  0; 
TriggerConditions TriggerConditionsEnabled; 
unsigned _int32 IntegrityPeriod = 0; 
bool GeneralInterrogation =false; 
bool PurgeBuffer=false; 
binary_number* EntryIdentifier; 
 
TriggerConditionsEnabled.data_change = true; 
OptionalFields.packet_list_name = "OptFlds"; 
OptionalFields.list_members [0] = true; 
OptionalFields.list_members [1] = true; 
OptionalFields.list_members [2] = true; 
OptionalFields.list_members [3] = true; 
OptionalFields.list_members [4] = true; 
OptionalFields.list_members [5] = true; 
OptionalFields.list_members [6] = true; 
OptionalFields.list_members [7] = true; 
 
// Using the set variables, create a BRCB for the Circuit Breaker PD 
 
SetBRCBValues ("LD1/LLNO.BRCB1", 
FunctionalConstraint, ReportIdentifier, ReportEnable, DataSetReference, 
OptionalFields, BufferTime, TriggerConditionsEnabled, IntegrityPeriod,  
GeneralInterrogation, PurgeBuffer, EntryIdentifier); 
 
strcpy (Addr1->server , "Circuit_Breaker");     // Destination = Circuit Breaker PD 
 
// Write the values of the DataAttributes referenced by the DataSet1 
 
void**Val = new void*[2]; 
 
Val[0] = (int*)true; 
Val[1] = (int*)12; 
  
SetDataSetValues ("LD1/LLNO.DataSet1", Val); 
strcpy (Addr1->server, "Circuit_Breaker");        // Destination = Circuit Breaker PD 
 
// Issue a “GetDataSetDirectory” ACSI request 
 
GetDataSetDirectory ("LD1/LLNO.DataSet1"); 
strcpy(Addr1->server , "Switch_Controller");    // Destination = Switch Controller PD 
 
// Issue a “GetDataValues” ACSI request 
GetDataValues ("LD1/CSWI.Pos.ctlNum[op]"); 
strcpy (Addr1->server, "Switch_Controller");    // Destination = Switch Controller PD 



 
    Chapter 5: Communication Processor Design 

 
 

 160

// Write the values of the DataAttributes referenced by the DataSet1 of the Switch Controller PD. The 
DataSet and LCB of the Switch Controller PD are created using the ACSI Configuration Manager of the 
Switch Controller PD application layer 
 
void ** Val = new void* [1]; 
Val [0] = (int*) 10; 
   
SetDataSetValues ("LD1/LLNO.DataSet1", Val); 
Strcpy (Addr1->server, "Switch_Controller");  // Destination = Switch Controller PD 
 
// Issue a “QueryLogByTime” ACSI request 
 
time_t RangeStartTime = 0; // set the start time 
time_t RangeStopTime = 60; // set the stop time 
  
QueryLogByTime ("LD1/LD1", RangeStartTime, RangeStopTime); 
strcpy (Addr1->server, "Switch_Controller");   // Destination = Switch Controller PD 
 
 
When ACSI service requests were issued at the SUC, service request packets were 

created containing all the relevant details such as the name and input parameters of the 

issued services. Each service request packet was then sent to the underlying IEC-MOM 

module, which forwarded the packet to its destination through the TCP/IP stack. When 

the service request packet arrived at its target ACSI server, the execution manager 

running in the “Decide” state of the ACSI server application layer process model 

executed the ACSI service request execution-destroy mechanism. The latter accessed 

the information stored within the packet using this information to execute the relevant 

service.            

 
An ACSI reply packet was created by the delivery manager of the ACSI server 

following the execution of each service. The reply packet, which mainly contained the 

output parameters returned by the executed service, was then sent to the SUC through 

the IEC-MOM module and the TCP/IP stack. When the reply packet arrived at the 

ACSI client application, it was processed before the next request packet was assembled 

and forwarded to its destination.         
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Figure 5.18 shows the event-by-event simulation summary that was received on the 

simulation console. As shown in Figure 5.18, messages were displayed on the 

simulation console when ACSI requests arrived and got executed at the ACSI servers 

and when ACSI replies arrived and got executed at the SUC. Some of the output 

parameters returned in the ASCI reply packets were also displayed.     

  

 

 

 

 

 

 

 

 

 

Figure 5.18 BDASC simulation console output  
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It is also important to observe the “A report has been received in the Station_Unit” 

message displayed on the simulation console. It indicates the report message that was 

received at the Station Unit Controller (SUC) from the Circuit_Breaker. As to be 

remembered, the Circuit_Breaker was enabled for reporting since a BRCB was 

configured for that device. The configured BRCB continuously monitored the values of 

the member DataAttributes of the specified DataSet and issued an immediate 

transmission of the new values as soon as the old values changed as a result of the 

SUC’s “SetDataSetValues” request. In contrast, the Switch_Controller was enabled for 

logging as a LCB was configured for that device. The configured LCB continuously 

monitored the values of the member DataAttributes of the specified DataSet and added 

a new log entry into the log as soon as the old values changed as a result of the SUC’s 

“SetDataSetValues” service request. This is indicated by the “A new log has been 

added” message displayed on the simulation console. The new log entry was then 

retrieved from the log by the SUC making use of the “QueryLogByTime” service. 

 
Figure 5.19 shows the amount of data received at the SUC, which includes the ACSI 

reply packets received from both ACSI servers as well as the report received from the 

Circuit_Breaker. The size of the ACSI reply packets was measured as 288 bits and the 

size of the report packet was measured as 224 bits. Figure 5.19 also shows the amount 

of data received at the Circuit_Breaker, which includes the ACSI requests received from 

the SUC. The size of the ACSI request packets was measured as 320 bits.      

 
The speed of the links used, the choice of a transport protocol, message sizes, the 

distance between the communicating nodes and message processing times in the 

communication processor stack are amongst the factors that affect the application-to-
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application (end-to-end) delay times. Figure 5.20 shows the application-to-application 

delay times of various packets received at the SUC and Circuit Breaker when 100 Mbps 

Ethernet drop links were used. Although the OPNET software does not allow the 

distances between the communicating nodes to be measured, substantial distances were 

allowed between the communicating nodes in the simulation test set-up with the aid of a 

map based simulation background. No particular delay requirements do exist in the IEC 

61850 standard for the transmission of non-time critical data such as ACSI request, 

ACSI replies or reports. However, reasonable delay times, all of which less than 1ms, 

were recorded in this simulation as illustrated in Figure 5.20 justifying the adequacy of 

the designed communication architecture. It should also be bear in mind that TCP was 

the transport protocol used for the transmission of these non-time critical data.       

 

 
 

Figure 5.19 Amount of traffic (bits/sec) received at the  

SUC and Circuit_Breaker  
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Figure 5.20 Application-to-application delays of packets received at the SUC and 
Circuit_Breaker  

 
To get more insight into where the time was spent during the transmission of a 40 byte 

ACSI request from the SUC to the Circuit_Breaker, the delay timing breakdown of such 

a packet is provided in Table 5.1.  

Table 5.1 Delay timing breakdown of a 40 byte request packet  
 

Component Time (µs) 
IEC-MOM overhead 162 
IP processing delay of SUC 20 
On the wire delay 315 
IP processing delay of Circuit_Breaker  4 
Total 501 

 

As illustrated in Table 5.1, the application-to-application delay has been broken up into 

four major parts. IEC-MOM overhead is the time spent in the implemented middleware 

architecture. IP processing delay refers to the delay experienced by an IP datagram 
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through the IP layer. “On the wire” delay is the delay the packet encounters on the 

transmission link. Other protocol layer delays were observed to be insignificant (≈ 0).         

 
It is to be noticed from Table 5.1 that the IEC-MOM overhead was relatively high. This 

is solely due to the fact that the packet experienced a waiting delay in the middleware 

queue module until the TCP connection was established with the destination host. As to 

be remembered, TCP is a connection-oriented transport layer protocol that requires 

establishing an application session with the destination node. As soon as the session was 

established, the TPAL layer gave an “OPEN” confirmation to IEC-MOM after which 

the packet was dispatched. However, as illustrated in Table 5.1, the packet did 

experience a considerable waiting delay in the IEC-MOM middleware until the session 

was established. Therefore, this large overhead is not directly related to the IEC-MOM 

architecture but entirely to the TCP transport layer protocol.         

 
5.6.2 The GOOSE Demo Simulation 
 

The GOOSE Demo simulation was carried out to test the transfer of digital data 

between bay devices according to the concepts outlined by the IEC 61850 standard 

[128]. The objectives were to: 

 
1. Demonstrate how virtual representations of real protection and control devices 

can be developed in the simulation environment, 

2. Verify the implemented GOOSE model (classes/services), and 

3. Demonstrate the effectiveness of the designed communication architecture, 

mainly the publish/subscribe communication model, in the handling and 

distribution of time critical GOOSE messages.    
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Figure 5.21 shows the test set-up built for the purpose of this simulation. It consists of a 

test equipment device and three control and protection devices all at the bay level.  

 

Figure 5.21 GOOSE demo simulation test set-up 

 
The Test_Equipment device was basically an ACSI client, which simulated the power 

line. The Protection_Relay, Switchgear_Relay and AutoRecloser_Relay devices were 

ACSI servers each configured as the virtual representation of a real protection and 

control device in the simulation domain. As the names imply, the Protection_Relay 

simulated a protection relay, the AutoRecloser_Relay simulated a reclosing device and 

the other simulated a switchgear device. Figures 5.22, 5.23 and 5.24 further illustrate the 

configured structures of all three ACSI servers. The Protection_Relay consisted of the 

LNs: LLNO, LPHD and PSCH whereas the AutoRecloser_Relay consisted of the LNs: 

LLNO, LPHD and RREC. The Switchgear_Relay, on the other hand, was a composition 

of the LLNO, LPHD, XCBR and multiple XSWI LNs.  For each ACSI server, a DataSet 

and a GoCB were also configured with the displayed attributes as the intention in this 

simulation was to verify the GOOSE model. 
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ACSI Server

LD1

LLNO LPHD PSCH

Oper Mode

general stVal

DataSet GoCB
DSName: PRDataSet1
DSRef: LD1/LLNO.PRDataSet1
DSMemberRef [0]: LD1/PSCH.Oper.general[st]
DSMemberRef [1]: LD1/PSCH.Mode.stVal[sv]

GoCBName: PRGoCB1
DSRef: LD1/LLNO.PRGoCB1
DatSet: LD1/LLNO.PRDataSet1

 
 

 Figure 5.22 Nested structure of the Protection_Relay  
 

ACSI Server

LD1

LLNO LPHD RREC

Oper Mode

general stVal

DataSet GoCB
DSName: ARDataSet1
DSRef: LD1/LLNO.ARDataSet1
DSMemberRef [0]: LD1/RREC.Oper.general [st]
DSMemberRef [1]: LD1/RREC.Mode.stVal[sv]

GoCBName: ARGoCB1
DSRef: LD1/LLNO.ARGoCB1
DatSet: LD1/LLNO.ARDataSet1

 
 

 Figure 5.23 Nested structure of the AutoRecloser_Relay  
 

ACSI Server

LD1

LLNO LPHD

DataSet

GoCB

DSName: SRDataSet1
DSRef: LD1/LLNO.SRDataSet1
DSMemberRef [0]: LD1/XCBR.Pos.stVal[sv]
DSMemberRef [1]: LD1/XCBR.Mode.stVal[sv]
DSMemberRef [2]: LD1/XSWI1.Pos.stVal[sv]
DSMemberRef [3]: LD1/XSWI1.Mode.stVal[sv]
DSMemberRef [4]: LD1/XSWI8.Pos.stVal[sv]
DSMemberRef [5]: LD1/XSWI8.Mode.stVal[sv]

GoCBName: SRGoCB1
DSRef: LD1/LLNO.SRGoCB1
DatSet: LD1/LLNO.SRDataSet1

XCBR

Pos Mode

stVal stVal

XSWI0 XSWI1

Pos Mode

stVal stVal

. . . . XSWI8

Pos Mode

stVal stVal

 
 

Figure 5.24 Nested structure of the Switchgear_Relay  
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The Test_Equipment simulated a short circuit and fed the corresponding current into the 

Protection_Relay. On receiving a fault current, the Protection_Relay issued a trip signal 

to the Switchgear_Relay indicating that the relay had picked up. When the 

Switchgear_Relay received the GOOSE message from the Protection_Relay, it opened 

the circuit breaker in response to the GOOSE message. It then sent a GOOSE message, 

which contained the status of the circuit breaker and switches, to all other devices. 

When the AutoRecloser_Relay received the status (position) of the circuit breaker and 

switches, it issued a “re-close” signal to the Switchgear_Relay. The Switchgear_Relay 

re-closed the circuit breaker before sending the new status of the circuit breaker and 

switches back to all other devices. The event-by-event simulation summary received on 

the simulation console is shown in Figure 5.25. Text messages were displayed on the 

simulation console as shown in Figure 5.25 for GOOSE subscription and notification 

packets as well as GOOSE messages. Each time a new GOOSE message arrived at a 

device, the publisher details of that GOOSE message were displayed together with the 

response the receiving device took in reply to the GOOSE message.          

 

 Figure 5.25 GOOSE Demo simulation console output 
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GOOSE messages 

Figure 5.26 shows the amount of data received at the Switchgear_Relay, which includes 

the GOOSE subscription and notification packets as well as the GOOSE messages. The 

size of the GOOSE subscription and notification packets was measured as 74 bits 

whereas the size of the GOOSE messages was measured as 224 bits.  

 

Figure 5.26 Amount of traffic received at the Switchgear_Relay 

 
As illustrated in Figure 5.26, the Switchgear_Relay received a total number of eight 

GOOSE messages shortly after the 5th minute. However, only two of these messages 

were the event-driven GOOSE messages. The remaining six were the retransmissions of 

the original event-driven GOOSE messages. Hence, three retransmissions took place for 

every original event-driven GOOSE message. This was achieved by setting the setting 

number (n) of equation (5.1) to four. The delays expected in between the first event-

driven message and the successive retransmissions were calculated as follows: 
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Figure 5.27 shows the application-to-application delay statistic of the GOOSE messages 

received at the Switchgear_Relay. The measured delays include the transmission delay 

as well as the delays through the protocol stack. For the retransmitted GOOSE 

messages, they also include the retransmission waiting times.  

 

 

Figure 5.27 Application-to-application delays of GOOSE messages received at the 
Switchgear_Relay 

 
It can clearly be identified from Figure 5.27 that all measured delays satisfied the 4 ms 

maximum delay requirement. Thus, the necessary trade off between the delivery delay 

and reliability of GOOSE messages was achieved by repeating the first event-driven 



 
    Chapter 5: Communication Processor Design 

 
 

 171

GOOSE message a number of times guaranteeing reliability whilst not exceeding 4 ms 

delay criteria. As shown in Figure 5.27, although the application-to-application delays 

of the repeated GOOSE messages were relatively higher, they still satisfied the 4 ms 

delay requirement. To provide more insight into where the time was spent during the 

transmission of a GOOSE message from the Protection_Relay to the Switchgear_Relay, 

the delay timing breakdown of such a message is provided in Table 5.2.  

 

Table 5.2 Delay timing breakdown of a 28 byte GOOSE message  
 

Component Time (µs) 
IEC-MOM overhead of Protection_Relay ≈ 0 
IP processing delay of Protection_Relay 3.4 
On the wire delay 847 
IP processing delay of Switchgear_Relay 3.4 
IEC-MOM overhead Switchgear_Relay ≈ 0 
Total 854 

 
As illustrated in Table 5.1, the IEC-MOM overhead was negligible in this simulation 

case unlike the previous simulation scenario. This is due to the fact that UDP is a 

connectionless transport layer protocol and hence the TPAL layer gave an “OPEN” 

confirmation to IEC-MOM without any delay. It is also significant to notice that the 

total amount of time the GOOSE packet was delayed in the lower layers (UDP/IP) of 

the communication processor protocol stack was about 3.4 µs confirming the hypothesis 

made earlier in this chapter that this delay is small and will not exterminate the 4 ms 

timing determinism. 

 
5.6.3 The Sampled Values Simulation 
 

The Sampled Values simulation was carried out to demonstrate GOOSE messages and 

Sample Values (SV) both being concurrently transmitted over the same communication 

channel. The objectives were to: 
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1. Verify the implemented SV model (classes/services), and 

2. Demonstrate the effectiveness of the designed communication architecture in 

the handling and distribution of time critical GOOSE messages and SV 

simultaneously.    

 
Figure 5.28 shows the test set-up built for the purpose of this simulation. The simulated 

protection and control scenario was precisely same as the “GOOSE Demo” case except 

that a new device, the Sensor_Simulation, was configured at the bay level. The 

Sensor_Simulation continuously converted the analogue signals it received from the 

Test_Equipment into SV and multicast them onto the bus. The Protection_Relay was 

registered and subscribed to the Sensor_Simulation’s multicast group; therefore it 

continuously received the SV packets sent by the Sensor_Simulation.    

 
 
 
 
 
 
 
 
 

Figure 5.28 Sampled Values simulation test set-up 

 
The Protection_Relay detected the short circuit after the 5th SV packet as illustrated in 

Figure 5.29 and issued a trip signal to the Switchgear_Relay indicating that the relay 
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had picked up. When the Switchgear_Relay received the GOOSE message from the 

Protection_Relay, it opened the circuit breaker in response to the GOOSE message. It 

then sent a GOOSE message, which contained the status of the circuit breaker and 

switches, back to the Protection_Relay. The remainder of the protection and control 

scenario, that is the re-closing of the switches, was not simulated as they were not 

directly relevant to the objectives of this simulation case.  

 
 

Figure 5.29 Sampled Values simulation console output  

 
Figure 5.30 shows the throughput (bits/sec) of the SV data received at the 

Protection_Relay. Throughput refers to the amount of data that is received over a period 

of time. The throughput statistic was gathered in a mode called the “bucket mode” 

where the statistic’s values were grouped and processed over a time interval reducing 

the number of samples reported in the statistic over the course of the simulation. In this 

simulation case, the time interval also referred to as the width of the bucket was set to a 
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minute. The size of each individual SV packet was measured as 1200 bytes and the 

Protection_Relay received a SV packet every second. The Protection_Relay drop link 

utilized in this simulation case was 10 BASE-T. Therefore, an appropriate amount of 

the Protection_Relay’s drop link was filled with the SV packets. Figure 5.30 also shows 

the amount of GOOSE data received at the Protection_Relay as a result of the opening 

of the circuit breaker in the Switchgear_Relay. The “GOOSE traffic” statistic was 

gathered in the “All Values” mode where measurements of every individual transaction 

are displayed instead of the time-oriented processing performed in the bucket-oriented 

collection mode. A total number of four GOOSE messages including the first event-

driven GOOSE message and the three retransmissions were received in the 

Protection_Relay. The size of the GOOSE messages was recorded as 224 bits. 

 

 

Figure 5.30 SV traffic throughput (bits/sec) and the amount of GOOSE traffic            
received at the Protection_Relay 
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Finally, Figure 5.31 shows the application-to-application (end-to-end) delay statistic of 

the GOOSE and SV packets received at the Protection_Relay. As illustrated in Figure 

5.31, the application-to-application delay times of the SV packets are steady at 0.85 ms 

as well as the end-to-end delay of the first event-driven GOOSE message. As expected, 

an increase in the application-to-application delays of the repeated GOOSE messages 

was observed that is primarily due to the waiting times in between the retransmissions. 

However, as shown in Figure 5.31, all measured delays still satisfied the 4 ms maximum 

delay criteria. Thus, the simulations carried out in this simulation case have verified the 

implemented SV model and demonstrated that the 4 ms maximum delay requirement 

can still be met in the case of GOOSE and SV messages both being simultaneously 

transmitted over the same communication channel.  

 
 
 

Figure 5.31 Application-to-application delays of GOOSE and SV messages received at 
the Protection_Relay 
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Even in cases where the network is much more heavily loaded with the SV data, it will 

still be possible to meet the 4 ms delay requirement imposed for the transmission of 

GOOSE messages. This is due to the fact that GOOSE messages have been given the 

highest priority at every step along the network as a result of the mechanisms employed 

in the designed IEC-MOM middleware and through the use of the RSVP protocol. This 

ensures that the delivery of GOOSE messages takes place taking the order of traffic into 

consideration at every step along the network. Thus, even if an outgoing router port is 

busy with transferring larger or more frequent SV data, as soon as a GOOSE message is 

received, it will be processed first and forwarded to its destination. Hence, in such 

extreme cases, the timing determinism of SV data can be traded off in order to achieve 

the timing determinism of more important GOOSE data. After taking all these 

measures, the fulfilment of the QoS requirements will merely depend on issues such the 

forwarding and processing capacity of the routers and other devices on the network.      

 

5.7 Conclusion 
 
 
This chapter has presented a communication processor architecture that enables the 

configuration of ACSI client and server applications as well as maintaining support for 

all the communication models and techniques required for the reliable, fast and efficient 

transmission of IEC 61850 related application data. The designed architecture consists 

of application layer modules built on top of a middleware architecture running on 

protocol stack that incorporates the TCP/UDP-IP network protocols. The ACSI client 

and server applications can be configured at the application layer modules making use 

of the C++ class and service descriptions of Chapters 3 and 4. The designed application 

layers fully collaborate with and assist the underlying IEC-MOM middleware with 
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regards to time-critical multicast data transfer through a range of mechanisms such as 

registering, subscription, binding and filtering. 

 
The designed communication middleware does not include any object or service 

models. It only integrates various message distribution mechanisms for the transmission 

of messages received from the ACSI application layers. It is small, fast and efficient. 

The IEC-MOM middleware provides an identical programming model for unicast or 

multicast and an identical programming model for sources and sinks thus achieving ease 

of programming. Efficiency has been achieved by making sure that the real-time 

communications make minimal expenditure of computer resources by using locally 

stored information and duplication of messages going to multiple receivers.  

 
The remainder of this chapter evaluated the performance of the communication model 

with the help of simulations. The simulations showed that the designed middleware 

architecture can be used effectively to provide the necessary communication services to 

ACSI clients and servers adding only nominal overhead to the underlying protocol 

stack. It was also demonstrated that timely and reliable transmission of GOOSE 

messages can be achieved with the aid of a trade-off mechanism that retransmits 

GOOSE messages a few times whilst not exterminating the 4 ms timing determinism. 

Finally, a more realistic network loading case was examined where an appropriate 

amount of the receiving device’s drop link was filled with SV data. The simulations 

carried out in the latter case have verified the accurate workings of the GOOSE and SV 

models of Chapter 4 and showed that the designed architecture is capable of meeting the 

timing determinism and reliability concerns even in the case of GOOSE and SV 

messages both being simultaneously transmitted over the same communication channel.  
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Chapter 6 
 
Substation Time Synchronisation 
 
 

6.1 Introduction 
 

This chapter presents the implementation of the Simple Network Time Protocol (SNTP) 

and the incorporation of SNTP client applications into ACSI application layer modules 

of Chapter 5. Time Synchronisation (TS) involves harmonising the local clocks of all 

the nodes within a network relative to a chosen reference so that sensing and actuation 

of time-sensitive data can be coordinated accurately across multiple nodes. The 

importance of TS has also been recognised by the IEC 61850 standard, which specifies 

the need for TS in substation applications and sets different levels of accuracy 

requirements for various protection functions. The TS protocol chosen in this research is 

SNTP, a simplified version of the Network Time Protocol (NTP), which is often 

regarded as the most accurate and flexible way of clock synchronisation over Ethernet.       

 
This chapter is structured as follows: Section 6.2 gives an overview of Network Time 

Synchronisation (NTS) and its importance in substation applications. SNTP is discussed 

in detail in Section 6.3 along with its implementation details. Section 6.4 presents how a 

stand-alone SNTP server is implemented in a separate communication processor and 

discusses how SNTP client applications can be incorporated into the ACSI application 
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layer modules. Section 6.5 provides a number of simulation case studies carried out to 

evaluate the TS design whilst conclusions of this chapter are presented in Section 6.6.  

 

6.2 Network Time Synchronisation 
 

NTS is a crucial element of network design and implementation. A time-synchronised 

network is vital for the operation of network applications with optimal performance. 

The ultimate goal of TS is to bring the local clocks of servers and other instrumentation 

in a network into phase so that their time differences will be zero. A typical TS process, 

shown in Figure 6.1, may be divided into the following steps: 

Time ServerSwitchClient1

Client2

Time request from client to server

Time response from server to client

 
Figure 6.1 The basic TS process 

 
(1) One of the nodes within the network is chosen as the Time Server (TimeServer) 

signifying that all other nodes within the same network need to synchronise their 

clocks with the TimeServer’s local clock, 

(2) A Time Client (TimeClient) initiates a time request to the TimeServer receiving 

the TimeServer’s local clock time within a reply packet, 

(3) The TimeClient, then, computes the difference between its own time setting and 

the time setting it receives from the TimeServer and uses this difference to 

adjust its internal clock bringing it into phase with that of the TimeServer.     
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The accuracy of the TS depends heavily on the TS protocol used as well as the 

performance of the underlying hardware. The delays encountered by a TS message from 

the moment it is prepared in the TimeServer until it is executed in the TimeClient are 

the main sources of TS error. The two most concerning delays are the communication 

stack and network transmission delays. NTP [129] is regarded as the most accurate and 

flexible means of synchronising clocks over the Internet and across Local Area 

Networks (LANs) with an accuracy of a few milliseconds (ms).  

 
TS is critical in sensor networks where applications such as power system protection 

and control require collective processing of time-sensitive data. In such applications, 

sensing and actuation need to be coordinated across multiple nodes [130]. IEC 61850-5 

[131] specifies the need for TS amongst the devices of a SA system. The components of 

the TS model, as specified by the IEC 61850 standard, are shown in Figure 6.2.    

 

IEC 61850 Client/
Server

(UTC Synchronised
Time)

IEC 61850 Time
Server

(Master UTC Time)

* externally
synchronised

Time request

Time response

Time synchronisation

Time information
from external source

 
Figure 6.2 IEC 61850 TS model 

  
The TS model is required to provide synchronised Coordinated Universal Time (UTC) 

to all ACSI clients and ACSI servers. All devices within a substation are required to be 

time synchronised relative to a TimeServer, which has been externally synchronised to a 

reliable time device such as a Global Positioning System (GPS) receiver. Although the 
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general features of a TS model are provided in IEC 61850, no specific descriptions of a 

TS protocol are given. Instead, the Simple Network Time Protocol (SNTP) is hinted 

out. Whether SNTP or another protocol is chosen, it must meet the requirements 

specified in IEC 61850-5. According to IEC 61850-5, different levels of TS accuracy 

requirements exist for diverse protection functions. Table 6.1 illustrates how the 

different levels of TS accuracy requirements are set in IEC 61850-5 [131].  

Table 6.1 IEC Classes T1-T5 
 

IEC Class T1 ±1 ms 

IEC Class T2 ± 0.1 ms 

IEC Class T3 ± 25 µs 

IEC Class T4 ± 4 µs 

IEC Class T5 ± 1 µs 

 
 
In this chapter, the focus is on describing how a fine grained TS function can be 

incorporated into the designed communication architecture in order to synchronise 

clocks of all devices within a substation network. The objective is to exemplify how the 

SNTP TS protocol, with additionally included features, can be sufficient enough to meet 

the accuracy requirements in substations by a means of time stamping at the lowest 

possible stack layer instead of the application layer. In this phase of this project, the 

synchronisation of substation nodes relative to a TimeServer has been looked into 

excluding the process of externally synchronising the TimeServer’s local clock relative 

to a real-time clock. A possible future inclusion to this part of this research would be the 

modelling and implementation of a GPS device to take into account the process of 

external synchronisation.     
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6.3 Simple Network Time Protocol 
 

Simple Network Time Protocol (SNTP) is a simplified version of NTP containing only 

a subset of the NTP functionality [132]. The need for SNTP arose when a full 

implementation of NTP seemed too complicated for many systems leading to the 

development of SNTP. SNTP lacks some of the internal algorithms of NTP such as the 

advanced filtering techniques used to control variable latency. However, it is still 

considered to be adequate in meeting the TS demands of many systems within 

acceptable accuracies.  

 
SNTP is designed to produce two end products (variables): clock offset and roundtrip 

delay. Another third product, dispersion that is normally not used in SNTP but in NTP, 

is also utilised in this project. All of the above end products are calculated relative to a 

selected clock reference (TimeServer). Clock offset is the amount of time to adjust the 

local clock bringing it into agreement with the reference clock. In other words, it is the 

time difference between the two. In addition to the time adjustment, the frequency 

deviation (skew) of the local clock relative to the reference clock also needs to be 

corrected. Skew can easily be calculated based on the clock offset. Roundtrip delay is 

the two-way propagation delay between the TimeClient and TimeServer. Finally, 

dispersion is the maximum local clock error relative to the reference clock [129].   

 
6.3.1 SNTP Operation Modes 
 
 
SNTP can be implemented based on either client/server (unicast) or publish/subscribe 

(multicast) modes of operation. In the client/server mode, a TimeClient sends a time 

request to a designated TimeServer and waits for a reply by which it can determine the 
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Round-Trip Delay (RTD), Local Clock Offset (LCO) and dispersion relative to the 

TimeServer [132, 133]. SNTP uses the NTP message format shown in Figure 6.3.     

 

Figure 6.3 SNTP message format 

 
SNTP uses five different timestamps to represent the time values. Timestamps are 64-

bit unsigned integers representing time values in seconds relative to 0h on 1 January 

1900. In addition to timestamps, the SNTP message format also consists of a number of 

other fields such as Root Delay and Root Dispersion, which are not to be discussed in 

detail in this chapter. More information on the latter can be obtained from [132]. The 

descriptions of the timestamps used within the SNTP framework are given below [132]: 

 
• Reference Timestamp: is the time at which the local clock is last set or corrected 

in the TimeClient, 

• Originate Timestamp (T1): is the time at which the time request leaves the 

TimeClient headed to the TimeServer, 

• Receive Timestamp (T2): is the time when the time request arrives at the 

TimeServer, 

• Transit Timestamp (T3): is the time at which the time reply leaves the 

TimeServer headed to the TimeClient, and 
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• Destination Timestamp (T4): is the time when the time reply arrives at the 

TimeClient. 

 
The sequence of events that take place in a unicast SNTP application is as follows: 

 
a) The T3 field of the time request is set to the time of the day by the TimeClient 

according to its own local clock, 

b) When the time request arrives at the TimeServer, it copies the T3 field into the 

T1 field and further sets T2 and T3 fields according to its own local clock 

before forwarding the time reply back to the TimeClient, 

c) When the time reply arrives at the TimeClient, it determines the time of its 

arrival and sets this time into the T4 field, 

d) The client application calculates the RTD (δ), LCO (θ) and dispersion (ε) 

according to the following formulae [129]: 

 
RTD = δ = T4-T1-T2+T3   equation (6.1)  

LCO = θ = (T2-T1+T3-T4)/ 2  equation (6.2) 

 Dispersion = ε = ρ + ϕ(T4 − T1) equation (6.3) 

 
Where T1, T2, T3, and T4 are the timestamp values, ρ is the measurement error, and 

ϕ is the maximum skew rate given by the formula:   

 

(6.4)equation                      
.

EWSNTP.MAXSK 
MAXAGESNTP

=ϕ  

 
 

Where MAXSKEW and MAXAGE are constants denoting the maximum skew error 

and maximum clock age respectively. Skew is the frequency difference between the 
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local and reference clocks. Clock age is the duration a reference clock is considered 

valid [129]. The client application uses the value of the calculated LCO to advance its 

local clock with t + LCO units during the next t time units bringing it into agreement 

with that of the TimeServer. The client application can calculate the frequency (f´) it 

needs to have using the formula: f´ = f / (1-LCO/T) where f is its current frequency and 

T is the synchronisation period [134].    

 
In a publish/subscribe SNTP application, the TimeServer uses a multicast group address 

for periodically forwarding time updates. The key disadvantage concerned with the 

publish/subscribe mode of operation is the fact that TimeClients can not calculate the 

RTD based on equation (6.1) since the received multicast messages only have their T1 

and T4 fields set. However, this disadvantage can easily be eliminated if each 

TimeClient sends a single dummy unicast packet to the TimeServer at the start-up with 

the intention of calculating the RTD. When the dummy unicast packet is received back 

from the TimeServer, it will have all the timestamps making it possible to calculate the 

RTD. Once the RTD is calculated, the TimeClient only listens and waits for the 

multicast time updates. On their arrival, the client applications simply calculate the LCO 

and make the necessary adjustments based on equation (6.5).      

 
LO_multicast = (T1-T4) + (RTD/2)        equation (6.5) 

 
6.3.2 SNTP Implementation 
 
 
This section discusses the interface used, which provides the necessary Microsoft 

Foundation Classes (MFCs) used to encapsulate SNTP. The interface is a collection of 

freeware classes taken from the CSNTPClient project [135], which provides a total 
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number of twelve Object Oriented (OO) structures and classes. Some of the classes are 

aimed at implementing the core SNTP structure such as the timestamp structure while 

others provide synchronous sockets and packet structures for workstation to workstation 

communication. However, only the classes related to the core SNTP structure have been 

utilised in this project. Their descriptions are provided below: 

 
1) CNtpTimePacket Structure       

                    
The CNtpTimePacket structure is a representation of the SNTP timestamp format, 

which consists of an integer and a fraction part each having a 32-bit unsigned fixed-

point number type. The C++ definition of the CNtpTimePacket structure, taken from 

[135], can be viewed in Appendix C.  

 
2) CNtpTime Class 

 
The CNtpTime Class is an encapsulation of a time instance of the SNTP protocol 

consisting of a 64-bit unsigned integer with the top 32 bits containing the number of 

seconds elapsed since 1st January 1900 and the lower 32 bits containing the fraction of 

seconds [135]. The C++ definition of the CNtpTime class is listed in Appendix C.  

 
6.3.3 SNTP Filtering 
 
 
In this section, the use of adaptive filtering techniques to cope with the sources of errors 

in TS schemes is explained. The major cause of error in a TS scheme, where Ethernet is 

being used as the transfer media, is the non-deterministic structure of the Ethernet. This 

non-determinism results in variable message delivery delays. The major sources of TS 

error, all stemming from the non-deterministic property, are reviewed below [130, 136]: 
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• Transmit protocol stack delay: is the delay a packet encounters when travelling 

from the application layer, where it is assembled, all the way down to MAC 

layer. Also referred to as “Send Time”, this delay is highly non-deterministic, 

• Receive protocol stack delay: is the time it takes an incoming packet to travel 

from MAC layer up till the application layer. Also referred to as “Receive 

Time”, this delay is also highly variable, and 

• Switch latency: is the time it takes a networking device such as a router to 

process a data frame. Switch latency is highly dependent on the architecture of 

the networking device and also the network load. The amount of time a packet is 

delayed through a switch may vary differently based on the switch load.   

 
Although SNTP does not actually incorporate any filtering mechanisms, the need for 

such a mechanism to deal with the variable switch latency was clearly recognised in this 

project. Hence, an important feature of NTP, the clock filter procedure was incorporated 

into the SNTP implementation.     

 
The NTP clock filter procedure uses the clock offset, roundtrip delay and dispersion 

variables as its input arguments. It is executed each time a new NTP message arrives (in 

this case SNTP) where a new set of data samples (θ, δ, ε) is calculated and shifted into 

the filter at the left end. A shift register consisting of many shift stages is used for the 

storing and shifting process. The whole idea of this procedure is to calculate the filtered 

clock offset, roundtrip delay and dispersion values updating the dispersion of the 

samples previously received and saving the current time. It is based on the computation 

of a quantity called the synchronisation distance (λ) from the roundtrip delay and 

dispersion making use of the following formulae [129]: 
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(6.6)equation                 
2

|| δελ +=  

 
 
All sets of samples contained within the filter are sorted by increasing synchronisation 

distance and the set of values with the minimum synchronisation distance is chosen as 

the end products that correspond to the filtered clock offset, roundtrip delay and 

dispersion. Reference [129] contains an appendix illustrating C-language 

implementations of all the various filtering and selection algorithms suggested for NTP. 

The C-language code segment for the clock filter procedure is amongst these. Although 

full code taken from [129] was utterly tested, it was observed that it ceased to function 

in the desired manner until all the filter stages were filled. Although it successfully sorts 

the list by increasing λ, it fails to pick the sample set corresponding to the minimum λ in 

cases where not all the filter stages are filled. An additional code segment was therefore 

added to the original code to solve this problem. Appendix C includes the pseudo-code 

that describes the full procedure of the modified NTP clock filter algorithm. 

 

6.4 Implementation of SNTP client and server 
applications  
 

In this section, the implementation of SNTP client and server applications is discussed. 

SNTP client applications can be integrated into the IEC 61860 related applications 

running at the ACSI application layer modules of the communication processor as 

shown in Figure 6.4. They share the same connectivity functionalities of the underlying 

middleware with the IEC 61850 related applications for interacting across the network. 

An ACSI server represents the external visible behaviour of a real device. With regards 

to TS, it may also act as a SNTP TimeClient. In any network, there could be as many as 
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SNTP clients. However, hypothetically a single SNTP server is allowed. In this 

research, the SNTP server was designed and implemented in a separate communication 

processor as a single-application running node as shown in Figure 6.5.           

 

 

IEC 61850 
Server application 

SNTP Client 
application 

 

Figure 6.4 ACSI server node   Figure 6.5 SNTP TimeServer node 

 
 
6.4.1 Application Layer Process Modelling of a SNTP Client 
 

The State Transition Diagram (STD) of the entire application layer module of an ACSI 

server is shown in Figure 6.6. The intact state diagram consists of six states, only two of 

which are related to the SNTP application. They are the “Time_Syn” and “Decide” 

states. The remaining states are all related to the IEC 61850 associated applications and 

   
SNTP 
SERVER 
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have been previously discussed in the preceding chapter while discussing the 

communication processor architecture.   

 

Figure 6.6 Application layer process model of an IEC 61850 server node 

 
After the “Init” state, the STD moves into the “Time_Syn” state where the client SNTP 

application is configured. The functions performed at the “Time_Syn” state are fairly 

uncomplicated. To begin with, a time request packet is generated with the format shown 

in Figure 6.3. Next, the packet is initiated with a destination (the IP address of the 

TimeServer) and the various fields of the packet such as root delay, root dispersion are 

set according to rules described in [132]. Finally, the packet is sent to the lower layer to 

be forwarded to its destination.  

 
The underlying IEC-MOM middleware acquires the packet, establishes the connectivity 

with the UDP/IP transport layer and forwards the packet to its destination. To 

accomplish this task, the middleware module uses the same mechanisms described 

earlier in Chapter 5. In circumstances where a SNTP reply packet is received from the 

TimeServer, the “Decide” state executes the function “ss_packet_destroy_sntp”, which 

performs the following set of operations as described by the flowchart of Figure 6.7. As 

illustrated in Figure 6.7, the SNTP client application is capable of supporting both the 
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unicast and multicast modes of operation. In both cases, the necessary timestamps are 

acquired and the LCO and skew are calculated to be used in the process of correcting 

the local clock relative to the chosen TimeServer. 

No Yes

Compute the LCO and skew

START

Is packet
from a

Multicast
SNTP

Server?
Obtain the

Transmit and
Receive

Timestamp values

Obtain all four
timestamp values

Compute the LCO
,RTD and skew

Adjust the local clock using the
values of the LCO and skew

End

Identify the source
of the packet

 
Figure 6.7 Flowchart description of the ss_packet_destroy_sntp function 

 
Ideally, T3 needs to be set at the application layer before the packet is sent. However, 

studies undertaken by [133, 136] have shown that when time stamping is performed at 

the application layer, the timing accuracy will heavily suffer from the latency and jitter 

imposed by the UDP/IP transport layer. Such a timing accuracy might only satisfy the 

IEC Class T1. Therefore, different techniques besides the technique of adaptive filtering 

need to be used to be able to meet the harsh timing accuracy requirements imposed by 
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the IEC 61850 standard. In [133, 136], the authors propose three techniques as a 

solution: 

 
1) Implementation of the TimeServer in the Ethernet switches, 

2) Time stamping at the Ethernet data link/physical level, and 

3) Time stamping at the Ethernet driver level. 

 
These techniques originate from the fact that the location on the protocol stack, where 

the time stamping of incoming and outgoing packets is performed, has an impact on the 

amount of latency and jitter. Sub-section (6.4.3) discusses and compares the above 

techniques detailing the approach chosen for implementation.      

 
6.4.2 Application Layer Process Modelling of a SNTP Server 
 

In contradiction to the SNTP client model, the SNTP server is fairly primitive since it is 

designed as a single application running node. The STD diagram of the SNTP 

TimeServer application layer is shown in Figure 6.8. 

 

Figure 6.8 Application layer process model of an SNTP server node 
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Similar to the SNTP client model, the SNTP server model is also designed to sustain 

both of the operation modes. The most important function of the “init” state is to 

schedule the frequency, start and end times of the multicast updates with the destination 

address of the multicast packet set to the multicast address of “224.0.1.4”. Once the 

multicast updates have been scheduled for transmission, STD enters into the 

“Time_Syn” state where it stays until the end of the simulation. The “Time_Syn” state 

waits for steam interrupts caused by the arrival of SNTP requests. On the arrival of a 

SNTP request, the exit executive of the “Time_Syn” state performs the following set of 

operations: 

 
1. Obtains a pointer to a packet that has arrived on an input packet stream, and 

removes the packet from the stream, 

2. Obtains the source details of the received SNTP request, 

3. Creates a new reply packet for the node that the request was received from, 

4. Gets T3 from its field in the request packet and copies it into the T1 field of the 

reply packet, and 

5. Sends the reply packet to the lower layer to be forwarded to its destination.   

 
6.4.3 Time Stamping 
 
 
This sub-section discusses the time stamping techniques before detailing the 

implementation of the chosen approach. The need for such techniques has evolved from 

the fact that when time stamping is carried out at the application layer, the relative time 

accuracy could be in the range of a few milli seconds (ms) much higher than what is 

needed by some applications, e.g. IEC class T5 requirement of 1µs.   
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6.4.3.1 Implementation of the Time Server in the Ethernet Switches 
 
 
References [133, 136] discuss the implementation of TimeServers in Ethernet switches. 

It is claimed that when a TimeServer is implemented in an Ethernet switch and time 

stamping is performed at the lowest possible stack layer, it becomes possible to achieve 

a timing accuracy of better than 1µs. This is promising since when the TimeServer is 

implemented in the switch, the switch latency dilemma can be entirely eradicated. The 

only drawback is that only one switch can be allowed between a TimeClient and a 

TimeServer. Otherwise, TS suffers from increased jitter through the infrastructure. 

 
This approach works perfectly well when all of the TimeClients can be interconnected 

to a single TimeServer Ethernet switch. In cases where they are widespread and can not 

all be connected to the same switch, the use of several TimeServers becomes necessary. 

Nevertheless, the use of multiple TimeServers, all implemented in different Ethernet 

switches in the same network, is highly undesirable. The latter inflicts the need for TS 

between the TimeServer clocks themselves, which not only adds further load to the 

network but also unlikely to provide high TS accuracies. The switch latency problem 

will yet again turn out to be a critical issue when the distributed TimeServers try to 

synchronise themselves. Although a solution to this problem has been given in reference 

[133], it needs further investigation.                 

     
6.4.3.2 Time Stamping at the Ethernet Data Link/Physical Level 
 
 
This, as described by reference [133], involves time stamping in the hardware either in 

the Ethernet controller or in a separate Field Programmable Gate Array (FPGA), which 

completely removes the latency through the protocol stack. Reference [133] claims that 
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this approach will provide an accuracy of better than 1µs provided that a single direct-

wire is used although no simulation results are provided to support this claim.  

 
6.4.3.3 Time Stamping at the Ethernet Driver Level 
 
 
This requires time stamping of the T2 and T4 fields in the Ethernet “Receive” routine 

and T1 and T3 fields in the Ethernet “Send” routine. Time Stamping at the Ethernet 

driver level helps to remove a significant fraction of the stack latency and yields to 

much higher TS accuracies. This was the approach chosen in this study primarily due to 

its ease of implementation and high suitability. Although reference [133] states that T3 

should not be time stamped in the Ethernet Send routine due to the fact that it is already 

included in the reply packet coming from the application layer, it has to be disagreed 

with that statement. When the application layer of a TimeServer receives a time request 

packet, it generates a time reply packet and copies the T3 field of the request packet to 

the T1 field of the reply packet. Consequently, the packet arriving at the Ethernet driver 

of the TimeServer will have its T1, T2 and T3 fields set. Although set, the value stored 

in the T3 field of the reply packet is no longer necessary (already copied to the T1 field) 

and can absolutely be re-set it in the Ethernet driver of the TimeServer node.                 

 
The remainder of this sub-section discusses the changes made to the standard Media 

Access Control (MAC) layer to allow time stamping in that protocol. Figure 6.9 shows 

the STD diagram of MAC, which is one of the available modules in the OPNET’s 

model library. Several alterations were made to the “ethernet_mac_phys_pk_accept ()” 

and “eth_mac_fdx_pks_send ()” routines of the standard MAC layer module to enable 

time stamping of the T1, T2, T3 and T4 fields at the Ethernet driver level. The pseudo-

code descriptions of both routines are provided in Appendix C.  
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Figure 6.9 MAC layer STD 

 

6.5 Performance Evaluation of the SNTP Protocol  
 
 
In this section, a simulation case study is presented to assess the SNTP implementation 

described in this chapter. Figure 6.10 shows the switch-based multilevel test set-up 

simulated to collect statistics of importance such as round trip delay, local offset and 

jitter.  

 
There were two TimeClients in the test set-up, the Switchgear_Relay and the 

Protection_Relay. A single node, the Time_Server device, was configured as the 

TimeServer. Three switches and four drop-links were present along the path between 

the TimeServer and each one of the TimeClients. The utilised switch models represent 

3Com’s SuperStack II Switch 9000 Layer-3 chassis with 8 Ethernet ports. The drop 

links represent Ethernet connections operating at 100 Mbps. A number of load cases 

were investigated as discussed by the following sub-sections. 
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Figure 6.10 Multilevel test set-up 

 
6.5.1 No load case 
 
 
In this case, the network shown in Figure 6.10 was simulated with no other traffic other 

than the TS traffic. The simulation duration was 30 seconds and each one of the 

TimeClients was configured for sending time request packets to the TimeServer. Figure 

6.11 shows the amount of SNTP traffic received and sent by the Protection_Relay in 

bytes per second whilst Figure 6.12 shows the round trip delay and local clock offset 

calculated in the Protection_Relay based on the received timestamps.     

 
The round-trip delay was observed to be steady at 0.2 ms and the amount of offset 

calculated did not exceed ± 1µs as illustrated in Figure 6.12. As a matter of fact, they all 

turned out to be zeros in this no-load case. In a simulation such as this where the 

simulation runs on a single operating system, all the nodes in the simulated network 

have the same clock. Although they can be manually set to different clocks, this was not 

experienced in this study since the main focus was on the timing accuracy.  
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Figure 6.11 Sent and received SNTP traffic   
 

 
 
 
 
 
 
 
 

 

Figure 6.12 Round trip delay and local offset calculated in the Protection_Relay   
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Ideally, all the calculated offset values are anyhow expected to be zeros in such a 

simulation since the TimeServer and TimeClients’ clocks are already synchronised. 

Therefore, the calculated offset values indicate the effect of the TS errors present in the 

system reflecting the TS accuracy of the design. The results were pretty much as 

expected pointing out the effectiveness of time stamping at the Ethernet driver level in 

removing the effects of transmit and receive protocol stack delays on the TS accuracy. 

The switch latency was not a major concern in this simulation case as the amount of 

load through the switches was rather low. The main conclusion to derive is that IEC 

class T5 timing accuracy of ± 1µs can easily be achieved in a network of 100 Mbps 

Ethernet links with no other traffic but TS traffic when time stamping is carried out at 

the Ethernet driver level. 

          
6.5.2 5% load case 
 

This simulation case presents a situation when 5 % of the bandwidth of the Time_Server 

drop link was filled with dummy packets of 1000 bytes. The Time_Server drop link was 

100 BASE-T, therefore the duration of the dummy packet was 1.6 ms. Figure 6.13 

shows the round trip delay and local clock offset calculated in the Protection_Relay 

based on the received timestamps. The results depicted in Figure 6.13 are significantly 

different from the results of the no-load case. To begin with, the round trip delay varies 

in between 0.2 and 0.35 ms primarily due to the variable switch latency. Finally, the 

calculated local offset varies in between -40 and 50 µs. Although the offset values were 

ideally expected to be zeros, they were calculated as non-zero values indicating the 

presence of TS errors in the network. Figure 6.14 shows the queuing delay of 

transmitter #2 of Switch 5, which is one of the components of the total switch latency.  
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Figure 6.13 Round trip delay and local offset calculated for the 5 % load case  
  

 
 

Figure 6.14 Switch 5 queuing delay   
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The switch latency of Ethernet packets to the Time_Server was dependent on other 

traffic sent to the Time_Server. This is clearly demonstrated in Figure 6.14, which 

illustrates how the queuing delay increased when extra load through the switch was 

present. Other components of the switch latency such as the Switch MAC delay were 

also affected in a similar manner. Furthermore, having multiple switches on the path 

between the TimeClients and TimeServer further imposed additional jitter worsening 

the variable message delivery delay times. These sources of errors deteriorated the TS 

accuracy as illustrated in Figure 6.13 where it is shown that only the IEC class T2 

timing accuracy of ± 0.1ms can be achieved in such a network without the use of any 

filtering mechanisms. Hence, the need for the use of filtering mechanisms in eliminating 

the effect of variable switch latency was once more comprehended.  

 
Figure 6.15 shows the case where the clock filter procedure was used to deal with the 

variable switch latency selecting the set of filtered values corresponding to the 

minimum synchronisation distance. It displays both the filtered and un-filtered local 

offset values. As illustrated in Figure 6.15, some of the offset values (indicated by the 

blue dots) calculated in the Protection_Relay do fall on the 0 µs line (in the vicinity of 0 

µs --- ± 0.5 µs) while some others vary in between -40 and 50 µs. On the other hand, the 

filtered offset values (indicated by the red dots) that are the end products of the clock 

filter procedure all lay on the 0 µs line (± 0.5 µs). This indicates the effectiveness of the 

clock filter procedure in choosing the best sample set corresponding to the minimum 

synchronisation distance. When the first SNTP message reply arrived at the 

Protection_Relay, the time stamps were recorded as T1: 10.000003s, T2: 10.000096s, 

T3: 10.000109s and T4: 10.000201s. Subsequently, the first data set sample (θ, δ, ε)  

(0.5µ, 0.00211, 1.000200686) was calculated as follows and shifted into the filter.  
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RTD = δ = 10.000201 -10.000003 -10.000096 + 10.000109 = 0.000211s   

LCO = θ = (10.000096 -10.000003 +10.000109 -10.000201)/ 2 = 0.5 µs  

1.0003061  
2

0.000211  61.00020068    
2

|| =+=+=
δελ  

For all subsequent messages, the new sample sets were also calculated and inserted into 

the filter. Nevertheless, the filtered clock offset was always chosen as the clock offset of 

the first set, i.e. 0.5µ, as λ calculated from the first set was the lowest. In a much heavily 

loaded network, the switch latency problem will unquestionably deteriorate. However, it 

shall still be possible to bring the TS accuracy within the acceptable bounds since, as 

illustrated by this simulation study, not all the data set samples are affected by the 

variable switch latency. Consequently, the main conclusion to derive from this 

simulation case is that the IEC class T5 timing accuracy of ± 1µs can be achieved in 

medium or heavily loaded networks only with the proper use of the NTP filtering 

mechanism employed to eliminate the effect of the variable switch latency.  

 

Figure 6.15 Filtered and un-filtered local offset values 
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6.6 Conclusion  
 
 
In this chapter, the design and implementation of SNTP client and server applications 

and their incorporation into the overall communication architecture has been presented. 

The need for TS in substation applications was revealed in Chapter 5 when discussing 

the general communication related requirements of the IEC 61850 standard. This 

chapter has focused on the concept of TS in further detail proposing the implementation 

of a stand-alone IEC 61850 TimeServer and integration of SNTP client applications into 

the ACSI application layer modules of Chapter 5. The proposed study has illustrated 

how the SNTP TS protocol can be incorporated into the overall design to harmonise the 

local clocks of the communicating IEDs within a substation network such that sensing 

and actuation of time-sensitive data can be coordinated accurately across multiple 

nodes.      

 
The IEC 61850 standard stresses on different levels of TS accuracy requirements, 

ranging from 1ms to 1µs, for different protection functions within a substation. This 

chapter has demonstrated how the SNTP protocol can be sufficient enough for 

achieving all the TS accuracy requirements by a means of time stamping at the MAC 

layer and with the use of an adaptive filtering technique. It has been shown that the 

protocol stack delays can be diminished by time stamping at the Ethernet driver level 

leading to a better TS accuracy. The simulations have also revealed that the class T5 

requirement is much harsher and can hardly tolerate any jitter within the infrastructure 

as a result of increased switch load. Nevertheless, the use of the NTP adaptive filtering 

mechanism to eliminate the effect of jitter has been demonstrated to be sufficient 

enough in achieving the class T5 requirement.        
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Chapter 7 
 
Hardware in the Loop Modelling 
& Simulation 
 

 
 

7.1 Introduction  
 

In this chapter, the methodology of incorporating Commercial off-the Shelf (COTS) 

network hardware into the OPNET Modeller for “Hardware in the Loop” modelling and 

simulation is described. The discussed methodology simply involves the design and 

implementation of unique gateway models in OPNET enabling the OPNET software to 

transmit messages to other simulations running on separate machines over a real 

network and also to receive messages back from them over the same network. A 

preliminary implementation is presented which allows for the testing of an ACSI 

request-reply interaction in an application where two nodes exist: An ACSI client, an 

ACSI server and client/server interactions between these. 

 
The chapter starts in Section 7.2 with an overview of the “Hardware in the Loop” 

methodology. Then in Section 7.3, the design and implementation details of the gateway 

modules are discussed while Section 7.4 presents the “Hardware in the Loop” 

simulation carried out to validate the designed gateway models and demonstrate the 

testing of an ACSI request-reply interaction over a real Ethernet network. The 

conclusions of this chapter are given in Section 7.5.     
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7.2 Hardware in the Loop Capability 
 
 
This chapter presents the design and implementation of a “Hardware in the Loop” 

(HITL) capability within the discrete-event modelling package, the OPNET Modeller. 

The objective is to develop such a capability that will enable the testing and 

performance measurements of various components designed and implemented in this 

project over a real network.   

 
The HITL is a real Ethernet network that is interfaced with C language coded process 

models designed and implemented in OPNET. The ambition is to run two separate 

simulations on two different Personal Computers (PCs) as illustrated in Figure 7.1, e.g. 

an ACSI client on one machine and an ACSI server on another, and link them both over 

the real Ethernet communication network that exists between the two machines.     

Router

Switch

Switch

Firewall

Simulation running on computer A Simulation running on computer B

 
 

Figure 7.1 Simulations linked through a real network 

 
Several communication devices such as routers, switches and firewalls might exist in 

the path between two PCs (in the simulation loop of the OPNET models) depending on 
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the network architecture. Therefore, it will not be an exaggeration if it is claimed that 

several real network devices are being interfaced. However, the internal network 

structure is not a major concern in this study since any two or more devices within a 

network with IP addresses must be able to communicate amongst each other regardless 

of the network architecture.  

 

7.3 Design and Implementation of the HITL Model 
 
 
The main focus in this section is on describing the design and implementation of the 

HITL model. The objective has resulted in the design and implementation of two 

process models using OPNET as the software. The first process model has been 

implemented in a node as a gateway for ACSI clients while the second as a gateway for 

ACSI servers. The designed process models have two main tasks as outlined below: 

 
1. They translate the OPNET packets they receive from other nodes running in 

the simulation into IP packets and forward them to the transport layer of the 

PC for transmission to the real network, and 

2. They translate the IP packets received from the real network into OPNET 

packet structures and discrete events transmitting them to their destination 

nodes in the simulation.      

 
The possibility of a HITL simulation in OPNET was first recognised after reading the 

references [137, 138]. Although the models to be discussed in this chapter use the same 

basic theories discussed in references [137, 138], they have been uniquely modelled and 

implemented. In references [137, 138], models have been proposed that provide the 

capacity of interfacing to a real network through the UDP/IP transport layer. The unique 
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models discussed in this chapter, however, allow interfacing to a real network through 

the TCP/IP transport layer. The process models have been implemented in C code based 

on the rules set by OPNET’s Application Programming Interface (API). They combine 

OPNET’s event-driver mechanism with Windows Winsock mechanisms, an approach 

that allows the OPNET models to send/receive information to/from a real network.  

 
7.3.1 The Client Gateway Design and Implementation     
 
 
The client gateway has been designed and implemented in the node model illustrated in 

Figure 7.2. Two modules, shown in Figure 7.2, are of importance for discussion with 

respect to the HITL design. They are the “TPAL Interface” and the “Client Network 

Interface” modules.          

 

Figure 7.2 Client gateway node model 

 
The “TPAL Interface” module has a functionality much similar to the IEC-MOM. It is 

mainly responsible for: 
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1. Receiving OPNET packets from other nodes running in the simulation and 

forwarding them to the “Client Network Interface” module, and 

2. Receiving OPNET packets from the “Client Network Interface”, establishing a 

TPAL connection and forwarding the packet to the TPAL module once it 

receives an “OPEN” confirmation. 

 
The “Client Network Interface” module hosts the main process model that interfaces 

with the “Hardware in the Loop” communications network and devices. Figure 7.3 

shows the STD of this module, which consist of four states and transitions between 

them. The actions perform in each state are briefed below: 

 

Figure 7.3 STD of the “Client Network Interface” module 

 
• Init State: In this state, the Winsock mechanism is initialised and a TCP/IP 

socket is created connecting client to the socket. 

• Wait State: The STD stays in the “Wait” state until a stream interrupt is received 

triggered by the arrival of an OPNET packet. The packet will be removed from 

the stream and its field accessed to construct the buffer data to be transmitted. 

• Send State: “Send” state is responsible for establishing the connectivity with the 

TCP protocol of the PC through the use of Windows Winsock Mechanisms. 

Figure 7.4 illustrates the step-by-step flow chart diagram of the sending process. 
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• Receive State: Once a request has been sent by the “Send” state, the process 

moves into the “Receive” state where it waits for the arrival of the reply packet. 

Figure 7.5 illustrates the flow chart diagram of the receiving process. 

 

Initialise temporary variables to be used in the
"Send" state

Fill in the address structure for the destination
server

Write the buffer containing the data to be
transmitted to the transmission queue

TCP removes the data from the transmission
queue, constructs a TCP packet and forwards

it to IP

START

IP creates an IP packet and forwards it to the
Data Link layer and then to the Physical Layer

The resulting packet is transmissted to its
destination

STOP
 

Figure 7.4 Flowchart diagram of the client’s sending process 

 
Initialise temporary variables to be used in the

"Receive" state Wait for the arrival of the request packet

When the real request packet arives, pull it
from the TCP socket

Extract the fields and attributes of the real
packet

START

Construct a virtual OPNET packet using the
extracted fields and attributes

Send the virtual packet to the underlying
"TPAL Interface" module to be transmitted to

other virtual devices

STOP
 

Figure 7.5 Flowchart diagram of the client’s receiving process 

 
7.3.2 The Server Gateway Design     
 

The server gateway has been designed and implemented in the node model illustrated in 

Figure 7.6. The “Server Network Interface” module is significantly different from the 
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“Client Network Interface” module. Its main difference is that it waits for the arrival of 

a request packet from the network rather than initiating the transfer of one.  

 

Figure 7.6 Server gateway node model 
 
Figure 7.7 shows the STD of the “Server Network Interface” which has been 

implemented in a processor module. It consists of 3 states and transitions between these. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.7 STD of the “Server Network Interface” module 
 
The actions performed in each state are briefed below: 

• Init State: In this state, the Winsock mechanism is initialised and a TCP/IP 

socket is created binding server to the socket. 
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• Receive State: In this state, the process waits for the arrival of a real request 

packet from the network. Figure 7.8 illustrates the step-by-step flow chart 

diagram of the server’s receiving process. 

• Send State: In this state, the process waits for the arrival of a virtual reply packet 

from other virtual nodes in the simulation. Figure 7.9 illustrates the step-by-step 

flow chart diagram of the server’s sending process. 

Initialise temporary variables to be used in the
"Receive" state

Wait for the arrival of the real request packetWhen the real packet arives, pull it from the
TCP socket

Extract the fields and attributes of the real
packet

START

Construct a virtual OPNET packet using the
extracted fields and attributes

Send the virtual request packet to the
underlying "TPAL Interface" module to be

transmitted to other virtual devices

STOP

Listen on the socket & accept connections

 

Figure 7.8 Flowchart diagram of the server’s receiving process 

 
Initialise temporary variables to be used in the

"Send" state Wait until the virtual reply packet arrives

Write the buffer containing the data to be
transmitted to the transmission queue

TCP removes the data from the transmission
queue, constructs a TCP packet and forwards

it to IP

START

IP creates an IP packet and forwards it to the
Data Link layer and then to the Physical Layer

The resulting packet is transmissted to its
destination

STOP

Remove the packet from the input stream
extract its fields to be used when constructing
the buffer containing the data to be transmitted

 
 

Figure 7.9 Flowchart diagram of the server’s sending process 
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7.4 Hardware in the Loop Simulation  
 
 
This section mainly discusses the simulation scenario that was carried out to justify the 

accurate operation of the designed HITL capability and testing of an ACSI request-reply 

interaction over a real Ethernet network. Figure 7.10 shows the test set-up that was used 

for this purpose. It shows two different simulation windows running on two different 

machines being linked together through the use of the HITL capability. An ACSI client, 

the Station_Unit, was configured in a simulation window running on the PC in room 

D706 while an ACSI server, the Protection_Relay, was configured in a simulation 

window running on another PC in room D704. The Client_Gateway device hosts the 

client gateway model and the Server_Gateway device hosts the server gateway model. 
 

OPNET Computer in D706
D706-3

OPNET Computer in D704
D704-5

Packets from D704-5 to D706-3

Packets from D706-3 to D704-5  
 

Figure 7.10 HITL simulation test set-up 

 
Figures 7.11 and 7.12 show the event-by-event simulation summaries received on two 

different simulation consoles. A client/server service request was primarily being tested 

where the Station_Unit issued a “GetLogicalDeviceDirectory” request to the 

Protection_Relay. Once the ACSI request arrived at the Client_Gateway, its information 

content was forwarded to the physical network in a real IP packet. The Server_Gateway 
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removed the information from the IP packet on its arrival and constructed a virtual 

OPNET packet, which was sent to the Protection_Relay device. When the 

Protection_Relay received the ACSI request, it executed the relevant service before 

creating an ACSI reply packet, to be forwarded to the Server_Gateway. Similarly, the 

Server_Gateway put the ACSI reply data on the network in a real IP packet that was 

later picked up by the Client_Gateway and forwarded to the Station_Unit device in a 

virtual OPNET packet. Station_Unit displayed the output parameters returned in the 

ASCI reply message before destroying the packet.      

 
 

Figure 7.11 Simulation console output of D704-5 computer 
 

 
 

Figure 7.12 Simulation console output of D706-3 computer 

 
The application-to-application delay times for the request and reply packets were 

measured to be about 50 ms much higher than what was expected. The large size of the 
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data (800 bytes) that gets transmitted to the real network and especially the fact that two 

PCs could not be perfectly time synchronized are believed to be amongst the factors that 

have contributed to such large delay times. Once the HITL capability is extended to 

include support for the time synchronisation model of Chapter 6 after when the 

communicating devices can be better time synchronized, it is believed that much more 

accurate delay times will be able to be measured.           

 

7.5 Conclusions  
 
 
In this chapter, the design and implementation of a “Hardware in the Loop” capability 

within the OPNET Modeler software package has been presented. The “Hardware in the 

Loop” is a real network component that can be interfaced with the OPNET models 

using process models coded in the C language and Windows Winsock mechanisms. The 

main objective has been on the design and implementation of gateway models with a 

capability of translating OPNET discrete events into IP packets and IP packets into 

OPNET discrete events. As a result, several new processor modules were designed and 

implemented that has enabled the construction of client and server gateway models.  

 
In this chapter, the performance testing of an ACSI client/server application has been 

carried out over a real Ethernet network making use of the newly implemented gateway 

models and results have been illustrated to validate the proper function of the gateway 

components and the HITL capability. It is possible to extend the HITL capability 

described in this chapter with the capability of interfacing to a real network through the 

UDP/IP transport layer as well as support for multicast transmission. After then more 

detailed simulations can be carried out to further test the implemented IEC 61850 

standard over a real network including its data exchange services such as the GOOSE. 
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Chapter 8 
 
Conclusions and Future 
Developments 
 
 
 

8.1 Introduction  
 
 
This chapter details with the major findings and accomplishments of this work and how 

the work has addressed the aims proposed in Chapter 1. Also, it presents the conclusions 

that are drawn from the findings as well as the limitations in this work. Future research 

options are also outlined in this chapter.    

 
With distributed substation systems becoming increasingly large-scale and dynamic, the 

interest on the Substation Automation (SA) concept has increased substantially over the 

last decade. The primary objective of SA is to improve operations, maintenance and 

efficiencies in the substation environment. The use of effective communication 

techniques to link the various control, monitoring and protection elements within a 

substation is a critical factor in determining the success of a SA system. The recent 

developments of the SA communication standards, i.e. the UCA 2.0 and IEC 61850 

standards, are clear indications of the importance of communication in achieving the 

goals of SA. UCA 2.0 and IEC 61850 target the standardisation of the language of 

communication between the devices of a SA system. Standardisation is regarded as the 

key for the advancement of the connectivity and interoperability within such systems. 



 
Chapter 8: Conclusions and Future Developments 

 
 

 216

Moreover, the need for the further advancement of an open and standard substation 

working environment has lead to increased research activity in the communication 

techniques and principles employed to make distributed substation systems more robust, 

reliable, high-speed and secure.               

 
In this thesis, research on the implementation of the IEC 61850 communication standard 

as a concrete application layer protocol has been presented. The thesis has addressed 

major challenges and several key issues related to the transformation of IEC 61850 from 

an abstract nature into a tangible structure. It was argued that the implementation of IEC 

61850 making use of the techniques of Object-Oriented Programming (OOP) is very 

valuable in amplifying the understanding of the standard and simplifying its use through 

the Object-Oriented (OO) development of its information and information exchange 

service models.    

 
The work described in this thesis has also addressed an important issue that highlighted 

the significance of having proper middleware support to manage the communication 

needs of the IEC 61850 standard in a scalable and efficient way and all without 

compromising traditional middleware features. In view of that, a Message-Oriented 

Middleware (MOM) architecture as part of a communication processor protocol stack 

has been designed and implemented. The designed MOM architecture, the IEC-MOM 

middleware, represents a unique stand-alone communication interface to IEC 61850 

application layers incorporating various communication models and techniques for 

reliable and fast message dissemination.  

 
Major findings of this thesis, results and novel ideas have been reported in related 

publications in ‘List of Publications’ section of this thesis. Section 8.2 of this chapter 
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presents a general overview of the specific tasks carried out to achieve a successful 

completion of this research and describes how the accomplished work has addressed the 

aims outlined in Chapter 1. Last of all, Section 8.3 details the future research options 

and possible extensions that can be applied to the study described in this thesis.  

  

8.2 Summary  
 
 
The thesis began in Chapter 2 with an overview of substation automation, integration 

and communication concepts. The focus was on describing the desire and the need of 

achieving connectivity and interoperability in SA systems through the use of 

standardised application and communication protocols. Subsequently, some of the 

physical and application layer protocols that have found widespread use in substation 

communication systems over the past decade were re-examined and the recently 

evolved SA standards, UCA 2.0 and IEC 61850, were introduced to the reader. Various 

middleware architectures were also investigated in Chapter 2, which helped to structure 

the design space in terms of architecture, components, reliability, speed and services.  

 
One of the primary objectives in this research was the OO implementation of the IEC 

61850 Abstract Communication Service Interface (ACSI) Object and Service Models 

(OSMs) as concrete programs. Accordingly, in this thesis, Chapters 3 and 4 presented 

the development of the IEC 61850 application and device view OSMs describing how 

they can be built based on their descriptions in the IEC 61850 documentation. The 

research described in Chapters 3 and 4 has further enhanced the understanding of the 

IEC 61850 standard by illustrating how the OO models discussed in the standard can as 

well be implemented using the techniques of OOP and provided an alternative to the 

current implementation approach adopted by IEC 61850 that is the mapping process. A 
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standard universal OO implementation of the IEC 61850 standard has been proposed 

that makes it possible to fully isolate the standard’s implementation process from any 

underlying communication service and remove its dependency on the mapping process 

 
Then, in Chapter 5, the design and implementation of a communication processor 

architecture was presented. The designed architecture consists of application layer 

modules built on top of a middleware architecture running on protocol stack that 

incorporates the TCP/UDP-IP network protocols. The proposed application layer 

modules enable the configuration of ACSI client and server applications at the 

application layer of a communication processor based on the OO implemented models 

of the standard itself rather than the use of the existing implemented models of another 

application layer protocol referred to as the mapping process. 

 
Chapter 5 additionally described the layered architecture, components and principles of 

the IEC-MOM middleware and an example prototype implementation was given. The 

performance of the designed middleware architecture was evaluated in the remainder of 

Chapter 5 with the help of broad simulations, which demonstrated the effectiveness of 

the designed middleware in incorporating various communication techniques such as 

unicast and multicast on a single platform providing a comprehensive communication 

service to the IEC 61850 application layer protocol. The simulations showed that the 

designed middleware architecture can be used effectively to provide necessary 

communication services to ACSI clients and servers adding only nominal overhead to 

the underlying protocol stack. It was demonstrated that timely and reliable transmission 

of GOOSE messages can be achieved with the aid of a trade-off mechanism that 

retransmits GOOSE messages a few times whilst not exterminating the 4 ms timing 
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determinism. Finally, a more realistic network loading case was examined where the 

accurate workings of the GOOSE and SV models of Chapter 4 were verified and it was 

shown that the designed architecture is capable of meeting the timing determinism and 

reliability concerns even in the case of GOOSE and SV messages both being 

simultaneously transmitted over the same communication channel.  

 
Chapter 6 addressed the design and implementation of SNTP client and server 

applications and their incorporation into the communication processor architecture. 

SNTP was demonstrated to be adequate in achieving all the Time Synchronisation (TS) 

accuracy requirements set by IEC 61850 by a means of time stamping at the MAC layer 

and with the use of an adaptive filtering technique. The technique of time stamping at 

the Ethernet driver level was shown to be effective in diminishing the protocol stack 

delays leading to better TS accuracies. Furthermore, Chapter 6 revealed the prospect of 

eliminating the effect of jitter through the use of the NTP adaptive filtering mechanism 

in order to achieve the class T5 requirement, which is much harsher and can hardly 

tolerate any jitter within the infrastructure as a result of increased switch load 

 
Finally, Chapter 7 presented the design and implementation of a “Hardware in the 

Loop” (HITL) capability within the OPNET Modeller software package. The proposed 

HITL capability acts as a gateway between the simulation environment and the real 

Ethernet network establishing a link between the virtual simulation and the real network 

whilst permitting for the testing and evaluation of all the designed components over a 

real network. Chapter 7 also described the performance testing of an ACSI request-reply 

interaction that was carried out making use of the implemented gateway models and 

results were illustrated to validate the designed HITL capability. 
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8.3 Future Work 
 

This section discusses the limitations of the work described in this thesis and details the 

future research options and possible extensions that can be applied. 

 
While discussing substation TS in Chapter 6, the synchronisation of substation nodes 

relative to a TimeServer was looked into excluding the process of externally 

synchronising the TimeServer’s local clock relative to a real-time clock. A possible 

future extension to this part of this research would be the modelling and implementation 

of a real-time clock such as a GPS device to take into account the process of external 

synchronisation. Then in Chapter 7, the developed HITL capability was limited to a 

client/server model where interfacing to a real network was restricted to the use of the 

TCP/IP transport layer. Extending the HITL capability with the capability of interfacing 

to a real network through the UDP/IP transport layer as well as support for multicast 

transmission and TS are the possible future research options that need to be explored.    

The expansion of the HITL capability in the described manner will allow for the 

advanced testing of the implemented IEC 61850 communication standard over a real 

network including its information exchange service models such as the GOOSE and SV 

models. The incorporation of the TS model into the HITL capability will furthermore 

make it possible to time synchronise the communicating devices enabling more accurate 

statistic gathering.   

 
In the project described in this thesis, no security measures have been considered 

whatsoever. Nevertheless, the extension of the overall design and implementation with 

security measures in accordance with the security measures described in IEC 62351-6 is 

a potential research avenue and any future work to be carried out in this field shall 



 
Chapter 8: Conclusions and Future Developments 

 
 

 221

reflect on such changes. The remainder of this section covers the consideration of cyber 

security in the electric power industry as outlined by the IEC Technical Committee (TC) 

57 Working Group (WG) 15.  

 
The use of automated control systems and microprocessor based protection systems in 

the electric power industry along with the need to provide remote access into these 

systems has increased the risk of these systems being vulnerable to unauthorized hostile 

access. The extension of communication networks out to the substation has magnified 

the possibility of cyber attacks ranging from espionage to sabotage via electronic 

intrusion and computer hacking [139]. However, the electric power industry has long 

been aware of this threat and taken the necessary steps to reduce risk and mitigate 

vulnerabilities. IEC report 62210 [140] “Data and Communications Security”, a report 

developed and circulated throughout the IEC in 1999 and published in 2003, has lead to 

the establishment of the IEC WG 15 titled “Power System Control and Associated 

Communications - Data and Communications Security” to look across the other 

working groups to address end-to-end security recommending or supplying standardized 

security enhancements as needed [141, 142]. Securing application-to-application 

information exchange through supplying strong authentication, message integrity and 

confidentiality (e.g. encryption) enhancements as well as Spoof/Replay protection to the 

IEC TC 57 protocols is the main focus of the WG 15.               

 
A new document known as IEC 62351 [143] incorporates many of the new work items 

currently under development by IEC TC 57 WG 15. The IEC 62351 document consists 

of seven main sections and includes security considerations for profiles including 

TCP/IP, MMS, IEC 60870-5 and IEC 61850.   
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The fact that many TC 57 communication profiles including IEC 61850 ACSI over 

TCP/IP and IEC 60870-5-104 are based on the TCP/IP has resulted in the need for a 

common security solution to be investigated for profiles using TCP/IP. IEC 62351-3 

specifies the use of Transport Layer Security (TLS) in order to secure IEC TC 57 

protocols over the Internet. Likewise, IEC 62351-4 includes security considerations for 

profiles that include the MMS. The addition of application-level authentication through 

the use of TLS’s authentication measures is the main suggestion.    

 
Security enhancements are also required when implementing and using communication 

profiles of IEC 61850 in non-secure environments. The basic design principles are that 

secure and non-secure profiles must be able to unambiguously co-exist with a single set 

of identity management policies for all profiles using mainstream IT methodologies. 

The main security objective is to prevent eavesdropping and spoofing/playback of 

captured data from non-trusted entities as well as assuring authorized access even within 

a closed private network. Security for five IEC 61850 profiles: Client/Server, GOOSE, 

GSSE, GSSE management and Sample Measured values (SMV) have been developed 

and packaged into IEC 62351-6. TLS encryption is used for Client/Server profiles 

where the data is encrypted so that only the two communicating entities can understand 

the data. For the peer-to-peer multicast profiles such as GOOSE, encryption is not 

acceptable since it affects the strict transmission rates required for multicast datagrams. 

Hence, authentication is the only security measure included for those where digital 

signatures are used ensuring that the entity at the other end is known and trusted [144, 

145].  
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Appendix A 
 
C++ Class Definitions of the 
Implemented Class Models  
 

 

In order to provide supplementary information in regards to the implemented Object and 

Service Models (OSMs) of Chapters 3 and 4, the C++ class definitions of the 

implemented models are presented in this appendix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

class DATA Section (3.3.2.2)  
 
{ 

public: 
   
 CosNaming::NameComponent DataName; 
 char DataRef 255]; 
 bool Presence; 
 DataAttribute *Data_att; 
 DATA *CompositeCDC; 
 COMMON_DATA *SimpleCDC; 
  
 void** GetDataValues(); 
 void SetDataValues(); 
 void GetDataDirectory(); 
 void GetDataDefinition(); 
 
}; 

class COMMON_DATA : public DATA Section (3.3.2.2) 
 
{ 

public: 
   
 CosNaming::NameComponent DataName; 
 char DataRef 255]; 
 bool Presence; 
 DataAttribute *Data_att; 
 
}; 
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struct DataAttribute Section (3.3.2.2) 
 
 
{ 

public: 
 
 DAType DataAttributeType; 
 enum FC FunctionalConstraint; 
 TriggerConditions *TrgOp; 
}; 
 

class LCB_Class  Section (3.3.4.2.1)
  
 
{ 
 public: 
 
 CosNaming::NameComponent LCBName;
 char LCBRef[255];  

char DatSet[255]; 
char  LogRef[255]; 

 bool LogEna; 
 PACKET_LIST_BOOLEAN OptFlds; 
 TriggerConditions TrgOp;  

unsigned _int32 IntgPd; 
   
 void SetLCBValues (); 
 void GetLCBValues (); 
}; 

class LOG_Class  Section (3.3.4.2.2) 
 
{ 

public: 
 

CosNaming::NameComponent LogName; 
char LogRef[255]; 
Time_Stamp OldEntryTm, NewEntryTm; 
unsigned _int32 OldEntry, NewEntry; 
entry *Entry; 

 
void QueryLogByTime (); 
void QueryLogAfter (); 
void GetLogStatusValues (); 

 
}; 

class  DAType Section (3.3.2.2) 
 
{ 
 public: 
 
 CosNaming::NameComponent DatName; 
     char DATRef [255]; 
 bool Presence; 
 DAType *CompositeComponent; 
 BasicType PrimitiveComponent; 
}; 

class DATA_SET Section (3.3.2.2)  
 
{ 
 public: 
  

CosNaming::NameComponent DSName;
 char DSRef[255]; 
 char** DSMemberRef; 
 
 void CreateDataSet(); 
 void DeleteDataSet(); 
 void GetDataSetDirectory (); 
 void SetDataSetValues (); 
 void GetDataSetValues (); 
 
}; 

class BRCB_Class Section (3.3.4.1.1) 
 
{ 
 public: 
 
 CosNaming::NameComponent BRCBName; 
 char BRCBRef [255]; 

char RptID[65]; 
char DatSet[255]; 

 bool RptEna, PurgeBuf, EntryID; 
 unsigned _int32 ConfRev, BufTm, IntgPd; 
 PACKET_LIST_BOOLEAN OptFlds; 
 unsigned _int64 SqNum; 
 TriggerConditions TrgOp; 
 Time_Stamp TimeOfEntry, GI; 
 
 void SetBRCBValues();  

void GetBRCBValues(); 
  void Report(); 
 
}; 
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class LOGICAL_DEVICE Section (4.2.1.1)  
 
{ 

    public: 
   

CosNaming::NameComponent LDName; 
 char *LDRef; 
 LOGICAL_NODE *LogicalNode; 
 
 void GetLogicalDeviceDirectory (); 
  
}; 

class SERVER  Section (4.2.2.1)   
 
{ 

public: 
 

LOGICAL_DEVICE *LogicalDevice; 
File_Class *File; 
SerAccPoi *ServiceAccessPoint; 
TPAppAss *TPAppAssociation; 
MCAppAss *MCAppAssociation; 

 
void GetServerDirectory (); 

 
}; 

class GoCB_Class Section (4.2.3.1)   
 
{ 
 

public: 
 

CosNaming::NameComponent GoCBName; 
char GoCBRef[255]; 
char  AppID[65]; 
char  DatSet[255]; 
bool GoEna,  NdsCom; 
unsigned _int32 ConfRev; 

 
void SetGoCBValues (); 
void GetGoCBValues (); 
void GetGoReference (); 
void GetGOOSEElementNumber (); 
void SendGOOSEMessage (); 

 
}; 

class MSVCB_Class Section (4.2.4.1)   
 
{ 
 public: 
  

CosNaming::NameComponent MsvCBNam; 
 char MsvCBRef [255];  

char MsvID [65]; 
char  DatSet [255]; 

 bool SvEna; 
 unsigned _int32 ConfRev; 
 unsigned _int16 SmpRate; 
 PACKET_LIST_SV OptFlds;  
     
 void SetMSVCBValues (); 
 void GetMSVCBValues (); 
 void SendMSVMessage ();  
 
}; 

class SGCB_Class Section (4.2.5.1)   
 
{  

public: 
  

CosNaming::NameComponent SGCBName; 
 char SGCBRef[255]; 
 unsigned _int8 NumOfSG, ActSG, EditSG; 
 bool CnfEdit; 
 Time_Stamp LActTm; 
 
 void SelectActiveSG(); 
 void SelectEditSG(); 
 void ConfirmEditSGValues(); 
 void SetSGValues(); 
 void GetSGValues(); 
 void GetSGCBValues(); 
}; 
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Appendix B 
 
Descriptions of Input and Output 
Parameters of Services 

 
The descriptions of all input and output parameters of the ACSI class services 

implemented in Chapters 3 and 4 are presented in this appendix.  

 
Table B.1 Input parameters 

 
Parameter Name Description 

ACSIClass holds the type of the selected ACSI class model {DATA, DATA-SET, 
BRCB, URCB, LCB, LOG, SGCB, GoCB, GsCB, MSVCB or USVCB} 

ApplicationID specifies the attribute AppID, which is a visible string that represents a LD 
where the GoCB is located 

BRCBReference is the ObjectReference of a BRCB (BRCBRef) 

BufferTime specifies the attribute BufTm, which is the time interval in milliseconds for 
the buffering of internal notifications 

DataAttributeValue [1…n] contains the value of a DataAttribute referenced by the FCDA 
DataReference is the ObjectReference of a DATA (DataRef) 

DataSetReference is the ObjectReference of a DataSet (DSRef) 
DSMemRef [1…n] is an array holding the FCDA references of data and DataAttributes 

Entry specifies the log entry after which the log entries should be considered 

EntryIdentifier specifies the attribute EntryID, which identifies an entry in a sequence of 
events of a buffered report 

FCDA 
Functionally Constraint Data Attribute (FCDA) is the reference of a 
specific DataAttribute of a data. It is formed by accompanying the 
DataAttributeRef with a value of a FC. Such as: XCBR1.Pos.ctlVal [CO] 

FunctionalConstraint [0..1] contains the Functional Constraint (FC) parameter 

GeneralInterrogation specifies the attribute GI, which indicates the request to start the general-
interrogation process 

GoCBReference is the ObjectReference of a GoCB 
GoEnable is the client-specified GoEna attribute, which (if set to TRUE) indicates  

that the GoCB is currently enabled to send GOOSE messages 

IntegrityPeriod specifies the attribute IntgPd, which indicates the period in milliseconds 
used for generating an integrity report  

LCBReference is the ObjectReference of a LCB (LCBRef) 
LDReference is the ObjectReference of a LD (LDRef) 
LNReference is the ObjectReference of a LN (LNRef) 

LogEnable is the client-specified LogEna attribute, which (if set to TRUE) indicates 
that the LCB is recording into the log specified by the LogRef  
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LogReference is the ObjectReference of a log (LogRef) 
MemberOffset [1...n] is an array of integers containing the index numbers of the members of a 

DataSet 
MemberReference[1...n] contains the MemberReferences of the members of a DataSet 

MsvCBReference is the ObjectReference of a MSVCB (MsvCBRef) 
MulticastSampleValueID specifies the attribute MSVID, which is a unique identification of the 

sampled value buffer related to the update of the sampled values 
ObjectClass specifies the selected class type {LOGICAL-DEVICE or FILE}  

OptionalFields are the client-specified optional fields to be included  

PurgeBuffer specifies the attribute PurgeBuf, which indicates the request to discard 
buffered events 

RangeStartTime specifies the range start time to be used when retrieving log entries 
RangeStopTime specifies the range stop time to be used when retrieving log entries 

Reference specifies the ObjectReference (FCDA) of a DataAttribute 

ReportEnable is the client-specified RptEna attribute, which is used to control and 
indicate the current state of a BRCB 

ReportIdentifier is the client-specified report identifier (RptID) of a BRCB 
SampleRate specifies the attribute SmpRate, which specifies the samples rate in units of 

samples per nominal period  
SettingGroupNumber specifies the number of the SG that is to be used 

SGCBReference is the ObjectReference of a SGCB (SGCBRef) 
SvEnable is the client-specified SvEna attribute, which (if set to TRUE) indicates that 

the MSVCB is currently enabled to send values of the MSVCB 
TriggerConditionsEnabled specifies the trigger conditions (TrgOp) to be monitored 

 
 

Table B.2 Output (return) parameters 
 

Parameter Name Description 
ActiveSettingGroup returns the value of the ActSG attribute of a SGCB 

ApplicationID returns the value of the AppID attribute of a GoCB 
BufferTime returns the value of the BufTm attribute of a BRCB 

ConfigurationRevision returns the value of the ConfRev attribute of a BRCB, GoCB or MSVCB 
DataAttributeDefinition[0...n] holds the DataAttributeNames, DataAttributeTypes and FCs of all first, 

second and third level DataAttributes contained within the referenced 
data 

DataAttributeName[0...n] holds the DataAttributeNames of all first level DataAttributes contained 
within the referenced data 

DataAttributeReference[1...n] returns the ObjectReferences of all the DataAttributes with FC values 
matching the value of the FC received in the request 

DataAttributeValue[1...n] is an array containing the values of the DataAttributes 
DataSetReference returns the value of the DSRef or DatSet attributes 

DSMemRef [1...n] is an array returning the FCDA references of data and DataAttributes 
present in a DataSet 

EditSettingGroup returns the value of the EditSG attribute of a SGCB  
EntryIdentifier returns the value of the EntryID attribute of a BRCB 

GoCBReference returns the value of the GoCBRef attribute of a GoCB 
GoEnable returns the value of the GoEna attribute of a GoCB 

InstanceName[0...n] is an array returning the ObjectNames of all instances matching the 
ACSI class type 

IntegrityPeriod returns the value of the IntgPd attribute 
LastActiveTime returns the value of the LActTm attribute of a referenced SGCB 

ListOfLogEntries [1…n] contains a list of log entries all having a TimeOfEntry in the range 
specified by the RangeStartTime and RangeStopTime 

LNReference returns the value of the LNRef attribute of a LN 
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LNReference[3..n] returns the ObjectReferences of all the LNs contained within a LD 
LogEnable returns the value of the LogEna attribute of a log 

LogReference returns the ObjectReference of a log 
MemberOffset[1...n] contains the MemberOffsets of the members of a DataSet for which the 

MemberReferences are given 
MemberReference [1...n] contains the MemberReferences of the members of a DataSet for which 

the MemberOffsets are given 
MulticastSampleValueID returns the value of the MsvID attribute of a MSVCB 

NeedsCommissioning returns the value of the NdsCom attribute of a GoCB 
NewestEntry returns the value of the NewEntr attribute of a log 

NewestEntryTime returns the value of the NewEntryTm attribute of a log 
NumberOfSettingGroup returns the value of the NumOfSG attribute of a SGCB 

OldestEntry returns the value of the OldEntry attribute of a log 
OldestEntryTime returns the value of the OldEntryTm attribute of a log 
OptionalFields returns the value of the OptFlds attribute 

Reference[0...n] returns the ObjectReferences of all LDs or FileNames of all Files within 
the server 

ReportEnable returns the value of the RptEna attribute of a BRCB 
ReportIdentifier returns the value of the RptID attribute of a BRCB 

Response- indicates that the service request failed 
Response+ indicates that the service request succeeded 
SampleRate returns the value of the SmpRate attribute of a MSVCB 

SequenceNumber returns the value of the SqNum attribute of a BRCB 
SvEnable returns the value of the SvEna attribute of a MSVCB 

TriggerConditionsEnabled returns the value of the OptFlds attribute of a BRCB 
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Appendix C 
 
Core SNTP Classes 
 

 
The C++ definitions of the classes used to implement the core SNTP structure are 

presented in this appendix. The pseudo-code description of the NTP clock filter 

algorithm of Chapter 6 is also covered in this appendix along with descriptions of the 

modifications made to the Ethernet Media Access Control (MAC) layer routines.      

C.1 C++ Definition of the CNtpTimePacket Structure 
 
 
struct CNtpTimePacket 

{ 

  unsigned int_32 m_dwInteger; 

  unsigned int_32 m_dwFractional; 

}; 

C.2 C++ Definition of the CNtpTime Class 
 
 
class CNtpTime 

{ 

public: 

// Constructors / Destructors 

 CNtpTime(); 

CNtpTime(const CNtpTime& time); 
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CNtpTime(CNtpTimePacket& packet); 

CNtpTime(const SYSTEMTIME& st); 

CNtpTime& operator=(const CNtpTime& time); 

double operator-(const CNtpTime& time) const; 

CNtpTime operator+(const double& timespan) const; 

operator SYSTEMTIME() const; 

operator CNtpTimePacket() const; 

operator unsigned __int64() const { return m_Time; }; 

DWORD Seconds() const; 

DWORD Fraction() const; 

//Static functions 

static CNtpTime GetCurrentTime(); 

static DWORD MsToNtpFraction(WORD wMilliSeconds); 

static WORD NtpFractionToMs(DWORD dwFraction); 

static double NtpFractionToSecond(DWORD dwFraction); 

unsigned __int64 m_Time; 

protected: 

//Internal static functions and data 

static DWORD m_MsToNTP[1000] ;     

 }; 

 
Some of the important functions of the CNtpTime Class are as follows [124]: 
 
 

i. The GetCurrentTime () function returns a CNtpTime instance containing the 

current Coordinated Universal Time (UTC) of the machine.      

ii. The CNtpTimePacket () operator function returns a CNtpTimePacket 

representation of the CNtpTime that is the actual value of the data, which gets 

copied to the relevant field of the SNTP packet to be transmitted between a 
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TimeServer and a TimeClient. The function CNtpTime constructs a CNtpTime 

instance from the CNtpTimePacket representation.    

C.3 Pseudo-code Description of the Modified NTP Clock Filter Algorithm 
 

Declare all the temporary variables 

For (i from FMAX-1 to 1)                      //where FMAX is the maximum filter size  

 [θi-1, δ i-1, ε i-1]  [θi, δ i, εi ]; // shift the set of values right 

 εi = εi + ϕ(T4 − T1) ;                          // update the dispersion of the samples 

EndFor 

[θ, δ, ε]  [θ0, δ0, ε0 ];    // insert the new sample 

For (i from0 to FMAX-1)                      // construct a temporary list of λ values 

 List [m] = εi+ | δi|/2;                 // add the new synchronisation distance value 

For (j from0 to m-1)                      // sort the temporary list in the increasing λ value 

If (List [j] > List [m]) 

List[j]   List[m];      // interchange the samples 

Index[j]   Index[m];      // interchange the sample index numbers 

EndIf 

EndFor 

m = m+1; 

EndFor 

// the supplementary code segment added 

For (j from0 to FMAX-1)   //search the temporary list to find the index number of the minimum λ sample 

If (List [j] > List [J+1]) 

 Index = index [j]; break; 

EndIf 

EndFor 

// compute filter dispersion εσ 
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For (i from FMAX-1 to 0)    

If (i < m) 

εσ = ( εσ+ | θi –θ0|) * filter weight ; 

EndIf 

Else 

εσ = ( εσ+  max dispersion) * filter weight ; 

EndFor 

// update the peer values 

Peer offset = θ0; 

Peer delay = δ0; 

Peer dispersion = εσ + ε0; 

C.4 Pseudo-code Description of the ethernet_mac_phys_pk_accept ( ) Routine 
 
 
Acquire the received frame 

Determine the packet format of the frame 

If (packet format == ethernet_v2)  

Decapsulate the higher-level packet from the ethernet_v2 packet  

End 

Determine the packet format of the decapsulated packet 

If (packet format == ip_dgram_v4)  

Decapsulate the higher-level packet from the ip_dgram_v4 packet. 

End 

Determine the packet format of the decapsulated packet 

If (packet format == udp_dgram_v2)  

Decapsulate the higher-level packet from the udp_dgram_v2 packet. 

End 

Determine the packet format of the decapsulated packet 

If (packet format == tpal_intf_udp_formatted)  

Decapsulate the higher-level packet from the tpal_intf_udp_formatted packet.  
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End 

Determine the packet format of the decapsulated packet 

If (packet format == gna_cagil)  

Decapsulate the higher-level packet from the gna_cagil packet.  

End 

If (packet format == SNTP)  

Determine whether the Receive Timestamp (T2) field of the SNTP packet is set or not.    

If (Not set)  

Set the Receive Timestamp (T2) field of the SNTP packet according to the local clock. 

End 

Else then 

Set the Destination Timestamp (T4) field of the SNTP packet according to the local clock. 

End 

 
Encapsulate the SNTP packet into the gna_cagil packet. 

Encapsulate the gna_cagil packet into the tpal_intf_udp_formatted packet. 

Encapsulate the tpal_intf_udp_formatted into the udp_dgram_v2 packet. 

Encapsulate the udp_dgram_v2 packet into the ip_dgram_v4 packet. 

Encapsulate the ip_dgram_v4 packet into the ethernet_v2 packet. 

Send the ethernet_v2 packet to the higher layer.  

C.5 Pseudo-code Description of the eth_mac_fdx_pks_send ( ) Routine 
 
 
The pseudo-code description of this routine is the same as the previous one except for 

underlined code of the previous routine being replaced by the following segment: 

 
 If (packet format == SNTP)  

Set the Transmit Timestamp (T3) field of the SNTP packet according to the local clock. 

End 

Send the ethernet_v2 packet to the physical layer.  
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