

Design & Implementation of a Universal
Communications Processor for Substation

Integration, Automation and Protection

 Cagil Ramadan Ozansoy

 SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF
 DOCTOR OF PHILOSOPY

School of Electrical Engineering

Faculty of Health, Engineering and Science

Victoria University
Australia

2006

I would like to dedicate this thesis to my wonderful

mother Meral

Declaration of Originality

Declaration of Originality

I, Cagil Ramadan Ozansoy, declare that the PhD thesis entitled “Design &

Implementation of a Universal Communications Processor for Substation Integration,

Automation and Protection” is no more than 100,000 words in length, exclusive of

tables, figures, appendices and references. This thesis contains no material that has been

submitted previously, in whole or in part, for the award of any other academic degree or

diploma. Except where otherwise indicated, this thesis is my own work.

Cagil Ramadan Ozansoy

 Contents

i

Contents

List of Figures ... v

List of Tables... x

List of Abbreviations.. xii

Acknowledgements ... xvii

Abstract .. xviii

List of Publications .. xxi

Chapter 1

Thesis Overview.. 1

1.1 Introduction ...1
1.2 Aim of This Research ...4
1.3 Research Methodologies and Techniques..6
1.4 Originality of the Thesis ..9
1.5 Organisation of the Thesis...10

Chapter 2

Literature Review... 12

2.1 Introduction ...12
2.2 Intelligent Electronic Devices..13

 Contents

ii

2.3 Automation, Integration and Communications..14
2.4 Protocols..17

2.4.1 The Ethernet Protocol ..18
2.4.2 The TCP/IP Internet Protocol Suite ...19
2.4.3 Protocols in Substations...20

2.5 Standardisation Developments ..21
2.5.1 The UCA Substation Communications Project..22
2.5.2 IEC 61850 Project..24

2.6 Middleware Architectures..26

2.6.1 Client/Server Architectures..28
2.6.2 Publish/Subscribe Architectures ..28
2.6.3 Popular Middleware Platforms ..30

2.7 Conclusion ...35

Chapter 3

IEC 61850 Application View ... 37

3.1 Introduction ...37
3.2 Substation Automation Systems ...38
3.3 IEC 61850 Application View ...40

3.3.1 Logical Nodes ..41
3.3.2 Data..50
3.3.3 Data Sets ..62
3.3.4 Reporting and logging..67

3.4 Conclusion ...85

Chapter 4

IEC 61850 Device View .. 86

4.1 Introduction ...86
4.2 IEC 61850 Device View...87

4.2.1 Logical Devices ...87
4.2.2 Server ...91
4.2.3 The Generic Substation Event..94
4.2.4 The Transmission of Sampled Values..103
4.2.5 The Setting Group Control Block Model...110

4.3 Conclusion ...118

 Contents

iii

Chapter 5

Communication Processor Design .. 119

5.1 Introduction ...119
5.2 IEC 61850 Communication View ..120
5.3 The Proposed Model..123

5.3.1 The Client/Server Communication Model ...125
5.3.2 The Publish/Subscribe Communication Model..126

5.4 The Design and Implementation of the IEC-MOM middleware ..134

5.4.1 IEC-MOM Architectural Overview ...134
5.4.2 IEC-MOM Implementation..138

5.5 The Design and Implementation of the Application Layer Modules..143

5.5.1 Server Application Layer Design and Implementation..143
5.5.2 Client Application Layer Design and Implementation...152

5.6 Performance Analysis of the System..155

5.6.1 The Bay Devices and Station Controller Simulation ...155
5.6.2 The GOOSE Demo Simulation..165
5.6.3 The Sampled Values Simulation..171

5.7 Conclusion ...176

Chapter 6

Substation Time Synchronisation ... 178

6.1 Introduction ...178
6.2 Network Time Synchronisation..179
6.3 Simple Network Time Protocol ..182

6.3.1 SNTP Operation Modes...182
6.3.2 SNTP Implementation ...185
6.3.3 SNTP Filtering...186

6.4 Implementation of SNTP client and server applications..188

6.4.1 Application Layer Process Modelling of a SNTP Client ...189
6.4.2 Application Layer Process Modelling of a SNTP Server...192
6.4.3 Time Stamping...193

6.5 Performance Evaluation of the SNTP Protocol...196

6.5.1 No load case...197
6.5.2 5% load case ..199

6.6 Conclusion ...203

 Contents

iv

Chapter 7

Hardware in the Loop Modelling & Simulation.. 204

7.1 Introduction ...204
7.2 Hardware in the Loop Capability ..205
7.3 Design and Implementation of the HITL Model ..206

7.3.1 The Client Gateway Design and Implementation ..207
7.3.2 The Server Gateway Design ..209

7.4 Hardware in the Loop Simulation ...212
7.5 Conclusions ...214

Chapter 8

Conclusions and Future Developments .. 215

8.1 Introduction ...215
8.2 Summary ..217
8.3 Future Work...220

References ... 223

Appendix A

C++ Class Definitions of the Implemented Class Models 239

Appendix B

Descriptions of Input and Output Parameters of Services 242

Appendix C

Core SNTP Classes ... 245

 List of Figures

v

List of Figures

Figure 2.1 Digital relay with target interfaces [16] .. 13

Figure 2.2 Typical integrated substation protection and control system [23] 15

Figure 2.3 The OSI reference model .. 17

Figure 2.4 The Ethernet network concept [34]... 18

Figure 2.5 TCP/IP protocols and functional layers [26]... 19

Figure 2.6 The merging process [43].. 22

Figure 2.7 Three levels of UCA [44].. 23

Figure 2.8 The basic reference model [27]... 25

Figure 2.9 Relationship between the application and communication interfaces [27]... 26

Figure 2.10 Protocol stack incorporating the middleware layer..................................... 27

Figure 2.11 A client/server communication model .. 28

Figure 2.12 Publish/subscribe communication model.. 29

Figure 2.13 Basic CORBA Architecture [63] .. 31

Figure 2.14 The VMD Architecture [71] ... 33

Figure 3.1 An example of an application-view interoperable function.......................... 40

Figure 3.2 Virtualisation... 41

Figure 3.3 A simple protection and measurement example ... 42

Figure 3.4 LN class diagram .. 43

Figure 3.5 Conceptual class models showing the LN and LLNO classes and their

attributes ... 44

Figure 3.6 LN and LLNO class definitions .. 45

Figure 3.7 Flowchart diagram of the GetLogicalNodeDirectory service....................... 48

Figure 3.8 Flowchart diagram of the GetAllDataValues service 49

Figure 3.9 Data Classes of the XCBR LN.. 50

Figure 3.10 Services operating on data .. 51

Figure 3.11 Data conceptual class model ... 52

 List of Figures

vi

Figure 3.12 Data class diagram .. 53

Figure 3.13 CommonData class diagram ... 53

Figure 3.14 DAType conceptual class model... 55

Figure 3.15 Nested DataAttributes ... 55

Figure 3.16 FCDAType conceptual class model.. 56

Figure 3.17 Example of a data instance.. 57

Figure 3.18 Flowchart diagram of the GetDataDirectory service 58

Figure 3.20 Continued flowchart diagram of the GetDataValues service...................... 61

Figure 3.21 DataSet members .. 63

Figure 3.22 DataSet class diagram ... 63

Figure 3.23 Flowchart diagram of the CreateDataSet service.. 64

Figure 3.24 Flowchart diagram of the DeleteDataSet service.. 65

Figure 3.25 Flowchart diagram of the SetDataSetValues service 66

Figure 3.26 Reporting and logging model.. 67

Figure 3.27 BRCB class diagram ... 70

Figure 3.28 Flowchart diagram of the SetBRCBValues service 71

Figure 3.29 Report format .. 73

Figure 3.30 DataSet members and reporting .. 75

Figure 3.31 Event_Monitor_Reporting service .. 76

Figure 3.32 Report_Handler service... 77

Figure 3.33 LCB class diagram .. 79

Figure 3.34 Log class diagram ... 81

Figure 3.35 Flowchart diagram of the Log_Handler service.. 84

Figure 4.1 Server conceptual model ... 88

Figure 4.2 Logical device building blocks ... 89

Figure 4.3 LD class diagram .. 89

Figure 4.4 Flowchart diagram of the GetLogicalDeviceDirectory service 90

Figure 4.5 Server building blocks... 91

Figure 4.6 Server class diagram ... 92

Figure 4.7 Flowchart diagram of the GetServerDirectory Service................................. 93

Figure 4.8 GOOSE model .. 95

Figure 4.9 GoCB class diagram.. 96

 List of Figures

vii

Figure 4.10 Flowchart diagram of the SetGoCBValues service 97

Figure 4.11 Flowchart diagram of the GetGoCBValues service.................................... 98

Figure 4.12 Flowchart diagram of the GetGoReference service 99

Figure 4.13 Flowchart diagram of the GetGOOSEElementNumber service 101

Figure 4.14 GOOSE message definition .. 101

Figure 4.15 SV Model .. 104

Figure 4.16 MSVCB class diagram.. 105

Figure 4.17 SV message format ... 107

Figure 4.18 Flowchart diagram of the MSV_Handler service 109

Figure 4.19 Basic model of the SGCB ... 110

Figure 4.20 SGCB class diagram ... 112

Figure 4.21 Flowchart diagram the SelectActiveSG service.. 113

Figure 4.22 Flowchart diagram of the SetSGValues service.. 114

Figure 4.23 Flowchart diagram of the ConfirmEditSGValues service 115

Figure 4.24 Flowchart diagram of the GetSGValues service....................................... 117

Figure 5.1 IEC 61850 communication models [84] ... 120

Figure 5.2 IEC 61850 communication profiles [11] .. 121

Figure 5.3 The overall communication processor architecture 123

Figure 5.4 Interaction between a client and a server .. 125

Figure 5.5 Multicast transmission .. 127

Figure 5.6 Feeder IED publishing to the subscribing IED [82].................................... 129

Figure 5.7 Priority queuing [118] ... 131

Figure 5.8 IEC-MOM architecture ... 134

Figure 5.9 Communication processor node model... 139

Figure 5.10 Process model of the IEC-MOM middleware module.............................. 140

Figure 5.11 IEC-MOM child process model .. 142

Figure 5.12 Architectural components of the ACSI server application layer module . 147

Figure 5.13 ACSI server application layer module process model 150

Figure 5.14 ACSI client application layer module process model 153

Figure 5.15 BDASC simulation test set-up .. 155

Figure 5.16 Nested structure of the Circuit_Breaker.. 156

Figure 5.17 Nested structure of the Switch_Controller.. 157

 List of Figures

viii

Figure 5.18 BDASC simulation console output ... 161

Figure 5.19 Amount of traffic (bits/sec) received at the... 163

SUC and Circuit_Breaker... 163

Figure 5.20 Application-to-application delays of packets received at the SUC and

Circuit_Breaker .. 164

Figure 5.21 GOOSE demo simulation test set-up .. 166

Figure 5.22 Nested structure of the Protection_Relay.. 167

Figure 5.23 Nested structure of the AutoRecloser_Relay .. 167

Figure 5.24 Nested structure of the Switchgear_Relay .. 167

Figure 5.25 GOOSE Demo simulation console output .. 168

Figure 5.26 Amount of traffic received at the Switchgear_Relay................................ 169

Figure 5.27 Application-to-application delays of GOOSE messages received at the

Switchgear_Relay... 170

Figure 5.28 Sampled Values simulation test set-up ... 172

Figure 5.29 Sampled Values simulation console output .. 173

Figure 5.30 SV traffic throughput (bits/sec) and the amount of GOOSE traffic

received at the Protection_Relay .. 174

Figure 5.31 Application-to-application delays of GOOSE and SV messages received at

the Protection_Relay... 175

Figure 6.1 The basic TS process... 179

Figure 6.2 IEC 61850 TS model... 180

Figure 6.3 SNTP message format... 183

Figure 6.4 ACSI server node Figure 6.5 SNTP TimeServer node 189

Figure 6.6 Application layer process model of an IEC 61850 server node.................. 190

Figure 6.7 Flowchart description of the ss_packet_destroy_sntp function 191

Figure 6.8 Application layer process model of an SNTP server node 192

Figure 6.9 MAC layer STD .. 196

Figure 6.10 Multilevel test set-up... 197

Figure 6.11 Sent and received SNTP traffic... 198

Figure 6.12 Round trip delay and local offset calculated in the Protection_Relay 198

Figure 6.13 Round trip delay and local offset calculated for the 5 % load case 200

Figure 6.14 Switch 5 queuing delay ... 200

 List of Figures

ix

Figure 6.15 Filtered and un-filtered local offset values.. 202

Figure 7.1 Simulations linked through a real network ... 205

Figure 7.2 Client gateway node model... 207

Figure 7.3 STD of the “Client Network Interface” module ... 208

Figure 7.4 Flowchart diagram of the client’s sending process 209

Figure 7.5 Flowchart diagram of the client’s receiving process................................... 209

Figure 7.6 Server gateway node model .. 210

Figure 7.7 STD of the “Server Network Interface” module... 210

Figure 7.8 Flowchart diagram of the server’s receiving process.................................. 211

Figure 7.9 Flowchart diagram of the server’s sending process 211

Figure 7.10 HITL simulation test set-up .. 212

Figure 7.11 Simulation console output of D704-5 computer 213

Figure 7.12 Simulation console output of D706-3 computer 213

 List of Tables

x

List of Tables

Table 3.1 ObjectNames of LNs and LDs ... 46

Table 3.2 Parameters of the GetLogicalNodeDirectory service..................................... 47

Table 3.3 Parameters of the GetAllDataValues of the service 49

Table 3.4 Parameters of the GetDataDirectory service .. 57

Table 3.5 Parameters of the GetDataDefinition service ... 59

Table 3.6 Parameters of the GetDataValues service .. 59

Table 3.7 Parameters of the SetDataValues service ... 62

Table 3.8 Parameters of the CreateDataSet service.. 64

Table 3.9 Parameters of the DeleteDataSet service.. 65

Table 3.10 Parameters of the SetDataSetValues service.. 65

Table 3.11 Parameters of the GetDataSetValues service ... 66

Table 3.12 Parameters of the GetDataSetDirectory service ... 67

Table 3.13 Parameters of the SetBRCBValues service.. 71

Table 3.14 Parameters of the GetBRCBValues service ... 72

Table 3.15 Parameters of the SetLCBValues service... 80

Table 3.16 Parameters of the GetLCBValues service .. 80

Table 3.17 Parameters of the QueryLogByTime service ... 81

Table 3.18 Parameters of the QueryLogAfter service.. 82

Table 3.19 Parameters of the GetLogStatusValues service.. 82

Table 4.1 Parameters of the GetLogicalDeviceDirectory service 90

Table 4.2 Parameters of the GetServerDirectory service ... 93

Table 4.3 Parameters of the SetGoCBValues service .. 97

Table 4.4 Parameters of the GetGoCBValues service.. 98

Table 4.5 Parameters of the GetGoReference service.. 99

Table 4.6 Parameters of the GetGOOSEElementNumber service 100

 List of Tables

xi

Table 4.7 Parameters of the SetMSVCBValues service... 106

Table 4.8 Parameters of the GetMSVCBValues service.. 106

Table 4.9 Parameters of the SelectActiveSG service ... 112

Table 4.10 Parameters of the SelectEditSG service ... 113

Table 4.11 Parameters of the SetSGValues service ... 114

Table 4.12 Parameters of the ConfrimEditSGValues service 115

Table 4.13 Parameters of the GetSGCBValues service ... 116

Table 4.14 Parameters of the GetSGValues service... 116

Table 6.1 IEC Classes T1-T5 ... 181

Table B.1 Input parameters .. 242

Table B.2 Output (return) parameters... 243

 List of Abbreviations

xii

List of Abbreviations

ACSI Abstract Communication Service Interface

ALP Application Layer Protocol

API Application Programming Interface

BDASC Bay Devices and Station Controller

BRCB Buffered Report Control Block

CASM Common Application Service Models

CDC Common Data Classes

CmpCmp Composite Components

CompositeCDC Composite Common Data Class

CORBA Common Object Request Broker Architecture

COTS Commercial off-the Shelf

CPU Central Processing Unit

CSMA/CD Carrier Sense Multiple Access/Collision Detection

CSWI Switch Controller

CT Current Transformer

DII Dynamic Invocation Interface

DLN Domain Logical Node

DNP Distributed Network Protocol

DPC Controllable Double Point

 List of Abbreviations

xiii

EPRI Electric Power Research Institute

FC Functional Constraint

FCDA Functionally Constraint Data Attribute

FCDATypes Functionally Constraint Data Attribute Types

FIFO First-In First-Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GIOP General Inter-ORB Protocol

GoCB GOOSE Control Block

GOMSFE Generic Object Models for Substation and Feeder Equipment

GOOSE Generic Object Oriented Substation Event

GPS Global Positioning System

GsCB GSSE Control Block

GSSE Generic Substation State Event

HITL Hardware in the LOOP

HMI Human Machine Interface

HTTP HyperText Transfer Protocol

I&C Instrumentation & Control

IDL Interface Definition Language

IEC International Electrotechnical Commission

IED Intelligent Electronic Device

IEEE Institute of Electrical and Electronics Engineers

IGMP Internet Group Management Protocol

IIOP Internet Inter-ORB Protocol

 List of Abbreviations

xiv

IP Internet Protocol

ISO International Standards Organization

LAN Local Area Network

LCB Log Control Block

LCO Local Clock Offset

LD Logical Device

LLNO Logical Node Zero

LN Logical Node

LPHD Physical Device Logical Node

MAC Media Access Control

MFC Microsoft Foundation Class

MltcMS Multicast Membership Service

MMS Manufacturing Message Specification

MOM Message-Oriented Middleware

MSVCB Multicast Sampled Value Control Block

MV Measured Value

NTP Network Time Protocol

NTS Network Time Synchronisation

OM Object Models

OMA Object Management Architecture

OO Object Oriented

OOM Object Oriented Modelling

OOP Object Oriented Programming

OPNET Optimised Network Engineering Tools

 List of Abbreviations

xv

ORB Object Request Broker

OSI Open Systems Interconnection

PC Personal Computer

PIOC Instantaneous Overcurrent Device

PH Physical Device

PPAM Phase Angle Relay

PrmCmp Primitive Components

QoS Quality-of-Service

RMI Remote Method Invocation

RSVP Resource Reservation Protocol

RTD Round Trip Delay

RTU Remote Terminal Unit

SA Substation Automation

SAS Substation Automation System

SCADA Supervisory Control and Data Acquisition

SCL Substation Configuration Description Language

SCSM Specific Communication Service Mapping

SEL Schweitzer Engineering Laboratories

SG Setting Group

SGCB Setting Group Control Block

SI Substation Integration

SimpleCDC Simple Common Data Class

SNTP Simple Network Time Protocol

SPS Single Point Status

 List of Abbreviations

xvi

STD State Transition Diagram

SV Sampled Values

SVM Sampled Values Model

SUC Station Unit Controller

TC Technical Committee

TCP Transmission Control Protocol

TCTR Current Transformer

TOS Type of Service

TPAL Transport Protocol Application Layer

TrgOp Trigger Option

TS Time Synchronisation

UCA Utility Communication Architecture

UDP User Datagram Protocol

UML Unified Modelling Language

URCB Unbuffered Report Control Block

US United States

USDM Utility Standard Device Model

USVCB Unicast Sampled Value Control Block

UTC Coordinated Universal Time

VMD Virtual Manufacturing Device

VT Voltage Transformer

WRED Weighted Random Early Detection

XCBR Circuit Breaker

XML Extensible Markup Language

Acknowledgements

xvii

Acknowledgements

First and foremost, I would like to express my special appreciation to my supervisors,

A/Prof. Aladin Zayegh and Professor Akhtar Kalam, for their guidance, assistance and

encouragement during this research. Their timely advice and support have greatly

contributed to the completion of this thesis.

I also would like to thank my colleagues in the School of Electrical Engineering for

their valuable support. In particular, I would like to thank Amanullah Maung Than OO,

David Fitrio, Alexander Stojcevski, Ronny Veljanovski, Hai Phuong Le and other

friends in room D706, School of Electrical Engineering. In addition, I would like to

express my gratitude to the administrative officer Maria for all the assistance in relation

to administrative matter. I also wish to appreciate the technical officer, Foster Hayward,

and the computer systems officer, Abdulrahman Hadbah, for all their technical and

software related assistance.

Above all, I would like to give special thanks to my aunty, Emel Huseyin, and my

mother, Meral Ekmekci, for their love, patience, understanding and encouragement

during this research.

Abstract

xviii

Abstract

Substation Automation (SA) is a rapidly increasing area of interest in Electrical

Engineering these days embracing numerous benefits to utilities. It is clearly the most

dynamic and exciting new development in the substation industry with the ultimate goal

of efficiently managing operations, maintenance and capital assets with minimal human

intervention [1-4]. Intelligent Electronic Devices (IEDs), which are Instrumentation &

Control (I&C) devices built using microprocessors, are the most important elements of a

SA system. An IED is primarily used as a monitoring, control, protection or data

processing device with at least a single serial communication interface.

Substation IED networking requires the ability to remotely control, manipulate and

monitor newly connected devices through the use of an effective communication system

used to link various IEDs in a substation. The existence of a wide variety of vendor

specific and hardware-oriented solutions as well as different communication techniques

used for the communication between devices had previously stopped utilities from

achieving a fully integrated and interoperable SA system. The idea of standardising the

language of communication between IEDs has evolved as the key for the advancement

of connectivity and interoperability within a SA system. As a consequence, Institute of

Electrical and Electronics Engineers (IEEE) and International Electrotechnical

Commission (IEC) have been developing SA standards based on Object-Oriented (OO)

technologies. IEC 61850, the main topic of discussion in this thesis, is such a standard

Abstract

xix

developed by the IEC Technical Committee (TC) 57. It describes how devices are to

communicate in a substation as well as the related system requirements. It features

support for all substation functions and their engineering with the use of OO data and

service models [5]. However, it has only been abstractly modelled meaning that it

focuses on describing what the OO models are indented to provide rather than how they

are built. Consequently, the IEC 61850 standard can only be operational when mapped

to a specific concrete application layer protocol such as the Manufacturing Message

Specification (MMS) or ISO/IEC 8802-3, which are the two communication services

put forward by the IEC 61850 standard.

The primary objective of this research is the OO implementation of the IEC 61850

standard as a concrete application layer protocol running on a middleware platform

designed and implemented in a communication processor environment. In this research,

the IEC 61850 implementation is founded on the C/C++ programming language

development of the standard’s Abstract Communication Service Interface (ACSI)

Object and Service Models (OSMs) as concrete programs based on their published

definitions, hence transforming the IEC 61850 standard into a solid protocol. An

alternative to the present implementation practice, the mapping process as proposed in

the IEC 61850 standard, is recommended where virtual representations of real devices

can be modelled and implemented at the application layer of a communication processor

making use of the OO implemented OSMs of the standard itself rather than using the

equivalent models of another application layer protocol.

Middleware is a software layer that resides between the operating system and the

applications allowing multiple processes running on different machines to interact over

Abstract

xx

a network. Middleware design is based on architectural issues concerned with the

organisation, overall structure and communication patterns dictated by applications as

well as the middleware itself [6-7]. This thesis describes the design and implementation

of a new middleware architecture aimed at providing diverse communication methods

to IEC 61850 related applications. The designed middleware is of the Message-Oriented

Middleware (MOM) category and considers the fact that communicating entities may

take on different roles such as client/server or peer-to-peer, therefore allowing for

different interaction modes such as synchronous invocations and asynchronous message

passing. Several simulation studies are also presented in this thesis to demonstrate how

IEC 61850 applications can be built at the application layer of a communication

processor as well as to test and evaluate the performance of the middleware architecture

implemented within the same communication processor environment.

Time synchronisation, which involves synchronisation of the date and time of all

devices in a network, is another key topic discussed in this thesis. Time synchronisation

is crucial in time-sensitive substation applications and its importance has been clearly

acknowledged by the IEC 61850 standard as a requirement. The implementation and

integration of the Simple Network Time Protocol (SNTP) and its applications into the

overall communication processor architecture is another feature proposed in this thesis

in order to facilitate the time synchronisation of applications designed in this research.

Ultimately, the development of a gateway capability that permits for the testing and

evaluation of the designed components over a real network is described. The designed

and implemented “Hardware in the Loop” (HITL) capability mainly provides the

necessary interface between the real Ethernet network and the simulation environment

enabling two or more simulations running on separate computers to be linked together.

Chapter 1: Thesis Overview

 1

Chapter 1

Thesis Overview

1.1 Introduction

Substation Automation (SA) is a supervisory management and control system for

industrial electrical distribution systems. The interest on SA has been increasing rapidly

due to its numerous benefits to utilities. It has advanced further than a traditional

Supervisory Control and Data Acquisition (SCADA) system providing additional

capability and information that can be used to further improve operations, maintenance

and efficiencies in substations [8]. The most significant elements of a SA system

include relays and/or Intelligent Electronic Devices (IEDs) that perform various control,

monitoring and protection related operations.

The success of a SA system relies heavily on the use of an effective communication

system to link the various control, monitoring and protection elements within a

substation. There are large numbers of protocols for communication, a matter that has

lead to the problem of devices from different manufacturers and even devices from

different generations from the same manufacturer not being able to communicate with

each other or only with disproportionate expenditure. Standardisation is the key for the

advancement of the connectivity and interoperability within a system. Through

Chapter 1: Thesis Overview

 2

standardisation, both users and suppliers arrive at economically suitable and reliable

solutions. For the last decade, there has been lot of work done on standardising the

language of communication between IEDs and relays [9-10]. As a result, two main

protocols have evolved: the existing Utility Communication Architecture (UCA) [9] and

the new International Electrotechnical Commission (IEC) 61850 [10]. The latter is

expected to dominate the communications in the substation environment in the near

future.

IEC 65850 is an international standard for substation automation that has started out as

the Electric Power Research Institute’s (EPRI’s) UCA 2.0. IEC 61850 is bound to have

a significant impact on how electric power systems are to be designed and built for

many years to come. It effectively reduces the diversity and complexity of utility

automated solutions minimising operating, maintenance and engineering costs. The

model-driven approach of the IEC 61850 standard describes the communication

between devices in a substation and the related system requirements. It supports all

substation functions and their engineering by using Object-Oriented (OO) data models

that describe the processes to be implemented and controlled, e.g. the functionality of a

circuit breaker or a feeder equipment etc. The use of the OO approach gives more

flexibility to the developer and the user simplifying engineering tasks. IEC 61850

contains device models that describe the properties and allocation of functions in a

physical device. In addition to the OO data models, it defines a set of generic services

for the client/server interactions between devices in a substation and also for the transfer

of all sorts of data with regards to diverse transmission requirements such as speed,

reliability and security. The Generic Object Oriented Substation Event (GOOSE) is

widely accepted as the most important one of the data transmission services defined in

Chapter 1: Thesis Overview

 3

IEC 61850. GOOSE is a fast connection-less communication service used for the

transfer of time-critical data where high speed and security are achieved by the

repetition of messages a number of times.

One of the most significant architectural constructs of the IEC 61850 is the adoption of

an “abstracting” technique, which involves the creation of objects that are independent

of any underlying protocol. The isolation of the information models and information

exchange services from the underlying on-the-wire protocols is usually seen as one of

the most powerful capabilities of the IEC 61850 standard. The abstract nature of the

definitions permits the mappings of the data objects and services to any other protocol,

which provides adequate communication procedures meeting the data and service

requirements of the IEC 61850 standard [11]. Currently, IEC 61850 only specifies

mappings on a communication stack that includes the Manufacturing Message

Specification (MMS) over the Transmission Control Protocol/Internet Protocol

(TCP/IP) and Ethernet. However, the potential need to support mappings to different

communication models has clearly been recognised in the industry and examples do

exist in the literature detailing such mappings.

Middleware is a software layer that resides between the operating system and the

applications on each system site with the function of mediating interactions between

applications running on different machines [6]. The use of a middleware architecture

that is specifically adapted to the constraints that the Telecontrol world imposes in

accordance with the IEC 61850 standard has numerous benefits such as reduced

development time and increased interoperability, portability and reusability of

distributed electrical systems [12].

Chapter 1: Thesis Overview

 4

1.2 Aim of This Research

The overall goal of this research is the OO implementation of the IEC 61850 standard as

a concrete application layer protocol running above a middleware layer specifically

designed and implemented in a real-time communication processor environment to

support all the communication needs required by the standard. The term

“communication processor” is referred to a device, which has a set of network protocol

layers that work together in controlling the connection, communication and data transfer

between two computing endpoints. In this research, the software based design and

implementation of various layers of a communication processor protocol stack is

described. The specific tasks to achieve a successful completion of this research are:

• Object-oriented implementation of the IEC 61850 standard: This task involves the

OO implementation of the IEC 61850 Abstract Communication Service Interface

(ACSI) Object and Service Models (OSMs) as concrete programs. The

implementation of the ACSI OSMs based on their published definitions in the

standard involves a two-stage procedure. First the OSMs that form the standard’s

application-view constituent are implemented followed by those, which form the

standard’s device-view constituent. The main aim is therefore the transformation of

the IEC 61850 standard from an abstract nature into a solid protocol with the

development of the smaller components forming the standard. Overall, a standard

C/C++ language based implementation is proposed.

• Design and implementation of IEC 61850 application layer modules: This task is

primarily centred on the design and implementation of two application layer

http://www.webopedia.com/TERM/P/network.html
http://www.webopedia.com/TERM/P/protocol.html
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Data

Chapter 1: Thesis Overview

 5

modules as part of a communication processor protocol stack where IEC 61850

client and server applications can be modelled and configured. The software based

design and implementation of two application layer modules is presented for this

purpose, one where ACSI clients can be constructed and the other where ACSI

servers can be constructed. The designed modules permit the use of the developed

OSMs from the first task when constructing various representations of real devices

at the application layer.

• Design and implementation of a data delivery network middleware: This task

includes the design and implementation of a data delivery network middleware, the

IEC-MOM, as a separate module between the application and network access layers

of a communication processor. The designed Message-Oriented Middleware

(MOM) architecture enables IEC 61850 processes running on different machines to

interact over a network by providing various communication procedures for the

transmission of IEC 61850 related messages. It supports all messages types

specified by the IEC 61850 standard and incorporates various communication

techniques such as unicast and multicast providing a unique stand-alone

communication interface to the IEC 61850 processes running at the application layer

of the same communication processor. It also considers stringent IEC 61850 specific

Quality of Service (QoS) requirements such as the need of repeating GOOSE

messages a number of times to achieve higher reliability and integrates solutions in

its architecture for such requirements.

• Implementation and incorporation of a time synchronisation protocol into the

communication processor architecture: Time Synchronisation (TS), which involves

Chapter 1: Thesis Overview

 6

the harmonisation of the local clocks of all communicating nodes within a network,

is also crucial in time-sensitive substation applications. This task focuses on the

implementation of a Commercial off-the Shelf (COTS) TS protocol, the Simple

Network Time Protocol (SNTP), and its incorporation into ACSI applications. The

SNTP is implemented making use of the Object Oriented Programming (OOP)

techniques and SNTP client applications are integrated into the designed ACSI

application layer modules. On the other hand, SNTP server applications are

configured in stand-alone communication processors. The IEC-MOM middleware is

also modified such that it provides support for the SNTP request/reply messages as

well as the QoS requirements concerned with TS applications. An adaptive filtering

technique and a lower-layer time stamping technique are proposed and demonstrated

to be beneficial in meeting the TS accuracy requirements imposed by the IEC 61850

standard.

• Design and implementation of a “Hardware in the LOOP” (HITL) capability: The

objective of this task is to develop a capability that will permit for the testing of the

designed components over a real network. The proposed HITL capability acts as a

gateway between the simulation environment and the real Ethernet network

establishing a link between the virtual simulation and the real network and enabling

message passing between the two.

1.3 Research Methodologies and Techniques

This research targets the implementation of the IEC 61850 standard with the

development of its OO models transforming it into a concrete application layer protocol

Chapter 1: Thesis Overview

 7

that runs on exclusively designed middleware architecture. The design, implementation,

simulation and testing of various components will be carried out using appropriate

software development and network design tools. The details of proposed methodology

and techniques to achieve the requirements of this research project are as follows:

(i) Literature review

To start with, the IEC 61850 standard is to be examined in detail as well as identifying

the most appropriate software development technique to achieve the successful

implementation of the standard. The communication requirements set by the IEC 61850

standard will be investigated and the currently available communication architectures

will be analysed in order to recognise their strengths and weaknesses. Finally, the exact

detailed specifications for the middleware architecture will be drawn.

(ii) Implementation of the IEC 61850 standard

Implementation of the IEC 61850 standard is at the core of this research. Several

components of the standard need to be examined, assessed and implemented based on

their OO definitions. The OO features of the C++ programming language, its popularity

and widespread use in engineering applications make it the most suitable candidate for

this task. Therefore, this task will be carried out using Microsoft Visual C++ 6.0, which

is part of Microsoft’s software development suite, the Visual Studio.

(iii) Design and implementation of IEC 61850 application layer modules

Once all the building blocks of the IEC 61850 standard are developed, two application

layer modules will be designed and implemented using a suitable network simulation &

Chapter 1: Thesis Overview

 8

design package. Optimised Network Engineering Tools (OPNET) has been chosen for

this purpose, which is an OO discrete-event network simulator allowing for the

modelling, implementation, simulation and performance analysis of communication

networks and distributed applications.

(iv) Design and implementation of the middleware architecture

The design and implementation of a data delivery network middleware architecture with

respect to the identified design constraints needs to follow and will be carried out once

more making use of the OPNET network simulation & design package. Once this task is

concluded, the overall communication system will be tested with regards to the

identified communication requirements to evaluate the performance of the designed

architecture in terms of speed, reliability and efficiency.

(v) Implementation of the time synchronisation protocol

This task comprises a two-stage procedure. First, the software development of various

components of the SNTP TS protocol needs to be accomplished followed by the

incorporation of the developed components into the designed application layer modules

where TS processes can be modelled and constructed. Once successfully completed,

simulations will be carried out to test the overall design with respect to TS accuracy

requirements.

(vi) Design and implementation of the HITL capability

This task will be accomplished using Windows Winsock mechanisms jointly with

OPNET. It involves the design and implementation of gateway modules, which will act

Chapter 1: Thesis Overview

 9

as converters between the virtual simulation environment and the real Ethernet network.

Once completed, the overall design will be tested for a real network scenario involving

the use of real Ethernet links, switches, routers, etc.

1.4 Originality of the Thesis

This research will contribute to the knowledge in substation communication system

design since it tackles major issues related to standardisation efforts and establishment

of open and standard working environments following the path initiated by the UCA

2.0. This research will contribute to knowledge in the following specific areas:

(1) Contributes to the knowledge by addressing a previously neglected area that is

the transformation of the IEC 61850 standard into a solid application layer

protocol with the development of concrete programs for the standard’s

application and device-view OSMs. No other such OO implementation of the

standard exists in the literature other than implementation through the mapping

processes. The proposed research will be immensely beneficial to power

protection and control engineers since it further enhances the understanding of

the IEC 61850 standard and simplifies its use by illustrating how the OO models

discussed in the standard can as well be implemented using the OOP techniques.

This research is significant since it fully isolates the standard from the

underlying protocols by providing a standard universal OO implementation

removing the standard’s dependency on the mapping process.

(2) Contributes to the knowledge by identifying the critical issues behind the

development and design of a specific communication service aimed at providing

Chapter 1: Thesis Overview

 10

all sorts of communication mechanisms to IEC 61850 based applications

running within substations. This research is significant since it proposes a

middleware architecture that integrates all required message distribution

mechanisms in its architecture eliminating the need for the multiple

communication service mappings that exists as a burden in the existing IEC

61850 standard. The proposed middleware only provides a communication

interface to IEC 61850 and does not include any object or service models.

(3) The proposed research is significant since it further integrates a TS protocol into

the communication processor architecture, which makes it possible to harmonise

the local clocks of all the communicating IEDs within a substation network

relative to a chosen reference so that sensing and actuation of time-sensitive data

can be coordinated accurately across multiple nodes.

(4) Contributes to knowledge by describing a preliminary work carried out to

demonstrate how the software design can be interfaced to a real network.

1.5 Organisation of the Thesis

This thesis contains eight chapters and is organised as follows:

Chapter 1 has provided a basic introduction about the research as well as the aims of

this research, the research methodologies and techniques and the contribution of this

research to the knowledge. Chapter 2 presents a literature review of power system

communications, recent standardisation developments and the use of protocols and

middleware architectures in substations. Previous and current trends of middleware

Chapter 1: Thesis Overview

 11

technologies are discussed highlighting the importance of middleware in the strategy of

establishing an open and standard working environment.

The development implications and implementation details of all application-view

constituent components of the IEC 61850 standard are presented in Chapter 3. The

typical building blocks of the IEC 61850 application view comprise logical nodes, data,

data sets, etc., where logical nodes are the key elements comprising all other building

blocks. In-dept study of the standard and the use of OOP techniques and methodologies

in the implementation of various ACSI OSMs are presented. Chapter 4 looks at the

modelling and implementation aspects of the standard’s device-view constituent

components such as logical devices.

Chapter 5 presents the software based design and implementation of the various

protocol layers of a communication processor stack including the application layer

modules and the middleware architecture. The design and implementation details of

these components are individually discussed. Performance analysis of the overall

communication system will be considered to justify proper function of the designed

components as well as the appropriateness of design techniques and methodologies.

The implementation of the SNTP and its incorporation into the overall architecture is

discussed in Chapter 6 along with performance analysis indicating the effectiveness of

the design in meeting the time synchronisation accuracy requirements. Chapter 7 covers

the development of a HITL capability focusing on the design and implementation

details as well as performance analysis. The conclusions and future scope for this

research are discussed in Chapter 8.

 Chapter 2: Literature Review

 12

Chapter 2

Literature Review

2.1 Introduction

The purpose of this chapter is to provide the necessary background required to

understand the concepts that relate to power system communications, recent

standardisation developments and the use of protocols and middleware architectures in

substations. When designing any type of middleware, it is important to learn from past

research experience, which has resulted in many contrasting middleware technologies

with different strengths and weaknesses [13]. The evolution of the recent standards such

as UCA 2.0 and IEC 61850 will eventually lead to the replacement of various existing

proprietary solutions with a standard communication approach for all future equipment

from all around the world [14, 15]. The use of middleware technologies is fundamental

to the strategy of establishing an open and standard working environment

complementing the works of the standardisation developments.

Consequently, this chapter is structured in a similar fashion starting with an overview of

power system devices in Section 2.2 followed by the discussion of power system’s

automation, integration and communications aspects in Section 2.3. Subsequently, in

Section 2.4, protocols are discussed in general and with regards to power systems.

 Chapter 2: Literature Review

 13

Section 2.5 discusses the recently developed application layer protocols. The chapter

follows with Section 2.6, which reviews the state-of-the-art middleware architectures

with special attention given to their use in power system communications.

2.2 Intelligent Electronic Devices

Many of today’s electric utility substations include digital relays and other Intelligent

Electronic Devices (IEDs) that record and store a variety of data in relation to their

control interface, internal operation and about the power system they monitor, control

and protect. Instrumentation & Control (I&C) devices, which are built using

microprocessors, are commonly referred to as IEDs. Microprocessors are single-chip

computers that can process data, accept commands and communicate information.

Nowadays, digital relays are widely replacing the aging electromechanical and solid-

state electronic component-type relays and relay systems [16].

Figure 2.1 shows a digital relay with its target interfaces. Digital relay’s popularity

comes from their low price, reliability, functionality and flexibility. However, the most

important feature that separates a digital relay from previous devices is its capability of

collecting and reacting to data and then using this data to create information. Such

information includes [16, 17]:

Figure 2.1 Digital relay with target interfaces [16]

 Chapter 2: Literature Review

 14

• Protection Data: Fault location and fault type,

• Metering Data: Pre-fault, fault and post-fault currents and voltages,

• Breaker and relay operation data, and

• Diagnostic and historical data [18].

IEDs can also run automatic processes while communications are handled through a

serial port similar to the communication ports on a computer. Some examples of IEDs

used in a power system are [19]:

• Instrument transformers,

• Remote Terminal Units (RTUs), and

• Digital fault recorders.

2.3 Automation, Integration and Communications

Power system automation is the act of automatically controlling the power system via

I&C devices whereas Substation Automation (SA) refers to the use of IED data and

control commands from remote users to control the power system devices within a

substation. Power system integration, on the other hand, refers to communicating data

to, from, or amongst IEDs in an I&C system. Finally, Substation Integration (SI) stands

for combining IEDs’ local data in a substation so that there is a single point of contact in

the substation for all of the I&C data [19, 20].

The performance of power systems have always been improved with the use of

communication principles. Without the use of a proper communication channel, power

system protection suffers from a major disadvantage of not being able to accurately

 Chapter 2: Literature Review

 15

UCA Gateway

Legacy IED

 IED IED

Ethernet
Hub Router

Substation HMI

WAN

SCADA
Master

Laptop
Computer

Data
Concentrator

Terminal
Server

Terminal
Server

Engineering
Station

RS 485

RS 485

RS 485 RS 485

Ethernet Ethernet

RS 232

RS 232

diagnose faults. When voltages and currents are analysed only from one terminal, it

cannot be concluded whether a fault near the far end terminal is internal or external to

the protected line segment. This requires delayed tripping for such faults, which can

endanger system stability or increase vulnerability. At the far end terminal, the decision

whether the fault is internal or external is obvious not from a distance measurement but

from the knowledge of the direction of the fault. This information can be transmitted to

the other terminal enabling it to decide whether to send signal to trip or not to trip [21].

Power utilities are focused on increasing productivity and making electric power safer,

more reliable and economical by providing innovative, simple to use and robust

technologies. Development of appropriate communication technologies and protocols is

at the heart of this strategy. When relays and IEDs are integrated together, they form a

powerful and economical I&C system capable of supporting all aspects of electric

power protection, automation and control [22]. Figure 2.2 shows how IEDs and relays

can be interconnected together forming protection schemes for power systems.

Figure 2.2 Typical integrated substation protection and control system [23]

 Chapter 2: Literature Review

 16

The relaying and measurement tasks have been well understood and standardised. On

the other hand, the technical methods and operating impact of data communications

continue to evolve dramatically. There is a wide variety of incompatible communication

approaches and systems in the marketplace. Competing manufacturers have been

following unique approaches when designing their communication interface circuits. As

a result, the users could not directly interconnect competing products and had to provide

a different communication system for each vendor. However, the use of competing

products from different vendors offers a variety of protection and monitoring

capabilities for users although they are often frustrated by the communication related

variations [15].

The desire and the need of merging the communication capabilities of all relays and

IEDs in a substation has thus been clearly recognised, which is capable of providing not

only data gathering and setting capability but also remote control. Furthermore, multiple

IEDs can share data or control commands at higher speeds to perform new distributed

protection and control functions [15]. Interoperability [24, 25] needs to be achieved in a

substation between protective relays from different manufacturers so that substation

level interlocking, protection and control functions can be realised improving the

efficiency of microprocessor based relay applications [26].

For the last few years, the advancements in microprocessor based IEDs networked over

high-speed communication networks using standardised communication protocols is

leading the evolution of power system control technology. The introduction of UCA 2.0

and IEC 61850 has made it possible and justifiable to integrate station IEDs on a high-

speed peer-to-peer communication network (Ethernet) through standardisation. The use

 Chapter 2: Literature Review

 17

of existing standards and commonly accepted communication principles together with

the new standards such as IEC 61850 and UCA provides a solid base for interoperability

leading to more flexible and powerful protection and control systems [27].

2.4 Protocols

A protocol is basically a set of rules that must be obeyed for orderly communication

between two or more communicating parties [28]. The International Standards

Organisation (ISO) has divided the communication process into seven basic layers as

shown in Figure 2.3, which is commonly referred to as the Open Systems

Interconnection (OSI) model [28-30].

Figure 2.3 The OSI reference model

Each level operates independently of the others and has a certain function to perform.

However, the successful operation of one level is mandatory for the successful

operation of the next level. These layers define how data flows from one end of a

Application Layer

Presentation
Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Information Processing
Functions

Communications Functions

Application Layer

Presentation
Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

The Physical Media of the OSI

 Chapter 2: Literature Review

 18

communication network to another and vice versa. Two devices can only communicate

if each layer in the model at the sending device matches with each layer in the model at

the receiving device [29, 30]. Communication between data processing systems from

different manufacturers has often been particularly difficult due to the fact that there has

been separate development of data processing and data communication techniques,

often resulting in complex and expensive interfaces.

2.4.1 The Ethernet Protocol

The Ethernet protocol [31, 32], a network concept illustrated in Figure 2.4, is one of the

most widely used data link layer protocols designed for carrying blocks of data called

frames as described by the IEEE 802.3 standard [33]. Ethernet uses an access method

called Carrier Sense Multiple Access/Collision Detection (CSMA/CD) [33], which is a

system where each host listens to the medium before transmitting any data to the

network.

Figure 2.4 The Ethernet network concept [34]

If the network is clear, the host will transmit. However, if some other node is

transmitting, it will wait and try again when the network becomes clear. Collisions

occur when two hosts try to transmit at the same instant forcing each other to back off

 Chapter 2: Literature Review

 19

and wait a random amount of time before attempting to re-transmit. Although collisions

affect the total throughput, the delay caused by the re-transmissions is very small

normally not affecting the speed of transmissions on the network. Ethernet allows for

the transmission of data from a speed of 10 Mbps to 1000 Mbps [35].

2.4.2 The TCP/IP Internet Protocol Suite

The Internet Protocol (IP) is a network layer protocol, which uses datagrams to

communicate over a packet-switched network [36, 37]. It provides datagram services

for transport layer protocols such as Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP). It is one of the subset protocols of the TCP/IP suite as

illustrated in Figure 2.5.

Figure 2.5 TCP/IP protocols and functional layers [26]

The IP forms a computer network by connecting computers assigning each one a unique

IP address [38]. Each IP packet carries an IP address [39], which consists of two parts: a

destination address and a host address. The host address is the IP address of the sending

computer, whereas the destination address is the address of the recipient or recipients of

 OSI layers TCP/IP layers TCP/IP examples

Application

Presentation

Physical

Data Link

Network

Transport

Session

 Application

Transport

Internet

Network
interface and

hardware

Telnet

FTP

 SMTP

Telnet

TFTP

DNS

TCP

UDP

ARP RARP IP
ICMP

Ethernet, token ring, FDDI drivers and hardware

 Chapter 2: Literature Review

 20

the packet. Routers, switches make use of the destination address when forwarding

packets across interconnected networks.

The major concern with IP is that it makes no attempts to determine if packets reach

their destination or to take corrective action if they do not. Therefore IP does not

provide guaranteed delivery. This problem can be avoided in some applications where a

transport protocol that carries out such a function is used. The best example for the latter

is TCP [40], which makes up for IP's deficiencies by providing reliable, stream-oriented

connections that hide most of IP's shortcomings. However, other applications requiring

best effort services (faster transmission times) usually use UDP [41], which is a simple

connection-less transport layer protocol without any real mechanisms for reliable

delivery. UDP packets are delivered the same as the IP packets and may even be

discarded before reaching their destinations.

Although the transmission of data requires the best-effort service in some substation

applications, reliability is also a major concern. The best effort service requires the use

of UDP, which has no support whatsoever for reliable transmission. This implies that

certain primitives need to be implemented to achieve higher reliability in cases where IP

is to be used alongside UDP. This is one of the major concerns being looked at in this

research with a model being proposed in this thesis to solve this problem.

2.4.3 Protocols in Substations

There are literally thousands of combinations of protocol agreements that can be created

with the large domain of existing pieces. The main protocols that have found

widespread use in the substation environment are [21]:

 Chapter 2: Literature Review

 21

• MODBUS: A popular master-slave protocol with industrial users, which has

become popular in substations. It issues simple READ/WRITE commands to

addresses inside an IED.

• Distributed Network Protocol (DNP): An increasingly popular master-slave

protocol mainly used in North America. DNP can run over multiple media, such

as RS-232 and RS-485 and can issue multiple types of READ/WRITE messages

to an IED.

• IEC-870-5-101: is considered as the European partner to DNP. It differentiates

itself from DNP with its slightly different messaging structure and the ability to

access object information from the IED.

2.5 Standardisation Developments

The introduction of higher-level protocols in IEDs has only enabled communication

between devices from the same manufacturer. However, the potential to communicate

between varieties of devices from different vendors enables utilities with a variety of

protection, monitoring and automation capabilities. Currently, this can only be achieved

with the use of protocol converters or gateways. Worldwide, electric utility deregulation

has expanded and created demands to integrate, consolidate and disseminate real-time

information quickly and accurately with and within substations [27, 42]. Hence, a non-

proprietary and high-speed protocol was required to facilitate a robust and integrated

substation communication network by standardising the language of communication

within substation. Using the standardised high-speed communication between IEDs,

utility engineers can eliminate many expensive stand-alone devices and use the

sophisticated functionality and available data to their full extent [27]. The utilities are

 Chapter 2: Literature Review

 22

aimed at creating a framework for not only common communication but also an

architecture that will provide for interoperability. The ability to “plug and play” is

referred to as interoperability, also meaning to be able to “share” data and functions

[24].

UCA [9] was commissioned by the EPRI in 1994 to identify the requirements, overall

structure and specific communication technologies to implement the standardisation

scheme. The adopted approach defined the technical requirements for a system to

control and monitor substations of any size [15]. The Technical Committee (TC) 57 of

the IEC began work on IEC 61850 [10] in 1996 with a similar target. In 1997, the two

groups joined together to define a common international standard that would combine

the work of both groups. The result of the harmonisation process is the IEC 61850

standard, which is a superset of UCA 2.0 as shown in Figure 2.6 while offering some

additional features [43].

Figure 2.6 The merging process [43]

2.5.1 The UCA Substation Communications Project

UCA targets to reduce the engineering, monitoring, operation and maintenance costs

while increasing the agility of the whole life cycle of a substation by improving device

data integration into the information and automation technology [44]. Many relay and

IED manufacturing companies showed their interest in UCA work and joined in the

 Chapter 2: Literature Review

 23

effort to define and demonstrate a communication network stack [15]. With continued

EPRI support, vendors have built UCA-compliant versions of their products. The

equipment makers continue to modify and update the implementations in each of the

products. Many US and overseas utilities have signed up to demonstrate UCA

substation systems. The users can see an impressive and elaborate demonstration of

interoperability amongst a broad variety of equipment from competing manufacturers in

meetings held several times a year. The importance of achieving interoperable

communication has forced collegial cooperation among competitors, who see the

individual-product features and performance as the proper ground for competition [45].

The UCA is comprised of data object models, service interfaces to these models and

communication profiles as illustrated in Figure 2.7 [44]. Data object models are at the

highest level, i.e. at the application layer. Service interfaces include operations such as

defining, retrieving and logging of process data.

Data Objects

Service Interface

Communication
Profiles

Data

Device

How to describe data/devices ?
How to access?

Communication channels ?

Data on the wireData

Figure 2.7 Three levels of UCA [44]

Within the UCA framework, a device object model is referred to as the definition of

data and control functions made available by the device along with the associated

 Chapter 2: Literature Review

 24

algorithms and capabilities [9]. Device models describe the communication related

behaviour of devices by making use of a common set of services. The detailed

interoperable structure for utility field devices can be fully specified by mapping these

services onto the UCA Application Layer Protocol (ALP) when used in conjunction

with the device models. The services and their mappings to the Manufacturing Message

Specification (MMS) are defined in UCA Common Application Service Models

(CASM) [46]. Device models can be specified independent of the underlying protocol.

Active participation of groups outside the UCA activities has been encouraged due to

this feature of protocol independence, which also simplifies migration through the

construction of getaways to older existing protocols [44-46].

2.5.2 IEC 61850 Project

IEC 61850 is based on the need and opportunity for developing standard

communication protocols to permit interoperability of IEDs from different

manufacturers [47, 48]. IEC 61850 makes use of existing standards and commonly

accepted communication principles, which allows for the free exchange of information

between IEDs. It focuses on neither standardising the functions involved in substation

operations nor their allocation within the substation automation systems. It only

identifies and describes impact of the operational functions on the communication

protocol requirements [27]. IEC 61850 allows applications to be designed independent

from the communication theory enabling them to communicate using different

communication protocols. Therefore, it provides a neutral interface between application

objects and their related application services as shown in Figure 2.8 allowing a

compatible exchange of data among components of a SA system [27].

 Chapter 2: Literature Review

 25

Application

SCSM 1 SCSM nSCSM 2

AL 1 AL 2 AL n

Layers 1-6

Application Layer

ACSI- Abstract
Communication
Service Interface

Specific Communication
Service Mapping

Neutral Interface

Specific Interfaces

Figure 2.8 The basic reference model [27]

One of the most important features of IEC 61850 is that it covers not only

communication, but also qualitative properties of engineering tools, measures for

quality management and configuration management. This is necessary since when

utilities are planning to build a substation automation system with the intention of

merging IEDs from different vendors, they expect not only interoperability of functions

and devices, but also a homogenous system handling [27].

IEC 61850 proposes the concept of standardising IED data using data objects referred to

as logical nodes. This makes it possible to achieve the “plug and play” capability so that

information and commands can be shared on a single network [27, 49]. By using

standardised data, it is feasible to define applications without any knowledge in relation

to the actual device itself since the data contained in the device and the data available on

the network for further use will be known up front. Hence, it becomes possible to know

the exact data present from a communication point of view provided that all logical

nodes and other data elements are implemented in line with the standard. The “plug and

 Chapter 2: Literature Review

 26

play” capability becomes possible after adding the self-description of logical nodes and

hence those of the devices [27]. The relationship between the application and

communication views of the IEC 61850 standard is shown in Figure 2.9, which

illustrates how applications can be defined using the standardised data and how this data

can be retrieved or manipulated by using a number of specific services.

A
pp

lic
at

io
n

V
ie

w

C
om

m
un

ic
at

io
n

V
ie

w

Services by which the information can be accessed or manipulated

Communication Objects and Services according to
7-2 mapped to a SCSM

Binding

Pr
oc

es
s

Object Dictionary of a device contains all accessible
information

Objects
According to
7-4 and 7-3

Logical Node Object
Data ObjectsData Objects

Data Objects Data Objects

Network
Figure 2.9 Relationship between the application and communication interfaces [27]

With the “plug and play” capability embedded in the standard and the immediate

endorsement of the concept in pilot projects, IEC 61850 promises to be a great step

forward in the development and acceptance of substation automation systems world-

wide. This has brought the real benefits of automation and integration to utilities that

were originally promised years ago [27].

2.6 Middleware Architectures

The wide spread utilisation of object technology has enabled the use of object oriented

paradigm in distributed environments [50]. A distributed environment is a network of

 Chapter 2: Literature Review

 27

Client
Application

Middleware

Operating System

Communication
Software

<<<< TCP/IP Network >>>

Server Application

Middleware

Operating System

Communication
Software

distributed objects that seamlessly communicate with each other [51]. Distributed

objects, which can be subject of remote procedure calls, are objects distributed over the

network residing in separate address spaces [50, 52 and 53]. A typical distributed

processing environment consists of several nodes interconnected by means of a

communication network. Each node consists of a CPU and a network interface board.

In some cases where distributed systems need to operate in a heterogeneous

environment, it is high likely that different nodes will consist of different hardware and

operating systems [53]. In such cases, there is a need for a layer of software as shown in

Figure 2.10, which sits above the heterogeneous operating system in order to provide a

uniform platform about which the distributed applications can run.

Figure 2.10 Protocol stack incorporating the middleware layer

Middleware software is a layer between the networking and application codes of a

protocol stack. The function of the middleware is to insulate the application

programmer from the raw networking code thus providing an easier way to

communicate [54]. In addition, it supplies a set of common services to perform various

general purpose functions. There are two main types of middleware architectures, which

are the client/server and publish/subscribe architectures [54, 55].

 Chapter 2: Literature Review

 28

2.6.1 Client/Server Architectures

In a client/server model shown in Figure 2.11, the communication between the

requesting client and the replying server exhibits a synchronous type of messaging since

the client will be blocked once it makes the request until the corresponding reply arrives

[56, 56].

Client
Request

Reply

 ….

Service1

Service n

Server

Figure 2.11 A client/server communication model

Client/server architectures are useful when the nodes on the network need to access

centralised information. Substation database of configuration parameters and transaction

processing between two relay IEDs are two common examples of this type of

architecture [54].

2.6.2 Publish/Subscribe Architectures

A publish/subscribe system, illustrated in Figure 2.12, is a communication model

supporting an asynchronous style of many-to-many communication [58] in contrast to

the request/response type of synchronous approach of object invocation. It relies on the

preferences expressed by subscribers to deliver messages from one publisher to one or

many subscribers instead of the publisher relying on specific destination addresses. A

publisher can be referred to as a producer or a sender. Similarly, subscribers are most

often referred to as consumers or receivers.

 Chapter 2: Literature Review

 29

Figure 2.12 Publish/subscribe communication model

Subscribers make subscriptions using definitions of the information they are interested

in. Publishers create instances of information, which get forwarded to the subscribers of

this information. Distributed real-time communication in the substation environment

can as well be realised using the publish/subscribe communication model.

IEDs perform two main tasks in a distributed publish/subscribe system enabling direct

message exchange between the communicating IEDs. An IED will either [54]:

• Subscribe to data that it needs, or

• Publish information that it produces.

Any authorised IED may add itself as a subscriber to a particular publisher's list. That

subscribing IED will then receive the publications directly from that publisher IED as

they become available. Publish/subscribe systems are useful since [54]:

• They are good and quick distributors of large quantities of time-critical

information even when unreliable delivery mechanisms are present,

• They can handle very complex data flow patterns, and

• The many-to-many model is very efficient in both bandwidth and latency [59].

Subscriber
1

Subscriber
2

Subscriber
3

Publish

Subscribe ()

Unsubscribe ()

Push event ()

Event ServicePublisher
1

Publisher
2

Publisher
3

 Chapter 2: Literature Review

 30

One of the important properties of the publish/subscribe middleware is that the

applications running in publishers and subscribers are kept independent of each other.

The most important of all is that it handles connections, failures and changes in the

network only delivering the data that has been requested by the application software

[54]. Although the publish/subscribe model is the best option for use in distributed

substation systems, real-time substation systems have other unique needs that can not be

served by a multi-purpose designed architecture. Specific architectures are needed to

cater for the special needs and requirements of such systems. This is one of the issues

being investigated in this thesis discussed in detail in the successive chapters.

2.6.3 Popular Middleware Platforms

Object-Oriented (OO) middleware is the current trend in developing open distributed

system environments. It separates object interfaces from their implementations and

supports the integration of various software technologies such as operating systems,

programming languages and databases. The most important OO middleware platforms

are usually listed as Common Object Request Broker Architecture (CORBA), Java-

Based Remote Method Invocation (RMI) and Manufacturing Message Specification

(MMS).

2.6.3.1 Common Object Request Broker Architecture

CORBA is an OO standard for distributed systems, which is implemented using the

Object Request Broker (ORB) specification of the Object Management Architecture

(OMA). It supports distributed OO computing across heterogeneous hardware devices,

operating systems, network protocols and programming languages [60-62]. Figure 2.13

 Chapter 2: Literature Review

 31

illustrates the components of the CORBA standard. Some of the main parts of the

CORBA framework are:

Interface
Repository

IDL
Compiler

Implementation
Repository

SERVANT

DII IDL
Stubs

CLIENT OBJ
REF

ORB
INTERFACE

DSI IDL
Skeleton

Object Adapter

Operation()

input arguments

output arguments +
return values

ORB COREGIOP/IIOP

Figure 2.13 Basic CORBA Architecture [63]

Object Request Broker (ORB): The ORB [60, 61] forms the core of the middleware

facilitating communication between objects by providing a number of services. Such

services include resolving object references to locations and marshalling/unmarshalling

of parameter and return values when invoking a method on a remote object [13].

CORBA relies on a protocol called the Internet Inter-ORB Protocol (IIOP) for invoking

methods on objects [64]. The General Inter-ORB Protocol (GIOP) is a standard protocol

that enables interoperability among different CORBA-compliant ORBs [62].

Interface Definition Language (IDL): CORBA IDL [60, 61] specifies the interface of

an object so that stubs for the client applications and skeletons for the server

applications can be created. It is language independent and supports various bindings

[13]. The client-stubs are responsible for providing all the functionality for the

implementation of an object within a client such as the functionality of forwarding

method invocations. On the other hand, the functionality of a server object can be

implemented within the framework formed by the server-skeleton [65].

 Chapter 2: Literature Review

 32

Dynamic Invocation Interface (DII): DII permits clients to directly access the

underlying request mechanisms at run time to generate dynamic requests to objects,

whose type were not known at the time of the client compilation [62].

Interface and Implementation Repositories: The interface repository contains the

IDL definitions of interfaces for type-checking remote method calls. Correspondingly,

the implementation repository contains all implementations of a remote interface at the

server-side so that remote objects can be activated on demand [13].

Object Services: These services, also known as CORBA services, add to the basic

capabilities of ORB. They address different aspects of a distributed computing

environment ranging from transactional support to security. The two most important

ones are the CORBA Naming Service [66] and the CORBA Event Service [67]. The

former associates object references with names so that clients and servers can use this

for the purpose of locating and advertising CORBA objects. Whereas the latter enables

many-to-many communication amongst the CORBA clients through the use of an event

channel.

CORBA’s success is related to its well adaptation to heterogeneous distributed systems,

the extensibility of the platform with the use of services and most importantly its main

feature of being programming language independent. However, many-to-many

communication is not part of the basic services provided by the ORB but made possible

by the CORBA event service which is less efficient. Regarding efficiency, Reference

[68] has shown that the expected delay for sending a data of a basic type from a client

object to a server object ranges from 0.6 to 3.5 milli seconds (ms) for CORBA

compliant middleware infrastructures.

 Chapter 2: Literature Review

 33

Although CORBA has found widespread use in the business sector, it offers a lot for

industrial applications as well. The use of CORBA in substation automation systems has

drawn some attention particularly after the introduction of the UCA 2.0 and IEC 61850

protocols. A number of papers [69, 70] in the literature exploit the use of CORBA

technology for implementing the IEC 61850 standard. Although these studies

undertaken in [69, 70] have evaluated the use of CORBA as beneficial, the lack of its

support for critical real-time requirements is also questioned.

2.6.3.2 Manufacturing Message Specification

MMS [71] is an application layer middleware used for exchanging real-time data and

supervisory control information. Virtual Manufacturing Device (VMD), model

representation shown in Figure 2.14, is the basic MMS component defining the

behaviour of MMS servers from an external MMS client application point of view [72].

The Virtual Manufacturing Device
(VMD) Model

Client
Application

MMS

Network Interface

 objects

`

Server Device

variables programs

Network Interface

MMS

VMD

Service
Response

S
er

Service
Request

Figure 2.14 The VMD Architecture [71]

 Chapter 2: Literature Review

 34

MMS provides a rich set of generic services, which can be used by a wide variety of

applications independent of their type and industrial area [71, 73]. MMS clients use

these services to manipulate objects residing in the servers. MMS objects can be divided

into the following categories: variable and type objects, program control objects, event

objects, semaphore objects, journal objects, operator station objects and files [74].

Each one of the MMS object types represents a different entity diverse in context and

functionality. Each entity is associated with attributes and a simple set of services. For

example, journal objects represent time based records contacting the state of an event,

or the value of a variable. Clients can make use of the journal services to create, read,

delete and clear journal objects [71, 74].

Interoperability and independence are the two most important advantages concerned

with the MMS architecture. Interoperability is the ability of network applications to

exchange data amongst themselves without the need to create the communication

environment. Independence refers to the fact that interoperability can be achieved

independent of the developer of the application, network connectivity and the type of

function being performed [71]. However, there are also significant drawbacks

associated with MMS such as the lack of any explicit support for publish/subscribe

architectures. Although MMS preserves many technical advantages, it has not been

completely successful. Main criticism to the MMS architecture includes the complexity,

the poor performance and the high cost of ISO protocol stacks.

Mainly due to technical advantages it provides, MMS application layer middleware has

risen to become the first option to be adopted by the UCA [75] and IEC [76] working

groups for the implementation purposes. The most important feature of MMS, making it

 Chapter 2: Literature Review

 35

suitable for such a purpose, is the fact that it provides provisions for supporting both

centralised and distributed architectures.

The past few years have witnessed several successful studies based on the

implementation of the UCA 2.0 and IEC 61850 application layer protocols making use

of the MMS architecture. Quite few research papers exist in the literature detailing such

implementations [77-80]. These papers all describe practical applications where the

UCA 2.0 and IEC 61850 standards are implemented by means of mapping their abstract

objects and services to the MMS object and services. Although MMS is widely believed

to be the best option, the mapping process can still get very complex and tedious due to

the massive effort that needs to be spent when modifying MMS Object and Service

Models (OSMs) to match with the UCA 2.0 or IEC 61850 OSMs. Moreover, an

application engineer with the desire of using either one of the standards will not only

need to master himself in that standard but also in the use of MMS as well.

Therefore, the mapping process creates extra burden for the application engineers. A

solution to this problem will be presented in this thesis eliminating the necessity of the

mapping process. The solution involves the OO implementation of the IEC 61850

standard transforming it from an abstract nature into a concrete form. Once the standard

is implemented, it will become a real communication mechanism and there will be no

need for mapping it on either CORBA or MMS.

2.7 Conclusion

This chapter has outlined background information and some research that is relevant to

the design and implementation of a communication processor architecture that includes

 Chapter 2: Literature Review

 36

an OO implementation of the IEC 61850 communication standard and an underlying

middleware architecture designed to provide communication related support to IEC

61850 applications.

The chapter began with an overview of devices that are used in substation systems

mainly focusing on IEDs. Subsequently, automation, integration and communications

aspects of substation systems were reviewed. Special attention was given when

describing the desire and need to merge the communication capabilities of all devices in

a substation achieving interoperability through the use of standardised application and

communication protocols. Consequently, some of the physical and application layer

protocols that have found widespread use in substation communication systems over the

past decade were re-examined.

The chapter followed by briefly describing the recently evolved application layer

protocols, namely the UCA 2.0 and IEC 61850. Both UCA 2.0 and IEC 61850 are

aimed at standardising the language of communication between IEDs and relays making

it possible to integrate station IEDs from a range of manufacturers on a high-speed peer-

to-peer communication network.

Finally, a survey of various middleware architectures was given concentrating on the

two most frequently used platforms in substation systems. The suitability of

publish/subscribe architectures for all data transfer requirements of distributed real-time

substation systems was revealed along with the necessity for a specific implementation

to support some of the more scarce needs. CORBA and MMS architectures were

explained with the centre of attention being on the use of such architectures for

implementing the UCA 2.0 and IEC 61850 application layer protocols.

 Chapter 3: IEC 61850 Application View

 37

Chapter 3

IEC 61850 Application View

3.1 Introduction

The general aim of this research is two-fold. The IEC 61850 Abstract Communication

Service Interface (ACSI) Object and Service Models (OSMs) are to be implemented

followed by the design and implementation of a suitable data delivery network

middleware. As highlighted in Chapter 2, IEC 61850 is an abstract application layer

protocol that can only be useable when mapped to specific communication services such

as the Manufacturing Message Specification (MMS). The mapping process involves

implementation of the standard’s object models by using the existing models of an

underlying communication service.

The focus in this chapter is on the implementation of the standard’s application-view

models making use of the techniques of Object-Oriented-Programming (OOP). The

proposed research describes how the OSMs are built based on their IEC 61850

descriptions. Section 3.2 gives an overview of the IEC 61850 standard and its use

Substation Automation Systems (SASs). IEC 61850 application-view modelling and

implementation is presented in Section 3.3. The conclusions of this chapter are given in

Section 3.4.

 Chapter 3: IEC 61850 Application View

 38

3.2 Substation Automation Systems

Substation Automation Systems (SASs), used for controlling substations, are usually

composed of a number of Intelligent Electronic Devices (IEDs) interconnected through

a network of high-speed communications with widespread routers and switches [20].

IEC 61850 [81], a recently published communication standard, has the objective of

enabling interoperability between IEDs within a substation by defining standard object

(information) models for IEDs and functions within a SAS [82-83]. As a result, it

standardises the language of communication between the SAS devices allowing for the

free exchange of information. Although the IEC 61850 set of documents is comprised of

10 parts, the most important contents are found in Parts 7-x:

• IEC 61850-7-1: Principles and models [84],

• IEC 61850-7-2: Abstract Communication Service Interface (ACSI) [85],

• IEC 61850-7-3: Common Data Classes (CDCs) [86], and

• IEC 61850-7-4: Compatible logical node classes and data classes [87].

Functions in a SAS are defined by modelling the syntax and semantics of the

exchangeable application-level data in devices and also the communication services

required to access this data. An important point to clarify is that the IEC 61850 standard

only attempts at standardising the communication visible behaviours of functions rather

than their actual internal operations. Parts 7-2, 7-3 and 7-4 form the three levels of this

process. Part 7-2 specifies the basic layout for the definition of the substation-specific

information models and information exchange service models. Part 7-3 specifies CDCs

and common data attribute types, which are the main building blocks of the LN and

 Chapter 3: IEC 61850 Application View

 39

Data classes described in Part 7-4. The LN and Data classes form the elements that

allow the creation of the information model of a real substation device. They are the

most vital concepts used in the standard to describe real-time substation systems.

The complexity of the standard should be apparent to the reader from the few lines used

to describe Parts 7-x. The whole standard consists of various models that exhibit various

relations and inheritance amongst each other. Object-Oriented Modelling (OOM) [88-

89] is a widely adopted technique in the development of software systems. The

necessity of using OOM to represent the various models was acknowledged in [90-92]

where the Unified Modelling Language (UML) [93-95] was used for the model

representations. The same approach is also used throughout this chapter contributing to

a better understanding of the standard by making the complexity of the standard’s object

models more manageable for the human eye. UML was also chosen in this study as it is

widely believed to be the de facto modelling standard in software engineering. Object-

Oriented-Programming (OOP) [96], a technique that was developed more than 30 years

ago, is essentially building a program around self-contained collections of data (classes)

and code to modify the data (services). It is a popular mode of software development

and implementation technology supported by Java [97-98], C++ [99-100] and many

other programming languages. In this study, the C++ programming language was

chosen particularly due to its ease and popularity in engineering applications.

Nevertheless, the main aim in this chapter is to discuss the transformation of the IEC

61850 into a real protocol by the implementation of its OSMs as concrete programs.

This is the main feature separating this study from the previous ones [90-92] in that no

other published work exists in the literature detailing such an implementation.

 Chapter 3: IEC 61850 Application View

 40

HMI

CircuitBreaker1

 Position

Circuit switch model in a real device

Network

“CLOSE” Command

Report (closed)

Real devices in
the substation

Bang

3.3 IEC 61850 Application View

A simple example of an interoperable function within the substation is to switch a

circuit breaker via a computer. Such a case is depicted in Figure 3.1. The task of the

Human Machine Interface (HMI) in this example is to send control commands to an

IED, which implements the tasks of a circuit breaker, requesting the IED to switch the

position of the switch [84].

Figure 3.1 An example of an application-view interoperable function

Once the request has been processed by changing the position of the switch, the IED

may send a reply signal back to the HMI indicating the new position of the switch. In

addition to sending control commands, the HMI might also query about the information

content of the IED, which causes the IED to forward data about its information content

such as the nameplate and ratings. To be able to successfully send its command and

receive replies, the HMI needs to know [84]:

• The name of the switch implemented in the IED,

• How to express its request of changing the position of the switch? and

• How to read reply data?

 Chapter 3: IEC 61850 Application View

 41

From this application point of view, IEC 61850 aims to assist substation devices and

their communications amongst them by:

• Standardising abbreviated names for substation functions and equipment,

• By naming and describing functions and information, and

• By describing how to access functions and how to exchange information.

IEC 61850 identifies all known functions in a SAS and splits them into sub-functions or

so called logical nodes. A Logical Node (LN) is a sub-function located in a physical

node, which exchanges data with other separate logical entities. LNs are virtual

representations of real devices [84, 92]. In IEC 61850, the standardised name of the LN

implementing the task of a circuit switch is “XSWI”. Figure 3.2 shows an example case

of virtualisation where an air-break switch, a real device, is modelled as a LN in a

virtual device. The LN, in this case, is called XSWI1 (circuit switch1).

Figure 3.2 Virtualisation

3.3.1 Logical Nodes

In IEC 61850, all LNs have been grouped according to:

• Their most common application area,

Virtual Device

 XSWI1

Controller
 Air-break switch

Virtual World Real World

 Chapter 3: IEC 61850 Application View

 42

• A short textual description of the functionality,

• A device function number if applicable, and

• The relationship between LNs and functions [84].

IEC 61850 decouples applications to design them independently from the

communication theory so that they can communicate making use of different

communication protocols. Hence, LNs are simply the functional models of real devices.

Different protection, control and monitoring functions in SASs are constructed by

gathering multiple instances of different LNs [82]. Figure 3.3 shows an example case

[90], an over-current protection function, being realised by the partnership of four LNs.

 Physical Device

XCBR

TCTR

PIOC

CSWI

current
transformer

circuit
breaker

 Figure 3.3 A simple protection and measurement example

When the current measured by the current transformer (TCTR) exceeds an acceptable

limit, it will be detected by PIOC. Once CSWI is signalled about the sudden increase, it

will activate XCBR that closes the high voltage switch [90].

3.3.1.1 Modelling Logical Nodes

Each LN can be thought of as an object with attributes and operations. Every object is

an instance of a class, which describes the properties and behaviour of that object.

Therefore for every object type, there needs to be a defined class model. Part 7-2

XCBR: circuit breaker
PIOC: instantaneous overcurrent device
CSWI: switch controller
TCTR: current transformer

 Chapter 3: IEC 61850 Application View

 43

specifies the general definition of such a class model, the LN class model shown in

Figure 3.4, which is simply a template for the creation of LN objects [85].

Trial Version EA 5.0 Unregiste

Trial Version EA 5.0 Unregiste

Trial Version EA 5.0 Unregiste

Trial Version EA 5.0 Unregiste

LOGICAL_NODE

+ LNName: CosNaming::NameComponent
+ LNRef: char [1..255] ([255])
+ Data: DATA*
+ DataSet: DATA_SET*
+ BufferedReportControlBlock: BRCB_Class*
+ UnbufferedReportControlBlock: URCB_Class*
+ LogControlBlock: LCB_Class*

+ GetLogicalNodeDirectory() : void
+ GetAllDatavalues() : void**

Figure 3.4 LN class diagram

The LN class is a composition of a number of attributes that describe the characteristics

of the LN objects. These attributes not only include data that contain the information

required by a specific function but also various control blocks, data sets and others as

shown in Figure 3.4. All LN objects created with the above template are referred to as

Domain Logical Nodes (DLNs) and are divided into 12 groups. There are an overall

number of about 90 DLNs. Nevertheless, two specific infrastructure LNs have been

defined in IEC 61850, which are the Physical Device Logical Node (LPHD) and the

Logical Node Zero (LLNO). LPHD is used for accessing hardware related data of an

IED, whereas LLNO is used for accessing Logical Device (LD) related data of an IED

[92]. In addition to inheriting all the attributes and operations of the LN class, LLNO

can also include:

• A Setting-Group-Control-Block (SGCB),

• A Log,

• GOOSE-Control-Blocks (GoCBs),

• GSSE-Control-Blocks (GsCBs),

 Chapter 3: IEC 61850 Application View

 44

• Multicast-Sampled-Value-Control-Blocks (MSVCBs), and

• Unicast-Sampled-Value-Control-Blocks (USVCBs).

ACSI allows the attributes of the LN and LLNO class models to be expressed as classes

as well. Figure 3.5 shows a conceptual class model illustrating the several types of

relations that exist between these classes.

Figure 3.5 Conceptual class models showing the LN and LLNO classes and their
attributes

One of the main elements used in the conceptual class model of Figure 3.5 is the

composition aggregation (black diamond) indicating that the LN class is composed of

one-to-many Data classes. Associations are the straight lines connecting classes. Figure

3.5 shows the LN class to be associated with four other classes signifying the possibility

that it might be composed of zero-to-many Buffered-Report-Control-Blocks (BRCBs),

Unbuffered-Report-Control-Blocks (URCBs), Log-Control-Blocks (LCBs) and

DataSets. Composition aggregation was not used in this case since the LN class does

not necessarily need to include any of these classes.

LLNO is a specialisation of the LN class (depicted with a hollow arrow) inheriting all

the attributes, operations and associations of the LN class. It is also associated to six

 Chapter 3: IEC 61850 Application View

 45

other classes with the possibility of containing zero-to-many of each one of the class

types.

3.3.1.2 Implementing the Logical Node class

In this section, the software implementation of the LN class model is described. The

software used for the construction phase is Visual C++ [101], which is an application

development tool developed by Microsoft for C++ programmers. It is also possible to

generate such code directly from the class diagram making use of tools such as Rational

Rose [102]. Figure 3.6 shows the C++ class definitions of the LN and LLNO models.

From this point onwards, the C++ class definitions of all the models described in this

thesis will be listed in Appendix A.

Figure 3.6 LN and LLNO class definitions

All attributes of the LN and LLNO classes, except for the Logical Node Name

(LNName) and Logical Node Reference (LNRef), are also modelled as classes. The

LNRef attribute, a string up to 255 characters long, is the unique path-name of a LN.

The LNName attribute, on the other hand, identifies a LN within the scope of a LD.

Table 3.1 depicts an example where the LNName of a LN, which implements the

class Logical_Node

{
 public:

CosNaming::NameComponent LNName;
char LNRef[255];
Data *Data;
URCB *UnbufferedReportControlBlock;
LCB *LogControlBlock;
DataSet *DataSet;
BRCB *BufferedReportControlBlock;

void GetLogicalNodeDirectory ();
void** GetAllDatavalues ();

};

class LLNO : public Logical_Node

{
 public:

GsCB *GSSEControlBlock;
GoCB *GOOSEControlBlock;
SGCB *SettingGroupControlBlock;
MSVCB *MulticastSampledValueControlBlock;
USVCB *UnicastSampledValueControlBlock;
Log *Log;

};

 Chapter 3: IEC 61850 Application View

 46

functionality of a circuit switch, is ‘XSWI1’. The LNRef of the same LN becomes

‘Melbourne_HV1/XSWI1’. The general format for the LNRef is ‘LDName/LNName’.

Object Names (ObjectNames), commonly called Instance Names (InstanceNames), are

the unique names given to instances of a class. Object References (ObjectReferences)

are constructed by the concatenation of all the ObjectNames comprising the whole path-

name of an instance identifying the instance uniquely [85].

Table 3.1 ObjectNames of LNs and LDs

 Logical Device Logical Node

Object Name Melbourne_HV1 XSWI1
Description High voltage station 1 Circuit switch 1

The operations in a class describe the services it offers. Thus, they could be seen as an

interface to the class [99]. The LN class offers two services that are also inherited by the

LLNO. These are the GetLogicalNodeDirectory and GetAllDataValues services [84-

85]. In ACSI, only the abstract definitions of the services are provided. Their

descriptions along with their input/output parameters are given without any discussion

on the implementation aspects of these services. This is due to the fact that in IEC

61850, object models and services are not intended to be implemented directly but

mapped onto an existing real communication stack that provides useable data models

and services. Yet one of the key intentions in this study is to transform IEC 61850 into a

real protocol eliminating the need for the mapping process. Hence, the services offered

by the ACSI object models also required to be implemented along with the data models.

In this thesis, flowcharts [103] have been used to describe the operation of the services.

Services are referred to as functions or routines in some parts of this thesis.

 Chapter 3: IEC 61850 Application View

 47

3.3.1.2.1 GetLogicalNodeDirectory Service

Clients use this service to get the ObjectNames of all the instances contained within a

LN. The input/output parameters for this service are shown in Table 3.2 [85]. The

descriptions of input and output parameters of all services covered in this thesis are

provided in Appendix B.

Table 3.2 Parameters of the GetLogicalNodeDirectory service

Figure 3.7 shows the flowchart diagram of the GetLogicalNodeDirectory service. The

GetLogicalNodeDirectory service starts by declaring and initialising local variables

used throughout the program. If the LNReference parameter is not correctly assigned

with a string, the service exits with an appropriate service error message. Otherwise, it

moves on to search the LD list of the current server to locate the LD specified in the

LNReference. As described earlier, the LNReference consists of two parts: LNName

and LDName. The service runs through the LD list comparing each member’s name

with the LDName specified by the LNReference. If the end of the LD list is reached

without the target being located, the service exits with another appropriate service error

message. Otherwise, it advances to search the LN list of the recently located LD to find

the LN specified by the LNReference. Next, the ACSIClass input parameter is evaluated

to determine the ACSI class type for which ObjectNames need to be returned. The

ObjectNames of all the matching instances are copied to the InstanceName [0...n] return

parameter.

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

LNReference InstanceName[0...n]
ACSIClass Response+

Response-

 Chapter 3: IEC 61850 Application View

 48

START

Declare and initialize all variables
found = false, i = 0 , j =0

 LNReference
 == NULL

Response -
(LNReference can

not be NULL)

END

While (found
== false)

If (The end of
Servers' s

LD list reached)

F

T

If(LDName of LD [i]
== LDName)

found = true

T

F

While (found
== false)

If(The end of LD' s
LN list reached)

F

T

If(LNName of LN [j]
== LNName)

found = true

T

F

T

F

 If(ACSIClass ==
DATA)

InstanceName[0..n] =
DataNames[0..n]

 If(ACSIClass ==
DATA_SET)

InstanceName[0..n] =
DataSetNames[0..n]

T T

F If(ACSIClass ==
...........)

InstanceName[0..n] =
........Names[0..n]

F

T

Split LNReference into two : LDName
and LNName

Response -
(LD can not be

found)

T

i ++

found = false

j ++

Response -
(LN can not be

found)

END

END

F

T

END

Response +
(Service Request

Succeed)

F

 If (A valid
ACSIClass

specification)

T

Response -
(ACSIClass
incorrectly
specified)

F

 Figure 3.7 Flowchart diagram of the GetLogicalNodeDirectory service

 Chapter 3: IEC 61850 Application View

 49

3.3.1.2.2 GetAllDataValues Service

Clients use this service to retrieve the data attribute values (DataAttributeValues) of all

data contained within a LN. Table 3.3 shows the input/output parameters for this service

[85]. Figure 3.8 shows the flowchart diagram of the GetAllDataValues service.

Table 3.3 Parameters of the GetAllDataValues of the service

END

 If (An acceptable
FC specified) F

T

While (Not
the end LN Data

list)

move pointer to
Data[k]

While (Not
the end Data[k]'s

DataAttribute
list)

DataAttributeReference [index] = ObjectReference of DataAttribute [z]
DataAttributeValue [index] = Value of DataAttribute [z]
index = index +1

z= z+1

T

T

k =k+1

F

Response + Service
Request Succeed

F

If (FC of
DataAttribute[z]
== request FC)

T

F

Response -
(FC incorrectly

specified)

Figure 3.8 Flowchart diagram of the GetAllDataValues service

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

LNReference LNReference
FunctionalConstraint [0..1] DataAttributeReference[1...n]

Response-

 DataAttributeValue [1...n]
 Response+

 Chapter 3: IEC 61850 Application View

 50

The initial parts of the GetAllDataValues service, where the local variables are declared

and LNReference parameter is verified, are exactly the same as the previous service.

Hence, they have been excluded in the flowchart of Figure 3.8. Once the target LD and

LN are located, the service searches all DataAttributes within the data members of the

target LN and filters out the ones that have a Functional Constraint (FC) value matching

the value of the FC received in the request. ObjectReferences and values of the filtered

DataAttributes are copied to the return parameters.

3.3.2 Data

Data and LNs are the most important concepts used to describe real time system and

their functions. LNs are containers of data that represent meaningful and exchangeable

application specific information. Each LN builds up a specific functionality by grouping

several Data classes [84]. For example, the XCBR LN implements the functionality of a

circuit breaker by grouping a total number of sixteen Data classes as shown in Figure

3.9. IEC 61850-7-4 defines a total number of some 500 Data classes usually referred to

as Compatible Data Classes (CDCs).

XCBR

Mod Beh Health

CBOpCap

SumSwARa

ChMotEna

MaxOpCap

BlkOpen

Pos OpCnt

EENameEEHealth

Loc

NamPlt

POWCap BlkCls

 Figure 3.9 Data Classes of the XCBR LN

 Chapter 3: IEC 61850 Application View

 51

In addition to representing application specific information, the data also builds the

basis of most information exchange over the network interacting with the environment

through services. This is depicted in Figure 3.10, which shows services that operate on

data. Some of the services shown in Figure 3.10 are the Data class assigned services

while others are the services of various other ACSI models that operate on data. Control

and substitution services fall into this category. A control service is used to group data

into data sets for reporting or logging purposes and a substitution service is used for

replacing values of DataAttributes contained in data. Get/Set and Dir/Definition are the

Data class assigned services used for reading/writing data values and retrieving

directory/definition information of a particular data instance [84-85].

Logical Node

Data Set

Data

 Response Control

 Response Get/Set

 Response Substitution

 Response Dir/Definition

Report

Log

 Figure 3.10 Services operating on data

3.3.2.1 Modelling Data and Data Attributes

The Data class represents meaningful information of applications located in automation

devices. Figure 3.11 shows the conceptual class model of the Data class illustrating the

inheritance and relations between the Data class and its building blocks. The Data class

includes the DataName, DataRef and Presence attributes. The DataName attribute

defines the InstanceName of a data object whereas the DataRef attribute is the unique

 Chapter 3: IEC 61850 Application View

 52

path-name of a data object. The Boolean type Presence attribute states if the data object

is mandatory or optional. The Data class is also a composition of Simple Common Data

Classes (SimpleCDCs), Composite Common Data Classes (CompositeCDCs) and data

attributes (DataAttributes) as shown in Figure 3.11. Each data may be a composition of

zero or more instances of CompositeCDCs, SimpleCDCs or DataAttributes. However, it

must contain at least one of these elements [82, 85].

 Figure 3.11 Data conceptual class model

The relationship between the Data and DataAttribute classes is the easiest to explain. A

composition aggregation exists between these simply indicating that each instance of

the Data class can be a composition of zero-to-many DataAttributes. Composition

aggregation is used in this case since in the absence of CompositeCDCs and

SimpleCDCs, the data object must have at least one DataAttribute.

The relationship between CompositeCDCs and the Data class is rather confusing. Each

CompositeCDC is a specialisation of the Data class indicated by the solid line with a

hollow triangle at the end. A specialisation is a relationship between the more general

element and a more specific element. In this case, the CompositeCDC happens to be the

 Chapter 3: IEC 61850 Application View

 53

more specific element that is fully consistent with the more general element (Data)

containing additional information. The structure of the Data class is recursive since

CompositeCDCs are also of type Data class. However, the number of levels of recursion

of CompositeCDCs is usually limited to 1. SimpleCDCs are of type CommonData,

which is a subclass of the Data class. This subclass relationship was once gain indicated

by the solid line with a hollow triangle connecting the SimpleCDC and Data classes.

The Data and CommonData class models can be defined as shown in Figures 3.12 and

3.13 respectively. Although the Data class diagram shows the possibility of including

zero-to-many CompositeCDCs, in practice this is limited to only 1 [85]. Part 7-3 lists a

total number of 29 CDCs [86]. Examples are: Single Point Status (SPS) and Measured

Value (MV).

stered Trial Version EA 5.0 U

stered Trial Version EA 5.0 U

stered Trial Version EA 5.0 U

stered Trial Version EA 5.0 U

DATA

+ DataName: CosNaming::NameComponent
+ DataRef: char [1..255] ([255])
+ Presence: bool
+ Data_att: DataAttribute*
+ CompositeCDC: DATA*
+ SimpleCDC: COMMON_DATA*

+ GetDataValues() : void**
+ SetDataValues() : void
+ GetDataDirectory() : void
+ GetDataDefinition() : void

Figure 3.12 Data class diagram

tered Trial Version EA 5.0 U

tered Trial Version EA 5.0 U

tered Trial Version EA 5 0 U

DATA
COMMON_DATA

+ DataName: CosNaming::NameComponent
+ DataRef: char [1..255] ([255])
+ Data_att: DataAttribute*
+ Presence: bool

Figure 3.13 CommonData class diagram

 Chapter 3: IEC 61850 Application View

 54

Figure 3.14 shows the conceptual model of the DataAttribute struct illustrating the

inheritance and relationships between the DataAttribute struct and its building blocks.

Each DataAttribute has a DataAttributeType, a Functional Constraint (FC) and zero-to-

many Trigger Options (TrgOps) as shown in Figure 3.14. DataAttributes are used for a

broad range of purposes; for example, for measurement indication, for controlling

purposes and for reporting. The FC is used to classify DataAttributes according to their

specific area of use. ACSI defines 18 FCs that can be used for this purpose. For

instance, “ST” is used for DataAttributes that represent status information whilst “MX”

is used for DataAttributes that represent measurement information. TrgOps, of type

TriggerConditions, are used to indicate the trigger conditions related to a DataAttribute

that may cause the transmission of a report or a new log entry into a log. There are 3

trigger conditions defined in ACSI for DataAttributes. They are the data-change (dchg);

quality-change (qchg) and data-value-update (dupd) trigger conditions [85].

A specific data type, the DAType, has been defined as the data type of the

DataAttributeType attribute. The DAType is also a class with a number of attributes.

Figure 3.14 also shows the detailed conceptual class diagram of the DAType class. The

DATName attribute identifies a DAType object within the scope of a DataAttribute

whereas the DATRef attribute is the pathname of the DAType object. The Boolean type

Presence attribute indicates whether the DataAttribute is compulsory or optional. As

demonstrated in the conceptual class diagram of Figure 3.14, the DAType class may

contain either a single Primitive Component (PrmCmp) or zero-to-many Composite

Components (CmpCmps). The structure of the DAType class is recursive as well since

CmpCmps are of type DAType. Therefore, DataAttributes can be nested, as shown in

Figure 3.15, with the number of levels of nesting being normally no greater than 3 [85].

 Chapter 3: IEC 61850 Application View

 55

Figure 3.14 DAType conceptual class model

DATA Instance

DataAttribute1 DataAttribute2

PrCmp

CmpCmp2CmpCmp1

PrCmp

CmpCmp2CmpCmp1

PrCmpPrCmp

Level 1

Level 2

Level 3

Figure 3.15 Nested DataAttributes

PrmCmps have primitive data types such as BOOLEAN, INT8, FLOAT32 or VISIBLE

STRING. On the contrary, CmpCmps have complex data types constructed from

primitive data types (BasicTypes). The structure of the complex data types can get

extremely compound due to the recursive property of the DAType class. As illustrated

in Figure 3.15, each CmpCmp can further be a composition of a number of CmpCmps

each having either a primitive type or a complex type (further nesting). However, the

 Chapter 3: IEC 61850 Application View

 56

number of levels of recursion of CmpCmps is generally no greater than 2. The identical

recursive property is also experienced when constructing Functionally Constraint Data

Attribute Types (FCDATypes). The DATypes of first level DataAttributes are often

called FCDATypes, which are created from primitive and complex data types as shown

in Figure 3.16. In ACSI, complex data types are defined either as Common ACSI Types

in Part 7-4 [87] or as Common Data Attribute Types in Part 7-3 [86].

Figure 3.16 FCDAType conceptual class model

Figure 3.17 depicts an excerpt of a data instance contained in the XCBR1. The XCBR1

LN instance (instantiated from XCBR) is composed of ‘Pos’, which is an instantiation

of the Controllable Double Point (DPC) CDC. The ‘Pos’ Data class is used to represent

switch status or position and contains the DataAttribute ‘q’. The DataAttribute ‘q’

includes information on the quality of the information received from the server. It

comprises the CompositeComponent ‘detail-qual’, a bit string containing quality

identifiers. ‘Overflow’ is one of these identifiers. The DataAttribute ‘q’ has the FC

value of “ST” (status) and the TrgOp value of “qchg” (quality change).

 Chapter 3: IEC 61850 Application View

 57

XCBR1

 XCBR1.Pos.q.detail-qual BitString

 XCBR1.Pos.q Quality [ST] [qchg]

XCBR1.Pos

 XCBR1.Pos.q.detail-qual.overflow Bit

Compatible LN Class

Composite CommonData Class

CompositeComponent

CompositeComponent

PrimitiveComponent

XCBR

DPC

Basic TypeCommon DataAttribute type

Instances Classes/types

LN Instance

Compatible Data Class

DataAttribute

DataAttributeComponent

Figure 3.17 Example of a data instance

3.3.2.2 Implementing Data and Data Attributes

The C++ definitions of the DataAttribute struct and the DAType class model are

included in Appendix A. The FC type was implemented as an enumeration that contains

all of the 18 possible FC values. The TriggerConditions type was implemented as a

struct with all trigger conditions as its members. The C++ definitions of the Data and

CommonData class models can also be viewed in Appendix A. The Data class offers

four services that are also inherited by the CommonData class [85].

3.3.2.2.1 GetDataDirectory Service

Clients use this service to retrieve the DataAttributeNames of all DataAttributes

contained within the referenced data. Table 3.4 shows input/output parameters for this

service [85]. Figure 3.18 shows the flowchart diagram of the GetDataDirectory service

Table 3.4 Parameters of the GetDataDirectory service

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

DataAttributeName[0...n]
DataReference

Response+
Response-

 Chapter 3: IEC 61850 Application View

 58

Find target LD using LDNameand LN using LNName

Split DataReference into three strings : LDName,
LNName and DataName

While (found
== false)

 If (The end of LN' s
DataList reached)

F

T

 If (The
DataName of Data [z]

== DataName)

found = true

T

T

F

END

F

While(The end of Data
[z][0] 's DataAttributeList

not reached)

DataAttributeName[index] =
DatName of the DataAttribute[k]

k++, index++

Response +
(Service Request

Succeed)

T

F

Response -
(Data can not

be found)
z++

While (The end of Data
[z][0] SimpleCDCList not

reached)

T

F

While(The end of
SimpleCDC [m] 's

DataAttributeList not
reached)

DataAttributeName[index] =
DatName of the DataAttribute[k]

k++, index++

T

F

m++

k = 1

Figure 3.18 Flowchart diagram of the GetDataDirectory service

The service splits the DataReference input parameter received in the request into three

strings: LDName, LNName and DataName. After the target LD and LN are located as

described in detail in the previous flowcharts, the program continues by searching the

target LN’s data list in order to find a matching data member. The DataNames of all

members are compared one by one with the desired DataName and if a match is found

before the end of LN’s data list is reached then the service jumps to the next stage. By

this stage, the pointed member will be: LD[i].LN[j].Data[z]

 Chapter 3: IEC 61850 Application View

 59

The Data [z] itself does not contain any DataAttributes or SimpleCDCs. All attributes

and SimpleCDCs are included within the CompositeCDC component of Data [z].

Considering this rule, the service jumps directly to the member: LD [i].LN [j].Data

[z].CompositeCDC [0], which will be referred to as Data [z] [0] in this thesis for

simplicity. The final stage includes two tasks. First the possibility of the presence of any

SimpleCDCs has to be considered, which is carried out by processing the Data [z] [0]’s

SimpleCDC list and copying the DatNames of all first level DataAttributes to the return

parameter. Similarly, the Data [z] [0]’s DataAttribute list is also processed and

DatNames of all first level DataAttributes are copied to the return parameter.

3.3.2.2.2 GetDataDefinition Service

Clients use this service to retrieve the definitions of all DataAttributes contained within

the referenced data. Table 3.5 shows the input/output parameters for this service [85].

Table 3.5 Parameters of the GetDataDefinition service

3.3.2.2.3 GetDataValues Service

Clients use this service to retrieve the values of DataAttributes contained within the

referenced data. Table 3.6 shows the output parameters for this service [85]. Figures

3.19 and 3.20 show the flowchart diagrams of the GetDataValues service.

Table 3.6 Parameters of the GetDataValues service

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

DataAttributeDefinition[0...n]
DataReference

Response+
Response-

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

DataAttributeValue[1...n]
FCDA

Response+
Response-

 Chapter 3: IEC 61850 Application View

 60

START

Declare and
 initialize all variables

FCDA
 == NULL

Response -
(FCDA

can not be
 NULL)

Find target LD, LN ,and Data

Seperate FCDA into 8 strings : FC, LDName,
 LNName, DataName,SimpleCDCName
DataAttributeName, CompositeDataAttributeName,
CompositeCompositeDataAttributeName

While (The end of
Data[z][0]'s

DataAttributeList not
reached)

 if (DatName of
DataAttribute [k] ==
DataAttributeName)

found = true

Response -
(DataAttribute can

not be found)

 if (DataAttribute
CompositeName

== NULL)

k ++

DataAttributeValue
[0] = Value of the
DataAttribute[k]

Response -
(FC incorrectly

Specified)
 if (FC of

DataAttribute [k] ==
Target FC

While (The end of
DataAttribute[k]'s

Composite
DataAttributeList

not reached)

l ++

 if (DAComponentName of
Composite DataAttribute [l] ==
CompositeDataAttributeName)

found = true

 if (
 CompositeCompositeDataAttribute

Name == NULL)

DataAttributeValue
[0] = Value of the

Composite
DataAttribute[l]

Response -
(FC incorrectly

Specified)

if (FC of
Composite

DataAttribute [l] ==
Target FC

While (The end of Composite
DataAttribute[l]'s Composite

DataAttributeList not reached)

m ++

 if (DAComponentName of
CompositeComposite DataAttribute

[m] == CompositeComposite
DataAttributeName)

found = true

if (FC of
CompositeComposite
DataAttribute [m] ==

Target FC

DataAttributeValue
[0] = Value of the

CompositeComposit
e DataAttribute[m]

Response -
(FC incorrectly

specified)

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Response -
(Composite

DataAttribute can
not be found)

N

N

N

N

N

N

N

N

N

N

N

Response -
(Composite
Composite
DataAttribute
can not be
found)

N

While (The end of
Data[z][0]'s

SimpleCDCList not
reached)

 if (DataName of
SimpleCDC [p] ==
SimpleCDCName)

p ++

Y

N

SimpleCDCfound
= true

Y

SECOND
FLOWCHART

N

Y

Figure 3.19 Flowchart diagram of the GetDataValues service

 Chapter 3: IEC 61850 Application View

 61

Once the target LD, LN and data are located, the target Data [z] [0]’s SimpleCDC list is

processed comparing the DataName of every member to the desired SimpleCDCName.

If a match is not found, the service moves on to locate a matching DataAttribute [k] in

the Data [z] [0]’s DataAttribute list. If a matching DataAttribute [k] is found, the service

determines whether a first, second, or third level data attribute is searched for by

validating the values of the CompositeDataAttributeName (CDAN) and

CompositeCompositeDataAttributeName (CCDAN).

While (The end of
SimpleCDC[p]'s

DataAttributeList not
reached)

 if (DatName of
DataAttribute [k] ==
DataAttributeName)

found = true

Response -
(DataAttribute can

not be found)

 if (DataAttribute
CompositeName

== NULL)

k ++

DataAttributeValue
[0] = Value of the
DataAttribute[k]

Response -
(FC Incorrectly

Specified)

 if (FC of
DataAttribute [k] ==

Target FC

 While (The end of
DataAttribute[k]'s

Composite
DataAttributeList

not reached)

if (FC of
CompositeComposite
DataAttribute [m] ==

Target FC

DataAttributeValue
[0] = Value of the

CompositeComposit
e DataAttribute[m]

Response -
(FC incorrectly

Specified)

Y

Y

Y

Y

Y

Response -
(Composite

DataAttribute can
not be found)

N

N

N

N

N

N

Y

l ++

found = true

 if (
 CompositeCompositeDataAttribute

Name == NULL)

DataAttributeValue
[0] = Value of the

Composite
DataAttribute[l]

Response -
(FC incorrectly

Specified)
if (FC of

Composite
DataAttribute [l] ==

Target FC

While (The end of Composite
DataAttribute[l]'s Composite

DataAttributeList not reached)

m ++

 if (DAComponentName of
CompositeComposite DataAttribute

[m] == CompositeComposite
DataAttributeName)

found = true

Y

Y

Y

Y

Y

N

N

N

N

Response -
(Composite
Composite
DataAttribute
can not be
found)

 if (DAComponentName of
Composite DataAttribute [l] ==
CompositeDataAttributeName)

N

Figure 3.20 Continued flowchart diagram of the GetDataValues service

 Chapter 3: IEC 61850 Application View

 62

After the service determines how many levels to advance, it progresses that many levels

and locates the DataAttribute comparing its FC value with the value of the FC specified

in the FCDA. If they are the same, it copies the value of the DataAttribute to the return

parameter. The program of GetDataValues service steps into the code illustrated by the

flowchart of Figure 3.20 only if a matching SimpleCDC [p] entry was found earlier.

3.3.2.2.4 SetDataValues Service

Clients use this service to set the values of the DataAttributes contained within the

referenced data. Table 3.7 shows the input/output parameters for this service [85].

Table 3.7 Parameters of the SetDataValues service

This service involves setting the value of the DataAttribute specified in the FCDA

making use of the value of the input parameter (DataAttributeValue [0]). Such as:

Value of DataAttribute [k] = DataAttributeValue [0]

Value of CompositeDataAttribute [l] = DataAttributeValue [0]

Value of CompositeCompositeDataAttribute [m] = DataAttributeValue [0]

3.3.3 Data Sets

The DataSet class model is used to initiate data set (DataSet) objects that hold the

ObjectReferences of DataAttributes in an organised manner as shown in Figure 3.21.

The use of DataSets brings ease to the client as the current values of data and

DataAttributes referenced in each DataSet can be retrieved without difficulty as long as

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

FCDA
DataAttributeValue[1...n] Response+ Response-

 Chapter 3: IEC 61850 Application View

 63

membership and order of ObjectReferences is known both to the client and the server.

Besides being as a safe and quick means of retrieving data and DataAttribute values,

DataSets are also used by the control models such as reporting and logging [84 -85].

Figure 3.21 DataSet members

3.3.3.1 Modelling and Implementing Data Sets

Figure 3.22 shows the DataSet class diagram, which is based on the DataSet class

definition provided in Part 7-2. Unlike the Object Models (OM) described earlier,

DataSets contain only simple attributes. The DSName attribute identifies a DataSet

within the scope of a LN while the DSRef attribute represents the unique path-name of

the DataSet object. The attribute DSMemberRef holds the ordered ObjectReferences of

data and DataAttributes. The C++ definition of the DataSet class model is included in

Appendix A as well. Other than the attributes, the DataSet class model supports five

services that can be used by the clients to perform DataSet related operations.

Figure 3.22 DataSet class diagram

DataSet

LDName/XCBR1.Pos.ctlVal
LDName/XCBR1.Pos.stlVal
LDName/XCBR1.Pos.q
LDName/XCBR1.Pos.operTim
LDName/XCBR1.Pos.t
……………….

cd Use Case View

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

EA 5.0 Unregistered Trial Version EA 5.0 Unregistered Trial Version

DATA_SET

+ DSName: CosNaming::NameComponent
+ DSRef: char [1..255] ([255])
+ DSMemberRef: char**

+ CreateDataSet(char*, char**, char**, char**) : void
+ DeleteDataSet(char*, char**, char**) : void
+ GetDataSetDirectory(char*, char**, char**, char**) : void
+ SetDataSetValues(char*, void**, char**, char**) : void
+ GetDataSetValues(char*, void**, char**, char**) : void

 Chapter 3: IEC 61850 Application View

 64

3.3.3.1.1 CreateDataSet Service

Clients can use this service to request servers to create DataSets or configure DataSets.

The input/output parameters for this service are shown in Table 3.8 [85]. Figure 3.23

shows the flowchart diagram of the CreateDataSet service.

Table 3.8 Parameters of the CreateDataSet service

END

T

T

F

T

F

Any DataSets previously
created for

this LN

create a new
DataSet for this

LN

While(found1 == false)

if (DSRef of DataSet[k]
== DataSetReference)

found1 = true

DSMemberRef of DataSet [k] = DSMemRef

DSName of DataSet[k] = DataSetName
DSRef of DataSet[k] = DataSetReference
DSMemberRef of DataSet[k] = DSMemRef

k ++ if (The end of this LN's
DataSetList reached)

T

F

Response +
(DSMemberReference

has been updated)

Response +
(A new DataSet

created)

Figure 3.23 Flowchart diagram of the CreateDataSet service

If DataSets have not been previously created for the current LN, then a new DataSet

with the index of “zero” is created and its attributes are set. Otherwise, the DataSet is

created with the smallest available index.

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

DataSetReference
DSMemRef [1…n]

Response+ Response-

 Chapter 3: IEC 61850 Application View

 65

3.3.3.1.2 DeleteDataSet Service

Clients can use this service to request servers to delete a DataSet. The input/output

parameters for this service are shown in Table 3.9 [85]. Figure 3.24 shows the flowchart

diagram of the DeleteDataSet service.

Table 3.9 Parameters of the DeleteDataSet service

END

T

F

 if (The end of this LN 's
DataSetList reached)

 if (DSRef of DataSet[k]
== DataSetReference)

k ++

Response -
(DataSet can not be

found)

F

found = true
break

TWhile (The end of
 this LN's DataSetList not

reached)

DataSet[k] = DataSet[k+1]

Response +
(Service Request

Succeed)

T

While (found == false)

k ++

F

T

Figure 3.24 Flowchart diagram of the DeleteDataSet service

3.3.3.1.3 SetDataSetValues Service

Clients can use this service to set the values of all referenced DataAttributes contained

within the DataSet. Table 3.10 shows the input/output parameters for this service [85].

Table 3.10 Parameters of the SetDataSetValues service

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

DataSetReference Response+ Response-

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

DataSetReference
DataAttributeValue [1…n]

Response+ Response-

 Chapter 3: IEC 61850 Application View

 66

Figure 3.25 shows the flowchart diagram of the SetDataSetValues service. After the

DataSet [k] referenced by the DataSetReference is located, the service copies current

values of all the DataAttributes referenced by the DSMemberRef attribute of the

DataSet [k] to a dummy variable (OldDataValues [1...n]) for later use in the control

blocks. After this is accomplished, the service changes the values of all DataAttributes

to the new values contained within the DataAttributeValue [1...n] input parameter.

found = true
break

T

F

z ++

while (The end of DataSet[k] ' s
DSMemberList not reached)

T

OldDataValues [z] = Value of the DataAttribute
referenced by DSMemberRef [z]

z ++

while (The end of DataSet[k] ' s
DSMemberList not reached)

T

Value of the DataAttribute referenced by
DSMemberRef [z] = DataAttributeValue[z]

z = 0

F

Figure 3.25 Flowchart diagram of the SetDataSetValues service

3.3.3.1.4 GetDataSetValues Service

Clients can use this service to get the values of all DataAttributes contained within the

referenced DataSet. Table 3.11 shows the input/output parameters for this service [85].

Table 3.11 Parameters of the GetDataSetValues service

The flowchart diagram of the GetDataSetValues service is similar to the flowchart

diagram shown in Figure 3.25 except that in the final stage, the values of the

DataAttributes referenced by the DSMemberRef [1...n] attribute of the DataSet are

copied to the return parameter (DataAttributeValue [1...n]).

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

DataAttributeValue [1…n]
DataSetReference

Response+
Response-

 Chapter 3: IEC 61850 Application View

 67

3.3.3.1.5 GetDataSetDirectory Service

Clients can use this service to retrieve the list of the ObjectReferences of all data and

DataAttributes referenced by the DSMemberRef [1...n] attribute of the referenced

DataSet. The input/output parameters for this service are shown in Table 3.12 [85].

Table 3.12 Parameters of the GetDataSetDirectory service

3.3.4 Reporting and logging

The internal events called DataObjects, grouped by DataSets as shown in Figure 3.26,

form the basis for reporting and logging.

controls

DO

DO

DO

DO

DO

DO

DO

DO

DO

Data change
& update

Quality change
events

DataObjects in a
DataSet

Event
Monitor

Reporting
Report Control

Report Handler

Filter & Formatting

controls

Buffered Report

Unbuff. Report

Get/Set
Request

Get/Set
Response

Logging

controls

Get/Set
Request

Get/Set
Response

Log Control

Log Handler

Filter & Formatting

Log

Query Request

Query Response

Buffer

Figure 3.26 Reporting and logging model

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

DSMemRef [1...n]
DataSetReference

Response+
Response-

 Chapter 3: IEC 61850 Application View

 68

Logging makes it possible to store data for future enquiries. Logs are used to store data

values in the form of log entries.The logging model is composed of four building

blocks, which are the: event monitor, log handler, log control and log. The event

monitor checks the values and state of the DataAttributes and data referenced within a

specified DataSet and determines the time when to inform the log handler of the

occurrence of an internal event. A filtering mechanism within the log handler is used to

reduce the amount of data to be stored in a log based on pre-configured conditions. The

log handler carries out the task of formatting data values as log entries storing them into

the log. Finally, the log control block is used to set/get log control attributes, which

control the operation of the log handler and event monitor [84-85].

Reporting enables a LN to transfer values of data to a client either immediately or after

some buffer time. The operation of the reporting model is quite similar to the one of the

logging model. The report control block is used to set or read the attribute values that

control the operation of the event monitor and report handler. Event monitor observes

the values and state of the DataAttributes and data informing the report handler when

changes occur. The report handler formats the data values into a report structure and

decides when to forward the report to the subscribed client. The report may be

transferred immediately or after being buffered for a while. Similarly, a filtering

mechanism within the report handler reduces the amount of data to be reported [84-85].

3.3.4.1 Reporting

The principle condition for report generation is the changes or updates in the values of

the member DataAttributes of a particular DataSet. Three types of changes, which are

also referred to as attribute TrgOps, can be expected. They are the:

 Chapter 3: IEC 61850 Application View

 69

(1) Data-change: a change in a value of a DataAttribute representing process-related

data is referred to as data-change. The data-change trigger option (TrgOp =

dchg) signifies such a change.

(2) Quality-change: a change in a quality value of a DataAttribute is called quality-

change (TrgOp= qchg).

(3) Data-update: a freeze event in a value of a DataAttribute is called data-update

(TrgOp= dupd). A change or update in a value of a DataAttribute with the same

value as before represents a freeze event.

As indicated in the previous section, a report control block is used for controlling the

procedures necessary to transmit values of data and DataAttributes from a LN to a

client. In Part 7-2, two types of report control blocks are defined. These are the:

(1) Buffered Report Control Block (BRCB) – changes in the values of DataAttributes

and data caused by trigger options data-change, quality-change and data-update issue

immediate or buffered transmission of values. Buffering is useful when there is a loss of

connection or the transport data flow is not fast enough to support the immediate

transmission. The transmission of the values can be delayed to some practical limit by

buffering and the report can be sent soon after the transmission media becomes

available. Thus, the likelihood of values getting lost is fairly low [85].

(2) Unbuffered Report Control Block (URCB) – changes in the values of DataAttributes

and data caused by trigger options data-change, quality-change and data-update can

only issue immediate transmission of values. The values may get lost if the transmission

media cannot meet the transmission needs of the immediate transfer. The key advantage

concerned with the URCB is that values are transmitted on a “best effort” service soon

 Chapter 3: IEC 61850 Application View

 70

after the event occurs without any delay [85]. It is hard to justify the need for URCB

since an instance of a BRCB can simply be configured to perform the task of an URCB

that is to issue immediate transmission of values. For this reason, in this study, only the

BRCB class has been explored in detail.

3.3.4.1.1 Modelling and Implementing the Buffered Report Control Block

The BRCB class model is shown in Figure 3.27 [85]. Other than the attributes, the

BRCB class model supports three services that can be used by the clients to perform

BRCB related operations. The C++ definition of the BRCB class model can be found in

Appendix A.
g

on EA 5.0 Unregistered Trial

on EA 5.0 Unregistered Trial

on EA 5.0 Unregistered Trial

on EA 5.0 Unregistered Trial

on EA 5.0 Unregistered Trial

on EA 5.0 Unregistered Trial

EA 5 0 U i t d T i l

BRCB_Class

+ BRCBName: CosNaming::NameComponent
+ BRCBRef: char [1..255] ([255])
+ RptID: char [1..65] ([65])
+ RptEna: bool
+ DatSet: char [1..255] ([255])
+ ConfRev: unsigned _int32
+ OptFlds: PACKET_LIST_BOOLEAN
+ BufTm: unsigned _int32
+ SqNum: unsigned _int64
+ TrgOp: TriggerConditions
+ IntgPd: unsigned _int32
+ PurgeBuf: bool
+ EntryID: bool
+ TimeOfEntry: Time_Stamp
+ GI: Time_Stamp

+ SetBRCBValues() : void
+ GetBRCBValues() : void
+ Report() : void

 Figure 3.27 BRCB class diagram

3.3.4.1.1.1 SetBRCBValues Service

Clients can use this service to request servers to create BRCBs or configure BRCB

attribute values. Table 3.13 shows the input/output parameters for this service [85].

 Chapter 3: IEC 61850 Application View

 71

Table 3.13 Parameters of the SetBRCBValues service

Figure 3.28 shows the flowchart diagram of the SetBRCBValues service.

END

If (BRCBRef of BRCB[k] ==
BRCBReference)

k ++

F

found = true

T

If (ReportIdentifier == "NULL")

ReportIdentifier = BRCBRef of BRCB[k]

Set all the attribute
values of the

BRCB according
to the input
parameters

Response +
(SetBRCBValues
Service Request

Succeed)

if (The end of this LN's
BRCBList reached)

F

T

F

If (ReportIdentifier == "NULL")

ReportIdentifier = BRCBReference

Create a new BRCB for this LN
and then set all the attribute

values of the BRCB according
to the input parameters

T

F

T

Response +
(A new BRCB created)

Figure 3.28 Flowchart diagram of the SetBRCBValues service

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

BRCBReference Response+ Response-
FunctionalConstraint

ReportIdentifier
ReportEnable

DataSetReference
OptionalFields

BufferTime
TriggerConditionsEnabled

IntegrityPeriod
GeneralInterrogation

PurgeBuffer
EntryIdentifier

 Chapter 3: IEC 61850 Application View

 72

SetBRCBValues service is quite similar to the previously described CreateDataSet

service. Once the target LD and LN are located, the program searches the current LN’s

BRCB list to determine whether a BRCB with the given BRCBReference has

previously been created or not. If created before, its attributes are updated. Otherwise, it

will first be created and then its attributes will be set according to the input parameters.

In both cases, if a valid ReportIdentifier is not specified, it is set as the BRCBReference.

3.3.4.1.1.2 GetBRCBValues Service

Clients can use this service to retrieve the attribute values of the referenced BRCB. The

input/output parameters for this service are shown in Table 3.14 [85].

Table 3.14 Parameters of the GetBRCBValues service

3.3.4.1.1.3 Report Service

The report service is used for sending the reports generated by the BRCBs to clients. In

this project, the report service uses the mechanisms provided by the data delivery

network middleware (discussed subsequently in Chapter 5) to accomplish this task. As

soon as a report is generated, it will be forwarded to the appropriate client. Reports have

the format shown in Figure 3.29.

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

BRCBReference ReportIdentifier Response-
FunctionalConstraint ReportEnable

 DataSetReference
 ConfigurationRevision
 OptionalFields
 BufferTime
 SequenceNumber
 TriggerConditionsEnabled
 IntegrityPeriod
 EntryIdentifier
 Response+

 Chapter 3: IEC 61850 Application View

 73

RpdID
(VISIBLE STRING65)

OptFlds
(OptionalFields)

If sequence-number == TRUE

SubSqNum
(INT16U)

SqNum
(INT16U)

MoreSegmentsFollow
(BOOLEAN)

If dat-set-name == TRUE

DatSet
(ObjectReference)

If buffer-overflow == TRUE

ConfRev
(INT32U)

BufOvfl
(BOOLEAN)

Entry

If report-time-stamp == TRUE
&& entryID == TRUE

TimeofEntry
(TimeStamp)

EntryID
(OCTET STRING)

EntryData [1..n]

If data-reference == TRUE

DataRef
(ObjectReference)

Value
(*)

If reason-for-inclusion == TRUE

ReasonCode
(TriggerConditions)

Figure 3.29 Report format

The report format specifies the information to be included in the report based on the

OptFlds attribute of the BRCB. As pointed out earlier, the OptFlds attribute contains

Boolean type sub-attributes that when set to TRUE indicate the specific fields to be

included in the report. These specific fields are [85]:

a) The RptID, which is the only field included in all cases, is derived from the

respective attribute in the BRCB,

b) The SqNum is also no different from the respective SqNum attribute of the

BRCB. While the report is being generated, the SqNum attribute of the BRCB is

copied to the SqNum field in the report. However, it is included in the report

provided that sequence-number sub-attribute of the BRCB is set to TRUE. The

inclusion of the SubSeqNum and MoreSegmentsFollow fields are also based on

 Chapter 3: IEC 61850 Application View

 74

the same condition. In some cases, long reports not fitting into a single message

are divided into sub-reports sent individually. In such cases, the SubSeqNum

field is used to denote the segment number of each sub-report. The

MoreSegmentsFollow field is also related to this situation. When set to TRUE, it

indicates that more report segments (sub-reports) should be expected,

c) If the dat-set-name sub-attribute is set to TRUE, then the name of the DataSet

being monitored by the BRCB also needs to be included within the report,

d) The inclusion of the BufOvfl and ConfRev fields depend on the buffer-overflow

and conf-revision conditions as shown in Figure 3.32. BufOvfl, when set to

TRUE, indicates that a buffer overflow has occurred. ConfRev is derived from

the respective attribute of the BRCB, and

e) The most important field of the report is undoubtedly the Entry field, which

consists of the real data (EntryData [1...n]) to be sent to the client. If the report-

time-stamp and entryID sub-attributes are both set to TRUE, the TimeofEntry

and EntryID fields, copied from their respective attributes in the BRCB, are

included at the beginning of the Entry field. Each EntryData contains the

DataRef and Value of a specific member of the DataSet accompanied by the

ReasonCode set according to the TrgOp that caused the internal event.

Conditions do exist for the inclusion of the DataRef and ReasonCode fields.

3.3.4.1.2 Procedures for report generation

In this section, implementation issues related to event monitoring and report handling

are covered. The values and state of DataAttributes and data need to be continuously

observed by the event monitor, which informs the report handler when changes occur.

 Chapter 3: IEC 61850 Application View

 75

The report handler, on the other hand, is in charge of creating and forwarding reports

immediately or after some buffer time based on the BRCB’s BufTm setting. ACSI

solely describes principles related to event monitoring and report handling. However, no

concrete services have been defined or documented for these principles. In this project,

the intention is to define and develop such services.

3.3.4.1.2.1 Event_Monitor_Reporting Service

As illustrated in Figure 3.30, in case of a change produced by the DataAttribute ‘q’ of

the data ‘MyLD/XCBR.Pos.q’, this change will be detected by the event monitor and

reported to the report handler. The value for this member will be included in the report

only if the BRCB’s TrgOp attribute has been enabled and set to qchg.

MyLD/LLNO.TestRpt1
-MyLD/XCBR.Pos.stVal[dchg]

-MyLD/XCBR.Pos.q[qchg]
-MyLD/XCBR.Pos.t[dupd]

DataSet member to be
reported

q changed produces
internal event

Report
DataSetReference = MyLD/LLNO.TestRpt1

MyLD/XCBR1.Pos.q

3 individual DataSet
members

Figure 3.30 DataSet members and reporting

It is the task of the event monitor building block of the reporting model to detect such

changes in the values of member DataAttributes of a DataSet. A C++ routine was

designed and implemented in this study in order to model the tasks of the event monitor.

The flowchart representation of this routine is shown in Figure 3.31.

 Chapter 3: IEC 61850 Application View

 76

START

Declare and initialise variables
DataSetReference = DataSetReference from the input argument

OldValues= Values of DataAttributes from the input argument

Obtain the new DataAttribute values using the GetDataSetValues
service

GetDataSetValues(DataSetReference, NewValues)

Call the Report_Handler service passing the set of new values and
old values

Report_Hadler(DataSetReference, OldValues,NewValues)

Pause for 10us

Create the thread passing the DataSetReference and NewValues to
the thread

_beginthread (Event_Monitor, (void*) dummy)

The new thread executes
the Event_Monitor service

passing the
DataSetReference and

NewValues to the service

Figure 3.31 Event_Monitor_Reporting service

Once a BRCB is created and its attribute values are set using the SetBRCBValues

service, the Event_Monitor_Reporting service is called internally. The ObjectReference

of the DataSet monitored by this BRCB and the current values of its member

DataAttributes are passed to the Event_Monitor_Reporting service as input parameters.

The Event_Monitor_Reporting service makes use of the ObjectReference of the DataSet

to periodically acquire the values of all referenced DataAttributes within the DataSet.

When a new set of values is obtained, they are passed to the report handler together with

the older values from the previous run. Therefore, the Event_Monitor_Reporting service

periodically calls the report handler with the new and old set of DataAttribute values.

The periodic run is achieved with the use of Multi-Threading. Visual C++ provides the

Microsoft Foundation Class Library (MFC) to support for the multi-threaded

applications. A “thread” is a path of execution within a process. The

Event_Monitor_Reporting service uses the “_beginthread” function to create a thread

that begins the execution of the routine at periodic intervals of 100 ms.

 Chapter 3: IEC 61850 Application View

 77

3.3.4.1.2.2 Report_Handler Service

The task of the report handler is filtering the data received from the event monitor

formatting it into a report structure for transmission. In the example depicted in Figure

3.30, the value for the MyLD/XCBR.Pos.q will go through the filter only if the BRCB’s

TrgOp attribute is set to dchg. The flowchart for this service is shown in Figure 3.32.

T

F

While (found == false)

If (DatSet of BRCB[p]==
DataSetReference)

p ++

F

found = true

T

If (The end of LN ' s
BRCB reached) T

Get all the BRCB
attribute values

While (m < index)

If (olddata ==
newdata)

z++
m++

T

If (TrgOp of the
DataAttribute == TrgOp

of the BRCB)

F

EntryData[l].DataRef =
DSMemberReference of the DataAttribute

EntryData[l].DataRef = Value of the
DataAttribute

l++

T

F

If (ReportEnable
== true)

m++

T

F

If (BufTm ==0)

Add new entry to
the report

send the report

else if (BufTm > 0)

Response -
(Report can not be set)

BRCB not enabled
T

F

F

Add new entry to
the report

If (TimerTime >
BufTm)

Send the report

T

Response -
(BufTm not set)

T

F

T

Figure 3.32 Report_Handler service

 Chapter 3: IEC 61850 Application View

 78

The Report_Handler service searches the BRCB list of the located LN until a matching

entry is found. After this is accomplished, all attribute values of the located BRCB [p]

are acquired with the use of the GetBRCBValues service.

The most critical stage is the subsequent stage where the old and new values reported by

the event monitor are compared. For each set of inconsistent values, the new values and

DSMemberReferences of the DataAttributes are copied to the appropriate sub-fields of

the EntryData header field of a report structure. If the ReportEnable attribute of the

BRCB is set to TRUE and the BufTm attribute is set as zero, the remaining fields of the

report structure will be formatted before the report is sent with the use of the Report ()

service. In cases where the specified BufTm attribute is a non-zero value, the EntryData

header field is updated with the new values despite the fact that the report is not sent

immediately. If this is the first internal event, an internal timer is started for the duration

of the BufTm. For all subsequent events, the condition of the timer gets checked. As

soon as the timer expires (timer time equals to BufTm), the report gets sent. The timer is

restarted as soon as a new internal event occurs. If the PurgeBuf attribute is set to TRUE

at any point in time, all the previously buffered events will be discarded.

3.3.4.2 Logging

A log control block is used for controlling the procedures necessary to store values of

data and DataAttributes in a log as log entries that can be enquired at any time by

clients. Unlike reporting, which does not use any media for storage; logging makes use

of a log, a circular buffer, to store events for later retrieval. Event monitor, log handler,

log control and log are the main building blocks of the logging model as previously

indicated in Section (3.3.4). Class models have been defined in Part 7-2 for only the log

 Chapter 3: IEC 61850 Application View

 79

control and log building blocks [84-85]. Although the tasks of the remaining two are

clearly outlined in Part 7-2, no specific models have been put forward for those building

blocks. This subsection focuses on the two class models and additional services

designed and implemented to perform the tasks of event monitoring and log handling.

3.3.4.2.1 Modelling and Implementing the Log Control Block

The Log-Control-Block (LCB) class model, a template for the creation of LCB

instances, is shown in Figure 3.33. Each LCB associates a DataSet with a Log where

changes in values of members of the DataSet are stored as Log entries [85]. The C++

class definition of the LCB class is presented in Appendix A. In addition to the

attributes, the LCB class model supports two services that can be used by clients to

perform LCB related operations. These are the GetLCBValues and SetLCBValues

services, which are described in the following sections.
 sion EA 5.0 Unregistered Tri

sion EA 5.0 Unregistered Tri

sion EA 5.0 Unregistered Tri

sion EA 5.0 Unregistered Tri

sion EA 5.0 Unregistered Tri

LCB_Class

+ LCBName: CosNaming::NameComponent
+ LCBRef: char [1..255] ([255])
+ LogEna: bool
+ DatSet: char [1..255] ([255])
+ OptFlds: PACKET_LIST_BOOLEAN
+ TrgOp: TriggerConditions
+ IntgPd: unsigned _int32
+ LogRef: char [1..255] ([255])

+ SetLCBValues() : void
+ GetLCBValues() : void

 Figure 3.33 LCB class diagram

3.3.4.2.1.1 SetLCBValues Service

Clients use this service to request servers to create LCBs and configure their attribute

values. The input/output parameters for this service are shown in Table 3.15 [85].

 Chapter 3: IEC 61850 Application View

 80

Table 3.15 Parameters of the SetLCBValues service

3.3.4.2.1.2 GetLCBValues Service

Clients use this service to retrieve the attribute values of the referenced LCB. The

input/output parameters for this service are shown in Table 3.16. The GetLCBValues

service is identical to the GetBRCBValues service in methodology.

Table 3.16 Parameters of the GetLCBValues service

3.3.4.2.2 Modelling and Implementing the Log

The log is filled on a First-In First-Out (FIFO) basis. Although LCBs can reside within

any LN, the log itself must reside within the LLNO. Each LLNO is allowed only a

single log that can be controlled and used by multiple LCBs for data storage [84-85].

The Log class diagram is illustrated in Figure 3.34. The C++ definition of the Log class

can also be viewed in Appendix A.

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

LCBReference Response+ Response-
FunctionalConstraint

LogEnable
DataSetReference

OptionalFields
IntegrityPeriod
LogReference

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

LCBReference Response+ Response-
FunctionalConstraint LogEnable

 DataSetReference
 OptionalFields
 IntegrityPeriod
 LogReference

 Chapter 3: IEC 61850 Application View

 81

sion EA 5.0 Unregistered Tr

sion EA 5.0 Unregistered Tr

sion EA 5.0 Unregistered Tr

sion EA 5.0 Unregistered Tr

i EA 5 0 U i t d T

LOG_Class

+ LogName: CosNaming::NameComponent
+ LogRef: char [1..255] ([255])
+ OldEntryTm: Time_Stamp
+ NewEntryTm: Time_Stamp
+ OldEntry: unsigned _int32
+ NewEntry: unsigned _int32
+ Entry: entry*

+ QueryLogByTime() : void
+ QueryLogAfter() : void
+ GetLogStatusValues() : void

Figure 3.34 Log class diagram

 3.3.4.2.2.1 QueryLogByTime Service

Clients use this service to retrieve a range of log entries from a log based on

RangeStartTime and RangeStopTime time ranges. The input/output parameters for this

service are shown in Table 3.17 [85].

Table 3.17 Parameters of the QueryLogByTime service

The QueryLogByTime service can quickly progress to the address space of the log

without the usual procedure of looping. Once the service is pointing to the address space

of the log contained within the LD [i], it evaluates the entire log entries based on the

criteria of having a TimeOfEntry in between the range RangeStartTime and

RangeStopTime. Those matching the criteria will be copied to the return parameter.

3.3.4.2.2.2 QueryLogAfter Service

Clients use this service to retrieve a range of log entries from a log based on a start time

specified by the RangeStartTime and an ID specified by the Entry parameter. The

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

LogReference ListOfLogEntries [1…n] Response-
RangeStartTime Response+
RangeStopTime

 Chapter 3: IEC 61850 Application View

 82

input/output parameters for this service are shown in Table 3.18 [85]. The

QueryLogAfter service is almost identical to the QueryLogByTime service with the

exception that the log entries are evaluated for a TimeOfEntry equal to or larger than the

RangeStartTime. The starting index (a) is also specified by the Entry parameter.

Table 3.18 Parameters of the QueryLogAfter service

3.3.4.2.2.3 GetLogStatusValues Service

Clients use this service to retrieve the attribute values of the referenced log parameter.

The input/output parameters for this service are shown in Table 3.19 [85].

Table 3.19 Parameters of the GetLogStatusValues service

3.3.4.2.3 Procedures for logging

The procedures for logging are similar to the ones of the report generation. First of all,

an event monitor is used to monitor the values of DataAttributes and data. Secondly, a

log handler is utilised for filtering the DataAttributes and adding entries into the log.

3.3.4.2.3.1 Event_Monitor_Logging service

The same service described in Section (3.3.4.1.2.1), after a small modification, can also

be used for the purposes of logging. The Event_Monitor_Reporting service of Section

Input Parameters Output Parameters (if successful) Output Parameters (if unsuccessful)

LogReference ListOfLogEntries [1…n] Response-
RangeStartTime Response+

Entry

Input Parameters Output Parameters (if successful) Output Parameters (if unsuccessful)
LogReference OldestEntryTime Response-

FunctionalConstraint NewestEntryTime
 OldestEntry

 Chapter 3: IEC 61850 Application View

 83

(3.3.4.1.2.1) was modified such that the log handler service gets called instead of the

report handler. All the remaining details between the two are identical. Once a LCB is

created and its attribute values are set using the SetLCBValues service, the

Event_Monitor_Logging service is called internally by the SetLCBValues service. The

ObjectReference of the DataSet monitored by this LCB and the current values of its

member DataAttributes are passed to the Event_Monitor_Logging service as input

parameters. The Event_Monitor_Logging service makes use of the DataSetReference to

periodically acquire the values of all referenced DataAttributes within the DataSet.

When a new set of values is obtained, they are passed to the log handler together with

the older values from the previous run.

3.3.4.2.3.2 Log_Handler service

The main task of the log handler is filtering the data received from the event monitor

formatting it into a Log entry (Entry [1...n]) structure for storage within the log. The

values of the DataAttributes will pass through the filter only if the LCB’s TrgOp

attribute is same as the DataAttribute’s TrgOp.

The flowchart description for this service is shown in Figure 3.35. Once the target LD,

LN and DataSet are located based on the DataSetReference, the service jumps into the

stage where the old and new DataAttribute values reported by the event monitor are

compared. For each set of differing values satisfied that the TrgOp of the DataAttribute

is the same as the TrgOp of the LCB, the new value(s) and DataSetReference(s) of the

DataAttributes get copied to the appropriate sub-fields of the EntryData header field of

a log entry structure. If the LogEnable attribute of this LCB is set to TRUE, the

TimeOfEntry and EntryID attributes of the log entry are set before it is inserted into the

 Chapter 3: IEC 61850 Application View

 84

log. The remaining attributes of the log such as the OldEntryTm, NewEntryTm, OldEntr

and NewEntr are updated where necessary as appropriate.

START

Declare and initialize all variables. k=0, z=0

 DataSetReference
 == NULL

Response -
(DataSetReference can

not be NULL)

Find target LD
using LDName

Find target LN
using LNName

Split DataSetReference into three strings : LDName,
LNName and DataSetName

END

T

F

While (m < index)

If (olddata ==
newdata)z++

m++

T

If (TrgOp of the
DataAttribute == TrgOp

of the LCB)

F
EntryData[l].DataRef =

DSMemberReference of the
DataAttribute

EntryData[l].DataRef = Value of the
DataAttribute

l++

F

m++

T

F

T

F

While (found == false)

If (DSRef of DataSet[k] ==
DataSetReference)

k ++

Response -
(DataSet can not be

found)

F

T

If (The end of LN ' s
DataSetList reached)

T

 If (LogEnable
== true)

Response -
(Logging not enabled)

F

add a new entry into the Log
Log.Entry[a].EntryData = EntryData

a++
Set the Log attribute values where

necessary as appropriate

Response +
(A new entry

successfullly added)

T

T

Figure 3.35 Flowchart diagram of the Log_Handler service

 Chapter 3: IEC 61850 Application View

 85

3.4 Conclusion

This chapter has presented the modelling and implementation of the IEC 61850

standard’s application-view OSMs. IEC 61850 provides a solid base for interoperability

between IEDs in the substation environment leading to more flexible and powerful

protection and control systems. The IEC61850 ACSI models are abstract definitions of

common utility communication functions in field devices mainly describing

communication between clients and remote servers. However, due to their abstract

structures, ACSI models can only become practical when implemented by being

mapped to the existing models and services of an underlying communication service.

The work presented in this chapter has involved the transformation of the IEC 61850

standard into a solid protocol by the implementation of its application-view OSMs as

concrete programs. The LN, Data, DataAttribute and DataSet class models are the most

important building blocks constituting the IEC 61850 standard’s application-view

constituent. This chapter has provided broad discussion on the OO implementation of

these class models and their associated services based on their descriptions given in the

standard. In addition to the information models, the IEC 61850 standard’s application-

view constituent comprise of information exchange service models such as the reporting

and logging models. Reporting enables the transfer values of data to clients either

immediately or after some buffer time. Logging, on the other hand, makes it possible to

store this data for future enquiries. In this study, the modelling and implementation

aspects of these information exchange models have also been explained with the centre

of attention being on the procedural services such as monitoring and filtering that have

been designed and implemented for their successful internal operations.

 Chapter 4: IEC 61850 Device View

 86

Chapter 4

IEC 61850 Device View

4.1 Introduction

A detailed analysis of the IEC 61850’s application-view modelling and implementation

has been provided in Chapter 3 where the OSMs constituting the standard’s application-

view component have been implemented based on their descriptions and object oriented

models provided in the IEC 61850 documentation.

This chapter is a continuance of the previous chapter looking at the standard’s device-

view constituent. It presents the modelling and implementation aspects of the standard’s

device-view models and their related services. The need for device-view modelling

surfaced when the application-view models, by themselves, failed to provide the entire

required substation related information. Device-view models provide the remaining

information by describing the relevant device functionality. Special attention has been

taken when describing models such as the Generic Object Oriented Substation Event

(GOOSE), which enable the IED related data to be shared across the network within a

substation. Section 4.2 discusses the need for device modelling and moreover presents

the IEC 61850 device-view modelling and implementation concepts. The chapter

concludes in Section 4.3 where the final remarks are given.

 Chapter 4: IEC 61850 Device View

 87

4.2 IEC 61850 Device View

IEC 61850 application-view models such as LNs and data, which represent information

related to real application functions within substations, have so far been discussed in

Chapter 3. However, these models are not by themselves sufficient to express all the

necessary details and issues concerning substations. This has resulted in the need for

further components to be defined and modelled, a concept referred to as device-view

modelling. The main aim in this chapter is discuss the IEC 61850 device-view models

and their implementation making use of the techniques of OOP.

One of the primary challenges in standardisation is to describe device functionality by

specifying the syntax and semantics of the data exchanged and also the dynamic

behaviour of devices. Device-view models are object models that contain terms with

associated semantics and a description of the dynamic behaviour. Device-view

modelling serves to define re-usable parts to be used when specifying the data models

and behavior of various types of industrial devices. The objective is to make the

specification and implementation of information exchanges easier for the user. The re-

usability of common definitions is the main benefit it provides [104-105].

4.2.1 Logical Devices

The Logical Device (LD) model was introduced when a clear need arose for a specific

component to represent information about the resources of the host itself including real

equipment connected to that host device and also the common communication aspects

applicable to a number of LNs. Each LD can be defined as a “virtual device that exists

to enable aggregation of related LNs and DataSets” [75]. Each LD must definitely be

 Chapter 4: IEC 61850 Device View

 88

Server Logical Device Data
DAType

Logical Node

TriggerCo

FC

DataSet

Server@<address

XCBR1 XCBR1.Pos

XCBR1.Pos.ctlVal
XCBR1.Pos.stlVal
XCBR1.Pos.q
XCBR1.Pos.operTim
XCBR1.Pos.t
XCBR1.Pos.origin
XCBR1.Pos.sctlNum
XCBR1.Pos.d

…………….

Other Other

composed of a single LLNO (Logical Node Zero), a single LPHD (Logical Node

Physical Device) and at least one other LN. A LD can also be considered to function as

a gateway (proxy) making itself transparent from a functional point of view so that it

can be identified independently of its location. LDs reside within physical devices that

are usually defined and modelled as servers within the IEC 61850 framework. Server,

containing all the communication visible and accessible models, represents the visible

behaviour of an IED in terms of communication. Each server is usually modelled with a

single LD. Nevertheless, it may contain more than a single LD [84-85]. Figure 4.1

shows a conceptual model of a server as represented by ACSI. As shown, the server

consists of one or more LDs, each being a composition of a number of LNs.

Figure 4.1 Server conceptual model

In addition to being a container of a group of LNs, each LD contains additional services

such as the Generic Object Oriented Substation Event (GOOSE), Sampled Values (SV)

exchange and setting groups as shown in Figure 4.2 [84-85]. These services are in fact

Atlanta HV

XCBR1.Pos.ctlVal
XCBR1.Pos.stlVal
XCBR1.Pos.q

 Chapter 4: IEC 61850 Device View

 89

not directly included within the LD model but within the LLNO model. However, since

every LD must contain a LLNO, these services are often associated with the LD model.

Logical Device

Logical Node

Data Set

Data

 Response Control

 Response Get/Set

 Response Substitution

 Response Dir/Definition

Report

Log

Setting GroupActivate
GOOSE/GSSE

Sampled
measured values

GOOSE
GSSE

SMV

Figure 4.2 Logical device building blocks

4.2.1.1 Modelling and Implementing Logical Devices

Figure 4.3 shows the LD class diagram, which is based on the LD class definition

provided in Part 7-2 [85].

al Version EA 5.0 Unregiste

al Version EA 5.0 Unregiste

al Version EA 5 0 Unregiste

LOGICAL_DEVICE

+ LDName: CosNaming::NameComponent
+ LDRef: char*
+ LogicalNode: LOGICAL_NODE*

+ GetLogicalDeviceDirectory() : void

 Figure 4.3 LD class diagram

The LDName attribute identifies a LD within the scope of a system whilst the LDName

attribute represents the unique path-name of the LD. Unlike the previous models, which

contained more than a single type of building block, the LD class model includes only

 Chapter 4: IEC 61850 Device View

 90

LNs and a single service, the GetLogicalDeviceDirectory service. The C++ definition of

the LD class model can be viewed in Appendix A.

4.2.1.1.1 GetLogicalDeviceDirectory Service

Clients use this service to retrieve the ObjectReferences of all LNs within the referenced

LN. The input/output parameters for this service are shown in Table 4.1 [85]. Figure 4.4

shows the flowchart diagram of the GetLogicalDeviceDirectory service.

Table 4.1 Parameters of the GetLogicalDeviceDirectory service

END

While (found
== false)

 If (The end of
Servers' s

LD list reached)

F

T

 If (LDName of LD
[i] == LDReference)

found = true

T

F

F

Response -
(LD can not be

found)
T

i ++

k ++

while (The end of LD[i] ' s LN list
 not reached)

T

LNReference [k] = LNRef of the LD[k]

F Response +
(Service Request

Succeed)

Figure 4.4 Flowchart diagram of the GetLogicalDeviceDirectory service

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

LDReference LNReference[3..n] Response-
 Response+

 Chapter 4: IEC 61850 Device View

 91

Once the LDReference input parameter is verified, the GetLogicalDeviceDirectory

service searches the LD list of the current Server comparing each member’s name with

the LDReference input string. When the target LD is located, it progresses to the final

stage where the ObjectReferences of all LNs contained within the LD will be copied to

the LNReference return parameter until the end of LD [i]’s LN list is reached.

4.2.2 Server

Server is the most distant model containing all the ACSI models so far described as

shown in Figure 4.5. It also contains the association, time synchronisation and file

transfer models as illustrated.

Server

Logical Device

Logical Node

Data Set

Data

 Response Control

 Response G et/Set

 Response Substitution

 Response D ir/Defin ition

Report

Log

Setting GroupActivate
GO O SE/G SSE

Sam pled
m easured values

GO O SE
G SSE

SM V

File Transfer Tim e SynchronisationAssociation

Figure 4.5 Server building blocks

The Server model uses the association model to establish and maintain connections

between devices and also to implement access control mechanisms. It uses the time

 Chapter 4: IEC 61850 Device View

 92

synchronisation model to synchronise its time with that of a time server for more

accurate time tagging in applications such as reporting and logging. The file transfer

model allows the server to manage file stores as well as the ability of transferring files

between them. The server resides within a physical device representing the application

data modelling view to the outside world. A physical device may host one or more

servers [84-85].

4.2.2.1 Modelling and Implementing Servers

Figure 4.6 shows the Server class diagram, which includes the attributes illustrated as

well as a single service. Unquestionably, LDs are the most important components of a

server. The file storage areas used by the server are also included in its description.

Trial Version EA 5.0 Un

Trial Version EA 5.0 Un

Trial Version EA 5.0 Un

T i l V i EA 5 0 U

SERVER

+ LogicalDevice: LOGICAL_DEVICE*
+ File: File_Class*
+ ServiceAccessPoint: SerAccPoi*
+ TPAppAssociation: TPAppAss*
+ MCAppAssociation: MCAppAss*

+ GetServerDirectory() : void

Figure 4.6 Server class diagram

The ServiceAccessPoint is used to identify a server within the scope of a system, e.g. its

IP address. All clients with which the server establishes and maintains a two-party

application association are identified by the TPAppAssociation attribute. Subscribers,

on the other hand, are identified by the MCAppAssociation attribute. Although the

ServiceAccessPoint, TPAppAssociation and MCAppAssociation attributes are included

in the Server class definition, they have not been explicitly defined in ACSI even

though example class definitions for their implementations are given. Their definitions

 Chapter 4: IEC 61850 Device View

 93

are comprehensively dependent on the type of the communication service used. In Part-

7-2, their concrete implementations are explained to be dependent on the Specific

Communication Service Mapping (SCSM), which describes how to map ACSI OSMs to

MMS. Since a new middleware architecture has been designed and implemented in this

study, those class definitions are not entirely relevant and have not been considered. The

C++ class definition of the Server model is accessible in Appendix A.

4.2.2.1.1 GetServerDirectory Service

Clients use this service to retrieve the names of all LDs or Files within the referenced

Server. The input/output parameters for this service are shown in Table 4.2 [85]. Figure

4.7 shows the flowchart diagram of the GetServerDirectory service.

Table 4.2 Parameters of the GetServerDirectory service

END

i ++

While
(The end of Server's LD list

 not reached)

T

Reference[i] = LDName of the LD[i]

F

Response +
(Service Request

Succeed)

If (ObjectClass ==
LOGICAL-DEVICE)

 else if (ObjectClass
== FILE)

i ++

While
(The end of Server's File list

 not reached)

T

Reference[i] = FileName of the File[i]

F

else

Response -
(Service Request Failed. An
appropriate ObjectClass has

not been chosen)

T

F

T

F

Figure 4.7 Flowchart diagram of the GetServerDirectory Service

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

ObjectClass Reference[0...n] Response-
 Response+

 Chapter 4: IEC 61850 Device View

 94

The GetServerDirectory service can right away point to the address space of the server

due to the fact that server resides at the top of the object tree. Although each physical

device may contain more than a single server, one server per physical device is the

common approach. The service continues by checking the ObjectClass input parameter.

If it holds the string “LOGICAL-DEVICE”, then the ObjectReferences (LDNames) of

all LDs contained within the server will be copied to the return parameter until the end

of server’s LD list is reached. Yet, if it holds the string “FILE”, then the FileNames of

all Files contained within the server will be copied to the return parameter. Otherwise,

the service exists indicating that an appropriate ObjectClass has not been chosen.

4.2.3 The Generic Substation Event

The Generic Substation Event (GSE) model makes it possible to distribute

DataAttribute values efficiently to more than one device in a simultaneous fashion

through the use of multicast/broadcast services. ACSI defines two models for the

exchange of values of a collection of DataAttributes. These are the [84-85]:

(1) Generic Object Oriented Substation Event (GOOSE) model for a wide range of

data exchange, and

(2) Generic Substation State Event (GSSE) model for the exchange of status

information in bit pairs.

The information exchange in both models is based on a publisher/subscriber (multicast)

communication model, which is to be discussed in broad detail in the following chapter

when discussing the middleware design and implementation. Figure 4.8 shows the

building blocks of the GOOSE model.

 Chapter 4: IEC 61850 Device View

 95

controls

DO

DO

DO

DO

DO

DO

DO

DO

DO

DataObjects in a
DataSet

Event
Monitor

GOOSE GOOSE
Control

GOOSE Handler

Formatting

controls

Get/Set
Request

Get/Set
Response has association to

GOOSE message

Fast GOOSE
messages to
subcribers

GOOSE message

Figure 4.8 GOOSE model

The initiation of the message exchange is identical to the case presented for logging and

reporting. When the values of one or several DataAttributes referenced within a DataSet

change, these values will be formatted into a GOOSE message structure to be

transmitted to a number of recipients. The GOOSE Control Block (GoCB) controls and

regulates the exchange of the GOOSE messages. Hence, the reporting and GOOSE

models have numerous similarities as well as differences. While the reporting model

uses the “point-to-point” communication model, the GOOSE model uses the

“publish/subscribe” counterpart. There is no filtering involved in GOOSE since all

changes regardless of their type are to be included in the GOOSE message. When IEDs

capture the effects of abnormal system conditions within a substation, they express the

details in the form of GOOSE messages. GOOSE replaces the mechanism of

exchanging control signals between IEDs using a fixed, hardwired and sequential data

acquisition infrastructure, which is not capable of meeting the requirements of real time

substation communication systems. IEDs use the information within GOOSE messages

to decide on suitable protection responses to take in response to a particular state change

described by the GOOSE message.

 Chapter 4: IEC 61850 Device View

 96

The GSSE model is almost identical to the GOOSE model with the only difference

being the format of the information it provides. It can only provide a simple list of status

information expressed in bit pairs. In fact, GGSE model is the GOOSE model described

in UCA 2.0. The whole concept described above for the initiation and transmission of

GOOSE messages is also applicable to the GSSE model.

4.2.3.1 Modelling and Implementing the GOOSE Control Block

The GoCB is used by clients to get/set attributes controlling the operation of the event

monitor and GOOSE handler. Figure 4.9 shows the GoCB class model and its attributes

as defined in Part 7-2 [85]. The C++ class definition of the GoCB model is also

included in Appendix A. The GoCB class model supports five services that permit

clients to perform GoCB related operation such as configuring its attributes.
g

n EA 5.0 Unregistered Trial Ve

n EA 5.0 Unregistered Trial Ve

n EA 5.0 Unregistered Trial Ve

n EA 5.0 Unregistered Trial Ve

n EA 5 0 Unregistered Trial Ve

GoCB_Class

+ GoCBName: CosNaming::NameComponent
+ GoCBRef: char [1..255] ([255])
+ GoEna: bool
+ AppID: char [1..65] ([65])
+ DatSet: char [1..255] ([255])
+ ConfRev: unsigned _int32
+ NdsCom: bool

+ SetGoCBValues() : void
+ GetGoCBValues() : void
+ GetGoReference() : void
+ GetGOOSEElementNumber() : void
+ SendGOOSEMessage() : void

 Figure 4.9 GoCB class diagram

4.2.3.1.1 SetGoCBValues Service

Clients use this service to set the attribute values of the referenced GoCB. The

input/output parameters for this service are shown in Table 4.3 [85]. Figure 4.10 shows

the flowchart diagram of the SetGoCBValues service.

 Chapter 4: IEC 61850 Device View

 97

Table 4.3 Parameters of the SetGoCBValues service

END

T

While (found == false)

 If (GoCBRef of GoCB[a] ==
GoCBReference)

a ++

F

found = true

T

If (GoEna == FALSE)

Set all the attribute values of
the GoCB according to the

input parameters

Response +
(SetGoCBValues
service request

succeed)

If (the end of this LN's
GoCBList reached)

F

T

F

Create a new GoCB for this LN
and then set all the attribute
values according to the input

parameters

T

Response +
(SetGoCBValues
service request

succeed)

Set only the GoEna attribute
of the GoCB according to the

GoEnable input parameter

Figure 4.10 Flowchart diagram of the SetGoCBValues service

Once the target LD and LN are located, the SetGoCBValues service searches the current

LN’s GoCB list to determine whether a GoCB with the given GoCBReference has

previously been created or not. If created before and the value of its GoEna attribute is

set to “FALSE”, then all of its attributes are updated. However, if the GoEna attribute is

set to “TRUE” then no changes in the attribute values are allowed except for the GoEna.

Alternatively, if a GoCB can not be located, a new one will be created and added to the

GoCB list of the current LN. Its attribute values will also be initialised based on the

corresponding input parameters

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

GoCBReference Response+ Response-
FunctionalConstraint

GoEnable
ApplicationID

DataSetReference

 Chapter 4: IEC 61850 Device View

 98

4.2.3.1.2 GetGoCBValues Service

Clients use this service to get the attribute values of the referenced GoCB [85]. The

input/output parameters for this service are shown in Table 4.4. Figure 4.11 shows the

flowchart diagram of the GetGoCBValues service.

Table 4.4 Parameters of the GetGoCBValues service

ENDT

T

While (found == false)

 If (GoCBName of
 GoCB[a] == GoCBName)

a ++

F

found = true

T
copy all the attribute values of the GoCB[a] to

the output parameters, e.g.
NeedsCommissioning = NdsCom of GoCB[a]

Response +
(Service Request

Succeed)

If (The end of this LN' s
GoCBList reached)

F

Figure 4.11 Flowchart diagram of the GetGoCBValues service

4.2.3.1.3 GetGoReference Service

Clients use this service to retrieve the ObjectReferences of specific members of the

DataSet monitored by the referenced GoCB [85]. Table 4.5 shows the input/output

parameters for this service. Figure 4.12 shows the flowchart diagram of the

GetGoReference service.

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

GoCBReference GoEnable Response-
FunctionalConstraint ApplicationID

 DataSetReference
 ConfigurationRevision
 NeedsCommissioning
 Response+

 Chapter 4: IEC 61850 Device View

 99

Table 4.5 Parameters of the GetGoReference service

ENDT

T

While (found == false)

 If (GoCBName of
 GoCB[a] == GoCBName)

a ++

F

found = true

T

DataSetReference = DatSet of GoCB[a]

if (The end of this LN' s
GoCBList reached)

F

 DataSetReference
 == NULL

Response -
(DataSetReference
can not be NULL)

Find target LD
using LDName

Find target LN
using LNName

Split DataSetReference into three strings : LDName,
LNName and DataSetName

T

F

T

F

While (found == false)

If (DSRef of DataSet[k] ==
DataSetReference)

k ++

Response -
(DataSet can not

be found)

F

If (The end of LN ' s
DataSetList reached)

T

While (The end of MemberOffset
parameter not reached)

MemberReference[y] =
DsMemberRef[MemberOffset[a]] of the DataSet[k]

a++
y++

T

T

Response +
(Service Request

Succeed)

F

Figure 4.12 Flowchart diagram of the GetGoReference service

The GetGoReference service attains a pointer to the address space of the GoCB making

use of the GoCBReference parameter. It then copies the value of its DatSet attribute to

the DataSetReference dummy variable thus acquiring the ObjectReference of the

DataSet being monitored by this GoCB. Afterwards, it uses this dummy variable when

pointing to the address space of the DataSet. The final stage includes copying the

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

GoCBReference GoCBReference Response-
MemberOffset [1...n] ConfigurationRevision

 MemberReference [1...n]
 Response+

 Chapter 4: IEC 61850 Device View

 100

ObjectReferences of the members of the DataSet, but only those having the index

numbers specified by the MemberOffset input parameter.

4.2.3.1.4 GetGOOSEElementNumber Service

Clients use this service to retrieve the member positions (index) of specific

DataAttribute members of the DataSet associated with the GoCB. Table 4.6 shows the

input/output parameters for this service.

Table 4.6 Parameters of the GetGOOSEElementNumber service

Figure 4.13 shows the flowchart diagram of the GetGOOSEElementNumber service. As

the definition implies, the GetGOOSEElementNumber service is the opposite of the

GetGoReference service where index numbers were given and MemberReferences were

sought. Here, MemberReferences of the DataAttributes are provided and their index

numbers are sought. It points to the GoCB specified by the GoCBReference input

parameter acquiring the value of its DatSet attribute and then using that value to point to

the address space of the DataSet monitored by the GoCB. The final stage involves

searching the DSMemRef list of the pointed DataSet to determine index numbers of the

members specified by the MemberReference parameter. For every single member, the

DSMemRef list is searched until a matching entry is found when its index number is

copied to the return parameter. This service ends once all the members specified in the

MemberReference [1...n] parameter are dealt with.

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

GoCBReference GoCBReference Response-
MemberReference[1...n] ConfigurationRevision

 MemberOffset[1...n]
 Response+

 Chapter 4: IEC 61850 Device View

 101

END

While (The end of MemberReference
list not reached)

T

F

 While (The end of DataSet[k]'s
DSMemRef list not reached)

If (DSMemRef[t] ==
MemberReference[a])

MemberOffset[y] = t
y++

t++a++

T

F

Response-
The MemberReference[a]

couldnot be located

F

T

Response +
(Service Request Succeed)

Figure 4.13 Flowchart diagram of the GetGOOSEElementNumber service

4.2.3.1.5 SendGOOSEMessage Service

The SendGOOSEMessage service is used by servers to multicast GOOSE messages,

which have the format shown in Figure 4.14.

AppID
(VISIBLE STRING65)

SqNum
(INT32U)

DatSet
(ObjectRef erence)

Conf Rev
(INT32U)

GoCBRef erence
(ObjectRef erence)

T
(TimeStamp)

StNum
(INT32U)

Test
(Boolean)

NdsCom
(Boolean)

GOOSEData [1..n]

Value
(*)

Figure 4.14 GOOSE message definition

The SendGOOSEMessage service makes use of the publish/subscribe communication

model provided by the underlying data delivery network middleware to accomplish this

task. As soon as a GOOSE message is generated within the server, this service is called

to forward the GOOSE message to the network. The various fields of the GOOSE

message format are as follows [85]:

 Chapter 4: IEC 61850 Device View

 102

(1) The AppID, a string of 65 characters, is the identifier of the LD where the GoCB

is located,

(2) The DatSet, a string of 255 characters, specifies the DataSetReference of the

DataSet whose values are to be transmitted,

(3) The ConfRev, an unsigned integer of 32 bits, indicates the number of times that

the configuration of the DataSet referenced by the DatSet has been changed,

(4) The SqNum points out the sequence number of each GOOSE generated and sent

by this GoCB. The first GOOSE is to have a SqNum of 1, the second report 2

and so on,

(5) The StNum also an integer contains the counter number, which is incremented

each time a GOOSE message has been sent and a change in the value of a

DataAttribute within the referenced DataSet has been detected,

(6) The GoCBRef contains the ObjectReference of the GoCB,

(7) The T indicates the time when the StNum was incremented,

(8) The Test, if set to TRUE, indicates not to use the contents of the message for

operational purposes,

(9) The NdsCom contains the respective NdsCom attribute of the GoCB, and

(10) The GOOSEData [1...n] contains the values of the DataAttribute members of

the DataSet referenced by the DatSet. Unlike reporting and logging, the DataRef of

the members and ReasonCodes are not included in the GOOSEData.

4.2.3.2 Procedures for GOOSE messaging

This section describes the procedures of event monitoring and GOOSE handling in the

case of GOOSE messaging. The Event_Monitor_GOOSE service carries out the same

 Chapter 4: IEC 61850 Device View

 103

tasks as its reporting and logging equivalents. Once a GoCB is created, it passes the

ObjectReference of the associated DataSet and the current values of its member

DataAttributes to the Event_Monitor_GOOSE service. The Event_Monitor_GOOSE

service periodically attains the DataAttribute values and calls the GOOSE_Handler

service to format data into a GOOSE message structure in case of changes in the values

of the referenced DataAttributes. The GOOSE_Handler service is much simpler than its

reporting and logging equivalents due to the absence of a filtering mechanism. All types

of changes must be considered equally by the GOOSE model. Hence, new values of the

DataAttribute members of a DataSet are transmitted irrespective of the DataAttributes’

TrgOps. The DataAttribute values constitute the GOOSEData field of a GOOSE

message. All the remaining fields also get filled as appropriate by the GOOSE_Handler

service before the message can be multicast using the SendGOOSEMessage service.

4.2.4 The Transmission of Sampled Values

The transmission of Sampled Values (SV) relates to the fast and cyclic transfer of

samples of measured values from sensor devices such as Current Transformers (CTs)

and Voltage Transformers (VTs). Although reporting and GOOSE models can be used

for any set of data, special attention needs to be paid to the time constraints when

transmitting SV. This has caused the introduction of a new model, the Sampled Values

Model (SVM), for the organised and time-controlled exchange of SV reducing the

combined jitter of sampling and transmission [84-85]. The conceptual illustration of the

SVM is shown in Figure 4.15. The exchange of values of a DataSet is once again at the

heart of this model. However, in this case, the DataAttribute members of the DataSet in

concern are limited to the samples of measured analogue values such as amps and volts.

 Chapter 4: IEC 61850 Device View

 104

DO

DO

DO

DO

DO

DO

DO

DO

DO

Samples of measured
values in a DataSet

SVM
SV Control

SV Handler

Formatting

controls

Get/Set
Request

Get/Set
Response has association to

periodic
unicast or

multicast SV
messages

Figure 4.15 SV Model

IEC 61850 defines two control blocks for controlling the exchange of SV. These are the

[85]:

(1) Multicast Sampled Value Control Block (MSVCB) for the transmission of

sampled values using multicast, and

(2) Unicast Sampled Value Control Block (USVCB) for the transmission of

sampled values using unicast.

The multicast mode of transmission is once again based on the publish/subscribe

communication model where subscribers need to add themselves to the subscriber list of

a publisher to be able to receive the periodic updates. In contrast, the unicast mode is

based on a two-party application association that is the client/server model. Each

subscriber, interested in receiving sampled values from a particular publisher, needs to

establish an association with that publisher creating and configuring either a MSVCB or

a USVCB class instance enabling the transmission by setting the SvEna attribute to

TRUE. In both modes, time stamps are added to the values so that subscribers can

 Chapter 4: IEC 61850 Device View

 105

verify the timeliness of the values. The MSVCB and USVCB classes defined in Part 7-2

are almost identical to each other. Except for the inclusion of a single additional

attribute in the USVCB class, all the remaining attributes and services are common.

Therefore, the only real distinction between the two is the mode of transmission.

4.2.4.1 Modelling and Implementing the Sampled Value Control Block

Clients use the MSVCB model to create and configure instances of MSVCBs for

controlling the communication procedure. Figure 4.16 shows the MSVCB class and its

attributes [85]. The C++ definition of the MSVCB model can be viewed in Appendix A.

The MSVCB class supports three services; two that permit clients to perform MSVCB

related operations and one used by publishers when forwarding SV messages.

Version

Version

Version

Version

Version

MSVCB_Class

+ MsvCBNam: CosNaming::NameComponent
+ MsvCBRef: char [1..255] ([255])
+ SvEna: bool
+ MsvID: char [1..65] ([65])
+ DatSet: char [1..255] ([255])
+ ConfRev: unsigned _int32
+ SmpRate: unsigned _int16
+ OptFlds: PACKET_LIST_SV

+ SetMSVCBValues() : void
+ GetMSVCBValues() : void
+ SendMSVMessage() : void

Figure 4.16 MSVCB class diagram

4.2.4.1.1 SetMSVCBValues service

Clients use this service to set the attribute values of the referenced MSVCB. The

input/output parameters for this service are shown in Table 4.7. The same procedure

described for the case of SetGoCBValues service is also followed precisely when

creating a MSVCB instance and setting its attributes [85].

 Chapter 4: IEC 61850 Device View

 106

Table 4.7 Parameters of the SetMSVCBValues service

4.2.4.1.2 GetMSVCBValues service

Clients use this service to retrieve the attribute values of the referenced MSVCB. The

input/output parameters for this service are shown in Table 4.8. The GetMSVCBValues

service follows the identical procedure as the GetGoCBValues service. Once the

MSVCB referenced by the MsvCBReference parameter is located, its attribute values

will be copied to the corresponding output parameters. The ConfigurationRevision

parameter returns the value of the ConfRev attribute [85].

Table 4.8 Parameters of the GetMSVCBValues service

4.2.4.1.3 SendMSVMessage service

The SendMSVMessage service is used by publishers to periodically multicast the SV

messages based on the SmpRate making use of the publish/subscribe communication

model provided by the middleware. SV messages have the format shown in Figure 4.17.

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

MsvCBReference Response+ Response-
FunctionalConstraint

SvEnable
MulticastSampleValueID

DataSetReference
SampleRate

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

MsvCBReference SvEnable Response-
FunctionalConstraint MulticastSampleValueID

 DataSetReference
 SampleRate
 ConfigurationRevision
 Response+

 Chapter 4: IEC 61850 Device View

 107

MsvID
(VISIBLE STRING65)

ConfRev
(INT32U)

DatSet
(ObjectReference)

Sample[1..n]
Value

(*)

OptFlds
(PACKET_LIST_SV)

SmpCnt
(INT16U)

If refresh-time == TRUE
RefrTm

(EntryTime)

If sample-synchronized == TRUE
SmpSynch

(BOOLEAN)

If sample-rate == TRUE
SmpRate
(INT16U)

Figure 4.17 SV message format

The various fields of the SV message format are as follows [85]:

(1) The MsvID, a string of 65 characters, contains the value of the corresponding

MsvID attribute of the MSVCB,

(2) The OptFlds is derived from the respective OptFlds attribute of the MSVCB,

(3) The DatSet, a string of 255 characters, specifies the DataSetReference of the

DataSet whose values are to be transmitted,

(4) The Sample [1...n] contains the values of the DataAttribute members of the

DataSet referenced by the DatSet sampled at a given time,

(5) The SmpCnt, an unsigned integer of 16 bits, indicates how many samples of an

analogue value have been taken. Each time a new sample is taken, SmpCnt will

be incremented. ConfRev contains the value of the corresponding ConfRev

attribute of the MSVCB,

(6) The RefrTm points out the last transmission buffer update time, and

(7) The SmpSynch, if set to TRUE, indicates that the sampled values have been

synchronised by the clock signals and the SmpRate contains the value of the

corresponding SmpRate attribute of the MSVCB.

 Chapter 4: IEC 61850 Device View

 108

4.2.4.2 Procedures for SV messaging

The design and implementation details of the MSV_Handler service, designed to

perform the tasks of the SV handler, are provided in this subsection. The main task of

the SV handler is to sample the values of the DataAttribute members of a DataSet at

periodic intervals based on the SmpRate attribute of the MSVCB formatting them into a

SV message structure. As it was in the case of GOOSE messaging, there is no need for

any filtering. Unlike reporting and GOOSE, the information exchange is not initiated by

changes in the values of the DataAttribute members of the DataSet associated with the

MSVCB. Whether values change or not, they get sampled periodically and forwarded to

subscribers. Figure 4.18 shows the flowchart diagram of the MSV_Handler service.

When a MSVCB is created, it calls the MSV_Handler service and passes the value of its

DatSet attribute to the service as an input argument. Subsequently, the DataSet list of

the target LN is searched until a successful DataSet entry is located. The successful

entry would have the value of its DSRef attribute set same as the value of the received

DatSet attribute. The service then searches the MSVCB list of the LLNO until an entry

associated with the located DataSet is found. The service moves on and copies the

values of all the attributes of the located MSVCB to a number of local variables. It also

obtains the values of all the DataAttribute members of the DataSet, which was

previously located. Finally, it creates a SV message and copies the previously obtained

values to the necessary fields of the message. Once all the fields are filled, the SV

message gets forwarded to the subscribers using the SendMSVMessage service.

The concept of Multi-Threading, which was described in detail in Chapter 3, is also

utilised by the MSV_Handler service. A new thread is created at the end of each run

 Chapter 4: IEC 61850 Device View

 109

that starts the execution of the same service after a fixed interval. The interval depends

on the SmpRate attribute of the MSVCB. As a result, the MSV_Handler service

continues its execution in the background periodically obtaining the values of the

DataAttribute members of the DataSet and forwarding them to the subscribers.

Find target LD using LDName and target LN using LNName

END

T

F

While (found == false)

If (DSRef of DataSet[l] ==
DataSetReference)

l ++
Response -

(DataSet can not be
found)

F

T

If (The end of LN ' s
DataSetList reached)

T

T

F

While (found == false)

If (DatSet of MSVCB[a] ==
DataSetReference)

a ++

Response -
(MSVCB can not

be found)

F

T

If (The end of LLNO ' s
MSVCBList reached)

T

Get the values of all the attributes of the
MSVCB[a], e.g.

ConfRev= ConfRev of MSVCB[a]

Get the values of all the members of the
DataSet[l]

create the SV message
fill all the fields as appropriate, e.g.
SmpRate = SmpRate of MSVCB[a]

Sample[1..n] = values of all the members of the DataSet[l]

pause for 1/SmpRate

create a new thread and pass the
DataSetReference to the thread

_beginthread (.........)

Figure 4.18 Flowchart diagram of the MSV_Handler service

 Chapter 4: IEC 61850 Device View

 110

4.2.5 The Setting Group Control Block Model

The Setting Group Control Block (SGCB) model is a special treatment for setting data

contained in LNs. Although an instance of a data can only have a single value, it might

be necessary to store several values for that instance that can be used one at a time. The

SGCB model makes it possible to store and edit several values for one or more data and

also to switch between the values. A set of values defined for several data form a

Setting Group (SG). The setting data can have as many values as the number of defined

SGs. The values of a specific SG can only be set when that group is in the “EDIT”

state. Once the values are set, they can be selected for use by the application by

switching that group to the “ACTIVE” state. The SGCB model is depicted in the

example shown in Figure 4.19 [84-85].

LN PPAM
......
 Settings

Phase Start Value PhsStart
Ground Start Value GndStart
Operate Delay Time OpTimDel
Reset Delay Time RsTimDel

1
0
3
4

Logical Node Active buffer

Setting data

SG Control Block

#2

#3

#1

#2

P
hs

S
ta

rt

G
nd

S
ta

rt

O
pT

im
D

el

R
sT

im
D

el

 1 0 3 4

 1 0 2 1

 1 3 2 3
#3

#1

 1 3 2 3

SelectEditSG #3 ConfirmEditSGValues

DataName

Data value

Total number of SG=3

SG
Active
setting

group = #1

#3

G
et

SG
Va

lu
es

Se
le

ct
A

ct
iv

eS
G

G
et

SG
C

B
Va

lu
es

Edit buffer

Se
tS

G
Va

lu
es

, C
on

fir
m

Ed
itS

G
Va

lu
es

G
et

SG
Va

lu
es

Setting
group #3
can be
edited

 SelectEditSG #3

Figure 4.19 Basic model of the SGCB

 Chapter 4: IEC 61850 Device View

 111

The PPAM (phase angle relay) LN comprises four settings data:

• PhsStart,

• GndStart,

• Primed, and

• RsTimDel.

The SGCB “SG Control” provides three SGs (#1, #2, #3) each with independent values

for the three data. The members of the active SG are referenced by the

ObjectReferences of the data with functional constraint “SG” and members of the SG in

the edit buffer are referenced by the ObjectReferences of the data with functional

constraint “SE”. The values of the data are derived from the values of one of the three

SGs by using the multiplex on the left. The SelectActiveSG service determines the

values of which SG should be copied to the active buffer to be used by the PPAM LN.

In the example, SG #1 has been set to be in the “ACTIVE” state. The SelectEditSG

service determines the values of which SG should be copied to the edit buffer. When in

the edit buffer, the values of a SG can be set and get (SetSGValues and GetSGValues).

Once the new values are set, the client has to confirm using the ConfrimEditSGValues

service before the new values can be taken over by the selected SG (SG #3).

4.2.5.1 Modelling and Implementing the Setting Group Control Block

Figure 4.20 shows the SGCB class model and its attributes. Clients use the SGCB class

to create SGCB instances, which allow them to control the operation of the SGCB

model through a number of services. SGCB instances enable clients to create SGs, edit

their values and choose which SG to be in the edit buffer and which SG to be in the

active buffer [85]. The C++ definition of the SGCB class can be viewed in Appendix A.

 Chapter 4: IEC 61850 Device View

 112

on EA 5.0 Unregistered Trial

on EA 5.0 Unregistered Trial

on EA 5.0 Unregistered Trial

on EA 5.0 Unregistered Trial

on EA 5.0 Unregistered Trial

SGCB_Class

+ SGCBName: CosNaming::NameComponent
+ SGCBRef: char [1..255] ([255])
+ NumOfSG: unsigned _int8
+ ActSG: unsigned _int8
+ EditSG: unsigned _int8
+ CnfEdit: bool
+ LActTm: Time_Stamp

+ SelectActiveSG() : void
+ SelectEditSG() : void
+ ConfirmEditSGValues() : void
+ SetSGValues() : void
+ GetSGValues() : void
+ GetSGCBValues() : void

Figure 4.20 SGCB class diagram

4.2.5.1.1 SelectActiveSG Service

Clients use this service to set the value of the ActSG attribute of the referenced SGCB

loading the values of the specified SG into the active buffer [85]. The input/output

parameters for this service are shown in Table 4.9.

Table 4.9 Parameters of the SelectActiveSG service

Figure 4.21 shows the flowchart diagram of the SelectActiveSG service. Once the LD is

located, the service progresses into setting the value of the ActSG attribute of the SGCB

to the value of the SettingGroupNumber parameter. There is no need to search for either

the LN or the SGCB since only a single SGCB resides within the LLNO and the

location of the LLNO is known to the program. Hence, the program can straight away

jump to the address space of the single SGCB contained within the LLNO. Once the

ActSG attribute is set, the values of the SG having the index number

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

SGCBReference Response+ Response-
SettingGroupNumber

 Chapter 4: IEC 61850 Device View

 113

“SettingGroupNumber” will be moved into the active buffer where the DataAttribute

values are overwritten with these values.

 SGCBReference
 == NULL

Response -
(SGCBReference can

not be NULL)

Find target LD
using LDName

Seperate SGCBReference into three strings : LDName,
LNName and SGCBName

T

F

ActSG = SettingGroupNumber

Values of the SG #SettingGroupNumber --> active
buffer

Values of the DataAttributes = Values in the active
buffer

Response +
(Service Request

Succeed)

END

Figure 4.21 Flowchart diagram the SelectActiveSG service

4.2.5.1.2 SelectEditSG Service

Clients use this service to set the value of the EditSG attribute of the referenced SGCB

loading the values of the specified SG into the edit buffer. The input/output parameters

for this service are shown in Table 4.10 [85]. This service is similar to the previous one

except that the value of the EditSG attribute will be set and values of the SG with the

index number “SettingGroupNumber” will be moved into the edit buffer.

Table 4.10 Parameters of the SelectEditSG service

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

SGCBReference Response+ Response-
SettingGroupNumber

 Chapter 4: IEC 61850 Device View

 114

4.2.5.1.3 SetSGValues Service

Clients use this service to set the values of the SG in the edit buffer [85]. The

input/output parameters for this service are shown in Table 4.11. Figure 4.22 shows the

flowchart diagram of the SetSGValues service.

Table 4.11 Parameters of the SetSGValues service

Response -
(The referenced Data can not be

located in the edit buffer)

END

If (DataName [x] in the edit buffer
== FCDA)

break

T

Edit_Buffer [x] = DataAttributeValue

for (x=0; x< 30; x ++)

F

Response +
(Service Request Succeed)

T

F

If (FC == "SE") Response -
(Check the FC value)

F

T

Figure 4.22 Flowchart diagram of the SetSGValues service

Once the target LD is located, the service moves its pointer to the edit buffer of the

SGCB contained within the referenced LD. Since there is a single SGCB in each LD

and each SGCB is associated with a single edit buffer, this can be accomplished without

looping, in other words, without needing to search any lists. The service continues by

searching the edit buffer to find the data specified by the Reference parameter. A “for”

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

Reference Response+ Response-
DataAttributeValue

 Chapter 4: IEC 61850 Device View

 115

loop was used for this purpose as shown in Figure 4.22. If a matching entry is located in

the edit buffer, its value will be adjusted relative to the DataAttributeValue parameter

once the service confirms that the FC received in the request holds the string “SE”. If a

matching data can not be located, the service exits with an appropriate service error.

4.2.5.1.4 ConfirmEditSGValues Service

Clients use this service to confirm that the new values of the SG set using the

SetSGValues service should overwrite its old values. The input/output parameters for

this service are shown in Table 4.12 [85]. Figure 4.23 shows the final part of the

flowchart diagram of the ConfirmEditSGValues service.

Table 4.12 Parameters of the ConfrimEditSGValues service

CnfEdit attribute of the SGCB = true

Response +
(Service Request Succeed)for (x=0; x< 30; x ++)

T

F

SGValues [EditSG] [x] = Edit_Buffer [x]

Figure 4.23 Flowchart diagram of the ConfirmEditSGValues service

Once the target SGCB is located based on the SGCBReference parameter, the service

attains a pointer to the SGCB. First, the CnfEdit attribute of the SGCB is set to true

confirming the editing process. Then, all values of the SG with the index number

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

SGCBReference Response+ Response-

 Chapter 4: IEC 61850 Device View

 116

“SettingGroupNumber” will be updated based on the values in the edit buffer. The

SettingGroupNumber is not an input parameter, yet its value can be obtained from the

EditSG attribute of the SGCB. A “for” loop was used once again because the maximum

number of values a SG can hold is known to be 30.

4.2.5.1.5 GetSGCBValues Service

Clients use this service to retrieve the attribute values of a referenced SGCB. The

input/output parameters for this service are shown in Table 4.13 [85]. Once the target

SGCB is located and the value of the FC received in the request is verified, the service

copies the attribute values of the referenced SGCB to the output parameters to be

returned to the caller program.

Table 4.13 Parameters of the GetSGCBValues service

4.2.5.1.6 GetSGValues Service

Clients use this service to get the value of a particular DataAttribute of a SG [85]. The

input/output parameters for this service are shown in Table 4.14. Figure 4.24 shows the

flowchart diagram of the GetSGValues service.

Table 4.14 Parameters of the GetSGValues service

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

SGCBReference Response+ Response-
FunctionalConstraint NumberOfSettingGroup

 ActiveSettingGroup
 EditSettingGroup
 LastActiveTime

Input Parameters Output Parameters
(if operation successful)

Output Parameters
(if operation unsuccessful)

Reference Response+ Response-
 DataAttributeValue

 Chapter 4: IEC 61850 Device View

 117

Response -
(The referenced Data can not be

located in the edit buffer)

END

If (DataName [x] in the edit buffer
== FCDA)

break

T

DataAttributeValue = Edit_Buffer [x]

for (x=0; x< 30; x ++)

F

Response +
(Service Request Succeed)

T

F

If (FC == "SE")

T

If (FC == "SG") Response -
(Check the FC value)

DataAttributeValue = Active_Buffer [x]

T

F F

Figure 4.24 Flowchart diagram of the GetSGValues service

Once the target LD is located, the service searches the edit buffer to find the position

number (x) of the data specified by the Reference parameter. All data have the same

line-up whether in the edit buffer or the active buffer. Hence, the found position number

will be the same regardless whether the edit buffer or the active buffer is searched. The

service then checks the value of the FC received in the request. If it equates to “SE”,

then the value of the data in the edit buffer will be copied to the DataAttribute return

parameter. However, if it equates to “SG”, then the value of the data in the active buffer

is copied to the output parameter. Otherwise, the service ends indicating that the value

of the FC received in the request has been incorrectly specified.

 Chapter 4: IEC 61850 Device View

 118

4.3 Conclusion

In this chapter, the modelling and implementation of the IEC 61850 standard’s device-

view OSMs has been presented. Chapter 4 carries on from Chapter 3 and completes the

discussion of the standard’s ACSI models. In this chapter, the main centre of attention

has been on the ACSI device-view models and their associated services as well as the

standalone service models defined in ACSI for the peer-to-peer distribution of time

critical IED data. Device-view models describe device functionality by specifying the

syntax and semantics of the data exchanged and also the dynamic behaviour of devices.

The Logical Device (LD) and Server class models are the two important building blocks

constituting the IEC 61850 standard’s device-view constituent. This chapter has

provided broad discussion on the OO implementation of these class models and their

associated services.

In addition to the Server and LD class models, the IEC 61850 standard’s device-view

constituent comprise of additional standalone service models for which special attention

needs to be paid. The most significantly valued of all, the GOOSE model, enables fast

and reliable transmission of IED state change and control signals in a simultaneous

fashion to a number of recipients. The Sampled Values Model (SVM), on the other

hand, is related to the organised and time-controlled exchange of samples of measured

analogue values. Finally, the SGCB model enables ACSI applications to store and edit

several values for one or more data as well as the capability to switch between the

values. In this study, special care has been taken when describing the modelling and

implementation aspects of these information exchange models focusing not only on

their class associated services but also on their internal procedures.

 Chapter 5: Communication Processor Design

 119

Chapter 5

Communication Processor Design

5.1 Introduction

In this chapter, the design and implementation details of the IEC-MOM middleware are

presented. IEC-MOM is a Message-Oriented Middleware (MOM) architecture that

integrates various functionalities as a means of satisfying the unique behaviour and

communication needs of the IEC 61850 standard. It is located between the IEC 61850

application and network access layers of a communication processor and provides

various message distribution mechanisms for the transmission of messages to and from

the application layer. In addition to the middleware architecture, two application layer

modules are also proposed in this chapter. The designed and implemented application

layer modules enable the configuration of ACSI client and server operations at the

application layer and together with the middleware architecture form the upper layers of

a communication processor protocol stack.

The chapter starts in Section 5.2 with an overview of the IEC 61850 standard’s

communication-view constituent. Then in Section 5.3, the architecture and components

of the overall communication processor architecture are discussed. Section 5.4 focuses

on the design and implementation details of the IEC-MOM middleware while Section

 Chapter 5: Communication Processor Design

 120

5.5 focuses on the design and implementation details of the application layer modules.

Performance analysis of the designed communication model is presented in Section 5.6.

The conclusions of this chapter are given in Section 5.7.

5.2 IEC 61850 Communication View

In this section, the IEC 61850 standard’s communication-view constituent is examined.

Although IEC 61850 allows discrete devices to share data and services, it is only an

abstract application layer protocol outlining two main groups of communication models

in [84, 85]. These are the client/server and publish/subscribe models that provide

mechanisms for sending and receiving data as shown in Figure 5.1.

Figure 5.1 IEC 61850 communication models [84]

The client/server model is required for ACSI services, eg. get data values or get

directory information. The publish/subscribe model, on the contrary, is needed for the

information exchange service models such as GOOSE that require fast and reliable

 Chapter 5: Communication Processor Design

 121

transmission of data to multiple receivers. Finally, the reporting model makes use of a

one-way communication model that involves transmission of the available reports to

ACSI clients making use of their IP addresses.

IEC 61850 defines abstract data and object models as a standardised method of power

system device description enabling data to be described using identical structures. The

IEC 61850 ACSI models are set of services and responses to these services that regulate

identical network behaviour for all IEDs. Although the abstract models are an important

step towards interoperability, they can only be usable when operated over a set of real

protocols. The IEC 61850 standard describes this in IEC 61850-8-1 [76] as the Specific

Communication Service Mapping (SCSM) on specific communication services such as

the MMS and ISO/IEC 8802-3 as shown in Figure 5.2 [11].

Figure 5.2 IEC 61850 communication profiles [11]

In this research, a standard Object Oriented (OO) implementation of the ACSI OSMs

was accomplished as described in Chapters 3 and 4. Although the latter eliminated the

need for the mapping process, ACSI OSMs do not themselves provide the required

 Chapter 5: Communication Processor Design

 122

communication models. Consequently, there still existed the need for a data delivery

network middleware architecture to be designed for serving the special communication

requirements of the IEC 61850 standard such as the need to support:

1. Client/server communication model,

2. Publish/subscribe communication model,

3. Fine grained time synchronisation [106],

4. The ability to trade off delivery reliability against delivery delay [54], and

5. The ability to identify differing Quality of Service (QoS) requirements of the

different message types supported by the application layer.

The designed middleware had to be small and fast adding only minimal overhead to the

underlying network communication stack. Furthermore, it needed to be much more

efficient than MMS or CORBA. Although MMS preserves many technical advantages,

it has not been completely successful. Main criticism to the MMS architecture includes

the complexity; poor performance and lack of any explicit support for publish/subscribe

architectures. The latter item explains the reason why a second communication stack,

the ISO/IEC 8802-3, had to be proposed in [76] for the mappings of peer-to-peer

communication capability requiring models such as the GOOSE.

Clearly, there were many challenges such as aforesaid, which had to be solved.

However, the need to design a real-time communication model to run with a

communication processor was evident. The term “real-time” means that an application

should respond to events within a prescribed range of time even under failure and

extreme load conditions. Overall, the real-time communication model had to support the

following features:

 Chapter 5: Communication Processor Design

 123

• Support for the client/server communication model,

• Support for the publish/subscribe communication model,

• Modelling time and time-stamping each transaction [54],

• Allowing for the trade-off between delivery delay and reliability [54],

• Working in a real-time communication processor environment [54],

• Support for the different QoS requirements.

5.3 The Proposed Model

The overall architecture of the proposed communication processor is shown in Figure

5.3. On the network access side of the communication processor protocol stack, an

Ethernet based Internet network is utilised offering different levels of guarantees for

network performance such as fast delivery times or guaranteed delivery.

IEC 61850 Client IEC 61850 Server

Middleware

Network Access

Middleware

Network Access

Network

S
ta

n
d

ar
d

 W
o

ks
ta

ti
on

Figure 5.3 The overall communication processor architecture

On the application side, the designed communication processor contains an application

layer module where ACSI applications can be configured. The application layer

processor can be modelled either as an ACSI server or an ACSI client. The modelling of

 Chapter 5: Communication Processor Design

 124

an ACSI server has to be carried out making use of the C++ class and service

descriptions developed in Chapters 3 and 4. This clarifies the reason behind the need for

the OO implementation of ACSI OSMs so that they can be used in the process of

implementing various representations of real devices at the application layer.

An end-system based middleware, which decouples applications from network

processes, is located between the network access and application layers as shown in

Figure 5.3. The designed middleware, IEC-MOM, does not provide any object or

service models but only message distribution mechanisms. It uses the principles of

MOM for timely message delivery across the network [107-109]. MOM is based on the

model of message passing or queuing between a sender and a receiver. One of the most

important principles of MOM is message queuing [110], which provides strong

reliability guarantees in case of failure by storing messages on disk. Originally, MOMs

used to have only client/server architectures. Yet, nowadays they have been extended to

include publish/subscribe features as well. This is one of the most significant features of

the IEC-MOM middleware that helps to eliminate the need and disadvantages that arose

from the use of multiple communication stacks as illustrated in Figure 5.2.

IEC-MOM operates above the TCP-UDP/IP stack and provides a single common

interface to all IEC 61850 profiles including core ACSI services, GOOSE and SV. The

TCP/IP stack is used for the core ACSI services whereas the UDP/IP stack is utilised for

the GOOSE and SV profiles. IEC-MOM enables applications to exchange messages

with other applications without having to know what kind of platform the other

application resides on, thus increasing the flexibility of the whole architecture. The

following sub-sections describe the individual features of the IEC-MOM middleware.

 Chapter 5: Communication Processor Design

 125

5.3.1 The Client/Server Communication Model

This sub-section covers various aspects of the client/server communication model of the

designed middleware. The client/server is based on MOM’s asynchronous message

passing between a client and a server application as demonstrated in Figure 5.4.

Asynchronous means that the client application will not be blocked until server’s

response arrives and it can continue to issue requests to other applications. In contrast to

synchronous mechanisms employed by Remote Procedure Call (RPC) [111, 112], an

infrastructure type attempted earlier on in [113, 114], the use of an asynchronous

request-reply mechanism in MOM does not require the client and server to be available

all the time. If the destination application is unavailable or busy, the messages will be

held in a temporary store location, a message queue, until they can be processed.

Client Application Server Application

IEC-MOM IEC-MOM

Server
Object (e.g

Logical
Node 1)

Server Object (e.g Logical
Node n or DATA)

Request Confirm

Communication Services

Response Indication

Communication Services

Communication Stack/ Profile

Figure 5.4 Interaction between a client and a server

The client/server communication model is used for transferring messages that originate

at the application layer due to service requests such as get data values or get data

directory information, etc. Such services require a communication processor to receive

every step in the command sequence properly, which can only be guaranteed with

reliable delivery. One of the fundamental advantages of the asynchronous client/server

 Chapter 5: Communication Processor Design

 126

MOM is reliable message delivery through the use of message queues [115]. The use of

the TCP protocol, which is very popular for its reliable transmission, for such messages

further supports the quarantined delivery of messages.

TCP is a connection-oriented transport layer protocol that requires the name of the

destination node when establishing an application session with that node. Hence, the IP

addresses must always be included in the request-reply messages originating from the

application layer. This is not a major concern since in IEC 61850 applications, the

communicating nodes are required to be aware of the names of the destination nodes

with which they need to communicate. The IEC-MOM middleware makes use of these

IP addresses when establishing connections with the destination nodes.

5.3.2 The Publish/Subscribe Communication Model

This sub-section covers various aspects of the publish/subscribe communication model

of the designed communication processor. It focuses on the design constraints behind

the design of a suitable real-time publish/subscribe model for substation communication

systems. The publish/subscribe communication model is basically an added feature to

the client/server model formerly described. The main difference is that multicast group

addresses are used instead of IP addresses. In this section, design issues are described

for successfully distributing mission and time critical information within the substations

to legitimate parties in a timely, reliable and accurate manner. A number of issues need

to be considered simultaneously when building an appropriate publish/subscribe

communication model. These involve the choice of a suitable routing mechanism and a

number of techniques for the tasks of binding, filtering and making subscriptions.

 Chapter 5: Communication Processor Design

 127

5.3.2.1 The routing problem

The main approaches for solving the routing problem are:

1) Sending a number of points to point messages,

2) Sending a multicast message, and

3) Sending a broadcast message.

GOOSE and SV are the main profiles requiring indirect peer-to-peer asynchronous

delivery. The IEC 61850 standard has specified the use of the multicast alternative,

shown in Figure 5.5, for this purpose.

Sending Host

1 2 3 4 5 6

7 8 91 01 112

A
B

1 2x

6x

8 x

2 x

9x

3x

1 0x

4 x

11 x

5x

7x

1x

E
th

er
ne

t

A

1 2x

6x

8 x

2 x

9x

3x

10 x

4x

11 x

5x

7x

1x

C

Ethernet Hub

Receiving Device Receiving Device Receiving Device

1 2 3 4 5 6

7 8 9 101 11 2

A
B

1 2x

6x

8x

2x

9x

3x

1 0x

4x

11x

5x

7x

1x

E
the

rn
et

A

12 x

6x

8x

2x

9 x

3 x

1 0x

4x

11 x

5 x

7 x

1 x

C

1 2 3 4 5 6

7 8 9 10 111 2

A
B

12 x

6x

8x

2x

9 x

3 x

10 x

4x

1 1x

5 x

7 x

1 x

E
th

e
rn

et

A

12 x

6 x

8x

2x

9 x

3 x

10 x

4 x

1 1x

5 x

7 x

1 x

C

Another subnet

1 2 3 4 5 6

7 8 9 1 01112

A
B

12 x

6 x

8 x

2 x

9x

3x

10 x

4 x

11 x

5x

7x

1x

Et
h

er
ne

t

A

1 2x

6 x

8 x

2 x

9x

3x

10x

4 x

11 x

5x

7x

1x

C

Another subnet

Receiver not interested in the multicast
does not receive it

Figure 5.5 Multicast transmission

Multicast represents a unidirectional and connectionless communication between a

server and a selected set of clients as defined in IEC 61850. The multicast concept is

crucial for power system applications in which a given analogue value, state change, or

command may be communicated to several peers at the same time. Multicast messaging

 Chapter 5: Communication Processor Design

 128

[116, 117] allows the sender to send a single copy to the data stream, which will then be

replicated by switches or routers and forwarded to receivers that have previously

signalled their interest in that message. Receivers, also called subscribers, indicate their

interest by joining a particular multicast session group. The key advantage of multicast

messaging is that it reduces the amount of traffic over the network yielding an increased

efficiency for both the publisher and network with a number of other key performance

improvements. Multicast oriented communication enables nodes to join or leave groups

as a local activity unambiguously creating group membership and group wide

awareness.

The major disadvantage concerned with multicast transmission, on the other hand, is the

fact that it can be unreliable. However, it is possible to multicast GOOSE and SV

messages due to the fact that they can be repeated a number of times until their time-to-

live expire to achieve higher reliability and they need not to be acknowledged.

5.3.2.2. The subscription mechanism

In ACSI, GOOSE messages are put forward as a means of expressing all required

protection scheme information of an individual protection IED. The status of the

functional elements in an IED is reported in the form of a state machine. Once IEDs

capture the effects of abnormal system conditions within a substation, they express the

details in the form of GOOSE messages. The power quality monitoring and recording

devices are the type of devices that are usually interested in receiving such GOOSE

messages [82]. However, in order to receive such messages, they need to have a

mechanism for registering and subscribing to the publishing device’s multicast group.

This suggests that each subscribing device needs to be aware of its publishers and their

 Chapter 5: Communication Processor Design

 129

relative IP Multicast Group Addresses (MGAs). Figure 5.6 shows a distribution feeder

protection relay, the PIED, publishing to a subscribing device that is a power quality

monitoring and recording (PQMR) IED. When the feeder detects a fault, it will trigger

the operation of the PQMR by sending a multicast message to various destinations

including the PQMR itself.

Figure 5.6 Feeder IED publishing to the subscribing IED [82]

Reference [54] discusses that each publishing node must not only be aware of its own

subscribers but also a complete list of publishers each one of its subscribers subscribes

to. Similarly, reference [54] also states that in the case of a subscribing node, each

subscriber needs to be aware of its own publishers and a complete list of the subscribers

each one of its publishers publishes to.

The designed real-time publish/subscribe model associates a logical handle to each

publishing device. The logical handle can simply be a variable length ASCII string

containing the address and name of each publishing device and names of its subscribers.

Each subscriber interested in receiving GOOSE messages from a particular publisher

needs to subscribe itself in the “subscribers” list of the publishing device with a

subscription message containing its name, address and the names of the other devices it

 Chapter 5: Communication Processor Design

 130

has subscribed to. Thus, each publisher will have a list of its own subscribers and a list

of the other publishers they have subscribed to as stated as a necessity in reference [54].

Each published GOOSE message will be tagged with the logical handle information of

its publisher. Subscribers upon receiving GOOSE messages will be able to filter the

logical handle to acquire the name and address of the publisher as well as the list of

subscribers it publishes to. The subscribers will then be able to keep a record of not just

their publishers but also a list of the other subscribers that subscribe to same publishers.

5.3.2.3. Binding and filtering

The problem of binding can be overcome very easily by using the publisher-based

subscription mechanism. Publisher-based subscription mechanism requires subscribers

to subscribe to publishers providing their details such as node name, node address and

protocol etc. Once a subscription is processed, a publisher will add the relative

subscriber into its “subscribers” list. When a GOOSE message becomes available at the

publisher, it can be multicast to all the subscribers by the source making use of the IP

MGA instead of individual subscriber addresses. However, since the GOOSE message

is to be tagged with a logical handle, the task of binding includes the processing of the

subscriptions in order to fetch the subscriber addresses forming a “subscribers” list to

accompany the GOOSE message. This has to be repeated before the delivery of every

GOOSE message updating the list of subscribers taking into account the possibility of

new subscriptions and unsubscriptions.

While binding takes place at the publisher, filtering needs to be carried out at each

subscriber to filter out unwanted messages. Although the possibility of receiving

unsubscribed GOOSE messages at the subscriber is quite low, it would still be desirable

 Chapter 5: Communication Processor Design

 131

to include a filtering mechanism. The relative overhead of the filtering is quite small

when the publisher-based subscription mechanism is used. Each GOOSE message is

tagged with a logical handle, which includes information about its publisher. The

complexity of the filter and hence the overhead will be reduced since the filter only

needs to evaluate the logical handle rather than the whole message content. The

evaluation of the logical handle includes matching the publisher’s name with one of the

names in the subscriber’s list of publishers. If a match is found, then the message will be

accepted and processed. Otherwise, the message will be rejected and destroyed.

5.3.2.4 QoS

Publish/subscribe systems usually address mechanisms for message ordering and

reliability of message delivery. One such example is “Priority Queuing”. Priority

queuing uses multiple queues as shown in Figure 5.7, which are serviced with different

priority levels.

Figure 5.7 Priority queuing [118]

As depicted in Figure 5.7, the highest priority queue containing the highest priority

messages is usually serviced first. In the case of any congestion, packets residing in the

 Chapter 5: Communication Processor Design

 132

lower priority queues will be dropped [118]. This kind of queuing is perfectly suitable

for the delivery of GOOSE state change messages, which are certainly to have the

highest priority level on a substation network. Therefore, priority queuing along with an

appropriate scheduling mechanism is beneficial in the publish/subscribe communication

model that needs to be designed for substation communications. Besides the use of

congestion management mechanisms such as priority queuing, the use of congestion

prevention mechanisms such as the Weighted Random Early Detection (WRED) [119]

for congestion avoidance is also favourable. WRED prevents congestion by starting to

drop low priority packets only in the case of a future congestion detection to ensure the

delivery of mission critical messages such as GOOSE messages.

In this research, the synchronised use of the User Datagram Protocol (UDP) and the

Resource Reservation Protocol (RSVP) [120] is proposed to satisfy the most important

QoS parameter concerned with the delivery of GOOSE messages, which is the

maximum application-to-application delay requirement of 4 ms [121, 122]. The 4 ms

delivery delay requirement implies that the total delivery delay between the

communicating devices should not exceed 4 ms. It includes the delay on the wire as

well as the delay the message encounters while travelling through the protocol stack

from the application layer all the way to the hardware [122].

According to the published IEC 61850 standard, GOOSE and SV profiles do not use the

ISO network layers UDP/IP as illustrated in Figure 5.2. However, in this research, the

use of the UDP/IP stack is seen as a benefit. The main criticism to this decision is high

likely to include the fact that GOOSE and SV messages will be introduced to extra

delays when passing through these layers. Although correct, this delay is relatively

 Chapter 5: Communication Processor Design

 133

small and will not exterminate the 4 ms timing determinism. Moreover, considering the

advantages gained from the use of the UDP/IP stack, this decision can be justified. UDP

is a connectionless transport layer protocol, which has a very fast response time and a

very low overhead. It is well suited for real-time applications where messages can be

multicast efficiently and datagram boundaries are respected. The greatest advantage of

utilizing IP is that security and encryption can be built into the communications. The IP

multicasting technology has been proven over the years and presents many advantages

to the users. One such example is the fact that it is well optimised and packets are only

sent to the routers that need them. In addition, using the RSVP protocol, each publisher

can easily specify the upper bound of the delay, which in the case of GOOSE messages

will be 4 ms. Once the specifications are given, then the delivery of GOOSE messages

takes place taking the traffic specification into consideration at every step along the

network.

However, the mechanisms described above are not adequate when addressing some

other issues concerned with substation communication systems. With the synchronised

use of UDP and RSVP, it is quite possible to satisfy the 4 ms delay condition. However,

the reliability of messages becomes a major concern in this case since UDP cannot

provide reliable messaging at all. There is a different interpretation in substations for the

relationship between reliability and delivery delay. Timely and reliable transmission of

messages implies that GOOSE messages need to be repeated in the case of failures until

their hold time expires whilst not exceeding the 4 ms application-to-application delay

criteria. This can be achieved by a mechanism, which trades off delivery delay against

delivery reliability. What is needed is a guaranteed delivery mechanism operating above

the level of the UDP transport protocol. Such a mechanism running above UDP will be

 Chapter 5: Communication Processor Design

 134

superior to TCP since it will prevent the uncontrollable communication latency that

results in the case of TCP. Moreover, by limiting the number of re-transmissions, the

necessary trade-off can be achieved since UDP will not get stuck trying to re-transmit

the messages forever destroying the timing determinism completely.

5.4 The Design and Implementation of the IEC-
MOM middleware

This section focuses on the architectural design and implementation of the IEC-MOM

middleware. First, the architectural overview of the middleware is given followed by its

implementation details.

5.4.1 IEC-MOM Architectural Overview

Figure 5.8 depicts the detailed architectural overview of the IEC-MOM middleware.

Sending Application Receiving Application

IEC-MOM

Network

Interrupts
Manager

Queue Manager

Transmission subqueues

Delivery
Manager

Connection Manager
TPAL

Transport & Network Layer
Data Link & Physical Layer

Network Interface

IEC-MOM Delivery Manager

Interrupts Manager
TPAL

Transport & Network Layer
Data Link & Physical Layer

Network Interface

Queue
Manager

Application
subqueue

Msg
Msg

Msg
Msg

Figure 5.8 IEC-MOM architecture

 Chapter 5: Communication Processor Design

 135

The middleware layer consists of several components such as Interrupts Manager,

Queue Manager, Connection Manager and Delivery Manager. These components take

care of many communication details and handle the interaction of IEC 61850

applications. The tasks of the individual components are described below:

Interrupts Manager: The interrupts manager is responsible for receiving interrupts and

determining their type when the middleware module is interrupted as a result of a new

event. For example, the arrival of a new message (packet) at the input stream of the

middleware module triggers a stream interrupt. In such cases, the interrupts manager

needs to detect whether the packet is an application layer or a transport layer packet. If

the packet is coming from the application layer, then it will be forwarded to the queue

manager of the transmission queue. Otherwise, it will be forwarded to the queue

manager of the application queue.

Queue Manager: The queue manager is responsible for associating an incoming packet

with an appropriate queue. It is possible to define a number of internal subqueues in

which packets can be inserted and sorted, and from which packets can be extracted for

transmission according to a general user-defined method. If the arriving packet is from

the transport layer, it will be stored in the application subqueue that contains packets

headed to the application layer. However, if the packet is from the application layer,

then queue manager decodes the packet in order to determine its type. Three subqueues

have been reserved for messages arriving from the application layer: subqueue 1 for

GOOSE Messages, subqueue 2 for SV messages and subqueue 3 for the remainder

including service requests and reports. The vital aim here is to assign different priority

levels to the subqueues to make sure that highest priority messages are serviced first.

 Chapter 5: Communication Processor Design

 136

Rationally, in this project, the highest priority has been assigned to subqueue 1, then

subqueue 2 with subqueue 3 having the least priority. Once the newly arrived packet is

inserted into the relevant subqueue, then the queue manager hands of the control to the

delivery manager.

Delivery Manager: The delivery manager is responsible for handling the flow of

messages in the IEC-MOM module. As soon as the control is passed to the delivery

manager, it starts removing messages from the subqueues beginning from subqueue 1.

As soon as all the messages in subqueue 1 have been catered for, it moves on with

subqueue 2 and so on. Besides removing messages from the subqueues, the delivery

manager is also responsible for creating and invoking a new transport mechanism thread

(connection manager) for each removed message.

The use of a dedicated transport mechanism thread for each individual message is much

useful in stopping problems that arise during the delivery of a single message from

affecting the transmission of other messages. Whilst the connection manager is being

invoked, a number of transmission specific details are passed to the connection manager

along with the original message. Such information includes:

1 The application service name,

2 The transport protocol to be used ,

3 Whether the transmission needs to be unicast or multicast, and

4 Type of service (TOS) and RSVP parameters.

Therefore, for each message, the delivery manager informs the connection manager

about the constraints to be used when establishing a connection. For example, for

 Chapter 5: Communication Processor Design

 137

GOOSE messages from subqueue 1, the delivery manager sets the application service

name as “GOOSE Messaging” and indicates that a multicast session needs to be

established using the UDP transport protocol. The TOS and RSVP parameters will be

set to their highest priority/best effort values since GOOSE messages require highly

deterministic delivery.

The delivery manager follows two different approaches to maintain the reliable delivery

of messages. Undelivered service request from subqueue 3 will be reinserted into

subqueue 3 by the delivery manager and their priorities will be increased. It is also

possible to assign different priorities to messages within the same subqueue and then

sort the subqueue based on increasing priority. On the other hand, for GOOSE messages

from subqueue 1, a delivery delay against delivery reliability trade-off mechanism is

utilised. It simply involves the invocation of a number of transport mechanism threads

for the same GOOSE message at different intervals given by the following formulae

until a maximum delay time of 4 ms is reached.

)1.5(0001.0)1(1 equationnt R ×+= −

where t is the delay time, in milliseconds, between the successive retransmissions, n is a

setting between two and seven inclusive while R is the sequential repeat number of the

message [123]. For example, when a setting number (n) of five is used, the delay

between the first event-driven message and the second retransmission is 0.6 ms.

The whole process is much simpler for the application subqueue messages. In that case,

the delivery manager simply removes messages from the application subqueue and

forwards them to the application layer module. There is no need for any reliability

 Chapter 5: Communication Processor Design

 138

concern in this case since the likelihood of a message being unsuccessfully transmitted

between two modules in the same processor is extremely low.

Connection Manager: The connection manager or otherwise called the transport

mechanism thread manages the unicast and multicast transmissions. It is basically used

for opening a connection with the underlying Transport Protocol Application Layer

(TPAL) to start an application. While establishing the connection, all the constraints

regarding the transmission of the message will be forwarded to the TPAL layer. TPAL

is a basic and uniform interface between the middleware layer and different transport

protocols. It establishes a connection with the transport protocol specified by the

connection manager virtually linking the middleware module with the specified

protocol. Once TPAL gives “OPEN” confirmation, the packet received from the

delivery manager will be sent to TPAL to be forwarded to the chosen transport protocol.

5.4.2 IEC-MOM Implementation

Software based implementation of the IEC-MOM middleware was carried out by using

the OPNET Modeller from MIL3. OPNET [124] is an object-oriented simulator that

allows for modelling, simulating and analysing the performance of communication

networks, computer systems, applications and distributed systems. It contains a set of

networking protocols and analysis environments such as:

1 Client-Server Analysis Environment,

2 Transmission Control Protocol (TCP),

3 User Datagram Protocol (UDP), and

4 Internet protocol (IP).

 Chapter 5: Communication Processor Design

 139

It also contains many tools for designing and collecting data on network models such as:

1 Network Editor (creating network model),

2 Node Editor (creating node models),

3 Process Editor (creating process models), and

4 Analysis Tool (analysing simulation results).

The IEC-MOM middleware has been implemented in a queue module between the

TPAL and application layers of a communication processor as shown in Figure 5.9.

Figure 5.9 Communication processor node model

Figure 5.9 shows the general node model of a communication processor. A node model

is a collection of modules representing district functional areas of the node. The use of a

queue module for the IEC-MOM middleware allows for the creation of subqueues in

which packets can be stored in an organised manner for later use. In OPNET, process

 Chapter 5: Communication Processor Design

 140

models are used to specify the behaviour of processor and queue modules that exit in

the node domain. An individual process or groups of processes implement a particular

task when placed in a process model. A single process is an instance of a process model

defined within the process editor. Figure 5.10 shows the process model of the queue

module that was used to implement the behaviour model of the IEC-MOM middleware.

Figure 5.10 Process model of the IEC-MOM middleware module

OPNET process editor provides a powerful and efficient method based on State

Transition Diagrams (STDs) for describing the behaviour of discrete event systems.

STDs, also referred to as Finite State Machines (FSMs), are used in specifying and

developing a wide range of software and hardware systems. A STD consists of two

basic component types: states and transitions as illustrated in Figure 5.10. States

represent top-level modes that a process can enter. Transitions show the possible state

changes of the process. The IEC-MOM STD consists of 4 states and transitions between

these as illustrated in Figure 5.10. The description of each state is provided below

examining the tasks performed in each state.

 Chapter 5: Communication Processor Design

 141

• Init State: The main task performed in this state is the initialisation of the

process model of the IEC-MOM middleware module. After the initialisation of

the lower layers is completed, the “Init” state schedules an interrupt in order to

perform the initialisation of the middleware module. OPNET processes are

event-driven. An interrupt is a terminology given to an event that is actually

delivered to a process. Most transitions between states occur once a certain

interrupt is received. The process remains in the “Init” state until a confirmation

is received indicating the completion of the initialisation process after which the

process proceeds to the next stage that is the “Start” state.

• Start State: The main tasks performed in this state include initialisation of all

the state variables used by this process model as well as service registration.

Service registration is the act of issuing a service registration command to TPAL

for each supported service. A service registration command basically includes

the name of the service, the protocol and port index through which it can be

accessed. Examples of services, an IEC 61850 node may support, include the

transmission of GOOSE, SV and service request messages. Besides the tasks

described above, the statistics that are maintained by this process model are also

registered in this state. Once all this tasks are accomplished, the process

proceeds to the “Idle” state.

• Idle State: The interrupts manager is the sole component running in this state.

The functions of the interrupts manager were previously described in detail. The

IEC-MOM process model stays in the “Idle” state until a stream interrupt is

received triggered by the arrival of a new packet. If the received packet is

 Chapter 5: Communication Processor Design

 142

coming from the TPAL layer, the process proceeds to the “RECEIVE” state.

Otherwise, it proceeds to the “SEND” sate.

• RECEIVE State: The main components running in this state are the queue

manager of the application subqueue and the delivery manager. The queue

manager inserts the packets arriving from the TPAL layer into the application

subqueue. The packets are shortly removed from the application subqueue one

by one by the delivery manager to be processed and forwarded to the application

layer. After all the packets in the application subqueue are removed and

forwarded to the application layer, the process proceeds back to the “Idle” state.

• SEND State: The queue manager of the transmission subqueues and the

delivery manager are the main components running in this state. The queue

manager processes the incoming packets from the application layer inserting

them into the relevant subqueue based on their type. The delivery manager

removes all the packets from the transmission subqueues starting from the

highest priority one. For each message, it creates and invokes a new connection

manager thread running in the child process model shown in Figure 5.11 passing

the transmission specific requirements to the thread along with the original

message. Once all the packets in the transmission subqueues have been catered

for, the process proceeds back to the “Idle” state.

Figure 5.11 IEC-MOM child process model

 Chapter 5: Communication Processor Design

 143

The process model shown in Figure 5.11 is referred to a child process with respect to

the process model that creates it. The use of a separate child process for the connection

manager is useful in stopping the failure of a single transport mechanism thread from

affecting the parent process. The connection manager running in the child process

establishes a TPAL connection and sends the packet to the TPAL module subsequent to

receiving an “OPEN” confirmation. These actions are all carried out in the “open” state.

If the connection manager fails to receive an open confirmation from TPAL for the

service request messages (core ACSI services), the packet will be reinserted into

subqueue 3. The connection manager closes the TPAL connection in the “close” state

where the child process also terminates itself.

5.5 The Design and Implementation of the
Application Layer Modules

This section focuses on the architectural design and implementation of two different

application layer models. The first application layer model has been designed as a

module where ACSI servers can be configured whilst the second for the configuration

of ACSI clients. The application layer is the seventh layer of the seven-layer OSI model.

Common application services for the application processes are performed in this layer.

5.5.1 Server Application Layer Design and Implementation

In this sub-section, the architectural design of a standard application layer module built

on top of IP-TCP/UDP, where ACSI servers and virtual representations of real devices

can be configured, is proposed and described in detail. The core ACSI services using the

client/server communication model do not require any complex mechanisms. It is

 Chapter 5: Communication Processor Design

 144

sufficient that the requesting node knows about the IP address of the destination node.

However, this is not the case for the publish/subscribe communication model requiring

information exchange service models such as GOOSE. The success of these services

relies on the ordered use of mechanisms for the tasks of registering, binding, filtering

and making subscriptions. The key behind the design of the real-time publish/subscribe

communication model can be briefly summarized as follows. Non-real time activities

such as getting publication or subscription rights happen outside the real time loop

ideally at the start-up. Conversely, the generation, transfer and reception of messages

are real-time activities happening in the real-time loop requiring very fast response

times. There are two types of nodes. Subscriber nodes can only subscribe to messages

whereas “publisher-subscriber” nodes can publish messages as well as subscribe to

messages published by other nodes. The following sub-sections describe how the tasks

of registering, binding, filtering and making subscriptions are accomplished at the

server application layer module. The architectural components, which play part in the

carrying out of these tasks and others including the sending, reception and execution of

IEC 61850 associated messages, are also described.

5.5.1.1 Registering

Ideally at the start-up, each publishing node must be associated to a multicast group

each having a unique label, which is referred to as the IP Multicast Group Address

(MGA). The Multicast Membership Service (MltcMS) is responsible for storing IP

MGAs. Entries within the MltcMS contain publishers’ IP host names and MGAs.

Various nodes on the network communicate with the MltcMS to create/delete entries

and to add/delete their publication/subscription rights.

 Chapter 5: Communication Processor Design

 145

A node interested in publishing messages gets its publication right by creating an entry

in the MltcMS’s IP MGAs table. On the other hand, those nodes interested in receiving

messages from a particular publisher have to make use of the publisher’s IP MGA in

order to join themselves to the multicast group associated with that publisher. This is

referred to as registering. Any node interested in subscribing to messages gets its

subscription right by retrieving the IP MGA for the multicast group it seeks to join from

the MltcMS. Once the subscriber obtains the IP MGA, it can complete its registration

and join a multicast group by following the subsequent sequence:

1. The registry manager process running within the subscriber joins a multicast group,

Group 1, by sending a join request to its IP module using a remote interrupt,

2. The IP module forwards an IGMP membership report message to the neighbouring

multicast router, and

3. The multicast router sets up a distribution tree for Group 1 adding the interface

details of the joining subscriber so that it can receive packets sent to Group 1.

5.5.1.2 Subscription, binding and filtering

Registering has to be followed with a subscription request sent to the relevant publisher.

It should be kept in mind that registering basically serves the purpose of setting up a

distribution tree for each multicast group within the multicast router. In applications

where publishers need not to be aware of their subscribers, the process of registering is

by itself adequate. However, as indicated previously, each publisher in a substation

network is required to hold detailed information related to its subscribers. Thus, the

mechanism of sending subscription requests and receiving confirmation messages in

return has been designed and implemented in this project in order to solve this problem.

 Chapter 5: Communication Processor Design

 146

Subscription requests are sent immediately after the subscriber registers for any

multicast group. One subscription request has to be sent to each one of the publishers.

A subscription request is no more than a packet containing a number of fields. By

setting the fields of a subscription request, a subscriber can inform any publisher over

the network about its own local details such as the node name and IP address in addition

to information specifying whether it wants to subscribe for GOOSE and/or MSVCB

messages produced by that node. Hence, a combined approach of publisher and subject

based subscription mechanism has been adopted, which has a number of advantages

when used in conjunction with the registering process.

Strictly speaking, the task of binding in publishers is unnecessary since each publisher

uses a Multicast Group Address to publish its messages. However, each publisher still

produces a list of its own subscribers to be tagged onto the outgoing multicast message.

This serves two purposes. First of all, such a list can be cross-examined by the router

against its own registry list reducing the possibility of unwanted messages from being

sent to nodes showing no interest in them. Secondly, when a multicast message reaches

its destination, the subscriber can access to the tagged information and store the names

of the other subscribers that subscribe to the same publisher as required in substation

applications. Similarly, the task of filtering can also be fully avoided since after all the

measures taken, the chances of an unwanted message reaching at any node is fairly low.

However, with the intention of being precautious, a fairly simple filtering process has

been implemented that checks the source of messages comparing it to the entries in the

node’s list of publishers. In cases where a match can not be found, the packet will

simply be destroyed.

 Chapter 5: Communication Processor Design

 147

Data

Publisher Subscriber

IEC-MOM

Real-Time OS

Delivery
Manager

Registry
Manager

ACSI Configuration
Manager

My Publishers /Subscribers list

Node Node

Node Node

Network

MltcMS

 Operations
Membership

Execution Manager

5.5.1.3 Architectural components

Figure 5.12 depicts the detailed architectural overview of the server application layer

module. Such a model is appropriate and efficient for client/server requests as well as

periodic and synchronous updates between sources and sinks. It exclusively supports the

publish/subscribe model as it makes use of the previously discussed mechanisms.

Figure 5.12 Architectural components of the ACSI server application layer module

The following sequence of events occurs when a source (publisher) pushes multicast

packets out of its output interface destined for a particular multicast group:

Local
Manager

 Chapter 5: Communication Processor Design

 148

1. The application running within the source multicasts a packet using the Multicast

Group Address (MGA) that is also referred to as the multicast membership address,

2. When the packet reaches its rendezvous point (IP address of the router responsible

for distributing multicast traffic to the specified multicast group), the router’s IP

process forwards the multicast packet to the “ip_pim_sm” process, and

3. The “ip_pim_sm” process is one of the child processes of the IP module, which

makes multiple copies of the multicast data and sends one copy to each one of the

subscribers listed in the multicast route table.

All the architectural components shown in Figure 5.12 assist in the successful operation

of the application layer communication model in one way or another. An individual

discussion for each one of the architectural components is provided below:

Local Manager: Local manager executing in every publisher and subscriber is

responsible for the creation/deletion of publication or subscription rights. One of the

tasks of the local manager is to periodically update its “multicast membership

addresses” list based on the periodic info received from the MltcMS regarding the status

of the publication/subscription rights.

Registry Manager: Subscribers interested in joining any multicast session group do

this with the help of the registry manager, which simply contacts the IP module

expressing the subscriber’s interest in joining a multicast session group. Registry

manager also handles the process of sending subscription requests. In cases where

publishers subscribe to other publishers’ multicast session groups, it also performs the

task of updating the “publishers” component of the MyPublishersSubscribers list.

 Chapter 5: Communication Processor Design

 149

Execution Manager: Execution manager is responsible for determining the type of the

packet arriving from the IEC-MOM middleware module. After it determines the type of

the packet, it executes the relevant packet execution/destroy mechanism. Examples of

the packet types expected at an ACSI server application layer include reports, GOOSE

messages, ACSI service requests, GOOSE or MSVCB subscription requests, MSV

messages and etc. Individual packet execution/destroy mechanisms have been designed

and implemented for various packet types. The packet execution/destroy mechanism are

mainly used for accessing the relevant fields of the received packet obtaining the

information stored within its fields. Once this is concluded, they execute a response

based on the information acquired. For example, in the case of service requests received

from ACSI clients, the information stored within the packet include the name of the

service to be performed and input parameters to be passed to the service. The ACSI

service request execution/destroy mechanism accesses this information executing the

relevant service with the input parameters received in the request. The names and

possible input parameters of ACSI services were previously covered in Chapters 3 and

4. After the packet is executed, the packet execution/destroy mechanism updates a

number of statistics such as the application-to-application delay statistic of the packet

before destroying it.

Delivery Manager: The delivery manager thread is executed shortly after the execution

of a service request received from an ACSI client. Each service request needs to return a

reply back to the calling client. This task is accomplished by the delivery manager,

which creates and sets the fields of a reply packet headed to the requesting client. All

the output parameters returned by the executed service are inserted into the same packet

along with a timestamp designating the current time and date.

 Chapter 5: Communication Processor Design

 150

ACSI Configuration Manager: The ACSI configuration manager basically acts as a

device parameter configuration tool. It is mainly used for configuring an ACSI server at

the server application layer module. Substation configuration describes which of the

optional information is used in a specific device, what the instance names of all LNs

are. IEC 61850-6 has specified a description language for the configuration of electrical

substation IEDs. This language is called the Substation Configuration Description

Language (SCL), which is based on the XML schema language. However, in this study,

the SCL has not been utilised. Instead, the LNs, LDs, data and data attributes as well as

the services used and provided by an IED are configured utilising the C++ programs

described in Chapters 3 and 4.

5.5.1.4 Server Application Layer Implementation

Software based implementation of the ACSI server application layer module was once

again carried out using the OPNET Modeler software. Figure 5.13 shows the process

model of the processor module where the general behavioural model of an ACSI server

was implemented.

Figure 5.13 ACSI server application layer module process model

 Chapter 5: Communication Processor Design

 151

Processor modules are the primary building blocks of node models. They can be

connected to other modules via a number of packet streams. They can act as traffic

generators and/or sinks. As illustrated, the STD of the server application layer module

consists of 5 states and transitions between these. The actions performed in each state

are listed below:

• Init State: The ACSI configuration manager and the local manager are the two

components executing in the “Init” state. The ACSI configuration manager

configures an ACSI server whilst the local manager updates the “multicast

membership addresses” list of the node with the information it receives from the

MltcMS. The state variables used by this process model are also initialised in

this state. The process proceeds to the “P_Subs” state once all these tasks are

accomplished.

• P_Subs State: Registry manager is the sole component executing in the

“P_Subs” state. It carries out the registering and sends subscription requests to

the publisher nodes.

• Inactive State: The process stays in the “Inactive” state until a stream interrupt

is received triggered by the arrival of a new packet. Only then, the process

model proceeds to the “Decide” state.

• Decide State: Execution manager is the main component running in this state. It

determines the type of the received packet and calls the relevant packet

destroy/execution mechanism. If the packet is a service request message, the

process proceeds to the “Generate” state. Otherwise, for all other message types,

it defaults back to the “Inactive” state where it waits the arrival of the next

packet.

 Chapter 5: Communication Processor Design

 152

• Generate State: The “Generate” state is where a reply (confirmation) packet is

created for the executed service, its fields set and forwarded to the ACSI client

where the service request initially originated from.

5.5.2 Client Application Layer Design and Implementation

This sub-section presents the architectural design and implementation of an application

layer module, where the ACSI client operations can be modelled. The IEC 61850

standard only defines the ACSI server role including the roles of the LNs, data, control

blocks and etc. located in the server. Clients and their internal structures have not been

defined in the standard. Therefore, in this project, the design of the ACSI client model

has been based on the role a client characterises within the context of the standard.

5.5.2.1 Design of the ACSI Client application layer module

The design of the ACSI client application layer module has been based on the various

tasks a client can perform. These include:

1 Issuing service requests and receiving confirmations of the services after they

have been processed in the ACSI servers,

2 Subscribing to publishers’ GOOSE or SV messages,

3 Receiving GOOSE or SV messages, and

4 Receiving report indications.

The ACSI client application layer is also required to have supporting mechanisms for

both the client/server and publish/subscribe communication models as some client

applications rely on the client/server communication model and some others rely on the

 Chapter 5: Communication Processor Design

 153

publish/subscribe communication model. Therefore, the issues of registering, binding,

making subscriptions and filtering described while presenting the design of the server

application layer module are also relevant in the design of the ACSI client application

layer module. Similarly, all the manager threads, discussed in section (5.5.1.3) except

for the ACSI configuration manager, are also utilised. It should also be noted that ACSI

clients can only subscribe to multicast messages produced by other nodes and they can

not publish any multicast messages.

5.5.2.2 Client Application Layer Implementation

This sub-section covers the implementation details of the ACSI client application layer

model, which was also implemented in a processor module. Figure 5.14 shows the

process model of the processor module that was used to implement the general

behavioural model of an ACSI client.

Figure 5.14 ACSI client application layer module process model

The STD of the client application layer consists of 4 states and transitions between them

as shown in Figure 5.14. The tasks performed in each state are listed below:

 Chapter 5: Communication Processor Design

 154

• Init State: The state variables used by this process model as well as the

statistics maintained by this model are initialised and registered in this state.

The local manager updates the “multicast membership addresses” list of the

node, which can be used later when determining the IP MGA of any publisher

node. The ACSI client node itself does not have an associated MGA as it can

not publish any messages.

• Service State: In the “Service” state, the ACSI client application fetches the IP

addresses of the surrounding nodes. The registry manager registers the client

application in the multicast session groups of the publisher nodes from which

multicast messages are desired. It also sends subscription requests to these

publisher nodes.

• Generate State: The “Generate” state is where service requests are assembled

and forwarded to the underlying middleware. The process model stays in this

state until a stream interrupt is received. If the received packet is a multicast

message or a report, the process proceeds to the “Received” state. However, if

it is an ACSI service reply message, it will be processed in this same stage. In

such cases, the process stays in the “Generate” state and moves on with

sending the nest request message.

• Received State: The “Received” state is entered when a GOOSE, SV or report

message is received. After executing such a message, the process stays in the

“Received” state until a stream interrupt is received. If an ACSI service reply

message is received, it will be processed in the “Received” state before the

process proceeds back to the “Generate” state. Otherwise, the process stays in

this state and processes the received multicast message or the report.

 Chapter 5: Communication Processor Design

 155

5.6 Performance Analysis of the System

This section discusses the simulations that were carried out to test the IEC 61850

standard and evaluate the performance of the implemented communication processor

architecture, which consists of the designed application layer and IEC-MOM

middleware modules. The idea for the simulation test set-ups presented in this chapter

was taken from references [125-127].

5.6.1 The Bay Devices and Station Controller Simulation

The Bay Devices and Station Controller (BDASC) simulation was carried out to test the

implemented OSMs of Chapter 5 and evaluate the client/server communication model

of the implemented architecture. Figure 5.15 shows the test set-up built for this

simulation. It consists of a Station Unit Controller (SUC) and two protection and control

devices at the bay level. The configuration of representations of devices may be done

either using ACSI services or using the ACSI configuration manager, which is the

substitute of the XML schema language in this project.

Figure 5.15 BDASC simulation test set-up

 Chapter 5: Communication Processor Design

 156

One of the devices at the bay level was configured as an ACSI server representing the

functionality of a circuit breaker (XCBR). It contained a single LD, the LD1, and was

configured as a composition of the LNs: LLNO, LPHD and XCBR. Figure 5.16 depicts

the nested structure of this ACSI server only showing the components relevant to this

simulation. This simulation also intended to test and evaluate the reporting and logging

models of the IEC 61850 standard. Therefore, a DataSet and a BRCB were also

configured for the Circuit_Breaker making use of the ACSI services “CreateDataSet”

and “SetBRCBValues”.

ACSI Server

LD1

LLNO LPHD XCBR

stValctVal

ModePos

LN Instances

Compatible Data Class (CDC)

DataAttributes

Figure 5.16 Nested structure of the Circuit_Breaker

The DataSet and BRCB of the Circuit_Breaker were configured as follows:

DataSet:

DSName: DataSet1

DSRef: LD1/LLNO.DataSet1

DSMemberRef [0]: LD1/XCBR.Pos.ctVal [st]

DSMemberRef [1]: LD1/XCBR.Pos.stVal [sv]

BRCB:

BRCBName: BRCB1

 Chapter 5: Communication Processor Design

 157

BRCBRef: LD1/LLNO.BRCB1

RptID: BRCB1 Report Identifier

RptEna: TRUE

DatSet: LD1/LLNO.DataSet1

BufTm: 0

PurgeBuf: FALSE

TrgOp: data-change = TRUE

IntgPd: 0

OptFlds: sequence-number = TRUE, report-time-stamp = TRUE, reason-for-inclusion =

TRUE, data-set-name = TRUE, data-reference =TRUE, buffer-overflow =TRUE,

entryID = TRUE, conf-revision = TRUE

The second device at the bay level was configured as an ACSI server that represented

the virtual behaviour of a switch controller (CSWI). The Switch_Controller also

contained a single LD, the LD1, which was a composition of the LNs: LLNO, LPHD

and CSWI. Figure 5.17 shows the nested structure of the Switch_Controller illustrating

only the components with relevance to this simulation.

ACSI Server

LD1

LLNO LPHD CSWI

ctlNum

Pos

LN Instances

Compatible Data Class (CDC)

DataAttributes

Figure 5.17 Nested structure of the Switch_Controller

The Switch_Controller was moreover configured with a DataSet and a LCB to enable

the testing of the logging model. Unlike the Circuit_Breaker, all configuration of the

 Chapter 5: Communication Processor Design

 158

Switch_Controller was carried out using the offline method that’s by making use of the

ACSI Configuration Manager. The DataSet and LCB were configured as follows:

DataSet:

DSName: DataSet1

DSRef: LD1/LLNO.DataSet1

DSMemberRef [0]: LD1/CSWI.Pos.ctlNum [op]

LCB:

LCBName: lcb

LCBRef: LD1/LLNO.lcb

LogRef: LD1/LD1

LogEna: TRUE

DatSet: LD1/LLNO.DataSet1

IntgPd: 0

TrgOp: data-change = TRUE

OptFlds: reason-for-inclusion = TRUE

The following code segment shows the ACSI service requests that were issued to the

devices by the Station Unit Controller (SUC).

// Issue a “GetServerDirectory” ACSI request

GetServerDirectory ("LOGICAL_DEVICE");
strcpy (Addr1->server, "Circuit_Breaker"); // Destination = Circuit Breaker PD

// Issue a “GetLogicalDeviceDirectory” ACSI request

GetLogicalDeviceDirectory ("LD1");
strcpy (Addr1->server, "Circuit_Breaker"); // Destination = Circuit Breaker PD

// Issue a “GetLogicalNodeDirectory” ACSI request

GetLogicalNodeDirectory ("LD1/XCBR", "DATA");
strcpy (Addr1->server, "Circuit_Breaker"); // Destination = Circuit Breaker PD

// Issue a “CreateDataSet” ACSI request

char** reff = new char*[2]; // Declare a variable for the DSMemberRef [1..2]

 Chapter 5: Communication Processor Design

 159

reff [0] = "LD1/XCBR.Pos.ctVal[st]"; // Set the value of DSMemberRef [0]
reff [1] = "LD1/XCBR.Mode.stVal[sv]"; // Set the value of DSMemberRef [1]

CreateDataSet ("LD1/LLNO.DataSet1", reff); // Issue the request
strcpy (Addr1->server, "Circuit_Breaker"); // Destination = Circuit Breaker PD

// Declare and initialise variables for the BRCB creation

enum FC FunctionalConstraint = br;
char ReportIdentifier[65] = "BRCB1 Report Identifier";
bool ReportEnable = true;
char DataSetReference[255] = "LD1/LLNO.DataSet1";
PACKET_LIST_BOOLEAN OptionalFields;
unsigned _int32 BufferTime = 0;
TriggerConditions TriggerConditionsEnabled;
unsigned _int32 IntegrityPeriod = 0;
bool GeneralInterrogation =false;
bool PurgeBuffer=false;
binary_number* EntryIdentifier;

TriggerConditionsEnabled.data_change = true;
OptionalFields.packet_list_name = "OptFlds";
OptionalFields.list_members [0] = true;
OptionalFields.list_members [1] = true;
OptionalFields.list_members [2] = true;
OptionalFields.list_members [3] = true;
OptionalFields.list_members [4] = true;
OptionalFields.list_members [5] = true;
OptionalFields.list_members [6] = true;
OptionalFields.list_members [7] = true;

// Using the set variables, create a BRCB for the Circuit Breaker PD

SetBRCBValues ("LD1/LLNO.BRCB1",
FunctionalConstraint, ReportIdentifier, ReportEnable, DataSetReference,
OptionalFields, BufferTime, TriggerConditionsEnabled, IntegrityPeriod,
GeneralInterrogation, PurgeBuffer, EntryIdentifier);

strcpy (Addr1->server , "Circuit_Breaker"); // Destination = Circuit Breaker PD

// Write the values of the DataAttributes referenced by the DataSet1

void**Val = new void*[2];

Val[0] = (int*)true;
Val[1] = (int*)12;

SetDataSetValues ("LD1/LLNO.DataSet1", Val);
strcpy (Addr1->server, "Circuit_Breaker"); // Destination = Circuit Breaker PD

// Issue a “GetDataSetDirectory” ACSI request

GetDataSetDirectory ("LD1/LLNO.DataSet1");
strcpy(Addr1->server , "Switch_Controller"); // Destination = Switch Controller PD

// Issue a “GetDataValues” ACSI request
GetDataValues ("LD1/CSWI.Pos.ctlNum[op]");
strcpy (Addr1->server, "Switch_Controller"); // Destination = Switch Controller PD

 Chapter 5: Communication Processor Design

 160

// Write the values of the DataAttributes referenced by the DataSet1 of the Switch Controller PD. The
DataSet and LCB of the Switch Controller PD are created using the ACSI Configuration Manager of the
Switch Controller PD application layer

void ** Val = new void* [1];
Val [0] = (int*) 10;

SetDataSetValues ("LD1/LLNO.DataSet1", Val);
Strcpy (Addr1->server, "Switch_Controller"); // Destination = Switch Controller PD

// Issue a “QueryLogByTime” ACSI request

time_t RangeStartTime = 0; // set the start time
time_t RangeStopTime = 60; // set the stop time

QueryLogByTime ("LD1/LD1", RangeStartTime, RangeStopTime);
strcpy (Addr1->server, "Switch_Controller"); // Destination = Switch Controller PD

When ACSI service requests were issued at the SUC, service request packets were

created containing all the relevant details such as the name and input parameters of the

issued services. Each service request packet was then sent to the underlying IEC-MOM

module, which forwarded the packet to its destination through the TCP/IP stack. When

the service request packet arrived at its target ACSI server, the execution manager

running in the “Decide” state of the ACSI server application layer process model

executed the ACSI service request execution-destroy mechanism. The latter accessed

the information stored within the packet using this information to execute the relevant

service.

An ACSI reply packet was created by the delivery manager of the ACSI server

following the execution of each service. The reply packet, which mainly contained the

output parameters returned by the executed service, was then sent to the SUC through

the IEC-MOM module and the TCP/IP stack. When the reply packet arrived at the

ACSI client application, it was processed before the next request packet was assembled

and forwarded to its destination.

 Chapter 5: Communication Processor Design

 161

Figure 5.18 shows the event-by-event simulation summary that was received on the

simulation console. As shown in Figure 5.18, messages were displayed on the

simulation console when ACSI requests arrived and got executed at the ACSI servers

and when ACSI replies arrived and got executed at the SUC. Some of the output

parameters returned in the ASCI reply packets were also displayed.

Figure 5.18 BDASC simulation console output

 Chapter 5: Communication Processor Design

 162

It is also important to observe the “A report has been received in the Station_Unit”

message displayed on the simulation console. It indicates the report message that was

received at the Station Unit Controller (SUC) from the Circuit_Breaker. As to be

remembered, the Circuit_Breaker was enabled for reporting since a BRCB was

configured for that device. The configured BRCB continuously monitored the values of

the member DataAttributes of the specified DataSet and issued an immediate

transmission of the new values as soon as the old values changed as a result of the

SUC’s “SetDataSetValues” request. In contrast, the Switch_Controller was enabled for

logging as a LCB was configured for that device. The configured LCB continuously

monitored the values of the member DataAttributes of the specified DataSet and added

a new log entry into the log as soon as the old values changed as a result of the SUC’s

“SetDataSetValues” service request. This is indicated by the “A new log has been

added” message displayed on the simulation console. The new log entry was then

retrieved from the log by the SUC making use of the “QueryLogByTime” service.

Figure 5.19 shows the amount of data received at the SUC, which includes the ACSI

reply packets received from both ACSI servers as well as the report received from the

Circuit_Breaker. The size of the ACSI reply packets was measured as 288 bits and the

size of the report packet was measured as 224 bits. Figure 5.19 also shows the amount

of data received at the Circuit_Breaker, which includes the ACSI requests received from

the SUC. The size of the ACSI request packets was measured as 320 bits.

The speed of the links used, the choice of a transport protocol, message sizes, the

distance between the communicating nodes and message processing times in the

communication processor stack are amongst the factors that affect the application-to-

 Chapter 5: Communication Processor Design

 163

application (end-to-end) delay times. Figure 5.20 shows the application-to-application

delay times of various packets received at the SUC and Circuit Breaker when 100 Mbps

Ethernet drop links were used. Although the OPNET software does not allow the

distances between the communicating nodes to be measured, substantial distances were

allowed between the communicating nodes in the simulation test set-up with the aid of a

map based simulation background. No particular delay requirements do exist in the IEC

61850 standard for the transmission of non-time critical data such as ACSI request,

ACSI replies or reports. However, reasonable delay times, all of which less than 1ms,

were recorded in this simulation as illustrated in Figure 5.20 justifying the adequacy of

the designed communication architecture. It should also be bear in mind that TCP was

the transport protocol used for the transmission of these non-time critical data.

Figure 5.19 Amount of traffic (bits/sec) received at the

SUC and Circuit_Breaker

 Chapter 5: Communication Processor Design

 164

Figure 5.20 Application-to-application delays of packets received at the SUC and
Circuit_Breaker

To get more insight into where the time was spent during the transmission of a 40 byte

ACSI request from the SUC to the Circuit_Breaker, the delay timing breakdown of such

a packet is provided in Table 5.1.

Table 5.1 Delay timing breakdown of a 40 byte request packet

Component Time (µs)
IEC-MOM overhead 162
IP processing delay of SUC 20
On the wire delay 315
IP processing delay of Circuit_Breaker 4
Total 501

As illustrated in Table 5.1, the application-to-application delay has been broken up into

four major parts. IEC-MOM overhead is the time spent in the implemented middleware

architecture. IP processing delay refers to the delay experienced by an IP datagram

 Chapter 5: Communication Processor Design

 165

through the IP layer. “On the wire” delay is the delay the packet encounters on the

transmission link. Other protocol layer delays were observed to be insignificant (≈ 0).

It is to be noticed from Table 5.1 that the IEC-MOM overhead was relatively high. This

is solely due to the fact that the packet experienced a waiting delay in the middleware

queue module until the TCP connection was established with the destination host. As to

be remembered, TCP is a connection-oriented transport layer protocol that requires

establishing an application session with the destination node. As soon as the session was

established, the TPAL layer gave an “OPEN” confirmation to IEC-MOM after which

the packet was dispatched. However, as illustrated in Table 5.1, the packet did

experience a considerable waiting delay in the IEC-MOM middleware until the session

was established. Therefore, this large overhead is not directly related to the IEC-MOM

architecture but entirely to the TCP transport layer protocol.

5.6.2 The GOOSE Demo Simulation

The GOOSE Demo simulation was carried out to test the transfer of digital data

between bay devices according to the concepts outlined by the IEC 61850 standard

[128]. The objectives were to:

1. Demonstrate how virtual representations of real protection and control devices

can be developed in the simulation environment,

2. Verify the implemented GOOSE model (classes/services), and

3. Demonstrate the effectiveness of the designed communication architecture,

mainly the publish/subscribe communication model, in the handling and

distribution of time critical GOOSE messages.

 Chapter 5: Communication Processor Design

 166

Figure 5.21 shows the test set-up built for the purpose of this simulation. It consists of a

test equipment device and three control and protection devices all at the bay level.

Figure 5.21 GOOSE demo simulation test set-up

The Test_Equipment device was basically an ACSI client, which simulated the power

line. The Protection_Relay, Switchgear_Relay and AutoRecloser_Relay devices were

ACSI servers each configured as the virtual representation of a real protection and

control device in the simulation domain. As the names imply, the Protection_Relay

simulated a protection relay, the AutoRecloser_Relay simulated a reclosing device and

the other simulated a switchgear device. Figures 5.22, 5.23 and 5.24 further illustrate the

configured structures of all three ACSI servers. The Protection_Relay consisted of the

LNs: LLNO, LPHD and PSCH whereas the AutoRecloser_Relay consisted of the LNs:

LLNO, LPHD and RREC. The Switchgear_Relay, on the other hand, was a composition

of the LLNO, LPHD, XCBR and multiple XSWI LNs. For each ACSI server, a DataSet

and a GoCB were also configured with the displayed attributes as the intention in this

simulation was to verify the GOOSE model.

 Chapter 5: Communication Processor Design

 167

ACSI Server

LD1

LLNO LPHD PSCH

Oper Mode

general stVal

DataSet GoCB
DSName: PRDataSet1
DSRef: LD1/LLNO.PRDataSet1
DSMemberRef [0]: LD1/PSCH.Oper.general[st]
DSMemberRef [1]: LD1/PSCH.Mode.stVal[sv]

GoCBName: PRGoCB1
DSRef: LD1/LLNO.PRGoCB1
DatSet: LD1/LLNO.PRDataSet1

 Figure 5.22 Nested structure of the Protection_Relay

ACSI Server

LD1

LLNO LPHD RREC

Oper Mode

general stVal

DataSet GoCB
DSName: ARDataSet1
DSRef: LD1/LLNO.ARDataSet1
DSMemberRef [0]: LD1/RREC.Oper.general [st]
DSMemberRef [1]: LD1/RREC.Mode.stVal[sv]

GoCBName: ARGoCB1
DSRef: LD1/LLNO.ARGoCB1
DatSet: LD1/LLNO.ARDataSet1

 Figure 5.23 Nested structure of the AutoRecloser_Relay

ACSI Server

LD1

LLNO LPHD

DataSet

GoCB

DSName: SRDataSet1
DSRef: LD1/LLNO.SRDataSet1
DSMemberRef [0]: LD1/XCBR.Pos.stVal[sv]
DSMemberRef [1]: LD1/XCBR.Mode.stVal[sv]
DSMemberRef [2]: LD1/XSWI1.Pos.stVal[sv]
DSMemberRef [3]: LD1/XSWI1.Mode.stVal[sv]
DSMemberRef [4]: LD1/XSWI8.Pos.stVal[sv]
DSMemberRef [5]: LD1/XSWI8.Mode.stVal[sv]

GoCBName: SRGoCB1
DSRef: LD1/LLNO.SRGoCB1
DatSet: LD1/LLNO.SRDataSet1

XCBR

Pos Mode

stVal stVal

XSWI0 XSWI1

Pos Mode

stVal stVal

. . . . XSWI8

Pos Mode

stVal stVal

Figure 5.24 Nested structure of the Switchgear_Relay

 Chapter 5: Communication Processor Design

 168

The Test_Equipment simulated a short circuit and fed the corresponding current into the

Protection_Relay. On receiving a fault current, the Protection_Relay issued a trip signal

to the Switchgear_Relay indicating that the relay had picked up. When the

Switchgear_Relay received the GOOSE message from the Protection_Relay, it opened

the circuit breaker in response to the GOOSE message. It then sent a GOOSE message,

which contained the status of the circuit breaker and switches, to all other devices.

When the AutoRecloser_Relay received the status (position) of the circuit breaker and

switches, it issued a “re-close” signal to the Switchgear_Relay. The Switchgear_Relay

re-closed the circuit breaker before sending the new status of the circuit breaker and

switches back to all other devices. The event-by-event simulation summary received on

the simulation console is shown in Figure 5.25. Text messages were displayed on the

simulation console as shown in Figure 5.25 for GOOSE subscription and notification

packets as well as GOOSE messages. Each time a new GOOSE message arrived at a

device, the publisher details of that GOOSE message were displayed together with the

response the receiving device took in reply to the GOOSE message.

 Figure 5.25 GOOSE Demo simulation console output

 Chapter 5: Communication Processor Design

 169

GOOSE messages

Figure 5.26 shows the amount of data received at the Switchgear_Relay, which includes

the GOOSE subscription and notification packets as well as the GOOSE messages. The

size of the GOOSE subscription and notification packets was measured as 74 bits

whereas the size of the GOOSE messages was measured as 224 bits.

Figure 5.26 Amount of traffic received at the Switchgear_Relay

As illustrated in Figure 5.26, the Switchgear_Relay received a total number of eight

GOOSE messages shortly after the 5th minute. However, only two of these messages

were the event-driven GOOSE messages. The remaining six were the retransmissions of

the original event-driven GOOSE messages. Hence, three retransmissions took place for

every original event-driven GOOSE message. This was achieved by setting the setting

number (n) of equation (5.1) to four. The delays expected in between the first event-

driven message and the successive retransmissions were calculated as follows:

 Chapter 5: Communication Processor Design

 170

mst

mst

mst

7.10001.0)41(

5.00001.0)41(

2.00001.0)41(

13
3

12
2

11
1

=×+=

=×+=

=×+=

−

−

−

Figure 5.27 shows the application-to-application delay statistic of the GOOSE messages

received at the Switchgear_Relay. The measured delays include the transmission delay

as well as the delays through the protocol stack. For the retransmitted GOOSE

messages, they also include the retransmission waiting times.

Figure 5.27 Application-to-application delays of GOOSE messages received at the
Switchgear_Relay

It can clearly be identified from Figure 5.27 that all measured delays satisfied the 4 ms

maximum delay requirement. Thus, the necessary trade off between the delivery delay

and reliability of GOOSE messages was achieved by repeating the first event-driven

 Chapter 5: Communication Processor Design

 171

GOOSE message a number of times guaranteeing reliability whilst not exceeding 4 ms

delay criteria. As shown in Figure 5.27, although the application-to-application delays

of the repeated GOOSE messages were relatively higher, they still satisfied the 4 ms

delay requirement. To provide more insight into where the time was spent during the

transmission of a GOOSE message from the Protection_Relay to the Switchgear_Relay,

the delay timing breakdown of such a message is provided in Table 5.2.

Table 5.2 Delay timing breakdown of a 28 byte GOOSE message

Component Time (µs)
IEC-MOM overhead of Protection_Relay ≈ 0
IP processing delay of Protection_Relay 3.4
On the wire delay 847
IP processing delay of Switchgear_Relay 3.4
IEC-MOM overhead Switchgear_Relay ≈ 0
Total 854

As illustrated in Table 5.1, the IEC-MOM overhead was negligible in this simulation

case unlike the previous simulation scenario. This is due to the fact that UDP is a

connectionless transport layer protocol and hence the TPAL layer gave an “OPEN”

confirmation to IEC-MOM without any delay. It is also significant to notice that the

total amount of time the GOOSE packet was delayed in the lower layers (UDP/IP) of

the communication processor protocol stack was about 3.4 µs confirming the hypothesis

made earlier in this chapter that this delay is small and will not exterminate the 4 ms

timing determinism.

5.6.3 The Sampled Values Simulation

The Sampled Values simulation was carried out to demonstrate GOOSE messages and

Sample Values (SV) both being concurrently transmitted over the same communication

channel. The objectives were to:

 Chapter 5: Communication Processor Design

 172

1. Verify the implemented SV model (classes/services), and

2. Demonstrate the effectiveness of the designed communication architecture in

the handling and distribution of time critical GOOSE messages and SV

simultaneously.

Figure 5.28 shows the test set-up built for the purpose of this simulation. The simulated

protection and control scenario was precisely same as the “GOOSE Demo” case except

that a new device, the Sensor_Simulation, was configured at the bay level. The

Sensor_Simulation continuously converted the analogue signals it received from the

Test_Equipment into SV and multicast them onto the bus. The Protection_Relay was

registered and subscribed to the Sensor_Simulation’s multicast group; therefore it

continuously received the SV packets sent by the Sensor_Simulation.

Figure 5.28 Sampled Values simulation test set-up

The Protection_Relay detected the short circuit after the 5th SV packet as illustrated in

Figure 5.29 and issued a trip signal to the Switchgear_Relay indicating that the relay

 Chapter 5: Communication Processor Design

 173

had picked up. When the Switchgear_Relay received the GOOSE message from the

Protection_Relay, it opened the circuit breaker in response to the GOOSE message. It

then sent a GOOSE message, which contained the status of the circuit breaker and

switches, back to the Protection_Relay. The remainder of the protection and control

scenario, that is the re-closing of the switches, was not simulated as they were not

directly relevant to the objectives of this simulation case.

Figure 5.29 Sampled Values simulation console output

Figure 5.30 shows the throughput (bits/sec) of the SV data received at the

Protection_Relay. Throughput refers to the amount of data that is received over a period

of time. The throughput statistic was gathered in a mode called the “bucket mode”

where the statistic’s values were grouped and processed over a time interval reducing

the number of samples reported in the statistic over the course of the simulation. In this

simulation case, the time interval also referred to as the width of the bucket was set to a

 Chapter 5: Communication Processor Design

 174

minute. The size of each individual SV packet was measured as 1200 bytes and the

Protection_Relay received a SV packet every second. The Protection_Relay drop link

utilized in this simulation case was 10 BASE-T. Therefore, an appropriate amount of

the Protection_Relay’s drop link was filled with the SV packets. Figure 5.30 also shows

the amount of GOOSE data received at the Protection_Relay as a result of the opening

of the circuit breaker in the Switchgear_Relay. The “GOOSE traffic” statistic was

gathered in the “All Values” mode where measurements of every individual transaction

are displayed instead of the time-oriented processing performed in the bucket-oriented

collection mode. A total number of four GOOSE messages including the first event-

driven GOOSE message and the three retransmissions were received in the

Protection_Relay. The size of the GOOSE messages was recorded as 224 bits.

Figure 5.30 SV traffic throughput (bits/sec) and the amount of GOOSE traffic
received at the Protection_Relay

 Chapter 5: Communication Processor Design

 175

Finally, Figure 5.31 shows the application-to-application (end-to-end) delay statistic of

the GOOSE and SV packets received at the Protection_Relay. As illustrated in Figure

5.31, the application-to-application delay times of the SV packets are steady at 0.85 ms

as well as the end-to-end delay of the first event-driven GOOSE message. As expected,

an increase in the application-to-application delays of the repeated GOOSE messages

was observed that is primarily due to the waiting times in between the retransmissions.

However, as shown in Figure 5.31, all measured delays still satisfied the 4 ms maximum

delay criteria. Thus, the simulations carried out in this simulation case have verified the

implemented SV model and demonstrated that the 4 ms maximum delay requirement

can still be met in the case of GOOSE and SV messages both being simultaneously

transmitted over the same communication channel.

Figure 5.31 Application-to-application delays of GOOSE and SV messages received at
the Protection_Relay

 Chapter 5: Communication Processor Design

 176

Even in cases where the network is much more heavily loaded with the SV data, it will

still be possible to meet the 4 ms delay requirement imposed for the transmission of

GOOSE messages. This is due to the fact that GOOSE messages have been given the

highest priority at every step along the network as a result of the mechanisms employed

in the designed IEC-MOM middleware and through the use of the RSVP protocol. This

ensures that the delivery of GOOSE messages takes place taking the order of traffic into

consideration at every step along the network. Thus, even if an outgoing router port is

busy with transferring larger or more frequent SV data, as soon as a GOOSE message is

received, it will be processed first and forwarded to its destination. Hence, in such

extreme cases, the timing determinism of SV data can be traded off in order to achieve

the timing determinism of more important GOOSE data. After taking all these

measures, the fulfilment of the QoS requirements will merely depend on issues such the

forwarding and processing capacity of the routers and other devices on the network.

5.7 Conclusion

This chapter has presented a communication processor architecture that enables the

configuration of ACSI client and server applications as well as maintaining support for

all the communication models and techniques required for the reliable, fast and efficient

transmission of IEC 61850 related application data. The designed architecture consists

of application layer modules built on top of a middleware architecture running on

protocol stack that incorporates the TCP/UDP-IP network protocols. The ACSI client

and server applications can be configured at the application layer modules making use

of the C++ class and service descriptions of Chapters 3 and 4. The designed application

layers fully collaborate with and assist the underlying IEC-MOM middleware with

 Chapter 5: Communication Processor Design

 177

regards to time-critical multicast data transfer through a range of mechanisms such as

registering, subscription, binding and filtering.

The designed communication middleware does not include any object or service

models. It only integrates various message distribution mechanisms for the transmission

of messages received from the ACSI application layers. It is small, fast and efficient.

The IEC-MOM middleware provides an identical programming model for unicast or

multicast and an identical programming model for sources and sinks thus achieving ease

of programming. Efficiency has been achieved by making sure that the real-time

communications make minimal expenditure of computer resources by using locally

stored information and duplication of messages going to multiple receivers.

The remainder of this chapter evaluated the performance of the communication model

with the help of simulations. The simulations showed that the designed middleware

architecture can be used effectively to provide the necessary communication services to

ACSI clients and servers adding only nominal overhead to the underlying protocol

stack. It was also demonstrated that timely and reliable transmission of GOOSE

messages can be achieved with the aid of a trade-off mechanism that retransmits

GOOSE messages a few times whilst not exterminating the 4 ms timing determinism.

Finally, a more realistic network loading case was examined where an appropriate

amount of the receiving device’s drop link was filled with SV data. The simulations

carried out in the latter case have verified the accurate workings of the GOOSE and SV

models of Chapter 4 and showed that the designed architecture is capable of meeting the

timing determinism and reliability concerns even in the case of GOOSE and SV

messages both being simultaneously transmitted over the same communication channel.

 Chapter 6: Substation Time Synchronisation

 178

Chapter 6

Substation Time Synchronisation

6.1 Introduction

This chapter presents the implementation of the Simple Network Time Protocol (SNTP)

and the incorporation of SNTP client applications into ACSI application layer modules

of Chapter 5. Time Synchronisation (TS) involves harmonising the local clocks of all

the nodes within a network relative to a chosen reference so that sensing and actuation

of time-sensitive data can be coordinated accurately across multiple nodes. The

importance of TS has also been recognised by the IEC 61850 standard, which specifies

the need for TS in substation applications and sets different levels of accuracy

requirements for various protection functions. The TS protocol chosen in this research is

SNTP, a simplified version of the Network Time Protocol (NTP), which is often

regarded as the most accurate and flexible way of clock synchronisation over Ethernet.

This chapter is structured as follows: Section 6.2 gives an overview of Network Time

Synchronisation (NTS) and its importance in substation applications. SNTP is discussed

in detail in Section 6.3 along with its implementation details. Section 6.4 presents how a

stand-alone SNTP server is implemented in a separate communication processor and

discusses how SNTP client applications can be incorporated into the ACSI application

 Chapter 6: Substation Time Synchronisation

 179

layer modules. Section 6.5 provides a number of simulation case studies carried out to

evaluate the TS design whilst conclusions of this chapter are presented in Section 6.6.

6.2 Network Time Synchronisation

NTS is a crucial element of network design and implementation. A time-synchronised

network is vital for the operation of network applications with optimal performance.

The ultimate goal of TS is to bring the local clocks of servers and other instrumentation

in a network into phase so that their time differences will be zero. A typical TS process,

shown in Figure 6.1, may be divided into the following steps:

Time ServerSwitchClient1

Client2

Time request from client to server

Time response from server to client

Figure 6.1 The basic TS process

(1) One of the nodes within the network is chosen as the Time Server (TimeServer)

signifying that all other nodes within the same network need to synchronise their

clocks with the TimeServer’s local clock,

(2) A Time Client (TimeClient) initiates a time request to the TimeServer receiving

the TimeServer’s local clock time within a reply packet,

(3) The TimeClient, then, computes the difference between its own time setting and

the time setting it receives from the TimeServer and uses this difference to

adjust its internal clock bringing it into phase with that of the TimeServer.

 Chapter 6: Substation Time Synchronisation

 180

The accuracy of the TS depends heavily on the TS protocol used as well as the

performance of the underlying hardware. The delays encountered by a TS message from

the moment it is prepared in the TimeServer until it is executed in the TimeClient are

the main sources of TS error. The two most concerning delays are the communication

stack and network transmission delays. NTP [129] is regarded as the most accurate and

flexible means of synchronising clocks over the Internet and across Local Area

Networks (LANs) with an accuracy of a few milliseconds (ms).

TS is critical in sensor networks where applications such as power system protection

and control require collective processing of time-sensitive data. In such applications,

sensing and actuation need to be coordinated across multiple nodes [130]. IEC 61850-5

[131] specifies the need for TS amongst the devices of a SA system. The components of

the TS model, as specified by the IEC 61850 standard, are shown in Figure 6.2.

IEC 61850 Client/
Server

(UTC Synchronised
Time)

IEC 61850 Time
Server

(Master UTC Time)

* externally
synchronised

Time request

Time response

Time synchronisation

Time information
from external source

Figure 6.2 IEC 61850 TS model

The TS model is required to provide synchronised Coordinated Universal Time (UTC)

to all ACSI clients and ACSI servers. All devices within a substation are required to be

time synchronised relative to a TimeServer, which has been externally synchronised to a

reliable time device such as a Global Positioning System (GPS) receiver. Although the

 Chapter 6: Substation Time Synchronisation

 181

general features of a TS model are provided in IEC 61850, no specific descriptions of a

TS protocol are given. Instead, the Simple Network Time Protocol (SNTP) is hinted

out. Whether SNTP or another protocol is chosen, it must meet the requirements

specified in IEC 61850-5. According to IEC 61850-5, different levels of TS accuracy

requirements exist for diverse protection functions. Table 6.1 illustrates how the

different levels of TS accuracy requirements are set in IEC 61850-5 [131].

Table 6.1 IEC Classes T1-T5

IEC Class T1 ±1 ms

IEC Class T2 ± 0.1 ms

IEC Class T3 ± 25 µs

IEC Class T4 ± 4 µs

IEC Class T5 ± 1 µs

In this chapter, the focus is on describing how a fine grained TS function can be

incorporated into the designed communication architecture in order to synchronise

clocks of all devices within a substation network. The objective is to exemplify how the

SNTP TS protocol, with additionally included features, can be sufficient enough to meet

the accuracy requirements in substations by a means of time stamping at the lowest

possible stack layer instead of the application layer. In this phase of this project, the

synchronisation of substation nodes relative to a TimeServer has been looked into

excluding the process of externally synchronising the TimeServer’s local clock relative

to a real-time clock. A possible future inclusion to this part of this research would be the

modelling and implementation of a GPS device to take into account the process of

external synchronisation.

 Chapter 6: Substation Time Synchronisation

 182

6.3 Simple Network Time Protocol

Simple Network Time Protocol (SNTP) is a simplified version of NTP containing only

a subset of the NTP functionality [132]. The need for SNTP arose when a full

implementation of NTP seemed too complicated for many systems leading to the

development of SNTP. SNTP lacks some of the internal algorithms of NTP such as the

advanced filtering techniques used to control variable latency. However, it is still

considered to be adequate in meeting the TS demands of many systems within

acceptable accuracies.

SNTP is designed to produce two end products (variables): clock offset and roundtrip

delay. Another third product, dispersion that is normally not used in SNTP but in NTP,

is also utilised in this project. All of the above end products are calculated relative to a

selected clock reference (TimeServer). Clock offset is the amount of time to adjust the

local clock bringing it into agreement with the reference clock. In other words, it is the

time difference between the two. In addition to the time adjustment, the frequency

deviation (skew) of the local clock relative to the reference clock also needs to be

corrected. Skew can easily be calculated based on the clock offset. Roundtrip delay is

the two-way propagation delay between the TimeClient and TimeServer. Finally,

dispersion is the maximum local clock error relative to the reference clock [129].

6.3.1 SNTP Operation Modes

SNTP can be implemented based on either client/server (unicast) or publish/subscribe

(multicast) modes of operation. In the client/server mode, a TimeClient sends a time

request to a designated TimeServer and waits for a reply by which it can determine the

 Chapter 6: Substation Time Synchronisation

 183

Round-Trip Delay (RTD), Local Clock Offset (LCO) and dispersion relative to the

TimeServer [132, 133]. SNTP uses the NTP message format shown in Figure 6.3.

Figure 6.3 SNTP message format

SNTP uses five different timestamps to represent the time values. Timestamps are 64-

bit unsigned integers representing time values in seconds relative to 0h on 1 January

1900. In addition to timestamps, the SNTP message format also consists of a number of

other fields such as Root Delay and Root Dispersion, which are not to be discussed in

detail in this chapter. More information on the latter can be obtained from [132]. The

descriptions of the timestamps used within the SNTP framework are given below [132]:

• Reference Timestamp: is the time at which the local clock is last set or corrected

in the TimeClient,

• Originate Timestamp (T1): is the time at which the time request leaves the

TimeClient headed to the TimeServer,

• Receive Timestamp (T2): is the time when the time request arrives at the

TimeServer,

• Transit Timestamp (T3): is the time at which the time reply leaves the

TimeServer headed to the TimeClient, and

 Chapter 6: Substation Time Synchronisation

 184

• Destination Timestamp (T4): is the time when the time reply arrives at the

TimeClient.

The sequence of events that take place in a unicast SNTP application is as follows:

a) The T3 field of the time request is set to the time of the day by the TimeClient

according to its own local clock,

b) When the time request arrives at the TimeServer, it copies the T3 field into the

T1 field and further sets T2 and T3 fields according to its own local clock

before forwarding the time reply back to the TimeClient,

c) When the time reply arrives at the TimeClient, it determines the time of its

arrival and sets this time into the T4 field,

d) The client application calculates the RTD (δ), LCO (θ) and dispersion (ε)

according to the following formulae [129]:

RTD = δ = T4-T1-T2+T3 equation (6.1)

LCO = θ = (T2-T1+T3-T4)/ 2 equation (6.2)

 Dispersion = ε = ρ + ϕ(T4 − T1) equation (6.3)

Where T1, T2, T3, and T4 are the timestamp values, ρ is the measurement error, and

ϕ is the maximum skew rate given by the formula:

(6.4)equation
.

EWSNTP.MAXSK
MAXAGESNTP

=ϕ

Where MAXSKEW and MAXAGE are constants denoting the maximum skew error

and maximum clock age respectively. Skew is the frequency difference between the

 Chapter 6: Substation Time Synchronisation

 185

local and reference clocks. Clock age is the duration a reference clock is considered

valid [129]. The client application uses the value of the calculated LCO to advance its

local clock with t + LCO units during the next t time units bringing it into agreement

with that of the TimeServer. The client application can calculate the frequency (f´) it

needs to have using the formula: f´ = f / (1-LCO/T) where f is its current frequency and

T is the synchronisation period [134].

In a publish/subscribe SNTP application, the TimeServer uses a multicast group address

for periodically forwarding time updates. The key disadvantage concerned with the

publish/subscribe mode of operation is the fact that TimeClients can not calculate the

RTD based on equation (6.1) since the received multicast messages only have their T1

and T4 fields set. However, this disadvantage can easily be eliminated if each

TimeClient sends a single dummy unicast packet to the TimeServer at the start-up with

the intention of calculating the RTD. When the dummy unicast packet is received back

from the TimeServer, it will have all the timestamps making it possible to calculate the

RTD. Once the RTD is calculated, the TimeClient only listens and waits for the

multicast time updates. On their arrival, the client applications simply calculate the LCO

and make the necessary adjustments based on equation (6.5).

LO_multicast = (T1-T4) + (RTD/2) equation (6.5)

6.3.2 SNTP Implementation

This section discusses the interface used, which provides the necessary Microsoft

Foundation Classes (MFCs) used to encapsulate SNTP. The interface is a collection of

freeware classes taken from the CSNTPClient project [135], which provides a total

 Chapter 6: Substation Time Synchronisation

 186

number of twelve Object Oriented (OO) structures and classes. Some of the classes are

aimed at implementing the core SNTP structure such as the timestamp structure while

others provide synchronous sockets and packet structures for workstation to workstation

communication. However, only the classes related to the core SNTP structure have been

utilised in this project. Their descriptions are provided below:

1) CNtpTimePacket Structure

The CNtpTimePacket structure is a representation of the SNTP timestamp format,

which consists of an integer and a fraction part each having a 32-bit unsigned fixed-

point number type. The C++ definition of the CNtpTimePacket structure, taken from

[135], can be viewed in Appendix C.

2) CNtpTime Class

The CNtpTime Class is an encapsulation of a time instance of the SNTP protocol

consisting of a 64-bit unsigned integer with the top 32 bits containing the number of

seconds elapsed since 1st January 1900 and the lower 32 bits containing the fraction of

seconds [135]. The C++ definition of the CNtpTime class is listed in Appendix C.

6.3.3 SNTP Filtering

In this section, the use of adaptive filtering techniques to cope with the sources of errors

in TS schemes is explained. The major cause of error in a TS scheme, where Ethernet is

being used as the transfer media, is the non-deterministic structure of the Ethernet. This

non-determinism results in variable message delivery delays. The major sources of TS

error, all stemming from the non-deterministic property, are reviewed below [130, 136]:

 Chapter 6: Substation Time Synchronisation

 187

• Transmit protocol stack delay: is the delay a packet encounters when travelling

from the application layer, where it is assembled, all the way down to MAC

layer. Also referred to as “Send Time”, this delay is highly non-deterministic,

• Receive protocol stack delay: is the time it takes an incoming packet to travel

from MAC layer up till the application layer. Also referred to as “Receive

Time”, this delay is also highly variable, and

• Switch latency: is the time it takes a networking device such as a router to

process a data frame. Switch latency is highly dependent on the architecture of

the networking device and also the network load. The amount of time a packet is

delayed through a switch may vary differently based on the switch load.

Although SNTP does not actually incorporate any filtering mechanisms, the need for

such a mechanism to deal with the variable switch latency was clearly recognised in this

project. Hence, an important feature of NTP, the clock filter procedure was incorporated

into the SNTP implementation.

The NTP clock filter procedure uses the clock offset, roundtrip delay and dispersion

variables as its input arguments. It is executed each time a new NTP message arrives (in

this case SNTP) where a new set of data samples (θ, δ, ε) is calculated and shifted into

the filter at the left end. A shift register consisting of many shift stages is used for the

storing and shifting process. The whole idea of this procedure is to calculate the filtered

clock offset, roundtrip delay and dispersion values updating the dispersion of the

samples previously received and saving the current time. It is based on the computation

of a quantity called the synchronisation distance (λ) from the roundtrip delay and

dispersion making use of the following formulae [129]:

 Chapter 6: Substation Time Synchronisation

 188

(6.6)equation
2

|| δελ +=

All sets of samples contained within the filter are sorted by increasing synchronisation

distance and the set of values with the minimum synchronisation distance is chosen as

the end products that correspond to the filtered clock offset, roundtrip delay and

dispersion. Reference [129] contains an appendix illustrating C-language

implementations of all the various filtering and selection algorithms suggested for NTP.

The C-language code segment for the clock filter procedure is amongst these. Although

full code taken from [129] was utterly tested, it was observed that it ceased to function

in the desired manner until all the filter stages were filled. Although it successfully sorts

the list by increasing λ, it fails to pick the sample set corresponding to the minimum λ in

cases where not all the filter stages are filled. An additional code segment was therefore

added to the original code to solve this problem. Appendix C includes the pseudo-code

that describes the full procedure of the modified NTP clock filter algorithm.

6.4 Implementation of SNTP client and server
applications

In this section, the implementation of SNTP client and server applications is discussed.

SNTP client applications can be integrated into the IEC 61860 related applications

running at the ACSI application layer modules of the communication processor as

shown in Figure 6.4. They share the same connectivity functionalities of the underlying

middleware with the IEC 61850 related applications for interacting across the network.

An ACSI server represents the external visible behaviour of a real device. With regards

to TS, it may also act as a SNTP TimeClient. In any network, there could be as many as

 Chapter 6: Substation Time Synchronisation

 189

SNTP clients. However, hypothetically a single SNTP server is allowed. In this

research, the SNTP server was designed and implemented in a separate communication

processor as a single-application running node as shown in Figure 6.5.

IEC 61850
Server application

SNTP Client
application

Figure 6.4 ACSI server node Figure 6.5 SNTP TimeServer node

6.4.1 Application Layer Process Modelling of a SNTP Client

The State Transition Diagram (STD) of the entire application layer module of an ACSI

server is shown in Figure 6.6. The intact state diagram consists of six states, only two of

which are related to the SNTP application. They are the “Time_Syn” and “Decide”

states. The remaining states are all related to the IEC 61850 associated applications and

SNTP
SERVER

 Chapter 6: Substation Time Synchronisation

 190

have been previously discussed in the preceding chapter while discussing the

communication processor architecture.

Figure 6.6 Application layer process model of an IEC 61850 server node

After the “Init” state, the STD moves into the “Time_Syn” state where the client SNTP

application is configured. The functions performed at the “Time_Syn” state are fairly

uncomplicated. To begin with, a time request packet is generated with the format shown

in Figure 6.3. Next, the packet is initiated with a destination (the IP address of the

TimeServer) and the various fields of the packet such as root delay, root dispersion are

set according to rules described in [132]. Finally, the packet is sent to the lower layer to

be forwarded to its destination.

The underlying IEC-MOM middleware acquires the packet, establishes the connectivity

with the UDP/IP transport layer and forwards the packet to its destination. To

accomplish this task, the middleware module uses the same mechanisms described

earlier in Chapter 5. In circumstances where a SNTP reply packet is received from the

TimeServer, the “Decide” state executes the function “ss_packet_destroy_sntp”, which

performs the following set of operations as described by the flowchart of Figure 6.7. As

illustrated in Figure 6.7, the SNTP client application is capable of supporting both the

 Chapter 6: Substation Time Synchronisation

 191

unicast and multicast modes of operation. In both cases, the necessary timestamps are

acquired and the LCO and skew are calculated to be used in the process of correcting

the local clock relative to the chosen TimeServer.

No Yes

Compute the LCO and skew

START

Is packet
from a

Multicast
SNTP

Server?
Obtain the

Transmit and
Receive

Timestamp values

Obtain all four
timestamp values

Compute the LCO
,RTD and skew

Adjust the local clock using the
values of the LCO and skew

End

Identify the source
of the packet

Figure 6.7 Flowchart description of the ss_packet_destroy_sntp function

Ideally, T3 needs to be set at the application layer before the packet is sent. However,

studies undertaken by [133, 136] have shown that when time stamping is performed at

the application layer, the timing accuracy will heavily suffer from the latency and jitter

imposed by the UDP/IP transport layer. Such a timing accuracy might only satisfy the

IEC Class T1. Therefore, different techniques besides the technique of adaptive filtering

need to be used to be able to meet the harsh timing accuracy requirements imposed by

 Chapter 6: Substation Time Synchronisation

 192

the IEC 61850 standard. In [133, 136], the authors propose three techniques as a

solution:

1) Implementation of the TimeServer in the Ethernet switches,

2) Time stamping at the Ethernet data link/physical level, and

3) Time stamping at the Ethernet driver level.

These techniques originate from the fact that the location on the protocol stack, where

the time stamping of incoming and outgoing packets is performed, has an impact on the

amount of latency and jitter. Sub-section (6.4.3) discusses and compares the above

techniques detailing the approach chosen for implementation.

6.4.2 Application Layer Process Modelling of a SNTP Server

In contradiction to the SNTP client model, the SNTP server is fairly primitive since it is

designed as a single application running node. The STD diagram of the SNTP

TimeServer application layer is shown in Figure 6.8.

Figure 6.8 Application layer process model of an SNTP server node

 Chapter 6: Substation Time Synchronisation

 193

Similar to the SNTP client model, the SNTP server model is also designed to sustain

both of the operation modes. The most important function of the “init” state is to

schedule the frequency, start and end times of the multicast updates with the destination

address of the multicast packet set to the multicast address of “224.0.1.4”. Once the

multicast updates have been scheduled for transmission, STD enters into the

“Time_Syn” state where it stays until the end of the simulation. The “Time_Syn” state

waits for steam interrupts caused by the arrival of SNTP requests. On the arrival of a

SNTP request, the exit executive of the “Time_Syn” state performs the following set of

operations:

1. Obtains a pointer to a packet that has arrived on an input packet stream, and

removes the packet from the stream,

2. Obtains the source details of the received SNTP request,

3. Creates a new reply packet for the node that the request was received from,

4. Gets T3 from its field in the request packet and copies it into the T1 field of the

reply packet, and

5. Sends the reply packet to the lower layer to be forwarded to its destination.

6.4.3 Time Stamping

This sub-section discusses the time stamping techniques before detailing the

implementation of the chosen approach. The need for such techniques has evolved from

the fact that when time stamping is carried out at the application layer, the relative time

accuracy could be in the range of a few milli seconds (ms) much higher than what is

needed by some applications, e.g. IEC class T5 requirement of 1µs.

 Chapter 6: Substation Time Synchronisation

 194

6.4.3.1 Implementation of the Time Server in the Ethernet Switches

References [133, 136] discuss the implementation of TimeServers in Ethernet switches.

It is claimed that when a TimeServer is implemented in an Ethernet switch and time

stamping is performed at the lowest possible stack layer, it becomes possible to achieve

a timing accuracy of better than 1µs. This is promising since when the TimeServer is

implemented in the switch, the switch latency dilemma can be entirely eradicated. The

only drawback is that only one switch can be allowed between a TimeClient and a

TimeServer. Otherwise, TS suffers from increased jitter through the infrastructure.

This approach works perfectly well when all of the TimeClients can be interconnected

to a single TimeServer Ethernet switch. In cases where they are widespread and can not

all be connected to the same switch, the use of several TimeServers becomes necessary.

Nevertheless, the use of multiple TimeServers, all implemented in different Ethernet

switches in the same network, is highly undesirable. The latter inflicts the need for TS

between the TimeServer clocks themselves, which not only adds further load to the

network but also unlikely to provide high TS accuracies. The switch latency problem

will yet again turn out to be a critical issue when the distributed TimeServers try to

synchronise themselves. Although a solution to this problem has been given in reference

[133], it needs further investigation.

6.4.3.2 Time Stamping at the Ethernet Data Link/Physical Level

This, as described by reference [133], involves time stamping in the hardware either in

the Ethernet controller or in a separate Field Programmable Gate Array (FPGA), which

completely removes the latency through the protocol stack. Reference [133] claims that

 Chapter 6: Substation Time Synchronisation

 195

this approach will provide an accuracy of better than 1µs provided that a single direct-

wire is used although no simulation results are provided to support this claim.

6.4.3.3 Time Stamping at the Ethernet Driver Level

This requires time stamping of the T2 and T4 fields in the Ethernet “Receive” routine

and T1 and T3 fields in the Ethernet “Send” routine. Time Stamping at the Ethernet

driver level helps to remove a significant fraction of the stack latency and yields to

much higher TS accuracies. This was the approach chosen in this study primarily due to

its ease of implementation and high suitability. Although reference [133] states that T3

should not be time stamped in the Ethernet Send routine due to the fact that it is already

included in the reply packet coming from the application layer, it has to be disagreed

with that statement. When the application layer of a TimeServer receives a time request

packet, it generates a time reply packet and copies the T3 field of the request packet to

the T1 field of the reply packet. Consequently, the packet arriving at the Ethernet driver

of the TimeServer will have its T1, T2 and T3 fields set. Although set, the value stored

in the T3 field of the reply packet is no longer necessary (already copied to the T1 field)

and can absolutely be re-set it in the Ethernet driver of the TimeServer node.

The remainder of this sub-section discusses the changes made to the standard Media

Access Control (MAC) layer to allow time stamping in that protocol. Figure 6.9 shows

the STD diagram of MAC, which is one of the available modules in the OPNET’s

model library. Several alterations were made to the “ethernet_mac_phys_pk_accept ()”

and “eth_mac_fdx_pks_send ()” routines of the standard MAC layer module to enable

time stamping of the T1, T2, T3 and T4 fields at the Ethernet driver level. The pseudo-

code descriptions of both routines are provided in Appendix C.

 Chapter 6: Substation Time Synchronisation

 196

Figure 6.9 MAC layer STD

6.5 Performance Evaluation of the SNTP Protocol

In this section, a simulation case study is presented to assess the SNTP implementation

described in this chapter. Figure 6.10 shows the switch-based multilevel test set-up

simulated to collect statistics of importance such as round trip delay, local offset and

jitter.

There were two TimeClients in the test set-up, the Switchgear_Relay and the

Protection_Relay. A single node, the Time_Server device, was configured as the

TimeServer. Three switches and four drop-links were present along the path between

the TimeServer and each one of the TimeClients. The utilised switch models represent

3Com’s SuperStack II Switch 9000 Layer-3 chassis with 8 Ethernet ports. The drop

links represent Ethernet connections operating at 100 Mbps. A number of load cases

were investigated as discussed by the following sub-sections.

 Chapter 6: Substation Time Synchronisation

 197

Figure 6.10 Multilevel test set-up

6.5.1 No load case

In this case, the network shown in Figure 6.10 was simulated with no other traffic other

than the TS traffic. The simulation duration was 30 seconds and each one of the

TimeClients was configured for sending time request packets to the TimeServer. Figure

6.11 shows the amount of SNTP traffic received and sent by the Protection_Relay in

bytes per second whilst Figure 6.12 shows the round trip delay and local clock offset

calculated in the Protection_Relay based on the received timestamps.

The round-trip delay was observed to be steady at 0.2 ms and the amount of offset

calculated did not exceed ± 1µs as illustrated in Figure 6.12. As a matter of fact, they all

turned out to be zeros in this no-load case. In a simulation such as this where the

simulation runs on a single operating system, all the nodes in the simulated network

have the same clock. Although they can be manually set to different clocks, this was not

experienced in this study since the main focus was on the timing accuracy.

 Chapter 6: Substation Time Synchronisation

 198

Figure 6.11 Sent and received SNTP traffic

Figure 6.12 Round trip delay and local offset calculated in the Protection_Relay

 Chapter 6: Substation Time Synchronisation

 199

Ideally, all the calculated offset values are anyhow expected to be zeros in such a

simulation since the TimeServer and TimeClients’ clocks are already synchronised.

Therefore, the calculated offset values indicate the effect of the TS errors present in the

system reflecting the TS accuracy of the design. The results were pretty much as

expected pointing out the effectiveness of time stamping at the Ethernet driver level in

removing the effects of transmit and receive protocol stack delays on the TS accuracy.

The switch latency was not a major concern in this simulation case as the amount of

load through the switches was rather low. The main conclusion to derive is that IEC

class T5 timing accuracy of ± 1µs can easily be achieved in a network of 100 Mbps

Ethernet links with no other traffic but TS traffic when time stamping is carried out at

the Ethernet driver level.

6.5.2 5% load case

This simulation case presents a situation when 5 % of the bandwidth of the Time_Server

drop link was filled with dummy packets of 1000 bytes. The Time_Server drop link was

100 BASE-T, therefore the duration of the dummy packet was 1.6 ms. Figure 6.13

shows the round trip delay and local clock offset calculated in the Protection_Relay

based on the received timestamps. The results depicted in Figure 6.13 are significantly

different from the results of the no-load case. To begin with, the round trip delay varies

in between 0.2 and 0.35 ms primarily due to the variable switch latency. Finally, the

calculated local offset varies in between -40 and 50 µs. Although the offset values were

ideally expected to be zeros, they were calculated as non-zero values indicating the

presence of TS errors in the network. Figure 6.14 shows the queuing delay of

transmitter #2 of Switch 5, which is one of the components of the total switch latency.

 Chapter 6: Substation Time Synchronisation

 200

Figure 6.13 Round trip delay and local offset calculated for the 5 % load case

Figure 6.14 Switch 5 queuing delay

 Chapter 6: Substation Time Synchronisation

 201

The switch latency of Ethernet packets to the Time_Server was dependent on other

traffic sent to the Time_Server. This is clearly demonstrated in Figure 6.14, which

illustrates how the queuing delay increased when extra load through the switch was

present. Other components of the switch latency such as the Switch MAC delay were

also affected in a similar manner. Furthermore, having multiple switches on the path

between the TimeClients and TimeServer further imposed additional jitter worsening

the variable message delivery delay times. These sources of errors deteriorated the TS

accuracy as illustrated in Figure 6.13 where it is shown that only the IEC class T2

timing accuracy of ± 0.1ms can be achieved in such a network without the use of any

filtering mechanisms. Hence, the need for the use of filtering mechanisms in eliminating

the effect of variable switch latency was once more comprehended.

Figure 6.15 shows the case where the clock filter procedure was used to deal with the

variable switch latency selecting the set of filtered values corresponding to the

minimum synchronisation distance. It displays both the filtered and un-filtered local

offset values. As illustrated in Figure 6.15, some of the offset values (indicated by the

blue dots) calculated in the Protection_Relay do fall on the 0 µs line (in the vicinity of 0

µs --- ± 0.5 µs) while some others vary in between -40 and 50 µs. On the other hand, the

filtered offset values (indicated by the red dots) that are the end products of the clock

filter procedure all lay on the 0 µs line (± 0.5 µs). This indicates the effectiveness of the

clock filter procedure in choosing the best sample set corresponding to the minimum

synchronisation distance. When the first SNTP message reply arrived at the

Protection_Relay, the time stamps were recorded as T1: 10.000003s, T2: 10.000096s,

T3: 10.000109s and T4: 10.000201s. Subsequently, the first data set sample (θ, δ, ε)

(0.5µ, 0.00211, 1.000200686) was calculated as follows and shifted into the filter.

 Chapter 6: Substation Time Synchronisation

 202

RTD = δ = 10.000201 -10.000003 -10.000096 + 10.000109 = 0.000211s

LCO = θ = (10.000096 -10.000003 +10.000109 -10.000201)/ 2 = 0.5 µs

1.0003061
2

0.000211 61.00020068
2

|| =+=+=
δελ

For all subsequent messages, the new sample sets were also calculated and inserted into

the filter. Nevertheless, the filtered clock offset was always chosen as the clock offset of

the first set, i.e. 0.5µ, as λ calculated from the first set was the lowest. In a much heavily

loaded network, the switch latency problem will unquestionably deteriorate. However, it

shall still be possible to bring the TS accuracy within the acceptable bounds since, as

illustrated by this simulation study, not all the data set samples are affected by the

variable switch latency. Consequently, the main conclusion to derive from this

simulation case is that the IEC class T5 timing accuracy of ± 1µs can be achieved in

medium or heavily loaded networks only with the proper use of the NTP filtering

mechanism employed to eliminate the effect of the variable switch latency.

Figure 6.15 Filtered and un-filtered local offset values

 Chapter 6: Substation Time Synchronisation

 203

6.6 Conclusion

In this chapter, the design and implementation of SNTP client and server applications

and their incorporation into the overall communication architecture has been presented.

The need for TS in substation applications was revealed in Chapter 5 when discussing

the general communication related requirements of the IEC 61850 standard. This

chapter has focused on the concept of TS in further detail proposing the implementation

of a stand-alone IEC 61850 TimeServer and integration of SNTP client applications into

the ACSI application layer modules of Chapter 5. The proposed study has illustrated

how the SNTP TS protocol can be incorporated into the overall design to harmonise the

local clocks of the communicating IEDs within a substation network such that sensing

and actuation of time-sensitive data can be coordinated accurately across multiple

nodes.

The IEC 61850 standard stresses on different levels of TS accuracy requirements,

ranging from 1ms to 1µs, for different protection functions within a substation. This

chapter has demonstrated how the SNTP protocol can be sufficient enough for

achieving all the TS accuracy requirements by a means of time stamping at the MAC

layer and with the use of an adaptive filtering technique. It has been shown that the

protocol stack delays can be diminished by time stamping at the Ethernet driver level

leading to a better TS accuracy. The simulations have also revealed that the class T5

requirement is much harsher and can hardly tolerate any jitter within the infrastructure

as a result of increased switch load. Nevertheless, the use of the NTP adaptive filtering

mechanism to eliminate the effect of jitter has been demonstrated to be sufficient

enough in achieving the class T5 requirement.

Chapter 7: Hardware in the Loop Modelling & Simulation

 204

Chapter 7

Hardware in the Loop Modelling
& Simulation

7.1 Introduction

In this chapter, the methodology of incorporating Commercial off-the Shelf (COTS)

network hardware into the OPNET Modeller for “Hardware in the Loop” modelling and

simulation is described. The discussed methodology simply involves the design and

implementation of unique gateway models in OPNET enabling the OPNET software to

transmit messages to other simulations running on separate machines over a real

network and also to receive messages back from them over the same network. A

preliminary implementation is presented which allows for the testing of an ACSI

request-reply interaction in an application where two nodes exist: An ACSI client, an

ACSI server and client/server interactions between these.

The chapter starts in Section 7.2 with an overview of the “Hardware in the Loop”

methodology. Then in Section 7.3, the design and implementation details of the gateway

modules are discussed while Section 7.4 presents the “Hardware in the Loop”

simulation carried out to validate the designed gateway models and demonstrate the

testing of an ACSI request-reply interaction over a real Ethernet network. The

conclusions of this chapter are given in Section 7.5.

Chapter 7: Hardware in the Loop Modelling & Simulation

 205

7.2 Hardware in the Loop Capability

This chapter presents the design and implementation of a “Hardware in the Loop”

(HITL) capability within the discrete-event modelling package, the OPNET Modeller.

The objective is to develop such a capability that will enable the testing and

performance measurements of various components designed and implemented in this

project over a real network.

The HITL is a real Ethernet network that is interfaced with C language coded process

models designed and implemented in OPNET. The ambition is to run two separate

simulations on two different Personal Computers (PCs) as illustrated in Figure 7.1, e.g.

an ACSI client on one machine and an ACSI server on another, and link them both over

the real Ethernet communication network that exists between the two machines.

Router

Switch

Switch

Firewall

Simulation running on computer A Simulation running on computer B

Figure 7.1 Simulations linked through a real network

Several communication devices such as routers, switches and firewalls might exist in

the path between two PCs (in the simulation loop of the OPNET models) depending on

Chapter 7: Hardware in the Loop Modelling & Simulation

 206

the network architecture. Therefore, it will not be an exaggeration if it is claimed that

several real network devices are being interfaced. However, the internal network

structure is not a major concern in this study since any two or more devices within a

network with IP addresses must be able to communicate amongst each other regardless

of the network architecture.

7.3 Design and Implementation of the HITL Model

The main focus in this section is on describing the design and implementation of the

HITL model. The objective has resulted in the design and implementation of two

process models using OPNET as the software. The first process model has been

implemented in a node as a gateway for ACSI clients while the second as a gateway for

ACSI servers. The designed process models have two main tasks as outlined below:

1. They translate the OPNET packets they receive from other nodes running in

the simulation into IP packets and forward them to the transport layer of the

PC for transmission to the real network, and

2. They translate the IP packets received from the real network into OPNET

packet structures and discrete events transmitting them to their destination

nodes in the simulation.

The possibility of a HITL simulation in OPNET was first recognised after reading the

references [137, 138]. Although the models to be discussed in this chapter use the same

basic theories discussed in references [137, 138], they have been uniquely modelled and

implemented. In references [137, 138], models have been proposed that provide the

capacity of interfacing to a real network through the UDP/IP transport layer. The unique

Chapter 7: Hardware in the Loop Modelling & Simulation

 207

models discussed in this chapter, however, allow interfacing to a real network through

the TCP/IP transport layer. The process models have been implemented in C code based

on the rules set by OPNET’s Application Programming Interface (API). They combine

OPNET’s event-driver mechanism with Windows Winsock mechanisms, an approach

that allows the OPNET models to send/receive information to/from a real network.

7.3.1 The Client Gateway Design and Implementation

The client gateway has been designed and implemented in the node model illustrated in

Figure 7.2. Two modules, shown in Figure 7.2, are of importance for discussion with

respect to the HITL design. They are the “TPAL Interface” and the “Client Network

Interface” modules.

Figure 7.2 Client gateway node model

The “TPAL Interface” module has a functionality much similar to the IEC-MOM. It is

mainly responsible for:

Chapter 7: Hardware in the Loop Modelling & Simulation

 208

1. Receiving OPNET packets from other nodes running in the simulation and

forwarding them to the “Client Network Interface” module, and

2. Receiving OPNET packets from the “Client Network Interface”, establishing a

TPAL connection and forwarding the packet to the TPAL module once it

receives an “OPEN” confirmation.

The “Client Network Interface” module hosts the main process model that interfaces

with the “Hardware in the Loop” communications network and devices. Figure 7.3

shows the STD of this module, which consist of four states and transitions between

them. The actions perform in each state are briefed below:

Figure 7.3 STD of the “Client Network Interface” module

• Init State: In this state, the Winsock mechanism is initialised and a TCP/IP

socket is created connecting client to the socket.

• Wait State: The STD stays in the “Wait” state until a stream interrupt is received

triggered by the arrival of an OPNET packet. The packet will be removed from

the stream and its field accessed to construct the buffer data to be transmitted.

• Send State: “Send” state is responsible for establishing the connectivity with the

TCP protocol of the PC through the use of Windows Winsock Mechanisms.

Figure 7.4 illustrates the step-by-step flow chart diagram of the sending process.

Chapter 7: Hardware in the Loop Modelling & Simulation

 209

• Receive State: Once a request has been sent by the “Send” state, the process

moves into the “Receive” state where it waits for the arrival of the reply packet.

Figure 7.5 illustrates the flow chart diagram of the receiving process.

Initialise temporary variables to be used in the
"Send" state

Fill in the address structure for the destination
server

Write the buffer containing the data to be
transmitted to the transmission queue

TCP removes the data from the transmission
queue, constructs a TCP packet and forwards

it to IP

START

IP creates an IP packet and forwards it to the
Data Link layer and then to the Physical Layer

The resulting packet is transmissted to its
destination

STOP

Figure 7.4 Flowchart diagram of the client’s sending process

Initialise temporary variables to be used in the

"Receive" state Wait for the arrival of the request packet

When the real request packet arives, pull it
from the TCP socket

Extract the fields and attributes of the real
packet

START

Construct a virtual OPNET packet using the
extracted fields and attributes

Send the virtual packet to the underlying
"TPAL Interface" module to be transmitted to

other virtual devices

STOP

Figure 7.5 Flowchart diagram of the client’s receiving process

7.3.2 The Server Gateway Design

The server gateway has been designed and implemented in the node model illustrated in

Figure 7.6. The “Server Network Interface” module is significantly different from the

Chapter 7: Hardware in the Loop Modelling & Simulation

 210

“Client Network Interface” module. Its main difference is that it waits for the arrival of

a request packet from the network rather than initiating the transfer of one.

Figure 7.6 Server gateway node model

Figure 7.7 shows the STD of the “Server Network Interface” which has been

implemented in a processor module. It consists of 3 states and transitions between these.

Figure 7.7 STD of the “Server Network Interface” module

The actions performed in each state are briefed below:

• Init State: In this state, the Winsock mechanism is initialised and a TCP/IP

socket is created binding server to the socket.

Chapter 7: Hardware in the Loop Modelling & Simulation

 211

• Receive State: In this state, the process waits for the arrival of a real request

packet from the network. Figure 7.8 illustrates the step-by-step flow chart

diagram of the server’s receiving process.

• Send State: In this state, the process waits for the arrival of a virtual reply packet

from other virtual nodes in the simulation. Figure 7.9 illustrates the step-by-step

flow chart diagram of the server’s sending process.

Initialise temporary variables to be used in the
"Receive" state

Wait for the arrival of the real request packetWhen the real packet arives, pull it from the
TCP socket

Extract the fields and attributes of the real
packet

START

Construct a virtual OPNET packet using the
extracted fields and attributes

Send the virtual request packet to the
underlying "TPAL Interface" module to be

transmitted to other virtual devices

STOP

Listen on the socket & accept connections

Figure 7.8 Flowchart diagram of the server’s receiving process

Initialise temporary variables to be used in the

"Send" state Wait until the virtual reply packet arrives

Write the buffer containing the data to be
transmitted to the transmission queue

TCP removes the data from the transmission
queue, constructs a TCP packet and forwards

it to IP

START

IP creates an IP packet and forwards it to the
Data Link layer and then to the Physical Layer

The resulting packet is transmissted to its
destination

STOP

Remove the packet from the input stream
extract its fields to be used when constructing
the buffer containing the data to be transmitted

Figure 7.9 Flowchart diagram of the server’s sending process

Chapter 7: Hardware in the Loop Modelling & Simulation

 212

7.4 Hardware in the Loop Simulation

This section mainly discusses the simulation scenario that was carried out to justify the

accurate operation of the designed HITL capability and testing of an ACSI request-reply

interaction over a real Ethernet network. Figure 7.10 shows the test set-up that was used

for this purpose. It shows two different simulation windows running on two different

machines being linked together through the use of the HITL capability. An ACSI client,

the Station_Unit, was configured in a simulation window running on the PC in room

D706 while an ACSI server, the Protection_Relay, was configured in a simulation

window running on another PC in room D704. The Client_Gateway device hosts the

client gateway model and the Server_Gateway device hosts the server gateway model.

OPNET Computer in D706
D706-3

OPNET Computer in D704
D704-5

Packets from D704-5 to D706-3

Packets from D706-3 to D704-5

Figure 7.10 HITL simulation test set-up

Figures 7.11 and 7.12 show the event-by-event simulation summaries received on two

different simulation consoles. A client/server service request was primarily being tested

where the Station_Unit issued a “GetLogicalDeviceDirectory” request to the

Protection_Relay. Once the ACSI request arrived at the Client_Gateway, its information

content was forwarded to the physical network in a real IP packet. The Server_Gateway

Chapter 7: Hardware in the Loop Modelling & Simulation

 213

removed the information from the IP packet on its arrival and constructed a virtual

OPNET packet, which was sent to the Protection_Relay device. When the

Protection_Relay received the ACSI request, it executed the relevant service before

creating an ACSI reply packet, to be forwarded to the Server_Gateway. Similarly, the

Server_Gateway put the ACSI reply data on the network in a real IP packet that was

later picked up by the Client_Gateway and forwarded to the Station_Unit device in a

virtual OPNET packet. Station_Unit displayed the output parameters returned in the

ASCI reply message before destroying the packet.

Figure 7.11 Simulation console output of D704-5 computer

Figure 7.12 Simulation console output of D706-3 computer

The application-to-application delay times for the request and reply packets were

measured to be about 50 ms much higher than what was expected. The large size of the

Chapter 7: Hardware in the Loop Modelling & Simulation

 214

data (800 bytes) that gets transmitted to the real network and especially the fact that two

PCs could not be perfectly time synchronized are believed to be amongst the factors that

have contributed to such large delay times. Once the HITL capability is extended to

include support for the time synchronisation model of Chapter 6 after when the

communicating devices can be better time synchronized, it is believed that much more

accurate delay times will be able to be measured.

7.5 Conclusions

In this chapter, the design and implementation of a “Hardware in the Loop” capability

within the OPNET Modeler software package has been presented. The “Hardware in the

Loop” is a real network component that can be interfaced with the OPNET models

using process models coded in the C language and Windows Winsock mechanisms. The

main objective has been on the design and implementation of gateway models with a

capability of translating OPNET discrete events into IP packets and IP packets into

OPNET discrete events. As a result, several new processor modules were designed and

implemented that has enabled the construction of client and server gateway models.

In this chapter, the performance testing of an ACSI client/server application has been

carried out over a real Ethernet network making use of the newly implemented gateway

models and results have been illustrated to validate the proper function of the gateway

components and the HITL capability. It is possible to extend the HITL capability

described in this chapter with the capability of interfacing to a real network through the

UDP/IP transport layer as well as support for multicast transmission. After then more

detailed simulations can be carried out to further test the implemented IEC 61850

standard over a real network including its data exchange services such as the GOOSE.

Chapter 8: Conclusions and Future Developments

 215

Chapter 8

Conclusions and Future
Developments

8.1 Introduction

This chapter details with the major findings and accomplishments of this work and how

the work has addressed the aims proposed in Chapter 1. Also, it presents the conclusions

that are drawn from the findings as well as the limitations in this work. Future research

options are also outlined in this chapter.

With distributed substation systems becoming increasingly large-scale and dynamic, the

interest on the Substation Automation (SA) concept has increased substantially over the

last decade. The primary objective of SA is to improve operations, maintenance and

efficiencies in the substation environment. The use of effective communication

techniques to link the various control, monitoring and protection elements within a

substation is a critical factor in determining the success of a SA system. The recent

developments of the SA communication standards, i.e. the UCA 2.0 and IEC 61850

standards, are clear indications of the importance of communication in achieving the

goals of SA. UCA 2.0 and IEC 61850 target the standardisation of the language of

communication between the devices of a SA system. Standardisation is regarded as the

key for the advancement of the connectivity and interoperability within such systems.

Chapter 8: Conclusions and Future Developments

 216

Moreover, the need for the further advancement of an open and standard substation

working environment has lead to increased research activity in the communication

techniques and principles employed to make distributed substation systems more robust,

reliable, high-speed and secure.

In this thesis, research on the implementation of the IEC 61850 communication standard

as a concrete application layer protocol has been presented. The thesis has addressed

major challenges and several key issues related to the transformation of IEC 61850 from

an abstract nature into a tangible structure. It was argued that the implementation of IEC

61850 making use of the techniques of Object-Oriented Programming (OOP) is very

valuable in amplifying the understanding of the standard and simplifying its use through

the Object-Oriented (OO) development of its information and information exchange

service models.

The work described in this thesis has also addressed an important issue that highlighted

the significance of having proper middleware support to manage the communication

needs of the IEC 61850 standard in a scalable and efficient way and all without

compromising traditional middleware features. In view of that, a Message-Oriented

Middleware (MOM) architecture as part of a communication processor protocol stack

has been designed and implemented. The designed MOM architecture, the IEC-MOM

middleware, represents a unique stand-alone communication interface to IEC 61850

application layers incorporating various communication models and techniques for

reliable and fast message dissemination.

Major findings of this thesis, results and novel ideas have been reported in related

publications in ‘List of Publications’ section of this thesis. Section 8.2 of this chapter

Chapter 8: Conclusions and Future Developments

 217

presents a general overview of the specific tasks carried out to achieve a successful

completion of this research and describes how the accomplished work has addressed the

aims outlined in Chapter 1. Last of all, Section 8.3 details the future research options

and possible extensions that can be applied to the study described in this thesis.

8.2 Summary

The thesis began in Chapter 2 with an overview of substation automation, integration

and communication concepts. The focus was on describing the desire and the need of

achieving connectivity and interoperability in SA systems through the use of

standardised application and communication protocols. Subsequently, some of the

physical and application layer protocols that have found widespread use in substation

communication systems over the past decade were re-examined and the recently

evolved SA standards, UCA 2.0 and IEC 61850, were introduced to the reader. Various

middleware architectures were also investigated in Chapter 2, which helped to structure

the design space in terms of architecture, components, reliability, speed and services.

One of the primary objectives in this research was the OO implementation of the IEC

61850 Abstract Communication Service Interface (ACSI) Object and Service Models

(OSMs) as concrete programs. Accordingly, in this thesis, Chapters 3 and 4 presented

the development of the IEC 61850 application and device view OSMs describing how

they can be built based on their descriptions in the IEC 61850 documentation. The

research described in Chapters 3 and 4 has further enhanced the understanding of the

IEC 61850 standard by illustrating how the OO models discussed in the standard can as

well be implemented using the techniques of OOP and provided an alternative to the

current implementation approach adopted by IEC 61850 that is the mapping process. A

Chapter 8: Conclusions and Future Developments

 218

standard universal OO implementation of the IEC 61850 standard has been proposed

that makes it possible to fully isolate the standard’s implementation process from any

underlying communication service and remove its dependency on the mapping process

Then, in Chapter 5, the design and implementation of a communication processor

architecture was presented. The designed architecture consists of application layer

modules built on top of a middleware architecture running on protocol stack that

incorporates the TCP/UDP-IP network protocols. The proposed application layer

modules enable the configuration of ACSI client and server applications at the

application layer of a communication processor based on the OO implemented models

of the standard itself rather than the use of the existing implemented models of another

application layer protocol referred to as the mapping process.

Chapter 5 additionally described the layered architecture, components and principles of

the IEC-MOM middleware and an example prototype implementation was given. The

performance of the designed middleware architecture was evaluated in the remainder of

Chapter 5 with the help of broad simulations, which demonstrated the effectiveness of

the designed middleware in incorporating various communication techniques such as

unicast and multicast on a single platform providing a comprehensive communication

service to the IEC 61850 application layer protocol. The simulations showed that the

designed middleware architecture can be used effectively to provide necessary

communication services to ACSI clients and servers adding only nominal overhead to

the underlying protocol stack. It was demonstrated that timely and reliable transmission

of GOOSE messages can be achieved with the aid of a trade-off mechanism that

retransmits GOOSE messages a few times whilst not exterminating the 4 ms timing

Chapter 8: Conclusions and Future Developments

 219

determinism. Finally, a more realistic network loading case was examined where the

accurate workings of the GOOSE and SV models of Chapter 4 were verified and it was

shown that the designed architecture is capable of meeting the timing determinism and

reliability concerns even in the case of GOOSE and SV messages both being

simultaneously transmitted over the same communication channel.

Chapter 6 addressed the design and implementation of SNTP client and server

applications and their incorporation into the communication processor architecture.

SNTP was demonstrated to be adequate in achieving all the Time Synchronisation (TS)

accuracy requirements set by IEC 61850 by a means of time stamping at the MAC layer

and with the use of an adaptive filtering technique. The technique of time stamping at

the Ethernet driver level was shown to be effective in diminishing the protocol stack

delays leading to better TS accuracies. Furthermore, Chapter 6 revealed the prospect of

eliminating the effect of jitter through the use of the NTP adaptive filtering mechanism

in order to achieve the class T5 requirement, which is much harsher and can hardly

tolerate any jitter within the infrastructure as a result of increased switch load

Finally, Chapter 7 presented the design and implementation of a “Hardware in the

Loop” (HITL) capability within the OPNET Modeller software package. The proposed

HITL capability acts as a gateway between the simulation environment and the real

Ethernet network establishing a link between the virtual simulation and the real network

whilst permitting for the testing and evaluation of all the designed components over a

real network. Chapter 7 also described the performance testing of an ACSI request-reply

interaction that was carried out making use of the implemented gateway models and

results were illustrated to validate the designed HITL capability.

Chapter 8: Conclusions and Future Developments

 220

8.3 Future Work

This section discusses the limitations of the work described in this thesis and details the

future research options and possible extensions that can be applied.

While discussing substation TS in Chapter 6, the synchronisation of substation nodes

relative to a TimeServer was looked into excluding the process of externally

synchronising the TimeServer’s local clock relative to a real-time clock. A possible

future extension to this part of this research would be the modelling and implementation

of a real-time clock such as a GPS device to take into account the process of external

synchronisation. Then in Chapter 7, the developed HITL capability was limited to a

client/server model where interfacing to a real network was restricted to the use of the

TCP/IP transport layer. Extending the HITL capability with the capability of interfacing

to a real network through the UDP/IP transport layer as well as support for multicast

transmission and TS are the possible future research options that need to be explored.

The expansion of the HITL capability in the described manner will allow for the

advanced testing of the implemented IEC 61850 communication standard over a real

network including its information exchange service models such as the GOOSE and SV

models. The incorporation of the TS model into the HITL capability will furthermore

make it possible to time synchronise the communicating devices enabling more accurate

statistic gathering.

In the project described in this thesis, no security measures have been considered

whatsoever. Nevertheless, the extension of the overall design and implementation with

security measures in accordance with the security measures described in IEC 62351-6 is

a potential research avenue and any future work to be carried out in this field shall

Chapter 8: Conclusions and Future Developments

 221

reflect on such changes. The remainder of this section covers the consideration of cyber

security in the electric power industry as outlined by the IEC Technical Committee (TC)

57 Working Group (WG) 15.

The use of automated control systems and microprocessor based protection systems in

the electric power industry along with the need to provide remote access into these

systems has increased the risk of these systems being vulnerable to unauthorized hostile

access. The extension of communication networks out to the substation has magnified

the possibility of cyber attacks ranging from espionage to sabotage via electronic

intrusion and computer hacking [139]. However, the electric power industry has long

been aware of this threat and taken the necessary steps to reduce risk and mitigate

vulnerabilities. IEC report 62210 [140] “Data and Communications Security”, a report

developed and circulated throughout the IEC in 1999 and published in 2003, has lead to

the establishment of the IEC WG 15 titled “Power System Control and Associated

Communications - Data and Communications Security” to look across the other

working groups to address end-to-end security recommending or supplying standardized

security enhancements as needed [141, 142]. Securing application-to-application

information exchange through supplying strong authentication, message integrity and

confidentiality (e.g. encryption) enhancements as well as Spoof/Replay protection to the

IEC TC 57 protocols is the main focus of the WG 15.

A new document known as IEC 62351 [143] incorporates many of the new work items

currently under development by IEC TC 57 WG 15. The IEC 62351 document consists

of seven main sections and includes security considerations for profiles including

TCP/IP, MMS, IEC 60870-5 and IEC 61850.

Chapter 8: Conclusions and Future Developments

 222

The fact that many TC 57 communication profiles including IEC 61850 ACSI over

TCP/IP and IEC 60870-5-104 are based on the TCP/IP has resulted in the need for a

common security solution to be investigated for profiles using TCP/IP. IEC 62351-3

specifies the use of Transport Layer Security (TLS) in order to secure IEC TC 57

protocols over the Internet. Likewise, IEC 62351-4 includes security considerations for

profiles that include the MMS. The addition of application-level authentication through

the use of TLS’s authentication measures is the main suggestion.

Security enhancements are also required when implementing and using communication

profiles of IEC 61850 in non-secure environments. The basic design principles are that

secure and non-secure profiles must be able to unambiguously co-exist with a single set

of identity management policies for all profiles using mainstream IT methodologies.

The main security objective is to prevent eavesdropping and spoofing/playback of

captured data from non-trusted entities as well as assuring authorized access even within

a closed private network. Security for five IEC 61850 profiles: Client/Server, GOOSE,

GSSE, GSSE management and Sample Measured values (SMV) have been developed

and packaged into IEC 62351-6. TLS encryption is used for Client/Server profiles

where the data is encrypted so that only the two communicating entities can understand

the data. For the peer-to-peer multicast profiles such as GOOSE, encryption is not

acceptable since it affects the strict transmission rates required for multicast datagrams.

Hence, authentication is the only security measure included for those where digital

signatures are used ensuring that the entity at the other end is known and trusted [144,

145].

References

 223

References

[1] IDC Technologies Website, “Practical Distribution & Substation Automation for

Electrical Power Systems (EU),” Web Doc., viewed November 2005. [Online].

Available: http://www.idc-online.com/training courses/electrical engineering/?code=E

U&country=United+Kingdom

[2] Kreiss Johnson Technologies Website, “Solutions: Value Events Drive Profitable

Action,” Web Doc., viewed May 2005. [Online]. Available: http://www.idc-onl

ine.com/training_courses/electrical_engineering/?code=EU&country=United+Kingdom

[3] PSE Incorporation Website, “Substation Automation and Integration,” Web Doc.,

viewed July 2005. [Online]. Available: http://www.powersystem.org/services/utilityaut

omation/substationautomation/substationautomation.aspx

[4] C. Strauss, “Practical Electrical Network Automation and Communication Systems,”

ISBN: 0750658010, Ed. Great Britain: Newnes, 2003.

[5] IEC 61850 Website, “IEC 61850 Communication Networks and Systems in

Substations,” Web Doc., viewed May 05. [Online]. Available: http://www.61850.com/

[6] ObjectWeb Consortium Website, “What is Middleware,” Web Doc., viewed June

2005. [Online]. Available: http://66.102.7.104/search?q=cache:pfkohQJSB7oJ:mIddle

ware.objectweb.org/+%22middleware+is%22&hl=en

[7] Q. H. Mahmoud, “Middleware for Communications,” ISBN: 0470862068, Ed.

England: John Wiley and Sons, 2004.

[8] Power Measurement Ltd., “Application Note: Integrated Substation Automation

using an EEM System,” ION White Paper, Canada, February 2004. [Online]. Available:

http://www.pwrm.com/library/literature/application_notes/Substation_Auto mation.pdf

http://www.idc-online.com/training courses/electrical
http://www.powersystem.org/service
http://www/
http://66.102.7.104/search?q=cache:pfkohQJSB7oJ:mId
http://www.pwrm.com/library/literature/application_notes/Substation_Auto mation

References

 224

[9] EPRI, “Utility Communications Architecture (UCA),” Version 2.0, EPRI Standard

TP-114398, October 1999.

[10] IEC-TC 57, “Communication networks and systems in substations - Part 1:

Introduction and overview,” IEC Standard IEC/TR 61850-1, Edition 1.0, 2003.

[11] D. Baigent, M. Adamiak, and R. Mackiewicz, “IEC 61850 Communication

Networks and Systems in Substations: An Overview for Users,” Web Doc., SISCO

Systems, 2003, viewed June 2005. [Online]. Available: www.sisconet.Com/downloads/

IPSEP%202004%20IEC%2061850%20Overview%20for%20Users.ppt

[12] M. Bartoll, “Control and Automation of Electricity Transmission and Distribution,”

Department of Computer Science, Mälardalen University, Västerås, Sweden, September

2004.

[13] P. R. Pietzuch, “Hermes: A Scalable Event-Based Middleware,” PhD Thesis, ISSN

1476-2986, Queens' College, University of Cambridge, 2004.

[14] M. Ostertag, G. Hilpert and T. Kern, “Article: The Standard Route to Ethernet-

Based Substation Automation,” The Industrial Ethernet Book, Issue 15, pp. 34, June

2003.

[15] E. Udren, S. Kunsman and D. J. Dolezilek, “Significant Substation Communication

Standardization Developments,” Schweitzer Engineering Laboratories (SEL), Pullman,

Washington, 2000. [Online]. Available: http://www.Selinc.com/techpprs/ 6105.pdf

[16] K. C. Behrendt and M. J. Dood, “Substation Relay Data and Communications,”

SEL, Pullman, Washington, 2000. [Online]. Available: http://www.selinc.com

[17] D. J. Dolezilek, and D. A. Klas, “Using Information from Relays to Improve

Protection,” Schweitzer Engineering Laboratories (SEL), Pullman, Washington, pp.1-7,

1999. [Online]. Available: http://www.selinc.com/techpprs/6080.pdf

[18] D. J. Dolezilek, “Understanding, Predicting and Enhancing the Power System

through Equipment Monitoring and Analysis,” SEL, Pullman, Washington, pp.1-6,

1998. [Online]. Available: http://www.selinc.com/techpprs/6104.pdf

http://www.sisconet.com/downloads/ IPSEP 2004
http://www.sisconet.com/downloads/ IPSEP 2004
http://www.selinc.com/techpprs/
http://www.selinc.com/
http://www.selinc.com/techpprs/

References

 225

[19] D. J. Dolezilek, “Power System Automation,” SEL, Pullman, Washington, 2000.

[Online]. Available: http://www.selinc.com/t echpprs/6091.pdf

[20] P. R. Elkin, S. L. Dean, and W. M. Sawyer, “Substation Automation and

Integration from Relays to Desktops,” In Proceedings of the 2000 Second Annual

Western Power Delivery Automation Conference, pp. 4-12, 2000.

[21] M. Adamiak and M. Redfern, “Communication Systems for Protective Relaying,”

IEEE Computer Applications in Power, Vol.3, No: 3, pp. 14-22, July 1998.

[22] D. J. Dolezilek, “Choosing Between Communications Processors, RTUs and PLCs

as Substation Automation Controllers,” SEL, Pullman, Washington, October 2000.

[Online]. Available: http://www.selinc.com/techpprs/6112.p df

[23] A. P. Apostolov, “Configuration Requirements for UCA based IEDs for Protection

and Control,” CIGRE 2001 SC 34 Colloquium, Sibiu, Sept. 2001.

[24] M. Adamiak, R. Patterson and J. Melcher, “Inter and Intra Substation

Communications: Requirements and Solutions,” GE protection and Control, Malvern,

PA, Tech. Ref. APC_951, November 1998. [Online]. Available: http://www.geindustri

al .com/pm/notes/apc951.pdf

[25] K. Schwarz, “IEEE UCA and IEC 61850 Applied in Digital Substations,” Schwarz

Consulting Company, Karlsruhe, Germany. [Online]. Available: http://www.nettedauto

mation.com/standardization/IEC_TC57/WG10_12/index.html

[26] A. P. Apostolov, “Application of High-Speed Peer-to-Peer Communications for

Protection and Control,” ALSTOM T&D Protection & Control, CA, January 2002.

[Online]. Available: http://www.tde.alstom.com/p-c/ftp/docs/papers/CIG RE34AA.pdf.

[27] M. C. Janssen and C. G. A Koreman, “Substation Components Plug and Play

Instead of Plug and Pray: The impact of IEC 61850,” Kema T&D Power, Netherlands.

[28] R. Lai and A. Jirachiefpattana, “Communication Protocol Specification and

Verification,” ISBN: 0792382846, Ed. USA: Kluwer Academic Publisher, 1998.

http://www.selinc.com/t echpprs/6091
http://www.selinc.com/techpprs/6112.p
http://www.tde.alstom.com/p-c/ftp/docs/papers/CIG

References

 226

[29] F. F. Driscoll, “Data Communications,” International Ed., Ed. Florida: Harcourt

Brace Jovanovich Publishers, pp. 233-235, 1992.

[30] G. J. Holzmann, “Design and Validation of Computer Protocols,” 2nd ed., Ed. New

Jersey: Prentice Hall, pp. 27-30, 1991.

[31] G. Held, “Ethernet Networks: Design, Implementation, Operation, Management,”

ISBN: 0470844760, 4th ed., Ed. Great Britain: John Wiley & Sons, pp. 51-59, 2002.

[32] C. E. Spurgeon, “Ethernet: The Definitive Guide,” ISBN: 1565926609, Ed. USA:

O”Reilly, pp. 1-22, February 2000.

[33] IEEE, “Information technology -- Telecommunications and information exchange

between systems -- Local and metropolitan area networks -- Specific requirements --

Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access

method and physical layer specifications,” IEEE 802.3/ISO 8802-3, March 2002.

[34] D. Woodward, “The Hows and Whys of Ethernet Networks in Substations,”

Schweitzer Engineering Laboratories, Pullman, Washington, 2001. [Online] Available:

http://www.selinc.com/techpprs/6115.pdf.

[35] R. Haden, “Ethernet Basics,” Web Doc., CommsPlace Directory, viewed 02 June

2005. [Online]. Available: http://www.commsplace.com/Knowledge/ITcs/html/tutorial

s/applications/ethernet_basics.htm

[36] B. A. Forouzan, “TCP/IP Protocol Suite,” ISBN: 0072460601, 2nd ed., Ed. New

York: McGraw-Hill Professional, pp. 19-47, 2003.

[37] G. R. Wright and W. R. Stevens, “The Protocols: TCP/IP Illustrated,” ISBN

020163354X, Vol. 1, Ed. Boston: Addison-Wesley Professional, pp. 33-53, 1995.

[38] G. Fairhurst, “The Internet Protocol (IP),” Web Doc., Department of Electrical

Engineering, University of Aberdeen, UK, 2001, viewed June 2005. [Online].

Available: http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/ip.html

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Gilbert Held/103-1997157-0788643
http://www.selinc.com/techpprs/6115.pdf
http://www.commsplace.com/Knowledge/ITcs/html/tutorial s/
http://www.commsplace.com/Knowledge/ITcs/html/tutorial s/
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Behrouz A Forouzan/102-8385277-2929716
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=W. Richard Stevens/102-8385277-2929716

References

 227

[39] Apple Computer Inc., “Inside Macintosh: Networking With Open Transport/Part 1

- Open Transport Essentials: Chapter 11 - TCP/IP Services,” Version 1.3, Web Doc.,

15 January 1998, viewed January 2005. [Online]. Available: http://developer.apple.com

/documentation/mac/NetworkingOT/NetworkingWOT-52.ht ml

[40] D. E. Comer, “Internetworking with TCP/IP: Principles, Protocols, and

Architecture,” Vol. 1, 4th edition, Ed. Prentice Hall, 1988.

[41] J. Postel, “User Datagram Protocol,” RFC-768, USC/Information Sciences

Institute, August 1980.

[42] G. N. Ericsson, “Classification of Power Systems Communications Needs and

Requirements: Experiences from Case Studies at Swedish National Grid,” IEEE Trans.

On Power Delivery, Vol.17, and No: 2, pp. 345-346, April 2002

[43] D. Pofoud, “UCA and IEC61850 for Dummies,” Presented at the 2002

DistribuTECH Conference, Florida, USA, 2002. [Online]. Available: http://www.netted

automation.com/news

[44] K. Schwarz, “Seamless Real-Time Information Integration Across the Utility

Enterprise to Reduce Costs,” Presented at the PowerGen Asia, Schwarz Consulting

Company, SCC, Karlsruhe, Germany. [Online]. Available: http://nettedautomation.com/

download /PowerGenAsia_2000_06_20.PDF

[45] CIGRE Study Committee B5, “The automation of new and existing substations:

why and how,” Final report, CIGRE, Paris, France, November 2002.

[46] IEEE, “IEEE-SA Technical Report on Utility Communications Architecture

(UCA),” Version 2.0, Vol. 1, IEEE Standard IEEE-SA TR 1550-1999, USA, 1999.

[47] F. Steinhauser and M. Gupta, “Communication Technology in Substations - Actual

Developments from the View of Testing,” Omicron Electronic GmbH, Austria, 2001.

[Online]. Available: http://www.omicron.at/support/techart/appnotes/pdf/2001CommS

ubstationsLr S.pdf

http://developer.apple.com/documentation/mac/NetworkingOT/NetworkingWOT-4.html
http://developer.apple.com/documentation/macos8/mac8.html
http://developer.apple.com/documentation/mac/NetworkingOT/NetworkingWOT-2.html
http://developer.apple.com/documentation/mac/NetworkingOT/NetworkingWOT-10.html
http://developer.apple.com/documentation/mac/NetworkingOT/NetworkingWOT-10.html
http://developer.apple.com/documentation/mac/NetworkingOT/NetworkingWOT-51.html
http://www.netted/
http://nettedautomation.com/
http://www.omicron.at/support/techart/appnotes/pdf/2001CommS u
http://www.omicron.at/support/techart/appnotes/pdf/2001CommS u

References

 228

[48] C. W. Newton, “Communications Infrastructure and Substation Automation

Communications Planning Issues,” In Proceedings of the 2000 Power Engineering

Society Summer Meeting, Tech. Ref. 00CH37134, 2000.

[49] O. Preiss and A. Wegmann, “Towards a Composition Model Problem Based on

IEC 61850,” Journal of Systems and Software, ISSN: 0164-1212, Vol.65, Issue 3, pp.

227-236, March 2003.

[50] F. Plasil and M. Stahl, “An Architectural view of distributed objects and

components in CORBA, Java RMI, and COM/DCOM,” In. Software Concepts & Tools,

Vol.19, No.1, 1998.

[51] Oracle Corporation, “Oracle’s Solutions for the Distributed Environment,” An

Oracle White Paper, pp.5, 2000. [Online]. Available: http://www.oracle.com/technolog

y/products/oracle9i/pdf/oowberlin.pdf

[52] D. Caromel and L. Henrio, “A Theory of Distributed Objects,” ISBN: 3-540-

20866-6, Ed. Springer, 2005.

[53] W. Emmerich, “Engineering Distributed Objects,” ISBN: 0-471-98657-7, Ed. New

York: John Wiley & Sons, January 2003.

[54] D. K. Holstein, “Communication Architectures for Substation Automation,” OPUS

Publishing, September 1999. [Online]. Available: http://www.opusss.com/Communi

cationArchitectures.htm

[55] S. Schneider and G. Pardo-Castellote, “Can Ethernet be Real-Time,” Real-Time

Innovations, 1999. [Online] Available: http://www.rti.com/products/ndds/literatur e.htm

[56] R. J. Chevance, “Server Architectures: Multiprocessors, Clusters, Parallel Systems,

Web Servers, Storage Solutions,” ISNB: 1-55558-333-4, Ed. Elsevier Digital Press, pp.

196-199, 2004.

[57] P. E. Renaud, “Introduction to Client/Server Systems: A Practical Guide for

Systems Professionals,” Ed. New York: John Wiley & Sons, pp. 3-9, 2000.

http://www.oracle.com/technolog y/
http://www.oracle.com/technolog y/
http://www.opusss.com/Communi cationArchitectures.htm
http://www.opusss.com/Communi cationArchitectures.htm
http://www.rti.com/products/ndds/literatur e
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Paul E. Renaud/103-1997157-0788643

References

 229

[58] P. T. Eugster, P. A. Felber, R. Guerraoui and A. M. Kermarrec, “The Many Faces

of Publish/Subscribe,” In ACM Computing Survey, 2003.

[59] R. Laddad, G. Pardo-Castellote and S. Schneider, “A Question of Architectural.

Networking Data Distribution,” pp. 62, 2001. [Online]. Available: www.isa.org/isaol

p/journals/pdf/intech/20010660.pdf

[60] Object Management Group, “Real-Time CORBA Specification,” Version 1.1,

OMG, August 2002.

[61] Object Management Group, “The Common Object Request Broker Architecture:

Core Specification,” Revision 3.0 Specification, OMG, December 2002.

[62] S. M. Sadjadi, “A Survey of Adaptive Middleware. A Survey for Ph.D. Qualifier

Exam,” Software Engineering and Network Systems Laboratory, Department of

Computer Science and Engineering, Michigan State University, pp. 4-5, 2003.

[63] D. Curtis, “What is CORBA? - The Common ORB architecture,” Web document,

Platform Technology Object Management Group, 1998, viewed June 2005. [Online].

Available: http://www.cs.unc.edu/Courses/wwwp-ers/roussel/corba/corba.htm

[64] S. R. Gopalan, “A Detailed Comparison of CORBA, DCOM, and Java/RMI,”

OMG Whitepaper, 1998. [Online]. Available: http://my.execpc.com/~gopalan/misc/co

mpare.html

[65] M Henning and S. Vinoski, “Advanced CORBA Programming with C++,” Ed.

Boston: Addison Wesley, 2000.

[66] Object Management Group, “Naming Service Specification,” Version 3.0, OMG,

October 2002. December 2004. [Online]. Available: http://www.omg.org/cgi-bin/doc?

formal/04-10-03

[67] Object Management Group, “Event Service Specification,” Version 1.2, OMG,

October 2002. December 2004. [Online]. Available: http://www.omg.org/cgi-bin/doc?

formal/2004-10-02

http://www.isa.org/isaol p/jo
http://www.isa.org/isaol p/jo
http://my.execpc.com/~gopalan/misc/co m
http://my.execpc.com/~gopalan/misc/co m
http://www.omg.org/cgi-bin/doc
http://www.omg.org/cgi-bin/doc

References

 230

[68] CORBA Comparison Project Web site, “Distributed Systems Group,” Charles

University, Prague, Czech Republic. [Online]. Available: http://nenya.ms.mff.cuni.cz

/projects.phtml?p=cbench&q=3

[69] R. Sanz, I. Gonzalez, M. Segarra, R. Tagliarini, L. Gomes, G. Hernandez and A.

Zangrilli, “CORBA-Based Interoperation in Substation Automation Systems,”

Presented at the 15th Triennial World Congress, Barcelona, Spain, 2002.

[70] R. Sanz, J. A. Clavijo, M. Segarra, A. Antonio and M. Alonso, “CORBA-Based

Substation Automation Systems,” In Proceedings of the 2001 IEEE International

Conference on Control Applications, September 5-7, 2001, Mexico City, Mexico.

[71] Systems Integration Specialists Company, “Overview and Introduction to the

Manufacturing Message Specification (MMS),” Revision 2, SISCO, Sterling Heights,

MI, USA, 1995.

[72] K. Schwarz, “Introduction to the Manufacturing Message Specification (MMS,

ISO/IEC 9506),” Web Document, Netted Automation, 2000, viewed June 2005.

[Online]. Available: http://www.nettedautomation.com/standardization/ISO/TC184/SC

5/WG2/mms_intro/

[73] R. Mackiewicz, “An Overview to the Manufacturing Message Specification,” Web

Doc., Engineering Research Center for Advanced Control & Instrumentation, Seoul

National University, Korea, 1994, viewed June 2005. [Online]. Available: http://erc-aci

.snu.ac.kr/mms/mms_IntroSISCO.html

[74] H. Falk and J. Robbins, “An Explanation of the architecture of the MMS

Standard,” SISCO and Cycle Software Inc., 1995. [Online]Available: http://www.SIsco

net.com/downloads/mmsarch.pdf

[75] EPRI, “Utility Communications Architecture (UCATM) Version 2.0 Part 3: Part 3:

Common Applications Services Model (CASM) and Mapping to MMS,” Edition 1.0,

Electric Power Research Institute Standard TP-114398, 1999.

http://nenya.ms.mff.cuni.cz/
http://www.nettedautomation.com/standardization/
http://www/

References

 231

[76] IEC-TC 57, “Communication networks and systems in substations - Part 8-1:

Specific Communication Service Mapping (SCSM) - Mappings to MMS (ISO 9506-1

and ISO 9506-2) and to ISO/IEC 8802-3,” Edition 1.0, IEC Standard IEC/TR 61850-1,

2004.

[77] M Adamiak, D Baigent, R Moore, B Kasztenny and J Mazereeuw, “Design of a

Protection Relay Incorporating UCA2/MMS Communications,” GE Power

Management, Ontario, Canada, 2001.

[78] M Adamiak and D Baigent, “Design and Interoperability Testing of a network IED:

A Manufacturer’s Perspective,” GE Power Management, Canada, 2001. [Online].

Available: http://www.geindustrial.com/industrialsystems/pm/notes/netwkIed .pdf

[79] G. Brunello and B. Kasztenny, “An Application of a Protective Relaying Scheme

using the UCA/MMS Standard,” GE Power Management, Ontario Canada, 2000.

[Online]. Available: http://pm.geindustrial.com/FAQ/Documents/B30/GER-4007.pdf

[80] E. W. Gunther, “A Practical Application of the IEC61850 Communication

Standard,” EnerNex Corporation, Tennessee, USA, 2001. [Online]. Available: http://w

ww.enernex.com/staff/docs/dtech2004Paper.pdf

[81] TC-57, “Communication networks and systems in substations – Part 1:

Introduction and Overview,” IEC Standard IEC 61850-1, Geneva, Switzerland, 2003.

[82] A. Apostolov, C. Brunner and K. Clinard, “Use of IEC 61850 object models for

power system quality/security data exchange,” CIGRE/IEEE PES International

Symposium, pp. 155 – 164, 8-10 October 2003.

[83] A. Apostolov, “Object Models for Power Quality Monitoring in UCA 2.0 and IEC

61850,” DistribuTech, February 4-6 2003, Las Vegas, NV.

[84] TC-57, “Communication networks and systems in substations – Part 7-1: Basic

communication structure for substation and feeder equipment – Principles and models,”

IEC Standard IEC 61850-7-1, Geneva, Switzerland, 2003.

http://www.geindustrial.com/industrialsystems/pm/notes/

References

 232

[85] TC-57, “Communication networks and systems in substations – Part 7-2: Basic

communication structure for substation and feeder equipment – Abstract

Communication Service Interface (ACSI),” IEC Standard IEC 61850-7-2, Geneva,

Switzerland, 2003.

[86] TC-57, “Communication networks and systems in substations – Part 7-3: Basic

communication structure for substation and feeder equipment – Common data classes,”

IEC Standard IEC 61850-7-3, Geneva, Switzerland, 2003.

[87] TC-57, “Communication networks and systems in substations – Part 7-4: Basic

communication structure for substation and feeder equipment – Compatible logical node

classes and data classes,” IEC Standard IEC 61850-7-4, Geneva, Switzerland, 2003.

[88] S. Cook and J. Daniels, “Designing object systems: object-oriented modelling with

Syntropy,” ISBN: 0132038609, Ed. New York: Prentice Hall, 1994.

[89] B. Selic, G. Gullekson and P. T. Ward, “Real-time object-oriented modelling,”

ISBN: 0471599174, Ed. New York: Wiley & Sons, 1994.

[90] O. Preiss, A. Wegmannn, “Towards a composition problem based on IEC 61850,”

In Journal of Systems and Software, Vol. 65/3, Elsevier Science, pp. 227-236, 2003.

[91] T. Kostic, O. Preiss and C. Frei, “Towards the formal integration of two upcoming

standards: IEC 61970 and IEC 61850,” In Proceedings of the 2003 LESCOPE

Conference, Montreal, pp. 24-29, May 7-9 2003.

[92] T. Kostic, O. Preiss and C. Frei, “Understanding and Using the IEC 61850: A Case

for Meta-Modelling,” In Computer Standards & Interfaces, Vol. 27, Issue 6, pp. 679-

695, June 2005.

[93] C. Larman, “Applying UML and patterns: an introduction to object-oriented

analysis and design and iterative development,” ISBN: 0131489062, Ed. N.J: Prentice

Hall, 2005.

References

 233

[94] S. R. Schach, “An introduction to object-oriented systems analysis and design with

UML and the unified process,” ISBN: 0072826460, Ed. Boston: McGraw-Hill/Irwin,

2004.

[95] H. Eriksson and M. Penker, “UML toolkit,” ISBN: 0471191612, Ed. New York:

Wiley & Sons, 1998.

[96] B. Chandra, “Object-oriented programming using C++,” ISBN: 084932419X, Ed.

New Delhi: Narosa Publishing House, 2002.

[97] W. Savitch, “Absolute Java,” ISBN: 0321205677, Ed. Boston: Pearson/Addison

Wesley, 2004.

[98] B. Burd, “Beginning programming with Java for dummies,” ISBN: 0764588745,

Ed. New York: Wiley & Sons, 2005.

[99] W. Savitch, “Absolute C++,” ISBN: 0321330234, Ed. Boston: Pearson/Addison

Wesley, 2005.

[100] M. S. Sandberg, “Developing C++ applications with UML,” ISBN: 047138304x,

Ed. New York: Wiley & Sons, 2000.

[101] S. D. Gilbert and B. McCarty, “Visual C++ 6 programming blue book,” ISBN:

1576103242, Ed. New York: Coriolis Group Books, 1999.

[102] T. Quatrani, “Visual modelling with Rational Rose 2002 and UML,” ISBN:

0201729326, Ed. Boston: Addison-Wesley, 2003.

[103] M. H. Boillot, G. M. Gleason and L. W. Horn, “Essentials of flowcharting,”

ISBN: 069708129X, Ed. Iowa: W. C. Brown Co., 1979.

[104] K. Schwarz, “Standard IEC 61850 for Substation Automation and Other Power

System Applications,” Presented at the Power Systems and Communications

Infrastructures for the Future, Beijing, China, September 2002. [Online]. Available:

http://www.crisinst.com/publications/beijing_2002/sessions/Full%20Papers/SessionVII

I/crisp rVIII3.pdf

References

 234

[105] Electricity Innovation Institute, “Utility Communications Architecture® (UCA)

Object Models for Distributed Energy Resources (UCA-DER),” E2I, version for IEC

TC 57, October 23, 2003. [Online]. Available: http://www.epri-intelligrid.com/intelligri

d/docs/Draft_UCA-DER_Object_Models_ver_IEC.pdf

[106] F. Olken, H.A. Jacobsen and C. McParland, “Middleware Requirements for

Remote Monitoring and Control”, In OMG-DARPA-MCC Workshop on Compositional

Software Architectures 98. [Online]. Available: http://www.objs.com/workshops/ws98

01/papers/paper097.html

[107] G. Banavar, T. Deepak Chandra, R. E. Strom and D. C. Sturman, “A Case for

Message Oriented Middleware,” In Proceedings of the 13th International Symposium

on Distributed Computing (DISC'99), Vol. 1693 of LNCS, pages 1-18, September 1999.

[108] C. Vondrak, “Message-Oriented Middleware,” Carnigie Mellon Software

Engineering Institute, 1997. [Online]. Available: http://www.sei.cmu.edu/str/descript

ions/momt_body.html

[109] M. C. Steyn, “An Implementation of a Real-Time Message-Orientated

Middleware,” C2 I2 Systems Ltd, Cape Town, 1999. [Online]. Available: http://armsde

al-vpo.co.za/rnd/ims02.pdf

[110] A. Dickman, “Designing Applications with MSMQ: Message Queuing for

Developers,” ISBN: 0201325810, Ed. Boston: Addison-Wesley Professional, 1998.

[111] C. Vondrak, “Remote Procedure Call,” Carnigie Mellon Software Engineering

Institute, 1997. [Online]. Available: http://www.sei.cmu.edu/str/descriptions/rpc_body.

html

[112] Y. Gidron, L. Kozakov and U. Shani, “An RPC-Based Methodology for

Client/Server Application Development in C++,” In Proceedings of the 8th Israeli

Conference on Computer-Based Systems and Software Engineering, pp 39-47, June 18-

19, 1997. [Online]. Available: http://www.sei.cmu.edu/str/descriptions/rpc_body.html

http://www.epri-intelligrid.com/intelligri d/
http://www.epri-intelligrid.com/intelligri d/
http://www.eecg.toronto.edu/~jacobsen/papers/ca.html
http://www.eecg.toronto.edu/~jacobsen/papers/ca.html
http://www.objs.com/workshops/ws98 01/papers/paper097.html
http://www.objs.com/workshops/ws98 01/papers/paper097.html
http://www.sei.cmu.edu/str/descript ions/momt_body.html
http://www.sei.cmu.edu/str/descript ions/momt_body.html
http://armsdeal-vpo.co.za/rnd/ims02.pdf
http://armsdeal-vpo.co.za/rnd/ims02.pdf
http://www.sei.cmu.edu/str/descriptions/rpc_body

References

 235

[113] C. Ozansoy, A. Zayegh and A. Kalam, “Modelling and Simulations of CORBA

Invocations Using OPNET Modeller”, In Proceedings of the 5th Jordanian International

Electrical & Electronics Conference, October 2003, Amman, Jordan, pp. 227-231.

[114] C. Ozansoy, A. Zayegh and A. Kalam, “Modelling of a Network Data Delivery

Service Middleware for Substation Communication Systems using OPNET,” In

Proceedings of the AUPEC'03 Conference, Christchurch, New Zealand, 28 September -

1 October, Paper No: 91.

[115] J. Tang, W. Tong, J. Ding and L. Cai, “MOM-G: Message-Oriented Middleware

on Grid Environment Based on OGSA,” In Proceedings of the 2003 International

Conference on Computer Networks and Mobile Computing (ICCNMC'03).

Shanghai, China, p. 424, 2003.

[116] C. K. Miller, “Multicast Networking & Applications,” ISBN: 0201309793 Ed.

Boston: Addison-Wesley Professional, 1998.

[117] B. Williamson, “Developing IP Multicast Networks: The Definitive Guide to

Designing and Deploying CISCO IP Multi-cast Networks,” ISBN: 1578700779, Ed.

Indianapolis: Cisco Press, 2000.

[118] Cisco Systems, “Quality of Service End-to-End with CISCO IOS,” 1999.

[Online]. Available: http://www.scd.ucar.edu/hps/CISCO/sld001.htm

[119] M. Wurtzler, “Analysis and Simulation of Weighted Random Early Detection

(WRED) Queues,” Northwestern University, Evanston, Illinois, 2002. [Online].

Available: www.ittc.ku.edu/research/thesis/documents/mark_wurtzler_thesis.pdf

[120] R. Braden, Ed. et al, "Resource Reservation Protocol -- Version 1 Functional

Specification", RFC 2205, September 1997. [Online]. Available: http://www.ietf.org/rf

c/rfc2208.txt

[121] IEEE Power Engineering Society (PES), “IEEE Standard Communication

Delivery Time Performance Requirements for Electric Power Substation Automation,”

IEEE Standard 1646™-2004, New York, USA, February 2005.

http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Jianquan%20Tang
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Weiqing%20Tong
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Jingbo%20Ding
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Lizhi%20Cai
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/iccnmc/&toc=comp/proceedings/iccnmc/2003/2033/00/2033toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/iccnmc/&toc=comp/proceedings/iccnmc/2003/2033/00/2033toc.xml
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=C. Kenneth Miller&rank=-relevance%2C%2Bavailability%2C-daterank/102-1250086-6371354
http://www.ietf/

References

 236

[122] J. T. Tengrid, “The SCADA Four Millisecond Myth,” OPUS Publishing 2005,

CA, USA. [Online]. Available: http://www.utc.org/file_depot/010000000/010000/1013/

co n man/The+SCADA+Four+Millisecond+Myth.pdf

[123] G. W. Scheer and D. A. Woodward, "Speed and Reliability of Ethernet Networks

for Teleprotection and Control," Schweitzer Engineering Laboratories, Pullman, WA,

USA, 2001. [Online]. Available: http://www.selinc.com/techpprs/6116.pdf

[124] OPNET Modeler. [Online]. Available: http://www.mil3.com/opnet_home.html.

[125] IEC 61850 Website, “Projects,” web document, viewed July 2005. [Online].

Available: http://www.61850.com/projects.html

[126] C. Brunner and H. Schubert, “The ABB – Siemens IEC 61850 Interoperability

Project,” Web Doc., Netted Automation, 2002, viewed July 2005. [Online]. Available:

http://nettedautomation.com/download/KEMA_ABB-SIEMENS_slides_R0-2.pdf

[127] H. Schubert, “The Standard is ready: activities and projects”, Presented at the

CIGRE B5 Colloquium, Sydney, Australia, September 2003.

[128] C. Ozansoy, A. Zayegh and A. Kalam, “The Real-Time Publisher/Subscriber

Communication Model for Distributed Substation Systems,” submitted to IEEE

Transactions on Power Delivery in 2005. {Peer reviewed, accepted for publication}

[129] D. Mills, "Network Time Protocol (Version 3) Specification, Implementation and

Analysis," RFC 1305, University of Delaware, March 1992. [Online]. Available: http://

www.faqs.org/rfcs/rfc1305.html

[130] A. A. Syed and J. Heidemann, “Time Synchronization for High Latency Acoustic

Networks,” Technical Report ISI-TR-2005-602, USC Information Sciences Institute,

April 2005.

[131] TC-57, “Communication networks and systems in substations – Communication

networks and systems in substations – Part 5: Communication Requirements for

Functions and Device Models,” IEC Standard IEC 61850-7-5, Geneva, Switzerland,

2003.

http://www.mil3.com/opnet_home.html
http://nettedautomation.com/download/KEMA_ABB-SIEMENS_slides_R0-2
http://www.faqs.org/rfcs/rfc1305.html
http://www-scf.usc.edu/%7Easyed/papers/tshl.pdf
http://www-scf.usc.edu/%7Easyed/papers/tshl.pdf

References

 237

[132] D. Mills, "Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and

OSI” RFC 2030,” University of Delaware, October 1996. [Online]. Available: http://

www.faqs.org /rfcs/rfc2030.html

[133] Ø. Holmeide and T. Skeie, “Time Synchronization in Switched Ethernet,” The

OnTime Networks Website, 2001. [Online]. Available: http://www.ontimenet.com/pdf/

Time%20synchronization.pdf

[134] F. Hanssen, J. Van Den Boom, P. G. Jansen and J. Scholten, "Time

synchronization for an Ethernet-based real-time token network," Presented at the 2nd

Int. Workshop on Real-Time LANs in the Internet Age, published by Polytechnic

Institute of Porto, Portugal, Porto, Portugal, July 2003.

[135] P. J. Naughter, “CSNTPClient – An SNTP Implementation,” The Code Project

Website, 1998. [Online] Available: http://www.codeproject.com/internet/csntp.asp

[136] T. Skeie, S. Johannessen and Ø. Holmeide, “Highly Accurate Time

Synchronization over Switched Ethernet,” In Proceeding of 8th IEEE conference on

Emerging Technologies and Factory Automation (ETFA’01), pages 195-204, 2001.

[137] R. Martinez, H. Nguyen, W. Wu, D. Bradford, A. Rivera and A. Barber,

"Methodology for Incorporating Commercial off the Shelf (COTS) Network Hardware

into OPNET Modeler for ‘Hardware in the Loop’ Modelling & Simulation," In

Proceedings of the OPNETWORK 2001 Conference, Washington, D.C., August 2001,

Pub ID: 228.

[138] R. Martinez, H. Nguyen, W. Wu, D. Bradford and N. Peterson, "Modelling and

Simulation of ‘Hardware in the Loop’ using OPNET Process Models," In Proceedings

of the OPNETWORK 2002 Conference, Washington, D.C., August 2002, Pub ID: 375.

[139] IEEE Power Engineering Society (PES), “Recommended Practice for Network

Communication in Electric Power Substations,” IEEE Substation Committee, IEEE

Standards Draft, Standard IEEE P1615, Draft 0.5, 2005.

http://www.ontimenet.com/pdf/

References

 238

[140] IEC TC-57, “Power system control and associated communications – Data and

communication security,” IEC Technical Report, IEC TR 62210, 1st ed., Geneva,

Switzerland, 2003.

[141] Office of Electricity Delivery and Energy Reliability, “National SCADA Test

Bed: A Summary of Control System Security Standards Activities in the Energy

Sector,” U.S. Department of Energy, October 2005.

[142] J. Gillerman, H. Falk and R. Mackiewicz, “Focus on IEC TC 57: power system

reliability and profitability,” In IEEE Power & Energy Magazine, Vol. 3, Issue 4, pp. 66

– 67, July-Aug. 2005.

[143] IEC TC-57, “Data and Communication Security,” IEC International Standard IEC

62351 TS, Edition 1, Geneva, Switzerland, 2005.

[144] F. Cleveland, “IEC TC 57 Security Standards for the Power System’s Information

Infrastructure – Beyond Simple Encryption,” Xanthus Consulting International, CA,

USA, October 2005.

[145] SISCO Systems, “IEC 61850 Security - Requirements, Solutions, and Future

Trends,” 2005. [Online]. Available: http://66.102.7.104/search?q=cache:EztSI-rDr0sJ:

sharepoint.ucausersgroup.org/helpdesk/Lists/Help%2520Desk%2520Issues/Attachment

s/56/Security%2520for%2520IEC%252061850.ppt+IEC+61850+Security+sisco&hl=en

http://66.102.7.104/search?q=cache

List of Publications

xxi

List of Publications

Peer-Reviewed Journal Papers

[1] C. Ozansoy, A. Zayegh and A. Kalam, “Modelling of Substation Communications

System using OPNET,” Best of Book 2002, AMSE Journal Press, pp. 109-120,

November 2002.

[2] C. Ozansoy, A. Zayegh and A. Kalam, “Substation Communications Review,” In.

Proceedings of the Australian Journal of Electrical and Electronics Engineering, ISSN:

1448-8353, Vol.1, No.1, pp. 51-65, 2004.

[3] C. Ozansoy, A. Zayegh and A. Kalam, “The Real-Time Publisher/Subscriber

Communication Model for Distributed Substation Systems,” Submitted to IEEE

Transactions on Power Delivery, June 2005. {Peer reviewed, accepted for publication}

Referred Conference Papers

[1] C. Ozansoy, A. Zayegh and A. Kalam, “Communications for Substation Automation

and Integration,” In. Proceedings of the Australasian Universities Power Engineering

Conference (AUPEC), ISBN: 0-7326-2206-9, Melbourne, Australia, September 2002.

[2] C. Ozansoy, A. Zayegh and A. Kalam, “Modelling of a Substation Communications

System Using OPNET,” In. Proceedings of the 4th International Conference on

Modelling and Simulation (MS’2002), Melbourne, Australia, pp. 255-260, November

2002.

[3] C. Ozansoy, A. Zayegh and A. Kalam, “CORBA Middleware Design for Protection

and Control Applications,” In. Proceedings of the 3rd International Association of

List of Publications

xxii

Science and Technology for Development (IASTED) Conference on Power and Energy

Systems, Marbella, Spain, Paper No: 409-190, September 2003.

[4] C. Ozansoy, A. Zayegh and A. Kalam, “Modelling and Simulations of CORBA

invocations using OPNET Modeller”, In. Proceedings of the 5th Jordanian International

Electrical & Electronics Conference, Amman, Jordan, pp. 227-231, October 2003.

[5] C. Ozansoy, A. Zayegh and A. Kalam, “Substation Communications System

Modelling Using OPNET,” In. Proceedings of the 2003 Mediterranean Conference on

Modelling and Simulation, Reggio Calabria, Italy, Paper No: 6, June 2003.

[6] C. Ozansoy, A. Zayegh and A. Kalam, “Modelling of a Network Data Delivery

Service Middleware for Substation Communication Systems using OPNET,” In.

Proceedings of the AUPEC'03 Conference, Christchurch, New Zealand, Paper No: 91,

September 2003.

[7] C. Ozansoy, A. Zayegh and A. Kalam, “Interoperable CORBA Middleware Design

for substation Communication Systems,” In. Proceedings of the 8th IEE International

Conference on Developments in Power System Protection, Amsterdam, Netherlands,

Vol. 2, pp 705-708, April 2004.

[8] C. Ozansoy, A. Zayegh and A. Kalam, “Design of a Protection Relay Incorporating

UCA2/CORBA Communications,” In. Proceedings of the MS’2004, Lyon, France, pp.

4.17-4.18, 2004.

[9] C. Ozansoy, A. Zayegh, A. Kalam, “Standard Interoperable Middleware Design for

Substation Communication Systems,” In. Proceedings of the AUPEC’04 Conference,

Brisbane, Australia, September 2004.

Appendix A: C++ Class Definitions of the Implemented Class Models

 239

Appendix A

C++ Class Definitions of the
Implemented Class Models

In order to provide supplementary information in regards to the implemented Object and

Service Models (OSMs) of Chapters 3 and 4, the C++ class definitions of the

implemented models are presented in this appendix.

class DATA Section (3.3.2.2)

{

public:

 CosNaming::NameComponent DataName;
 char DataRef 255];
 bool Presence;
 DataAttribute *Data_att;
 DATA *CompositeCDC;
 COMMON_DATA *SimpleCDC;

 void** GetDataValues();
 void SetDataValues();
 void GetDataDirectory();
 void GetDataDefinition();

};

class COMMON_DATA : public DATA Section (3.3.2.2)

{

public:

 CosNaming::NameComponent DataName;
 char DataRef 255];
 bool Presence;
 DataAttribute *Data_att;

};

Appendix A: C++ Class Definitions of the Implemented Class Models

 240

struct DataAttribute Section (3.3.2.2)

{

public:

 DAType DataAttributeType;
 enum FC FunctionalConstraint;
 TriggerConditions *TrgOp;
};

class LCB_Class Section (3.3.4.2.1)

{
 public:

 CosNaming::NameComponent LCBName;
 char LCBRef[255];

char DatSet[255];
char LogRef[255];

 bool LogEna;
 PACKET_LIST_BOOLEAN OptFlds;
 TriggerConditions TrgOp;

unsigned _int32 IntgPd;

 void SetLCBValues ();
 void GetLCBValues ();
};

class LOG_Class Section (3.3.4.2.2)

{

public:

CosNaming::NameComponent LogName;
char LogRef[255];
Time_Stamp OldEntryTm, NewEntryTm;
unsigned _int32 OldEntry, NewEntry;
entry *Entry;

void QueryLogByTime ();
void QueryLogAfter ();
void GetLogStatusValues ();

};

class DAType Section (3.3.2.2)

{
 public:

 CosNaming::NameComponent DatName;
 char DATRef [255];
 bool Presence;
 DAType *CompositeComponent;
 BasicType PrimitiveComponent;
};

class DATA_SET Section (3.3.2.2)

{
 public:

CosNaming::NameComponent DSName;
 char DSRef[255];
 char** DSMemberRef;

 void CreateDataSet();
 void DeleteDataSet();
 void GetDataSetDirectory ();
 void SetDataSetValues ();
 void GetDataSetValues ();

};

class BRCB_Class Section (3.3.4.1.1)

{
 public:

 CosNaming::NameComponent BRCBName;
 char BRCBRef [255];

char RptID[65];
char DatSet[255];

 bool RptEna, PurgeBuf, EntryID;
 unsigned _int32 ConfRev, BufTm, IntgPd;
 PACKET_LIST_BOOLEAN OptFlds;
 unsigned _int64 SqNum;
 TriggerConditions TrgOp;
 Time_Stamp TimeOfEntry, GI;

 void SetBRCBValues();

void GetBRCBValues();
 void Report();

};

Appendix A: C++ Class Definitions of the Implemented Class Models

 241

class LOGICAL_DEVICE Section (4.2.1.1)

{

 public:

CosNaming::NameComponent LDName;
 char *LDRef;
 LOGICAL_NODE *LogicalNode;

 void GetLogicalDeviceDirectory ();

};

class SERVER Section (4.2.2.1)

{

public:

LOGICAL_DEVICE *LogicalDevice;
File_Class *File;
SerAccPoi *ServiceAccessPoint;
TPAppAss *TPAppAssociation;
MCAppAss *MCAppAssociation;

void GetServerDirectory ();

};

class GoCB_Class Section (4.2.3.1)

{

public:

CosNaming::NameComponent GoCBName;
char GoCBRef[255];
char AppID[65];
char DatSet[255];
bool GoEna, NdsCom;
unsigned _int32 ConfRev;

void SetGoCBValues ();
void GetGoCBValues ();
void GetGoReference ();
void GetGOOSEElementNumber ();
void SendGOOSEMessage ();

};

class MSVCB_Class Section (4.2.4.1)

{
 public:

CosNaming::NameComponent MsvCBNam;
 char MsvCBRef [255];

char MsvID [65];
char DatSet [255];

 bool SvEna;
 unsigned _int32 ConfRev;
 unsigned _int16 SmpRate;
 PACKET_LIST_SV OptFlds;

 void SetMSVCBValues ();
 void GetMSVCBValues ();
 void SendMSVMessage ();

};

class SGCB_Class Section (4.2.5.1)

{

public:

CosNaming::NameComponent SGCBName;
 char SGCBRef[255];
 unsigned _int8 NumOfSG, ActSG, EditSG;
 bool CnfEdit;
 Time_Stamp LActTm;

 void SelectActiveSG();
 void SelectEditSG();
 void ConfirmEditSGValues();
 void SetSGValues();
 void GetSGValues();
 void GetSGCBValues();
};

Appendix B: Descriptions of Input and Output Parameters of Services

 242

Appendix B

Descriptions of Input and Output
Parameters of Services

The descriptions of all input and output parameters of the ACSI class services

implemented in Chapters 3 and 4 are presented in this appendix.

Table B.1 Input parameters

Parameter Name Description

ACSIClass holds the type of the selected ACSI class model {DATA, DATA-SET,
BRCB, URCB, LCB, LOG, SGCB, GoCB, GsCB, MSVCB or USVCB}

ApplicationID specifies the attribute AppID, which is a visible string that represents a LD
where the GoCB is located

BRCBReference is the ObjectReference of a BRCB (BRCBRef)

BufferTime specifies the attribute BufTm, which is the time interval in milliseconds for
the buffering of internal notifications

DataAttributeValue [1…n] contains the value of a DataAttribute referenced by the FCDA
DataReference is the ObjectReference of a DATA (DataRef)

DataSetReference is the ObjectReference of a DataSet (DSRef)
DSMemRef [1…n] is an array holding the FCDA references of data and DataAttributes

Entry specifies the log entry after which the log entries should be considered

EntryIdentifier specifies the attribute EntryID, which identifies an entry in a sequence of
events of a buffered report

FCDA
Functionally Constraint Data Attribute (FCDA) is the reference of a
specific DataAttribute of a data. It is formed by accompanying the
DataAttributeRef with a value of a FC. Such as: XCBR1.Pos.ctlVal [CO]

FunctionalConstraint [0..1] contains the Functional Constraint (FC) parameter

GeneralInterrogation specifies the attribute GI, which indicates the request to start the general-
interrogation process

GoCBReference is the ObjectReference of a GoCB
GoEnable is the client-specified GoEna attribute, which (if set to TRUE) indicates

that the GoCB is currently enabled to send GOOSE messages

IntegrityPeriod specifies the attribute IntgPd, which indicates the period in milliseconds
used for generating an integrity report

LCBReference is the ObjectReference of a LCB (LCBRef)
LDReference is the ObjectReference of a LD (LDRef)
LNReference is the ObjectReference of a LN (LNRef)

LogEnable is the client-specified LogEna attribute, which (if set to TRUE) indicates
that the LCB is recording into the log specified by the LogRef

Appendix B: Descriptions of Input and Output Parameters of Services

 243

LogReference is the ObjectReference of a log (LogRef)
MemberOffset [1...n] is an array of integers containing the index numbers of the members of a

DataSet
MemberReference[1...n] contains the MemberReferences of the members of a DataSet

MsvCBReference is the ObjectReference of a MSVCB (MsvCBRef)
MulticastSampleValueID specifies the attribute MSVID, which is a unique identification of the

sampled value buffer related to the update of the sampled values
ObjectClass specifies the selected class type {LOGICAL-DEVICE or FILE}

OptionalFields are the client-specified optional fields to be included

PurgeBuffer specifies the attribute PurgeBuf, which indicates the request to discard
buffered events

RangeStartTime specifies the range start time to be used when retrieving log entries
RangeStopTime specifies the range stop time to be used when retrieving log entries

Reference specifies the ObjectReference (FCDA) of a DataAttribute

ReportEnable is the client-specified RptEna attribute, which is used to control and
indicate the current state of a BRCB

ReportIdentifier is the client-specified report identifier (RptID) of a BRCB
SampleRate specifies the attribute SmpRate, which specifies the samples rate in units of

samples per nominal period
SettingGroupNumber specifies the number of the SG that is to be used

SGCBReference is the ObjectReference of a SGCB (SGCBRef)
SvEnable is the client-specified SvEna attribute, which (if set to TRUE) indicates that

the MSVCB is currently enabled to send values of the MSVCB
TriggerConditionsEnabled specifies the trigger conditions (TrgOp) to be monitored

Table B.2 Output (return) parameters

Parameter Name Description
ActiveSettingGroup returns the value of the ActSG attribute of a SGCB

ApplicationID returns the value of the AppID attribute of a GoCB
BufferTime returns the value of the BufTm attribute of a BRCB

ConfigurationRevision returns the value of the ConfRev attribute of a BRCB, GoCB or MSVCB
DataAttributeDefinition[0...n] holds the DataAttributeNames, DataAttributeTypes and FCs of all first,

second and third level DataAttributes contained within the referenced
data

DataAttributeName[0...n] holds the DataAttributeNames of all first level DataAttributes contained
within the referenced data

DataAttributeReference[1...n] returns the ObjectReferences of all the DataAttributes with FC values
matching the value of the FC received in the request

DataAttributeValue[1...n] is an array containing the values of the DataAttributes
DataSetReference returns the value of the DSRef or DatSet attributes

DSMemRef [1...n] is an array returning the FCDA references of data and DataAttributes
present in a DataSet

EditSettingGroup returns the value of the EditSG attribute of a SGCB
EntryIdentifier returns the value of the EntryID attribute of a BRCB

GoCBReference returns the value of the GoCBRef attribute of a GoCB
GoEnable returns the value of the GoEna attribute of a GoCB

InstanceName[0...n] is an array returning the ObjectNames of all instances matching the
ACSI class type

IntegrityPeriod returns the value of the IntgPd attribute
LastActiveTime returns the value of the LActTm attribute of a referenced SGCB

ListOfLogEntries [1…n] contains a list of log entries all having a TimeOfEntry in the range
specified by the RangeStartTime and RangeStopTime

LNReference returns the value of the LNRef attribute of a LN

Appendix B: Descriptions of Input and Output Parameters of Services

 244

LNReference[3..n] returns the ObjectReferences of all the LNs contained within a LD
LogEnable returns the value of the LogEna attribute of a log

LogReference returns the ObjectReference of a log
MemberOffset[1...n] contains the MemberOffsets of the members of a DataSet for which the

MemberReferences are given
MemberReference [1...n] contains the MemberReferences of the members of a DataSet for which

the MemberOffsets are given
MulticastSampleValueID returns the value of the MsvID attribute of a MSVCB

NeedsCommissioning returns the value of the NdsCom attribute of a GoCB
NewestEntry returns the value of the NewEntr attribute of a log

NewestEntryTime returns the value of the NewEntryTm attribute of a log
NumberOfSettingGroup returns the value of the NumOfSG attribute of a SGCB

OldestEntry returns the value of the OldEntry attribute of a log
OldestEntryTime returns the value of the OldEntryTm attribute of a log
OptionalFields returns the value of the OptFlds attribute

Reference[0...n] returns the ObjectReferences of all LDs or FileNames of all Files within
the server

ReportEnable returns the value of the RptEna attribute of a BRCB
ReportIdentifier returns the value of the RptID attribute of a BRCB

Response- indicates that the service request failed
Response+ indicates that the service request succeeded
SampleRate returns the value of the SmpRate attribute of a MSVCB

SequenceNumber returns the value of the SqNum attribute of a BRCB
SvEnable returns the value of the SvEna attribute of a MSVCB

TriggerConditionsEnabled returns the value of the OptFlds attribute of a BRCB

Appendix C: Core SNTP Classes

 245

Appendix C

Core SNTP Classes

The C++ definitions of the classes used to implement the core SNTP structure are

presented in this appendix. The pseudo-code description of the NTP clock filter

algorithm of Chapter 6 is also covered in this appendix along with descriptions of the

modifications made to the Ethernet Media Access Control (MAC) layer routines.

C.1 C++ Definition of the CNtpTimePacket Structure

struct CNtpTimePacket

{

 unsigned int_32 m_dwInteger;

 unsigned int_32 m_dwFractional;

};

C.2 C++ Definition of the CNtpTime Class

class CNtpTime

{

public:

// Constructors / Destructors

 CNtpTime();

CNtpTime(const CNtpTime& time);

Appendix C: Core SNTP Classes

 246

CNtpTime(CNtpTimePacket& packet);

CNtpTime(const SYSTEMTIME& st);

CNtpTime& operator=(const CNtpTime& time);

double operator-(const CNtpTime& time) const;

CNtpTime operator+(const double& timespan) const;

operator SYSTEMTIME() const;

operator CNtpTimePacket() const;

operator unsigned __int64() const { return m_Time; };

DWORD Seconds() const;

DWORD Fraction() const;

//Static functions

static CNtpTime GetCurrentTime();

static DWORD MsToNtpFraction(WORD wMilliSeconds);

static WORD NtpFractionToMs(DWORD dwFraction);

static double NtpFractionToSecond(DWORD dwFraction);

unsigned __int64 m_Time;

protected:

//Internal static functions and data

static DWORD m_MsToNTP[1000] ;

 };

Some of the important functions of the CNtpTime Class are as follows [124]:

i. The GetCurrentTime () function returns a CNtpTime instance containing the

current Coordinated Universal Time (UTC) of the machine.

ii. The CNtpTimePacket () operator function returns a CNtpTimePacket

representation of the CNtpTime that is the actual value of the data, which gets

copied to the relevant field of the SNTP packet to be transmitted between a

Appendix C: Core SNTP Classes

 247

TimeServer and a TimeClient. The function CNtpTime constructs a CNtpTime

instance from the CNtpTimePacket representation.

C.3 Pseudo-code Description of the Modified NTP Clock Filter Algorithm

Declare all the temporary variables

For (i from FMAX-1 to 1) //where FMAX is the maximum filter size

 [θi-1, δ i-1, ε i-1] [θi, δ i, εi]; // shift the set of values right

 εi = εi + ϕ(T4 − T1) ; // update the dispersion of the samples

EndFor

[θ, δ, ε] [θ0, δ0, ε0]; // insert the new sample

For (i from0 to FMAX-1) // construct a temporary list of λ values

 List [m] = εi+ | δi|/2; // add the new synchronisation distance value

For (j from0 to m-1) // sort the temporary list in the increasing λ value

If (List [j] > List [m])

List[j] List[m]; // interchange the samples

Index[j] Index[m]; // interchange the sample index numbers

EndIf

EndFor

m = m+1;

EndFor

// the supplementary code segment added

For (j from0 to FMAX-1) //search the temporary list to find the index number of the minimum λ sample

If (List [j] > List [J+1])

 Index = index [j]; break;

EndIf

EndFor

// compute filter dispersion εσ

Appendix C: Core SNTP Classes

 248

For (i from FMAX-1 to 0)

If (i < m)

εσ = (εσ+ | θi –θ0|) * filter weight ;

EndIf

Else

εσ = (εσ+ max dispersion) * filter weight ;

EndFor

// update the peer values

Peer offset = θ0;

Peer delay = δ0;

Peer dispersion = εσ + ε0;

C.4 Pseudo-code Description of the ethernet_mac_phys_pk_accept () Routine

Acquire the received frame

Determine the packet format of the frame

If (packet format == ethernet_v2)

Decapsulate the higher-level packet from the ethernet_v2 packet

End

Determine the packet format of the decapsulated packet

If (packet format == ip_dgram_v4)

Decapsulate the higher-level packet from the ip_dgram_v4 packet.

End

Determine the packet format of the decapsulated packet

If (packet format == udp_dgram_v2)

Decapsulate the higher-level packet from the udp_dgram_v2 packet.

End

Determine the packet format of the decapsulated packet

If (packet format == tpal_intf_udp_formatted)

Decapsulate the higher-level packet from the tpal_intf_udp_formatted packet.

Appendix C: Core SNTP Classes

 249

End

Determine the packet format of the decapsulated packet

If (packet format == gna_cagil)

Decapsulate the higher-level packet from the gna_cagil packet.

End

If (packet format == SNTP)

Determine whether the Receive Timestamp (T2) field of the SNTP packet is set or not.

If (Not set)

Set the Receive Timestamp (T2) field of the SNTP packet according to the local clock.

End

Else then

Set the Destination Timestamp (T4) field of the SNTP packet according to the local clock.

End

Encapsulate the SNTP packet into the gna_cagil packet.

Encapsulate the gna_cagil packet into the tpal_intf_udp_formatted packet.

Encapsulate the tpal_intf_udp_formatted into the udp_dgram_v2 packet.

Encapsulate the udp_dgram_v2 packet into the ip_dgram_v4 packet.

Encapsulate the ip_dgram_v4 packet into the ethernet_v2 packet.

Send the ethernet_v2 packet to the higher layer.

C.5 Pseudo-code Description of the eth_mac_fdx_pks_send () Routine

The pseudo-code description of this routine is the same as the previous one except for

underlined code of the previous routine being replaced by the following segment:

 If (packet format == SNTP)

Set the Transmit Timestamp (T3) field of the SNTP packet according to the local clock.

End

Send the ethernet_v2 packet to the physical layer.

	03chapters5-8.pdf
	1.1 Introduction
	1.2 Aim of This Research
	1.3 Research Methodologies and Techniques
	1.4 Originality of the Thesis
	1.5 Organisation of the Thesis
	
	2.1 Introduction
	
	2.2 Intelligent Electronic Devices
	2.3 Automation, Integration and Communications
	2.4 Protocols
	2.4.1 The Ethernet Protocol
	2.4.2 The TCP/IP Internet Protocol Suite
	2.4.3 Protocols in Substations
	2.5 Standardisation Developments
	2.5.1 The UCA Substation Communications Project
	2.5.2 IEC 61850 Project

	
	2.6 Middleware Architectures
	2.6.1 Client/Server Architectures
	
	2.6.2 Publish/Subscribe Architectures
	
	2.6.3 Popular Middleware Platforms
	2.6.3.1 Common Object Request Broker Architecture
	2.6.3.2 Manufacturing Message Specification

	2.7 Conclusion
	3.1 Introduction
	3.2 Substation Automation Systems
	3.3 IEC 61850 Application View
	
	3.3.1 Logical Nodes
	3.3.1.1 Modelling Logical Nodes
	
	3.3.1.2 Implementing the Logical Node class
	3.3.1.2.1 GetLogicalNodeDirectory Service
	3.3.1.2.2 GetAllDataValues Service

	3.3.2 Data
	3.3.2.1 Modelling Data and Data Attributes
	3.3.2.2 Implementing Data and Data Attributes
	3.3.2.2.1 GetDataDirectory Service
	3.3.2.2.2 GetDataDefinition Service
	3.3.2.2.3 GetDataValues Service
	3.3.2.2.4 SetDataValues Service

	3.3.3 Data Sets
	
	3.3.3.1 Modelling and Implementing Data Sets
	3.3.3.1.1 CreateDataSet Service
	3.3.3.1.2 DeleteDataSet Service
	3.3.3.1.3 SetDataSetValues Service
	3.3.3.1.4 GetDataSetValues Service
	3.3.3.1.5 GetDataSetDirectory Service

	3.3.4 Reporting and logging
	
	3.3.4.1 Reporting
	3.3.4.1.1 Modelling and Implementing the Buffered Report Control Block
	3.3.4.1.1.1 SetBRCBValues Service
	3.3.4.1.1.2 GetBRCBValues Service
	3.3.4.1.1.3 Report Service

	3.3.4.1.2 Procedures for report generation
	3.3.4.1.2.1 Event_Monitor_Reporting Service
	3.3.4.1.2.2 Report_Handler Service

	3.3.4.2 Logging
	3.3.4.2.1 Modelling and Implementing the Log Control Block
	3.3.4.2.1.1 SetLCBValues Service
	3.3.4.2.1.2 GetLCBValues Service

	3.3.4.2.2 Modelling and Implementing the Log
	 3.3.4.2.2.1 QueryLogByTime Service
	3.3.4.2.2.2 QueryLogAfter Service
	3.3.4.2.2.3 GetLogStatusValues Service

	3.3.4.2.3 Procedures for logging
	3.3.4.2.3.1 Event_Monitor_Logging service
	3.3.4.2.3.2 Log_Handler service

	3.4 Conclusion
	
	4.1 Introduction
	4.2 IEC 61850 Device View
	4.2.1 Logical Devices
	4.2.1.1 Modelling and Implementing Logical Devices
	4.2.1.1.1 GetLogicalDeviceDirectory Service

	4.2.2 Server
	4.2.2.1 Modelling and Implementing Servers
	4.2.2.1.1 GetServerDirectory Service

	4.2.3 The Generic Substation Event
	4.2.3.1 Modelling and Implementing the GOOSE Control Block
	4.2.3.1.1 SetGoCBValues Service
	4.2.3.1.2 GetGoCBValues Service
	4.2.3.1.3 GetGoReference Service
	4.2.3.1.4 GetGOOSEElementNumber Service
	4.2.3.1.5 SendGOOSEMessage Service

	4.2.3.2 Procedures for GOOSE messaging

	4.2.4 The Transmission of Sampled Values
	
	4.2.4.1 Modelling and Implementing the Sampled Value Control Block
	4.2.4.1.1 SetMSVCBValues service
	4.2.4.1.2 GetMSVCBValues service
	4.2.4.1.3 SendMSVMessage service

	4.2.4.2 Procedures for SV messaging

	4.2.5 The Setting Group Control Block Model
	4.2.5.1 Modelling and Implementing the Setting Group Control Block
	4.2.5.1.1 SelectActiveSG Service
	4.2.5.1.2 SelectEditSG Service
	4.2.5.1.3 SetSGValues Service
	4.2.5.1.4 ConfirmEditSGValues Service
	4.2.5.1.5 GetSGCBValues Service
	4.2.5.1.6 GetSGValues Service

	4.3 Conclusion
	5.1 Introduction
	5.2 IEC 61850 Communication View
	5.3 The Proposed Model
	5.3.1 The Client/Server Communication Model
	5.3.2 The Publish/Subscribe Communication Model
	5.3.2.1 The routing problem
	5.3.2.2. The subscription mechanism
	5.3.2.3. Binding and filtering
	5.3.2.4 QoS

	5.4 The Design and Implementation of the IEC-MOM middleware
	5.4.1 IEC-MOM Architectural Overview
	5.4.2 IEC-MOM Implementation

	5.5 The Design and Implementation of the Application Layer Modules
	5.5.1 Server Application Layer Design and Implementation
	5.5.1.1 Registering
	5.5.1.2 Subscription, binding and filtering
	5.5.1.3 Architectural components
	5.5.1.4 Server Application Layer Implementation

	5.5.2 Client Application Layer Design and Implementation
	5.5.2.1 Design of the ACSI Client application layer module
	5.5.2.2 Client Application Layer Implementation

	5.6 Performance Analysis of the System
	5.6.1 The Bay Devices and Station Controller Simulation
	5.6.2 The GOOSE Demo Simulation
	5.6.3 The Sampled Values Simulation

	5.7 Conclusion
	6.1 Introduction
	
	6.2 Network Time Synchronisation
	6.3 Simple Network Time Protocol
	6.3.1 SNTP Operation Modes
	
	6.3.2 SNTP Implementation
	6.3.3 SNTP Filtering

	6.4 Implementation of SNTP client and server applications
	6.4.1 Application Layer Process Modelling of a SNTP Client
	
	1) Implementation of the TimeServer in the Ethernet switches,
	2) Time stamping at the Ethernet data link/physical level, and
	3) Time stamping at the Ethernet driver level.

	6.4.2 Application Layer Process Modelling of a SNTP Server
	6.4.3 Time Stamping
	6.4.3.1 Implementation of the Time Server in the Ethernet Switches
	6.4.3.2 Time Stamping at the Ethernet Data Link/Physical Level
	6.4.3.3 Time Stamping at the Ethernet Driver Level

	6.5 Performance Evaluation of the SNTP Protocol
	6.5.1 No load case
	6.5.2 5% load case

	6.6 Conclusion
	7.1 Introduction
	7.2 Hardware in the Loop Capability
	7.3 Design and Implementation of the HITL Model
	7.3.1 The Client Gateway Design and Implementation
	
	7.3.2 The Server Gateway Design

	7.4 Hardware in the Loop Simulation
	7.5 Conclusions
	8.1 Introduction
	8.2 Summary
	8.3 Future Work
	C.1 C++ Definition of the CNtpTimePacket Structure
	C.2 C++ Definition of the CNtpTime Class
	C.3 Pseudo-code Description of the Modified NTP Clock Filter Algorithm
	C.4 Pseudo-code Description of the ethernet_mac_phys_pk_accept () Routine
	C.5 Pseudo-code Description of the eth_mac_fdx_pks_send () Routine

