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Abstract

Next generation wireless modems are likely to be based on multiple antenna hardware
platforms, following the demand for high data rate. Multiple antenna at both end of
the link can potentially increase the spectrum efficiency of wireless systems since the
capacity of Multiple Input Multiple Output (MIMO) systems is generally higher than the
capacity of their Single Input Single Output (SISO) counterparts. Most proposed MIMO
architectures assume that the Channel State Information (CSI) is available at the receiver
only, or not available at all. This assumption is justified by the fact that CSI is difficult
to obtain. Furthermore the gain in capacity due to available CSI at the transmitter is not

large on heavy multipath channels.

However, in correlated channels, CSI at the transmitter provides a significant capacity
increase over conventional MIMO systems. For example, the capacity of MIMO Ricean
channels reduces to the capacity of their Rayleigh component in the asymptotic limit of
a large number of antennas when the CSI is not available at the transmitter. This result
remains largely valid, even for a small number of antennas. In other words, MIMO systems
with no CSI at the transmitter do not use the antenna gain at the transmitter, which
is detrimental in correlated propagation environment. Besides, under any propagation
environment, the optimal capacity is obtained with CSI at the transmitter. Finally the CSI
can be easily obtained at the transmitter in Time Division Duplex (TDD) channels. These
three reasons justify a thorough study of MIMO architecture with CSI at transmitter. In
such a case, the Singular Value Decomposition (SVD) of the channel matrix gives the

optimal precoder and decoder.

This thesis studies the performance of the SVD architecture under varying propagation
environments, as well as its robustness to various impairments, e.g. incorrect channel
estimation, hardware errors. The aim is to provide a comprehensive understanding of the

advantages and weaknesses of the SVD-based transmission architecture.

xxiil



The precoding and decoding matrix of the SVD architecture are in theory perfectly
matched with the CSI matrix. The channel estimation requirement are shown to be mild
when the system is synchronized, i.e. the same CSI is used at both the transmitter and the
receiver. This is due to the fact that unitary matrices are well conditioned, allowing the
error in the estimation to be considered as additional noise. However, in practice, most
systems obtain the CSI at transmitter and receiver separately. In such a case, the non-
linearity of the SVD imposes stringent constraints on the channel estimation. Furthermore,
the SVD architecture relies on the possibility for transmitter and receiver to agree on a
unique SVD of the channel matrix. The unicity of the SVD is studied theoretically and
an upper bound on the probability of the SVD not being unique is derived, demonstrating
that a better than 20 dB of SNR channel estimation is required for SVD system to operate

correctly.

In Time Division Duplex (TDD) systems, the channel is reciprocal, allowing the trans-
mitter to obtain the CSI through standard channel estimation on the reverse link. Though
the wireless channel is reciprocal, the transmitter and receiver electronics are usually not
matched, destroying the reciprocity of the overall transmission channel. SVD systems
cannot operate in the presence of such hardware errors. A calibration procedure is pro-
posed to insure that the overall channel is reciprocal and that hardware errors do not
affect the system. Delayed CSI at the transmitter is another source of performance loss.
MIMO systems without CSI at transmitter outperform their SVD-based counterpart at
Fyot = 0.038, where Fj is the Doppler frequency, 6t the time delay on the CSI at the
transmitter, assuming Jake’s fading on an i.i.d. channel, SNR—20dB, and perfect channel
estimation. F,0t = 0.038 corresponds to walking speed (2m/s) at 5.725 GHz (802.11a
frequency band) and CSI delayed by 1ms at the transmitter. The loss of performance of
SVD systems can be reduced by filtering the CSI at the transmitter, i.e. prediction of the
CSI to match it with the channel. Another identified source of performance loss for SVD

systems is the occurrence of rare channel events named singular value crossings, which

transmitter if the channel is tracked over time. Finally, a new scheme is proposed, com-
bining the advantages of systems with and without CSI at the transmitter: by including
the precoding matrix in the channel, the receiver can both recover the CSI for the next
transmission in the reverse link and decode the stream without harmful effect of incorrect

CSI at the transmitter. This proposed transmission scheme does shift seamlessly from an

XXiv



SVD system at low mobility to a standard MIMO system for higher mobility.
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Chapter 1

Introduction

Most of us consider telecommunications as nothing more than a useful tool. Calling a
person on the other side of the planet hardly surprises us. In an age where technical feats

are mere consumer products, what are the goals and challenges of telecommunications?

I.1 History of telecommunications

Telecommunication has become a part of our everyday life in the past two centuries, so
much so that the very meaning of the word itself has been blurred and is mistaken as being
synonymous with mobile phones. The word telecommunications conveys information about
its own etymology. The prefix tele- comes from the Greek 7nAn, and means "remote" or
"afar". Communication comes from the Latin communio, which means "to impart" or
"to share", literally "to make common". Telecommunication means, strictly speaking, to
share something over a distance.

However, the word communication has evolved to the present day meaning of the ex-
change of information. Hence, telecommunications are adequately defined as the exchange
of information over a distance, or over time. As such, telecommunications are the foun-
dation of any society which requires people to send and receive information outside of the

"here and now" realm.

[.1.1 Origin of telecommunications

Obviously, telecommunications were born with the very first human civilizations. The best

example of simple telecommunications is writing, which dates back to 3500 BC. A written



message can be sent to a recipient in a remote place, or can be transmitted to a reader at
a later time. Messengers are the second example of telecommunications, e.g. the famous
marathon runner Philippides who, in 490 BC, prevented Athen’s destruction by delivering
a warning message that the Persian army was arriving. Together with these two inventions,
writing and messengers, came the first two requirements of telecommunications, namely
speed and reliability. Thereafter all telecommunications would be measured in terms of
speed of transfer and accuracy in the transmission. Even today’s telecommunications

industry still focuses on satisfying these two fundamental requirements.

In ancient times, systems were designed to transmit information faster than a human
could move, using either sound (drum telegraph) or visible signals (fire and/or smoke). By
the year 150 AD, the Roman Empire was covered with a telecommunications network which
had a total length of approximately 4500 kilometres. The network consisted of closely
spaced towers which enabled them to exchange visual information through predetermined
smoke signals. During the French Revolution Claude Chappe rediscovered the idea of an
optical telegraph and built a line 240km long which could transfer 196 different signals.

Ultimately, telecommunications were to be linked with electricity and really developed
in the middle of the XIXth century. Samuel Morse invented the electromagnetic telegraph
in 1837. Elisha Gray and Alexander Graham Bell took out patents for telephones in
1876 and by 1895 Guglielmo Marconi was demonstrating wireless transmission of signals.
The engineers involved with early telecommunications innovations were mostly inventors
interested in practical progress and consumer products. This explains the rapid impact
of telecommunications on society: by 1902 worldwide communication was available on
ocean ships; by 1903 more than 3 million phones were installed in the USA alone, and
broadcasting stations were commercialised as early as 1922 in Russia, France, England
and the USA. Thereafter, progress in telecommunications equipment would mirror the

advances in electronics, starting with the invention of the vacuum tube in 1910.

1.1.2 Evolution and revolutions of telecommunications

While telecommunications engineers were focusing on incremental advances until the sec-
ond world war, a major paradigm shift was soon under way, leading to modern telecom-
munications theory: the shift towards digital communication. Telecommunication theory

was founded by Nyquist [1, 2] in his pioneering work on the maximum signalling rate



Figure I.1: Chappe’s telegraph is an early example of digital optical communication
using source coding. A message could be transmitted over 240 km in less than half an

hour... that is, when the weather was not foggy.

achievable on a telegraph line of a given bandwidth. He was soon followed by Hartley
[3] who studied the amount of data that can be transmitted when multiple amplitude
levels are used. Both proposed the use of a logarithmic measure of information. Their
work was completed by Shannon in two papers published in 1948 [4, 5] where for the first
time, a mathematical theory of telecommunications was proposed. This work remains the
precursor of most telecommunications advances and defines in particular the capacity of
a channel (the maximum amount of information that can be transmitted per second on
a channel). This work also proposes a probabilistic framework for telecommunications
theory. Kolmogorov and Wiener contributed to the development of the new branch of
telecommunications theory known as information theory. Their work consisted of mathe-

matically modelling and deriving an optimal filter for the reception of telecommunications



signals [6, 7|. Information theory refers to the combination of mathematical modelling and
telecommunications theory.

Telecommunication was to be revolutionized once again with the development of a new
type of user: computers communicating with computers. In 1961 IBM computers started
communicating over the telephone line, using what was soon to be known as modula-
tor/demodulators or modems. But the rapid rise of computers and the need to commu-
nicate between them led to the development of packet switched networks, more adapted
to computer traffic. Coincidently, vast projects of interconnected computers appeared,
more specifically, Arpanet, which initially began as a network connecting universities and
the military and armament industry, and later evolved into what is known today as the
Internet.

The Cold War and the space race between USSR and the USA paved the way for the
rapid development of satellites. As early as 1960 Echo 1, the first communication satellite,
was in orbit. It was essentially a mirror reflecting radio waves on earth, but successful
transmissions between the USA and France demonstrated the benefits obtainable through
satellite telecommunications.

Quite surprisingly, 1960 was also to see the rebirth of optical telecommunications,
one of the oldest forms of telecommunications. The invention of the laser ensured the
availability of high quality light sources. It triggered research into optical fibres, which were
impractical at the time due to high loss. However, by 1980, worldwide optical networks

were deployed.

[.1.3 Telecommunication: a multi-faceted giant

In the 50 years, from 1920 to 1970, telecommunications evolved from specialized electri-
cal engineering into its own engineering discipline with its own theory, a wide range of

applications and several specialised domains. Telecommunication brings together:

e mathematicians for information theory, coding theory, digital signal processing and

network theory

e clectronic engineers for the development of all enabling technologies, especially chip-

sets, which are at the heart of telecommunications equipment

e computer scientists since most telecommunications equipment is implemented partly

4



in software, allowing, among other advantages, reconfigurability.

e clectromagnetic researchers, for all aspects of radio wave emission, reception and

propagation

e optical physicists, involved in all aspects of the development of optical communica-

tions

e mechanical engineers, involved in satellite communication, but also in the develop-

ment of micro-electro-mechanical devices.

This diversity illustrates the challenges inherent in the design of a telecommunica-
tions system as well as the necessity for the telecommunications engineer to develop an

understanding of traditionally unrelated engineering fields.

I.2 Recent trends in telecommunications

1.2.1 Current telecommunications

The development of information and coding theory combined with the development of
enabling technologies (especially electronic components) allowed telecommunications to
become an everyday commodity readily available in developed countries. Wireless com-
munication has become a part of our everyday life as recently as the past 20 years (whereas
telephones were already widespread more than 30 years ago). The development of second
generation cellular phone networks redefined mobile phones from a luxury item into a
consumer product.

The push for wireless telecommunications was not limited to cellular phones. Rel-
atively inexpensive satellite phones became a reality, allowing consumers to be reached
anywhere in the world. Cordless phones, and other low bit rate wireless devices (for ex-
ample Bluetooth), contributed to proving wireless communication was a strong candidate
for future consumer products. The advantages of wireless products over their wired coun-
terparts include straightforward installation, freedom of movement and cutting of all costs
associated with cables.

The other major evolution of the telecommunications industry was due to the pre-
vailing use of computers. Voice was no longer the main content of telecommunications

networks. Telecommunication networks now had to accommodate for the massive amount



of electronic data being transferred. Consumers are demanding ever growing data rates
to support applications such as real time video.

In this context, third generation cellular networks have been designed to accommodate
both voice and data, and provide a unique, high data rate, wireless access to the telecom-
munications network. The deployment of third generation equipment has been delayed due

to economic reasons and corresponds to a downturn in the telecommunications industry.

1.2.2 Future of telecommunications

From a technical point of view, it has become increasingly clear that it is extremely
difficult to answer the diverse requirements of users with a single standard. Therefore,
the industry is considering the possibility of developing wireless products that reconfigure
themselves depending on their environment and data transfer requirements. For example,
a single device would use a low bit rate cellular standard for a phone call from a car and
switch over to a high-speed standard when the user requires internet connectivity from an
office. This philosophy of "best connected" is sometimes referred to as the elusive fourth
generation.

As mentioned earlier, progress in telecommunications has mostly been measured in
terms of achievable data rate. Focusing on the speed of the link has been questioned in
the context of cellular networks, arguing that most users do not use high data rate appli-
cations. However, this focus has never been questioned concerning Local Area Network
(LAN) applications because they are data rate hungry. Computer networks are becom-
ing widespread, not only in business but also for private consumers. However, the costs
associated with the installation and maintenance of networking cables are high and make
wireless LANs an extremely viable alternative to their wired counterparts, provided they

can offer comparable data rates.

I[.2.3 Towards understanding the Shannon capacity

The wireless spectrum is a scarce resource which everybody has to share. If two users
transmit at the same frequency, they interfere with each other. The radio frequency spec-
trum is regulated internationally to control user interference. In particular, fixed frequency
bands are allocated to telecommunications companies. These companies, in turn, want to

provide high data rates, to a maximum number of users, over a fixed bandwidth.



However, Shannon proved that there exists a maximum data rate for a wireless chan-
nel and that this maximum data rate (or channel capacity) is a direct function of the
bandwidth of the channel, the power of the signal and the amount of noise in the channel.
Therefore, until recently, it was considered that the only solution to increasing the data
rate of a wireless system was either to increase its bandwidth or to increase the power it
radiates. Neither of these two solutions is satisfactory. Since the total bandwidth of the
telecommunications system is fixed, increasing the bandwidth of one user directly limits
the number of users in the system. It is no more reasonable to increase the power of the
wireless system. The first consideration is the simple fact that radiating a large power is
impractical for battery-operated devices. The second reason is concern about the effect
on human health of intense electromagnetic fields.

Therefore, telecommunications engineers were trying to transmit as closely as possible
to the Shannon capacity, which severely limited further increases in the data rate.

This conclusion was shown to be incorrect for a simple reason: the Shannon capacity of
a channel also depends on the number of transmitting and receiving antennas. This simple
fact had always been overlooked since, intuitively (although incorrectly), transmitting
with two antennas at the same frequency appears to be equivalent to creating ones own

interference.

I[.2.4 Multiple antennas wireless systems

The fact that the capacity of a channel depends on the number of antennas at both the
transmitter and the receiver has enormous implications. Higher data rates can be achieved
by using multiple antennas without increasing the radiated power or bandwidth. Channels
with multiple antennas at both ends are usually referred to as Multiple Input Multiple
Output (MIMO) channels.

Several practical systems have been proposed to benefit from the large capacity offered
by MIMO channels. The proposed architectures usually aim at either increasing the data
rate, or reducing the power requirement of the user. Most of these systems are designed for
specific communication scenarios and most of them rely on pessimistic assumptions, e.g.
the propagation environment is unknown at the transmitter. Because of these assumptions,
most proposed architectures are transmitting at only a fraction of the capacity of the

channel.



Theoretical results on the capacity of MIMO channels are now well understood. In
particular, the variation in achievable data rate when the transmitter does not know
the channel can be well understood by using a mathematical operation: the Singular
Value Decomposition (SVD) of the channel. The SVD also suggests a communication
architecture that allows transmission at the channel capacity. This well-known architecture
has not been studied extensively in the literature, being commonly considered too complex

to be implemented.

[.3 Statement of significance

The typical requirements of users of a wireless LAN are reliable and high data rates. For
the wireless propagation channel in such an environment an obvious solution is a MIMO
system. Given the wireless LAN environment and user requirements, it is likely that the
SVD architecture will be used for the implementation of such a system.

The goal of this thesis is to study the advantages and drawbacks of the SVD archi-
tecture. It aims at providing exact results on whether it is implementable, under which

assumptions, in which propagation environment and with what expected benefits.

[.4 Contribution to knowledge
The main contributions of this thesis include:

-Ergodic capacity series expansions. Series expansions of the Gaussian approxima-
tion of the ergodic MIMO channel capacity are presented in Section 11.2.3.3 and
highlight the importance of the minimum number of antennas at either the trans-
mitter ot the receiver. The series expansions are derived in the asymptotic case of
the number of antennas at the receiver (transmitter) being much larger than the
number of antennas at the transmitter (receiver). Simulation results support the

theoretical results of the series expansion.

-Ricean channel study. Section II1.5 demonstrates that the ergodic normalized capac-
ity of the Ricean MIMO channel approaches the corresponding normalized capacity
of the underlying scattering channel when the antenna numbers are large and no

Channel State Information (CSI) is available at the transmitter. Section II1.5 also



demonstrates that the capacity variance of the Ricean channel approaches the corre-
sponding variance of the underlying scattering channel when the number of antennas
is large. These results highlight the importance of CSI at the transmitter. Upper
and lower bounds for the ergodic capacity of the Ricean channel are derived. The

accuracy of the bounds is confirmed via simulation.

-Channel estimation requirements for SVD systems. An analysis of the effect of
incorrect channel estimation on the performance of SVD transmission systems is
proposed in Section IV.4. The analysis demonstrates that these effects are negligible
when the SNR on the estimation of the channel is much larger than the SNR on the
received data. On the contrary, under channel estimation errors, the performance of
SVD systems does not increase with increasing SNR: the capacity of SVD systems

plateaus at high SNR. Simulation results support this analysis

-Uniqueness of the SVD of a complex matrix. The SVD of a complex matrix is not
unique, as shown in Section 1V.4.2. However, it is possible to select a unique SVD
following some criteria when the complex matrix is square and the singular values
of multiplicity one. Further technical considerations allow to extend this result to
all matrices with singular values of multiplicity one and to handle the very rare
occurrence of channel matrices with singular values of multiplicity higher than one.
Therefore the SVD of the channel matrix can be derived separately at the transmitter

and the receiver.

-Calibration procedure for SVD systems over reciprocal channels. MIMO SVD
systems are well suited for reciprocal channels since the CSI can be obtained at the
transmitter without overhead. However, this technique relies on symmetric reception
and transmission chains at each transceiver. This assumption is unrealistic. A
calibration procedure is proposed in Section V.2.2 which forces the channel to be
reciprocal. This calibration procedure is a form of handshaking at the start of the
transmission and relies on the assumption that the imperfections of the RF chains

vary slowly in time, allowing calibration to remain valid for large periods of time.

-Singular value crossing and singular value swapping. The application of matrix
perturbation theory shows in Section V.3 that SVD systems are robust to imper-

fect channel estimation only when the singular values of the channel matrix have



a multiplicity of one. Imperfections of the system allow this theoretical case study
to gain practical applicability. E.g. when the transmitter and the receiver deduce
their precoding and decoding matrices from the CSI at two different time-slots, the
transmission eigenmodes might be completely different on both time-slots. This
event is referred to as a singular value crossing. In practice, singular value crossing
usually involves singular subspace swapping: the data sent on subchannel 1 is re-
ceived on subchannel 2 and the data sent on subchannel 2 is received on subchannel
1. Therefore, simple mechanisms can mitigate the harmful effect of singular value

crossings.

-Modified SVD architecture. Some of the practical issues occurring on SVD systems
can be mitigated by modifying the transmission architecture. In Section V.4, the
pilot symbols are sent through the precoding matrix, providing the receiver with
information on the channel matrix and the precision of the channel estimation at the
transmitter at the same time. This proposed architecture promises high performance
when the CSI is accurate at both end of the channel and enjoys a graceful loss
of performance, down to the performance of MIMO systems without CSI at the
transmitter, when the CSI is inaccurate at the transmitter. Furthermore, the newly

proposed architecture has no additional complexity.

-MIMO PSAM and SVD structure. The requirement of accurate channel estimation
can be achieved through added pilot symbols (larger overhead) or added complexity
through the natural extension of PSAM to MIMO channels. An SVD system can
filter the CSI in time or directly filter the precoding and decoding matrices. In

Section V.5, it is shown that filtering the CSI achieves better performance.

These results are, to the best knowledge of the author, either new and unpublished or

previously published by the author.
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1.6 Outline

Chapter II introduces the notion of capacity, as the maximum data rate that can be
transferred over a channel, under given assumptions. The intimate connection between
coding and capacity is highlighted. The impact on the capacity of the number of antennas
at both ends of a wireless link is presented in details, both for the ergodic and non-ergodic
channels.

Chapter III presents some well-known MIMO transmission architectures and highlights
their specificities. The fundamental concepts of diversity and spatial multiplexing are
introduced. These concepts allow to answer the challenge of exploiting the high capacity
of MIMO channels. Finally, the study of the capacity of Ricean channels stresses the
benefits associated with CSI at the transmitter.

The SVD transmission architecture is presented in Section IV. The optimality of the
SVD is demonstrated. Two issues linked with the implementation of the SVD are studied
in detail: the channel estimation requirements of the system and the uniqueness of the
SVD of a complex matrix.

Chapter V analyses the SVD system in a Time Division Duplex (TDD) environment.
The impact of delayed and incorrect CSI at the transmitter is examined. The degradation
of performance due to singular value crossings is assessed and a practical solution to

mitigate this loss of performance is proposed, through the discovery of singular subspace
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swapping. A novel transmission architecture is proposed to prevent catastrophic loss
of performance when the CSI is inaccurate. The new SVD architecture combines the
performance of SVD systems when the CSI is accurate with the performance of MIMO
systems without CSI at the transmitter when the CSI is inaccurate. Finally, an extension
of PSAM to MIMO channel is proposed to improve the accuracy of channel estimation

without increasing the overhead.
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Chapter 11

Channel capacity

II.1 Notion of capacity

The theoretical study of telecommunications systems relies on the choice of a theoretical
model to represent the systems. Telecommunication (wired or wireless) consists usually
of the emission of a physical signal that varies in time, denoted in the following z(t),
where ¢ represents the time index. In most telecommunications systems, this signal is
an electromagnetic wave. This signal is received as another signal y(¢). The relationship
between z(t) and y(t) depends only on the channel, i.e. the medium over which the signal

is transmitted. Telecommunication theory is concerned with:

e determining for a given channel how much information can be transmitted over the

channel, i.e. the capacity of the channel,
e designing x(t) to transmit information in a fast and reliable way,
e reliably recovering the information transmitted x(t) from the received signal y(t).

Though very general, this model is difficult to analyse. Further assumptions enable
simplification of this model, specifically the sampling theorem allows to restrict the analysis
to discrete time systems when the signals are bandlimited (Section II.1.1). Information
theory provides the theoretical framework to define the notion of information (Section
I1.1.2) as well as the capacity of the channel (Section 11.1.3).

Chapter II provides a literature review of the main results concerning the capacity
of both SISO and MIMO single user channels in a variety of situations: CSI at the re-

ceiver/transmitter, ergodic or block fading channel. MIMO channel capacity is shown to
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increase with the number of antennas at both ends of the wireless link in Section 11.2. A
novel series expansion of the capacity of the ergodic channel with no CSI at the transmit-
ter is presented in Section I1.2.3.3. The series expansion is new and unpublished to the
knowledge of the author. The series expansion shows that symmetric antenna allocation
(same number of antennas at the transmitter and the receiver) maximizes the capacity of
a MIMO channel with a given total number of antennas. Finally, Section I1.3 shows that

the assumptions are compatible with wireless LANs standards 802.11a and Hyperlan 2.

I1.1.1 The sampling theorem

The sampling theorem is central in telecommunications since it demonstrates that analog
and digital communications are equivalent, provided the analog transmission is band lim-
ited. Though the sampling theorem has been applied to telecommunications by Nyquist
[1], it had been demonstrated previously in other forms by mathematicians [8]. The form

given here corresponds to the theorem stated by Shannon |9].

Theorem 1. Sampling Theorem If a function f(t) contains no frequencies higher than W

Hz, it is completely determined by giving its ordinates at a series of points spaced 1/2W

seconds apart.

The intuitive justification is that, if f(¢) contains no frequencies higher than W, it
cannot change to a substantially new value in a time less than one-half cycle of the highest
frequency, that is, 1/2W. The exact mathematical proof follows.

Let F'(w) be the spectrum of f(¢). Then

I 1 [
f(t) / F(w) exp(v/—1wt)dw = — F(w) exp(vV/—1wt)dw, (IL.1)

N % —00 a 2m —2rW
since F'(w) is assumed zero outside the band W. This relationship is verified at the
sampling points t = ﬁ where k is any integer (k € Z):

k 1

f(ﬁ):%

2tW k
/ F(w) exp(\/—_lwﬁ)dw. (11.2)

—27 W
The integral on the right is the k" coefficient in the Fourier-series expansion of the function
F(w), taking the interval —W to +W as a fundamental period. So, the samples f(ﬁ)
determine the Fourier coefficients in the series expansion of F'(w). Furthermore, since

F(w) is zero outside [—W, W], F(w) is uniquely defined by the Fourier coefficients of its
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series expansion and, in turn, the samples f(%) Therefore, the samples determine the
function f(t) completely, since F'(w) determines f(t).

Additionally, f(¢) can be reconstructed from its samples:

> sin(27 .
=3 g g;» (113)

Finally, it is possible to prove a similar result if the signal is not limited to the frequency

[0, W] but bandlimited to the band [W, — W/2, W, + W/2] [9].

Most wireless communication systems are bandlimited, due to bandwidth allocation,
as explained in Section 1.2.3. Therefore, applying the sampling theorem, the study of
telecommunications systems can be limited to the study of sampled systems without loss
of generality. The transmitted signal and received signals can be restricted to z(kTy) and

y(kT;) respectively, with k € Z.

I1.1.2 Elementary information theory

It was shown in Section I that the goal of a telecommunications system is to transmit
information. However, no precise definition of information was given. A practical example
can help to clarify the concept of information.

Consider a system transmitting, every five minutes, the answer to the question:"Is
there a fire in John’s house?" Most of the time, the system indicates that John’s house
is fine, which John naturally discards as a lack of information. However, if the system
raises the alarm about a fire, it is natural to consider that very important information has
been transmitted. Intrinsically, this event carries more information because it happens
less often. Thus, information is somehow related to the inverse of the probability of
occurrence. For our communication system, consider the event x = s;, where s; is any
symbol, i.e. any value of the physical signal used to carry the message. The information
carried by the event x = s; depends on the probability of this event p; = P(x = s1). It
is, therefore, useful to define a function H(p), which measures the amount of information

in the occurrence of an event of probability p, and has the following properties:

e H(p) > 0, the measure of information is real, non-negative,

o H(pips) = H(p1) + H(p2) for independent events, i.e. the amount of information
carried by two unrelated events is the sum of the amount of information carried by

each event,
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e H(p) is a continuous function of p.

The only functions following these requirements are H,(p) = —log,(p), where log,(.)
denotes the logarithm in base a [10]. The base 2 logarithm is usually used, and the
resulting unit of information is called a bit (binary digit). In the following, it is considered
that a = 2, and the corresponding index is dropped.

Assume that the transmitted signal z(kT;) can take the values sy, ss,...,s, with re-
spective probabilities py, ps,...,ps. (kT}) is a random variable denoted x(kT;). The

average information transmitted H(z) is called the entropy of the source, with

Di

H(z) = Zpﬂi(pi) = Zpi logz(l) (I1.4)

I1.1.3 Capacity of a channel

The transmission of information can now be defined precisely. Consider & = [x(0), z(T5),
..., x(kTy)] the overall transmitted signal and y = [y(0), y(Ts), ..., y(kT})] the overall re-
ceived signal. The actual transmission can be modelled as the set of conditional probabili-
ties P(y|x), the probability of receiving y, having transmitted x. This set of probabilities
determines a channel over which transmission occurs.

Prior to reception, the probability of @ is P(x). After reception of y, the probability
that the input symbol was @ becomes P(x|y). The change in probability measures how

much the receiver learned from the reception of y, and is called the mutual information,

defined as

1 1
I(xz;y) = logz(m) - logz(w) = logy( Plx) ) (IL.5)

It is interesting to determine the average mutual information (also called system mutual

information):

I(zy) = Y., Plz=x)I(z=m=xy)

= 2.2 Ple=z,

where z and y are random variables. In a slight abuse of notation, P(z) denotes P(z = x)
in the following.
The natural question that arises is, given the conditional probabilities P(y|x), what is

the maximum amount of information that can be transmitted over the channel? The only
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parameter that can be chosen is P(x) the set of probabilities of the possible transmitted

symbol. The capacity of the channel is defined as

C =max7Z(x;y), I1.7
max Tz y) aw.7)

the maximum (over every set of possible transmitted signals) average mutual information,
and is expressed either in bits per second per Hertz (bps/Hz) or alternatively in bits per

channel use.

I1.1.4 Coding theorem

The importance of the capacity of channels in telecommunications is due to the Shannon

theorem, which links this theoretical tool with transmission devices.

Theorem 2. Shannon Theorem For any R < C' and any probability of error p., given a

channel of capacity C, there exists a code with rate R that can transmit with a probability
of error smaller than p..

min

On the contrary, for any R > C, there exists a minimum probability of error p™™, i.e.

min
e

no code with R > C' has a probability of error smaller than p

The demonstration of the Shannon theorem is given in [9]. However it is quite technical

and is not reproduced here. The main insights from the Shannon theorem are:
e optimal codes are of infinite length,

e random codes are good candidates to be optimal, i.e. random codes can be as close

to optimal as desired by increasing the code’s length.

Because of the first property, it is impractical to use a random code to transmit close
to the capacity. A finite delay in the decoding is a requirement of telecommunications sys-
tems. Therefore, the capacity of the channel is considered as an upper bound on achievable
rate. It is useful to understand how effective a code is and how much improvement can be

achieved on a given system by improving the coding.

I1.1.5 Channel model

Following the results from the previous section, it is necessary to obtain the set of proba-

bilities P(x,y) to study the telecommunications link. This set of probabilities is directly

19



linked to the physical properties of the propagation medium, e.g. the optic fiber, the
wireless spectrum, the copper cable. It is also linked to the equipment in the telecommu-
nications system. Both the propagation medium and the telecommunications equipment
distort the signal. The channel is defined as the system formed by the combination of the
equipment and the medium.

Distortion occurs due to several factors:

e non-linear distortion due to non-linearities in transmission equipment,

e frequency offset, which results from the use of a carrier,

e phase jitter, a low frequency modulation due to coupling of the power line,
e impulse noise, due to equipment switching,

e thermal noise, due to thermal agitation of electrons in the receiving device
e interference noise, due to other transmissions

e fading, due to the attenuation of the signal, depending on the distance, the frequency

and the propagation environment.

However, all impairments due to equipment imperfection can be reduced through better
engineering design, with an associated cost. The trade-off between performance and cost
of the equipment is a complex topic which would require a thorough study and therefore is
kept out of the scope of this thesis. The only impairment that cannot be reduced through
better engineering design is thermal noise, since it is inherent to electronic equipment. If
the model is limited to the intrinsic distortion of the transmission medium and equipment,
the channel can be modeled as a linear filter that introduces amplitude and delay distortion
and adds thermal noise. Specifically the channel is composed of a time-variant impulse
response h(kTs) = [ho(kTs), hi(kTy), ..., h.(kT,)] and additive noise n(kTy). Therefore,

the transmission equation becomes
y(RT) = D hy((k = HTa((k = HT] + n(kT). (IL.8)
§=0

Obviously, the set of probabilities P(x,y) is entirely defined by the set of h(kT;) and
n(kTy) for all k.

Additional assumptions allow us to further simplify the model.

20



e Thermal noise can be modelled as Additive White Gaussian Noise (AWGN) with

mean zero, and a chosen variance, depending on the Signal to Noise Ratio (SNR).

e The channel frequency response can be considered flat over the bandwidth of interest,

i.e. hy = 0,V # 0. The assumption of flat-fading is further justified in Section II.3.

e The channel response h(kTs) can be modelled as a random variable. The random
variable is generally assumed to be zero mean complex Gaussian (Rayleigh fading

channel) or non-zero mean complex Gaussian (Ricean fading channel).

The transmission equation becomes
y = hr +n, (I1.9)

where h and n are complex Gaussian random variables.
Finally, the detection is assumed coherent, i.e. the receiver knows h the realization of
the channel h, also referred to as the CSI. The practicality of this assumption is discussed

in Section II.3.

I1.1.6 Gaussian complex random variable

The Gaussian complex distribution has a central role in telecommunications and is defined
by the Probability Density Function (PDF) of the random variable y with mean py and

variance 05

2
71'0'g

Y(y) = L exp (— a My>*g(y - My)) ) (11.10)

where y* denotes the transpose conjugate of y. Therefore,

Hy) = Ey[=loga(7(y))]
= log(ﬁa;)—l—logQ(e)EV [M] (IT.11)

9y

= 10g2 (71-0-736) )

where E,[.] denotes the expectancy with 4. The importance of the complex Gaussian
distribution comes from the following theorem.
Theorem 3. The complex Gaussian distribution is the distribution of which entropy is

mazximal.
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Proof: let pdf, be any density function satisfying [.pdf,(y)yy*dy = o2. Clearly

log,(7(y)) is a linear function of yy*. Furthermore,

Jepdt,(Wyy*dy = o} = [(y)yy*dy

(I1.12)
= Jepdf,(y)(cryy" + e)dy = [oy(y)(eyy* +ca)dy Ver, e € C,
implying that
Epar, [loga(7(y))] = E[loga(v(y))]. (11.13)
Then
H(pdf) — H(y) =

— Jo pdf,(y) log,(pdf, (y))dy + [ 7(y) log,(v(y))dy
= — Jepdf,(y)logy(pdf,(y))dy + [ pdf,(y)logy(v(y))dy  (IL.14)
= Jopdf,(y)log, (5305)dy,

and log, is a concave function, so

logy(pdt, (y)) —logx(v(9)) = Gargy < (pdfy(y) =7(y)) ¥y

df, (y)
= Jopdf,(y)logy(SET)dy > [opdf,(y)dy — [ov(y)dy =0

Combining (11.14) and (I1.15) concludes the demonstration.

(IL15)

I1.1.7 Capacity of the flat-fading channel

With the previous definitions, it is possible to derive the capacity of the channel. Consid-
ering h fixed and known at the receiver, the channel is effectively similar to the well-known

AWGN channel. The definition of the capacity combined with (II.5) leads to

C(h) = maxT(z;y) = H(y) — Hylz) = H(y) — H(n), (I1.16)

pdfl

since the receivers knows h. Thus, maximising Z(z;y) is equivalent to maximizing H(y).

That implies that y has to be a complex Gaussian random variable. Therefore, observing

(I1.9), the transmitted signal has to be Gaussian to achieve the capacity of the channel.
To achieve the capacity, x is a complex Gaussian random variable with variance ai,

n is a complex Gaussian random variable with variance o2 and y is a complex Gaussian

2
x

random variable with variance ai + hh*oZ, justifying

C(h) = H(y) —H(n)
= logy(me(o; 4+ hh*a3)) — log,(meay) (11.17)
= log,(1+ Zhh7).
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I1.1.8 Capacity of the non-ergodic channel

Suppose h is chosen randomly at the beginning of the transmission and fixed thereafter.
This assumption corresponds to a system transmitting frames, with coding/decoding per-
formed on a frame by frame basis and the length of the frame smaller than the coherence

time of the channel, i.e. the channel is fixed for the length of a frame.
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Figure I1.1: CCDF of SISO Rayleigh channel

The capacity depends on h, the realization of the channel and h is a random vari-
able. Therefore, the capacity itself is a random variable. The Complementary Cumulative
Density Function (CCDF) of the channel is plotted in Fig. I1.1 for different SNRs.

It is possible to define C,,(p), the outage capacity, as the maximum capacity achieved
100 x p% of the time. Using a code designed for a channel capacity of C,u(p) directly

leads to a frame error rate of 1 — p.

I1.1.9 Capacity of the ergodic channel

When either coding occurs on a large number of frames, or the coherence time of the
channel is much smaller than the length of the frame, the channel is ergodic. The capacity

of the channel can then be expressed as:
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2
g
Oergodic - E@[logQ(l + O'_ghh*)] (1118)

n

The ergodic capacity of the channel is plotted as a function of the SNR in Fig. 11.2.
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Figure I1.2: Capacity of the ergodic SISO Rayleigh channel vs SNR in dB.

Interestingly, at high SNRs, the capacity increases linearly with the SNR expressed in
decibels (dB). Therefore, the power at the transmitter has to be doubled to gain an extra
bit of capacity.

I1.2 MIMO Capacity

Most of the research effort in the field of telecommunications has been spent on improving
coding techniques to achieve data rates close to the capacity at acceptable probability of
error (depending on the application). The discovery of turbo-codes by Berrou et al. [11]
was a considerable step in this regard. Therefore, it became increasingly clear that further
modification of the coding would not result in a significant improvement of the transmission
link. It is clear from the previous section that for a given h and n, the only other solution

for increasing the capacity of the channel was to increase the power of the signal ai. This
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is undesirable since it also increases the interference to other co-channel users. Higher
data rates could only be achieved by discovering channels with higher capacity.

Section II.1 implicitly assumes that the transmitter and the receiver use only one
antenna. Several practical systems implemented in cellular networks proved that using
several antennas could improve the quality of the wireless link. This directly triggered

interest in MIMO channels.

11.2.1 MIMO channel model

Consider a system with Mp antennas at the transmitter and Mg antennas at the receiver.
Transmission is over a flat fading channel. Therefore the time index is dropped and the
analysis is conducted on the transmission of a single sample.

x is a vector of the input symbols (x € CM7) ie. & = [zy,79,...,2),] With z; the
symbol transmitted on the first antenna.

H the channel matrix (H € CMr*M1) ig the realization of a random variable matrix
assumed to have complex Gaussian random variable entries with zero mean (Rayleigh
channel) or non-zero mean (Ricean channel). The entries of H can be correlated random
variables (correlated channel) or Independent and Identically Distributed (i.i.d. channel).

n is a vector of AWGN on the receiving antennas (n € CMr). n is complex Gaussian,
with zero mean and equal variance in the independent real and imaginary components. It
is also assumed that the noise at each receiving antenna is independent and the transmitted
power is normalized by the noise power at a single receiving antenna. This can be written

as:

Elnn'] = I, (IL.19)

where I, is the identity matrix of dimension Mp.

Assumptions are similar for Single Input Single Output (SISO) or MIMO channels.
The only significant difference between the two cases is the possibility in the MIMO case
for the entries of the vector or matrices to be correlated. The influence of this parameter

is discussed in Section II.3.

The vector of received symbols can be expressed as:

y=Hx+n. (I1.20)
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I1.2.2 Circularly symmetric complex Gaussian distribution

The vector equivalent of the Gaussian distribution is a circularly symmetric Gaussian
distribution, i.e. a vector & with entries being complex Gaussian random variable and,
Re(z)

Jm(z)

defining & =

Bl(z - Fla))(@ - Bzl =, AelQ) —Im(@) | (11.21)

Jm(Q)  Re(Q)

where fRe(c) is the real part of ¢, Jm(c) the complex part of ¢ and @ an hermitian positive

definite matrix. Therefore a circularly complex Gaussian random vector is specified by

prescribing Flz] and E[(z — Fz])(z — Elz])" = Q.

The probability density of a circularly symmetric complex Gaussian with mean p, and
covariance @ is given by
(@) = gy Pl — 1) Q@ = ) (1122
The differential entropy of a circularly symmetric complex Gaussian with mean zero and
covariance @ is given by
H() = EBy[—logyy(w)]
= log, det(meQ).

As in the SISO case, the importance of the Gaussian distribution comes from the

(11.23)

following theorem.

Theorem 4. Suppose the complex random vector € € CMR s zero-mean and satisfies
Elxx*| = Q, then the entropy of x satisfies H(x) < log,det(meQ) with equality if and

only iof x is a circularly symmetric complexr Gaussian.

The demonstration is similar to its equivalent in the SISO case [12].
Finally, consider A a complex matrix, A € C™J, if z is circularly symmetric complex
Gaussian, so is Az [12|. If £ and n are circularly symmetric complex Gaussian, so is

z+mn[12].

I1.2.3 Capacity of the MIMO flat-fading channel

Assume H fixed and known at the receiver. The capacity of the channel is given by

C(h) = maxI(z;y) = H(y) — H(ylz) = H(y) — H(

11.24
noe (@ y n), (11.24)
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since the receiver knows h. Thus, maximizing Z(z; y) is equivalent to maximizing H(y).

Theorem 4 implies that the capacity is reached if and only if y is circularly symmetric
complex Gaussian, which implies in turn, from (I1.20), that z is also circularly symmetric
complex Gaussian.

The transmitted signal is usually constrained by a power limitation, i.e. E[xz*z] < P.
This, in turn, helps specifying the nature of a: if x satisfies the power limitation, so does
xr — E[Q] Thus, we can restrict our attention to zero-mean & since a non-zero mean
would only result in a non-zero mean y which has the same entropy as the corresponding
zero-mean y.

Therefore, if & is zero-mean with covariance E[zz*] = Q then y is zero-mean with

covariance Elyy*| = HQH™ + I,;,. The mutual information of the channel is given by
I(z;y) = logy det(Iy, + HQH™). (11.25)

The exact formula for the capacity of the channel depends on further assumptions,

which in turn determine the matrix @ providing the capacity achieving distribution.

I1.2.3.1 Ergodic Rayleigh i.i.d. channel, no CSI at the transmitter

Assume the entries of H are independent and zero-mean (Gaussian with independent real
and imaginary parts, each with variance 1/2. Therefore each entry of H has uniformly
distributed phase and Rayleigh distributed magnitude, with expected magnitude square
equal to unity.

The mutual information is given by

I(z; (y, H) = I(z; H) + I(z; y | H)
= I(z;y|H) (I1.26)

Since @ is positive definite, U unitary such that @ = U DU* where D is non-negative

and diagonal. Therefore the mutual information can be expressed as

I(z; (y, H)) = Egllogydet(Iy, + HQH”)]

(11.27)
— Byllog, det(Iy, + (HU)D(HU)").

Theorem 5. Suppose H is a complexr Gaussian i.i.d. matriz, each entry with zero-mean
and equal variance. The distribution of H is the same as the distribution of UHV™ for

any unitary matrices U and V.
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The theorem is proved in [12|. Combining the theorem with (I1.27) leads to
I(z; (y, H)) = Enllogy det(In, + (H)D(H)")]. (I1.28)

Therefore the optimal @ is non-negative diagonal. Given any permutation matrix II,

consider Q™ = IIQII*. Since HII has the same distribution as H,
Exllog, det(In, + (H)Q(H)")] = Enllog, det(In, + HQUH™)). (I1.29)

For any H, if Q is positive definite, then I, + HQH™ is positive definite, and log, det(.)

is concave on the set of positive definite matrices. Thus, defining

_ 1
Q= oy ; Q" (11.30)

gives us

Epllog, det(In, + HQH")] > Epllog, det(In, + HQH™)), (11.31)

and Q is a multiple of the identity matrix. Therefore, the optimal Q must be of the form
al. Clearly, the maximum is achieved when « is the largest possible, i.e. « = P/Myp since
Q is constrained to trace(Q) < P. It is interesting to note that P is the average SNR at
each receiving antenna.

The capacity of the channel is given by
P '
C = Egllog, det(I yr, + MHH )] (I1.32)
T

An analytical expression of the capacity can be derived by identifying W = HH"™
when Mp < My (or W = H*H when Mg > Myp) as a random matrix following a
Wishart distribution [12].

The capacity of the channel is plotted against the SNR in Fig. II.3. Obviously, the
capacity of the channel increases with the number of antennas at both ends of the link. The
capacity of SISO and MIMO channels is linear, for high SNRs, with the SNR expressed
in dB, but the slope of the curve depends on the number of antennas.

The capacity of the channel at 20 dB of SNR is plotted against the number of antennas
in Fig. I1.4. The capacity of the channel increases linearly with the number of antennas
at both ends of the link, i.e. with the minimum of either the number of antennas at the
transmitter or the number of antennas at the receiver. This point is made clear by the
example of a system where Mr increases and Mr = [M7/2]. When the system gains an

additional antenna at the transmitter, the capacity hardly changes. However, when both
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Figure 11.3: Capacity of the Rayleigh channel vs SNR, ergodic Rayleigh i.i.d. channel, no
CSI at the transmitter

the transmitter and the receiver obtain an additional antenna, the capacity of the system
increases significantly.

Note that the channel is not symmetric. The capacity of the channel with Mz > My
is always higher than the capacity with Mg < Mp. This is simply due to the fact that the
CSI is available at the receiver but not the transmitter. This point is further discussed in

Section II1.5.

I1.2.3.2 Non-ergodic Rayleigh i.i.d. channel, no CSI at the transmitter

The mutual information of the channel is given by
I(z;y) = logy det (I, + HQH”), (I1.33)

and is a random variable.

Therefore, however small the rate we attempt to communicate at, there is a non- zero
probability that the realized H is incapable of supporting it, no matter the length of the
code applied. A good example is the case where the entries of H are zeros (however this
case in itself has a probability of zero).

It is possible to examine the trade-off between the outage probability and the supported

29



55

T

:MT:n
:n,MT:Dnlz 0
=0n/2 DMTzn
=n|MT=1
—1,MT—n i

M
&M
A M
5 M
H o M

50 H

D OV DOV UV T

o
(&)

Capacity (bps/Hz)
w w B
o o o
T T T
1 1 1

N
a1
T
1

20 b

151 T

10 1

| | |
5 6 7
n, number of antennas

A~ O
O
©o O

10

Figure 11.4: Capacity of the Rayleigh channel vs number of antennas, SNR—20dB,
ergodic Rayleigh i.i.d. channel, no CSI at the transmitter

rate. Namely, given a rate R and a power P, one can find p,,;(R, P) such that R is less than
the capacity of H with total transmitted power P, except on a set of H with probability
less than pg;.

From theorem 5, for any unitary matrix U,
log, det(Iy, + HQH) (11.34)

and

log, det(Iy;, + HUQU*H") (I1.35)

have the same distribution. Hence, it is only necessary to examine diagonal Q. The choice
of a diagonal @ is not only a theoretical simplification, but also corresponds to the simplest
hardware implementation possible (the symbols are independent from one antenna to the
other).

The symmetry of the problem suggests the following conjecture.

Conjecture. The optimal Q is, up to a permutation of the indexes of the antennas, of

the form

diag(1,...,1, 0,...,0 11.36
M%ct g( ) ( )

Mgt ones Mp—Mget zeros
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where M4 is the number of antennas actually used for transmission (active antennas).
The value of M4t depends on the rate: the higher the rate (i.e. the higher the outage
probability), the smaller the Mg

The ordering of the entries of @ has been applied here without loss of generality: it is

not an antenna reordering but simply corresponds to a reordering of the columns of U.

0.8

©
3
T

o
()
T

Probability(Capacity>Abscissa)
o o o
w i &
T T T
1 1 1

o
N
T

©
[
T

Capacity (bps/Hz)

Figure 11.5: CCDF of the capacity of the channel for varying My, with Mz = 1 and
SNR—20dB

The CCDF of channels with varying number of transmitting antennas and equal power
allocation among the transmitter is presented in Fig. I1.5. At low outage probability (low
data rate), the best channel is the Multiple Input Single Output (MISO) channel. However,
at high outage probability (high data rate), the SISO channel has a higher outage capacity
than the MISO channel.

These results can be understood intuitively as follows: when the transmitter does not
have access to the CSI and the transmission system has only one receiver, transmitting on
several antennas is equivalent to transmitting on an average channel, i.e. the average of the
individual paths from each transmitting antenna to the receiver. Hence, the behaviour of
the system is likely to be more stable and the capacity of the channel does not vary much.

In the asymptotic case of an infinite number of antennas, the capacity of the channel is
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fixed. This is in contrast with a single transmitting antenna system facing in turn excellent
and poor transmission environments.

A theoretical justification follows. The capacity of the channel can be expressed as
1 &
C(h) = log,(1 + M(Z h;h;)) (11.37)
T =

where b = (hy, ha, ..., hy.). Obviously k = Zf‘g h,h; is a chi-square variate with 2x My
degrees of freedom (denoted x3,,) normalized so that E[h;h;] = 1. The PDF of -5 is

given by [13]
My

df K) = My x )M=Y exp(— My X k), 11.38
where I'(.) is the gamma function defined as
L(r)= [ texp(—t)dt, r>0
L(r)=(r-1)", r an integer > 0
(r)=(r—1) g (11.30)
I'(1/2) = /m,

The PDF of MLT@ is plotted in Fig. 11.6 for varying M.

The analysis is more complicated when the receiver side has more than one antenna.
Fig. I1.7 presents CCDF of the outage capacity for varying My and Mr = 2, Mr = 3,
Mp = 4 and Mr = 5. For My < Mg, increasing the number of transmitting antennas
leads to a significant gain in capacity. However, for My > Mpg, increasing the number
of transmitting antennas only leads to a limited gain in outage capacity for low outage
probability. Intuitively, Mg receiving antennas can separate Mp spatially independent
signals, e.g. independent signals coming from Mg transmitting antennas. Therefore, for
My < Mg, increasing the number of transmitting antennas creates a new spatial orthogo-
nal mode of excitation [14], whereas for My > Mg, any new transmitting antenna can only
be used to increase the reliability of the existing My channel transmission eigenmodes.

These results are discussed in Section II1.2 and further justified in the following section.

I1.2.3.3 Non-ergodic Rayleigh i.i.d. channel, fixed power allocation at the

transmitter

Most papers in the literature (e.g. |15]) assume that the power allocation at the transmitter

is of the form

Blaa’] = Q = 5 L. (11.40)
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p(k)

Figure 11.6: PDF of MLT@ with k a chi-square random variable with 2 x My degrees of

freedom, normalized so that E[x3] = 1.

This assumption is rarely discussed and is assumed "reasonable" or "intuitive".

However, this particular choice of @ is not always optimal: in Fig I1.5 the capacity of
the channel is higher for My = 1 than for My > 1 for a high outage probability. @ can be
chosen from the ensemble of diagonal matrices as explained in Section 11.2.3.2. However
this choice of @ can be justified by examining the results of Fig. I1.7. For Mg > 1, the
capacity of the MIMO channels increases with Mp. Allocating more power to a specific
antenna, rather than allocating power uniformly on all antenna is an intermediate case
where the diversity of the channel is not fully exploited.

Finally, this specific choice of Q leads to the simplest MIMO hardware implementation
at the transmitter.

In such a case, the capacity is given by

P
C(H) = log, det(I 5, + M—HH*) (IT.41)
T

When H is Rayleigh and the number of antennas is large, the normalized capacity

(%) can be approximated by a Gaussian random variable [16]. The importance

of this result comes from the fact that this approximation remains accurate, even for a

small number of antennas.
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Suppose Mg — oo, My — oo with Mp/Mpg = «, then the mean is given by [17]

E[C/min(Mp, Mg)] = (logy(r+P) + (1 — ) logy(1 — r_) — %) max(1,1/a). (11.42)

n
where
re = (rd4/r2—4/a)/2 (11.43)
and
1 1
re1elil (11.44)

The variance of C is also given in [17] as,

o& = —logyelogy |l —ax () x(1/a—1-1/P+/(1/a—1—P)>+...

(11.45)
4/(aP))?* x (1—=1/a—1/P+ /(1 —1/a— P)2+4/P)?|,

where |.| denotes the absolute value.
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Fig. 11.8, presents the CCDF of the capacity for My = Mg, as well as the correspond-

ing Gaussian approximation. The capacity is well approximated by a Gaussian random

— éCDF(C)

— - Gaussian approximation
0.9
0.8
0.7

Probability(Capacity>Abscissa)
o
(62}

o
w

|
20
Capacity (bps/Hz)

Figure I1.8: CCDF of the capacity of the channel for varying My = My and SNR= 20dB

variable. The two curves are only easy to distinguish for the special cases My = Mr =1
and My = Mg = 2. The accuracy of the Gaussian approximation increases with the
number of antennas.

Fig I1.9 and II.10 present both the CCDF of the capacity and its Gaussian approxi-
mation to illustrate the accuracy of the model for asymmetrical channels. In [17], it is
proven that in the asymptotical case of a large number of antennas, the CCDF becomes
Gaussian.

The Gaussian model for the capacity provides us with a good understanding of the
behaviour of the capacity for varying parameters Mgz, My and P. The effect of an in-
crease in the number of antennas can be understood by examining (I1.42) in asymptotic
situations.

Telatar proved in [12] that the capacity of the i.i.d. MIMO channel increases linearly
with min(Myp, Mg) and logarithmically with P. Novel series expansions of the Gaussian
approximation of the mean capacity are presented in the following to highlight the impor-

tance of the minimum number of antennas at either the transmitter or the receiver.
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Suppose My > Mg, =1/« is close to zero and for reasonable variations of My and
Mg, [ remains close to zero. The series expansion of (I1.42) with respect to § around the

point 5 = 0 is given by:

B[C/Mz] = logy(P +1) = § X rrifpomer # + O(8)
= log,(P + 1)+ O(5).

(11.46)

Increasing My leads to a nearly linear gain in capacity. Increasing My only varies the
magnitude of the terms factor of § and those terms are negligible. Therefore increasing
My leads to a negligible increase in capacity. CCDF of the capacity in this asymptotic
situation is given in Fig. II.11.

Suppose Mgz > My, « is close to zero and for reasonable variations of My and Mg, «
remains close to zero. The series expansion of (I1.42) with respect to a around the point

a = 0 is given by:

E[C/Mr] = logy(P) —logy(a) — 1 x Fika + 0(a?) (I1.47)

= logy(P) — log,(My) + logy (Mp) + O(«).

Increasing Mg only leads to a logarithmic increase in capacity. Furthermore, since Mgz >

My, Mg > 1. Therefore increasing Mg leads to a negligible increase in capacity. Increas-
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Figure 11.9: CCDF of the capacity of the channel for varying My, Mr = 4 and
SNR= 20dB
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ing M7 does lead to an increase in capacity (since logy(Mpg) > logy,(Myr)). The CCDF of

the capacity in this asymptotic situation is given in Fig. I1.12.

The outage probability might be imposed by requirements of the system, e.g. the
Medium Access Control (MAC) layer might require a Frame Error Rate (FER) better
than a given constant. If it is not the case, designing the system to allow for maximum
throughput is a sensible design criterion. The throughput is the rate of data actually
received at the transmitter. Considering that every outage leads to a lost frame, an upper
bound of the throughput consists of the product of the attempted data rate multiplied by
the outage probability. Fig. I1.13 presents the throughput of MIMO systems versus the

assumed capacity of the channel.

Fig. 11.13 further justifies the choice of a small outage probability for practical telecom-
munications systems. The maximum throughput of most systems corresponds to a small
outage probability, e.g. Py = 0.245 for Mp = M7 = 1 and SNR= 20dB, py.; = 0.125 for
Mpr = My =2 and SNR= 20dB, and p,,; = 0.028 for Mp = My =5 and SNR= 20dB.
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I1.2.3.4 Non-ergodic channel, CSI at the transmitter

Consider a channel matrix H fixed and known at both sides of the link. The mutual

information is given by
I(z;y) = logy det (I, + HQH™). (I1.48)

The SVD of H is defined by
H=UXV" (I1.49)

where U and V are unitary and X is diagonal non-negative. Therefore,
I(z;y) = logy det(Iy, + TV QVE"). (T1.50)

Observe that Q = V*QV is non-negative definite if and only if ) is non-negative definite,
and trace(Q) = trace(Q). Hence, the maximization can be carried over Q.

Note that for any non-negative definite A, det A <[], A;,;. Hence,
det(Iar, +2Q%) < [[1 + Q.. %2) (IL51)

with equality when Q is diagonal. Thus the maximising Q is diagonal with entries found

by waterfilling power allocation [13]:

Qii = (Puy = 5;7)4, Vi€ {1,..., Mz}, (I1.52)

38



& M.=1,M_=100
0ol ~o- M,=2,M_=100

—o M=3,M_=100

% M=1M_=120
0.8f g
0.7f .

o
o
T
1

Probability(Capacity>Abscissa)
o o o
w iN 4
T T T
1 1 1

o
N
T
1

©

[N
T
1

10 15 20 25 30 35 40
Capacity (bps/Hz)

Figure I1.12: CCDF of the capacity for varying Mp,Mgr, Mg > Mr and SNR= 20dB

where P, is chosen to satisfy ), Q“ = P and (.); indicates that only non-negative values
are acceptable. The capacity of the channel is given by

C(H) = Z(log2(ow222,i))+‘ (11.53)

(2

The CCDF of the capacity of the channel is given for varying My = My with and
without CSI at the transmitter in Fig. I1.14. The capacity of the channel is higher when the
CSI is available at the transmitter. This is easily justified since the transmitter allocates
more power to the best spatial transmission eigenmodes, resulting in better transmission.
However, the capacity gained by providing CSI to the transmitter is negligible when the
channel is i.i.d.. This fact is further discussed in Section I11.5.

The CCDF of the capacity of the channel is given for varying My and My in Fig.
I1.15. The other major difference when CSI is available at the transmitter is that a

(M = i,Mpg = j) channel has the same capacity as a (Mg = i,M7 = j) channel, Vi, j € N.

I11.2.3.5 Ergodic channel, CSI at the transmitter

The capacity of the ergodic channel is simply given by

C = Eul) (log,y(Pus(H)LZ,). (I1.54)

)
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Figure I1.13: Maximum throughput of the system for varying Mz = My and SNR= 20dB

where P,¢(H) is the level determined by waterfilling of the singular values of H and X

is a diagonal matrix with entries the singular values of H.

Therefore the capacity of the ergodic channel is simply the mean corresponding to the
CCDF of Fig. 11.14 and I1.15. The capacity of the ergodic channel for varying Mgz, My is
given in Fig. 11.16. Obviously, a (Mr = i,Mg = j) ergodic channel has the same capacity
as a (Mg = i,Mp = j) ergodic channel, Vi, j € N.

Finally, at high SNR, the capacity of the ergodic channel is increasing linearly with
the SNR expressed in dB, and the slope of the curve depends on Mg, My, as shown in
Fig. 11.17.

I1.3 Discussion of the assumptions

The assumptions taken in Sections II.1 and II.2 are discussed here, to gain insight into

their respective meaning.
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11.3.1 Coherent detection

The detection is assumed coherent, i.e. the receiver knows the CSI. Measuring the channel
at the receiver is actually a complicated task and the accuracy of the CSI estimation
is critical in the performance of the system as is further discussed in Section IV.4. Most
systems use pilot symbols (known symbols sent by the transmitter) to estimate the channel.
Pilot symbols can be inserted at the beginning of the frame (802.11a), in the middle of

the frame (GSM) or as a separate signal (IS-95). Blind channel estimation can be applied

to avoid the overhead due to pilot symbols.

Coherent detection offers a gain of 3dB in performance over differential detection when
the channel estimation is perfect. Non-coherent detection is usually applied in the form

of differential coding schemes and unitary space- time codes [18|.

Overall, coherent detection is a fitting assumption for most wireless LAN standards
(including 802.11a and Hyperlan 2). However, imperfect CSI estimation invariably reduces
the performance of the system and so special emphasis must be put on the design of the

channel estimation techniques.
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I1.3.2 Time and frequency properties of the channel

The three main assumptions about the channel are:
e flat frequency fading,
e slow fading,
e block fading.

The channel is assumed flat over the frequency bandwidth of interest, i.e. the distortion
of the signal due to the channel is simply a multiplication by a complex number. It is
obvious that the wideband channels used in modern wireless communication are not flat
over the whole frequency bandwidth (20 MHz for 802.11a). However, several telecommuni-
cations standards, including 802.11a and Hyperlan 2, use Orthogonal Frequency Division
Multiplexing (OFDM), a modulation technique which divides the available bandwidth
into subchannels of reduced bandwidth. Hence, the assumption of flat-fading is justified
in these cases.

The channel is assumed slow fading, i.e. the CSI is constant over the length of a symbol.

OFDM modulation increases the length of symbols, placing more stress on the assumption
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Figure 11.16: Capacity of the channel with CSI at the transmitter vs number of
antennas, at SNR= 20dB

of slow fading. The combination of the slow fading and coherent demodulation implies
that the channel must be really slow fading in time. Specifically, the time coherence of
the channel has to be several times longer than a symbol period, since the CSI estimated
by the pilot symbols is applied to decode a number of surrounding data symbols, e.g. for
the 802.11a standard, the time coherence of the channel should be at least an order of
magnitude higher than the 4us duration of an OFDM symbol. Finally, the transmission
model chosen is relevant and applicable to OFDM since OFDM eliminates Inter-Symbol-
Interference (ISI).

The channel is assumed block fading, i.e. the channel fading is independent from one
block to the next. Though a poor approximation in practice since the channel is contin-
uously fading, most communication devices recover this property of uncorrelated fading
on adjacent blocks through the use of interleavers. An interleaver simply permutes the
transmitted symbols, while at the receiver the corresponding de-interleaver regenerates

the original order. Interleavers allow fading to be independent on consecutive symbols.
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I1.3.3 Independence of the noise entries

The noise is assumed uncorrelated at the receiver antennas. This is equivalent to discarding
all other sources of noise than thermal noise in the receiver front ends. In particular, the
assumption cannot account for interference due to other users on adjacent frequency bands,
or even on the same band in the case of unlicensed frequency bands such as the Industrial,
Scientific and Medical (ISM) band used in the 802.11x and Hyperlan 2 standards. The
theoretical capacity of MIMO systems in the interference regime is still an open question.

The distribution of the noise is assumed identical on each receiver antenna. This

assumption suggests that the receiver antennas’ front ends are supposed identical.

I1.3.4 Single user channel

Throughout Section II.1 single user channels are considered. The capacity of multiuser
channels is higher than the capacity of single user channels due to the multiuser diversity,
i.e. the ability to allocate the channel to the user facing the best propagation conditions.
Insights on the capacity of MIMO multiuser channels are presented in [19]. However,
several practical systems, including 802.11a, 802.11g and Hiperlan 2, use time division

multiple access, where a single user transmits during a time slot. Therefore, on each time
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slot, the relevant capacity corresponds to the capacity of single user MIMO channels.

1.4 Conclusion

The capacity of a channel is a fundamental concept in telecommunications since it deter-
mines how much information can be transmitted. It is possible to increase the capacity
of a channel by increasing the number of antennas at the receiver and transmitter. The
non-ergodic channel can be studied in term of outage capacity which is well approximated
by a Gaussian variable. The ergodic capacity of a Rayleigh i.i.d. channel (with CSI at
the receiver only) increases linearly with the minimum number of antennas at the trans-
mitter or at the receiver. These results are demonstrated for flat-fading channels under
the assumptions of slow fading, block fading, perfect channel estimation and spatial and

temporal independence of the noise at the receivers.
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Chapter 111

Using the large capacity of MIMO

channel

Telecommunications theory is concerned with determining the capacity of the channel,
designing the transmitted signal x and reliably recovering the information transmitted in
x from the received signal y. Chapter Il has demonstrated that MIMO channels have a

large capacity, but has not indicated how to exploit this large capacity.

Chapter III aims at providing an overview of some well-known techniques to transmit
over the MIMO channel and detect the transmitted symbols. Systems with no spatial
coding at the transmitter are introduced in Section II1.1.1 with the corresponding decod-
ing algorithms. Space-time codes are introduced in Section II1.1.2. The performance of
uncoded and coded systems are compared in terms of BER in Section I11.1.3. The results
vary greatly with the simulation parameters and the number of parameters is large. A
simple comparison of MIMO schemes is therefore impractical. The concepts of diversity
and multiplexing are introduced in Section II1.2 to gain insight into the performance of

MIMO transmission schemes.

Most theoretical results are only valid when the channel is i.i.d.. Section III.3 presents
some new results concerning the capacity of the Ricean channel. These results have
been partly accepted for publication [20] and submitted for publication [21]. Section
IT1.3 demonstrates that the ergodic normalized capacity of the Ricean MIMO channel
approaches the corresponding normalized capacity of the underlying scattering channel
when the antenna numbers are large and there is no CSI available at the transmitter.

Theoretical bounds of the normalized capacity of the Ricean channel are proven. These
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bounds allow the capacity of the Ricean channel to be estimated in the asymptotic limit
of a large number of antennas without recourse to simulation.

BER simulations in Section 111.4 demonstrate that uncoded MIMO transmission tech-
niques are badly designed for highly specular MIMO channels. On the contrary, space-time
codes can be robust to channel correlation. However, most space-time codes do not benefit
from spatial multiplexing and therefore need to use high order constellations to achieve a
non-negligible portion of the channel capacity when the number of antennas grows large.

The shortcomings of both uncoded and coded MIMO transmission schemes are partially
due to the fact that the CSI is not available at the transmitter. CSI at the transmitter
increases the capacity of the MIMO channel and is especially beneficial when the channel
is highly specular as demonstrated in Section II1.5. The capacity gain when providing the

CSI at the transmitter grows linearly with the number of antennas.

III.1 Review of MIMO transmission techniques

The large capacity offered by MIMO channels triggered numerous attempts to design
transmission techniques using several antennas. Some of the most widespread techniques

are presented in this section.

II1.1.1 Uncoded systems

The simplest method to transmit over the MIMO channel is to send uncorrelated data
streams to each transmitter with equal power. The resulting transmission equation is
(I1.20) with E[xx*| = P/Mr X I,.. The transmitter does not require the CSI and the
transmission architecture can easily be implemented: the MIMO encoding simply consists
of a serial to parallel converter, as presented in Fig. II1.1. The decoder uses a MIMO
detection block either to separate the transmitted symbols (which are then detected by
SISO detectors) or to fully detect the transmitted symbols. The MIMO detection block is
a critical component of the transmission system and is likely to be difficult to implement
due to its high complexity. MIMO uncoded systems suffer from the disadvantage that
Mpg, has to be greater than or equal to My for linear MIMO detection schemes to operate.
This point is further discussed in Section III.2. Though other detection schemes, e.g.

the maximum likelihood scheme presented in Section I11.1.1.1, are applicable even for My
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greater than Mg, their complexity is usually higher than the complexity of linear detection

schemes.

serial | X, é ¥, | wmo
To H

— n —
Parallel | X5 éé ° Y5 | Detection

Converter
X, ? A n, Y.
A

X n
! ? ? 6 yl SISO Detector

serial | X LM "o
e X, ? H MIMO SISO Detector To
S P AL W L N =%
Parallel . er
o 3 Detection SISO Detector

Converter Converter
X, ? ? 6 n. Y.

| |
SISO Detector

Figure II1.1: Block diagrams of the two possible uncoded MIMO transmission

architectures.

Several classical MIMO detection schemes for uncoded transmission are presented in

the following. All of them assume perfect CSI at the receiver.

I11.1.1.1 Maximum-likelihood detection

The MIMO detection algorithms’ role is to detect the transmitted symbols on each of the
transmitting antennas. To this effect, the decoder not only knows the channel, but also
the constellation used at each transmitting antenna S = {s1, s9, ..., s;} for a constellation
transmitting log, (k) bits per symbol. Therefore, the transmitter knows the set of possible

transmitted symbols, i.e. the MIMO constellation

/ )
S1 S2 Sk
S1 S1 Sk
X=qx = , Ty = s LMy = . (ITL.1)
S1 S1 Sk
\ )

Note that the cardinality of the MIMO constellation X is kM7 if the constituent constel-
lation S is of size k. The receiver can determine the set of noiseless received symbols

{y1, Y9, - s Ypmr } = {Hxy, Hxs, ..., Hx;mp } and deduce the probability

Vi Plxi|H,y) = Pln=y-y,) (I11.2)
— 7|-A+R exp(—(y —y,)" (y —v:))

since i is AWGN with variance one and mean zero on each receiving antenna.
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Therefore it is straightforward to determine the likelihood of each possible transmitted
symbol @; and to select the most likely (hard decision) or to send forward the probabil-
ity of each symbol (soft decision). The Maximum Likelihood (ML) detector is the best
detector, under the assumption of perfect channel estimation. However, the MIMO con-
stellation rapidly grows in size with the number of antennas and the size of the component
constellation. Therefore the complexity of the ML detector becomes prohibitive. For each
received symbol, the ML detector has to obtain k7 distances and select the smallest. Ad-
ditionally, for each frame, the ML detector has to determine the set of noiseless received
symbols {y,}, i.e. compute kM7 (Mg, M) x (Mr,1) complex matrices multiplications.

Alternative algorithms have been proposed to perform ML detection with reduced

complexity, e.g. the sphere decoder [22], [23], |24].

I11.1.1.2 Linear detection

A linear detector obtains an estimate of the transmitted symbols by a linear combination

of the received symbols. Specifically, the detector obtains
x = Ay + B, (I11.3)

where & is an estimate of @ and A and B are two matrices assumed fixed with H.
The main advantage of linear detectors is their reasonable complexity. The complexity
can be separated into the computation of A and B on a frame by frame basis (i.e. for
each realisation of H) and the MIMO detection on a symbol per symbol basis. The
complexity of the computation of A and B varies depending on the specific linear receiver
considered. The complexity of the MIMO detection is low, i.e. a matrix multiplication and
a matrix addition. Another advantage of the linear receiver is that the symbols are detected
simultaneously, on the contrary of some non-linear techniques. The main disadvantage of
the linear receiver is that higher performance can be obtained with non-linear detection.
The choice of A and B is discussed in the following. The detector aims at estimating

the symbols as well as possible, i.e. minimising the expectancy of the power of the error
El|# — |3 = E[(Ay+ B -x)"(Ay+ B —z)]
= E[(Ay —x)"(Ay —x)| + ... (I11.4)
EB*(Ay —z) + (Ay — z)*B] + E[B"B],
where |.||r denotes the Frobenius norm. The best choice of the additive component is

B = 0, a matrix of zeros, since E[Ay — x] = 0.
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The Zero-Forcing (ZF) linear detector is defined by A = H™, where .™ denotes the

pseudo-inverse of a matrix. The estimated symbols are
z=xz+H'n. (I11.5)

The ZF receivers suffer from noise amplification when the channel matrix is ill-conditioned.
The Minimum Mean Squared Error (MMSE) detector aims at minimising the ex-
pectancy of the power of the error (mean-squared error). This criteria is equivalent to

insuring that the error is orthogonal to each received symbol

El@ - &)y’] = 0

Elry*] — Elzy] =0

Elx(Hx +n)" | — Ax Elyy*] =0
[

(IIL.6)
—H"— Ax HE[zz'|H" — A x E[nn’] =0
H

"~ L AXHH —A=0
T

Ax (ZHH +1,) = 2 H
A= -H Iy, +5-HH")™,

T

(O I R

where the inverse is justified by the fact that I,,, + ML;HH* is hermitian positive definite.

I11.1.1.3 Vertical Bell laboratories layered space-time

The Bell laboratories Layered Space-Time (BLAST) architecture encompasses a series

of systems proposed by the Bell Laboratories, some including coding at the transmitter

such as Diagonal BLAST (D-BLAST) and some using uncorrelated data streams on the

transmission antennas (uncoded MIMO system) such as Vertical BLAST (V-BLAST) [25].
The V-BLAST detection algorithm follows the logical steps:

1. deciding to estimate «;, choosing index i according to some criterion,

2. finding the vector a(i) of minimum norm such that (a(:))*H.; = 1 and (a(i))*H.; =
0Vj # i with H.; the i'" column of H,

3. estimate Z; = ((a(i))*y), where (.) is a slicing (hard decision) operation,

4. subtract the estimated effect of @; from the received symbol, i.e. y = y— H Vect(z;),

where Vect(Z;) is the My x 1 vector with &; at the i'" line,
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5. reduce the transmission equation to the non-detected symbols, i.e. replace the it"

column of H with zeros,
6. reiterate until all symbols are decoded.

The first step determines in which order the symbols are detected. The last symbol to
be detected is facing no interference from other symbols if the other symbols have been
correctly detected. This is due to the fact that the effect of previously detected symbols
is removed from the received signal. Therefore the last symbol is likely to be detected
correctly. On the other hand, the first symbol has My — 1 other symbols interfering while
being detected, making it the most difficult symbol to detect. Furthermore, the correct
estimation of the first symbol is critical in the correct operation of the system: if the
symbol is not correctly detected, the fourth step of the detection algorithm corresponds to
an increase of the noise for the other symbols. The result is an event named error propa-
gation, which usually creates errors in the detection of subsequent symbols. Therefore it
is reasonable to select the received symbol with the highest SNR as the first symbol to be
detected. This criterion is optimum in maximising the post-detection SNR [26].

The advantage of V-BLAST is that it out-performs linear detectors. The disadvantage
of V-BLAST is its complexity. For each frame, the receiver has to compute My pseudo-
inverses of matrices of respective sizes Mg X My, Mr x My —1,...,Mr x 1. For each
symbol, the linear detection of the symbol is followed by a recoding of the symbol and its
subtraction from the received vector (step 4). The complexity is large compared with the

linear receiver.

I11.1.1.4 QR detection

The QR detector is based on the QR-decomposition of the channel matrix H. Given any
complex matrix H of dimension Mg X Mr, there exist two matrices U and R of dimensions
respectively Mr x Mpr and Mgz x My, such that H = U R, U is unitary and R is upper
triangular with real elements on the diagonal, i.e. R;; #0 = ¢ < j and R;; € R.

Now consider the partially detected symbols

y' = Uy
= U'(Hx+n) (I1L.7)
= Rx+U"n.
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Since U is unitary, so is U™ and the distribution of n = U*n is identical to the distribution
of n. The symbol x,;, can be detected since yﬁjT = Ry vy vy + Mg, Following the
same procedure as in the V-Blast detection algorithm, the symbol M7 is detected and its
contribution is removed from the received symbol. Then, the algorithm detects iteratively
the symbols M7 — 1 to 1.

The advantage of QR detection is its moderate complexity. The QR decomposition
of the channel matrix, computed on a frame by frame basis, is far less complex than
the inversion of the channel matrix (inversion of matrices are commonly implemented as
iterative applications of the QR algorithm). The complexity on a symbol by symbol basis
is modest. The disadvantage of the QR algorithm lies in its modest performance. The
QR suffers, as V-BLAST does, from error propagation and the optimal ordering of the
decoding (linked to the indexing of the columns of H) is difficult to obtain.

I11.1.1.5 BER of decoding algorithms

Bit Error Rate (BER) simulation results of the detection schemes previously presented are
plotted in Fig. III.3.
As expected,

the ML detector has lowest BER at any SNR,

the performance of each of the detectors increases with the number of antennas at

the receiver,

the MMSE detector performs better than the ZF detector, but the performance gap

between MMSE and ZF receivers reduces when the SNR increases,

the V-Blast detector outperforms linear receivers at high SNR but not at low SNR

(due to error propagation),

the QR detector is outperformed by the V-blast detector at any SNR.
Unexpected results include:

e at high SNR, log,((BER) decreases linearly with the SNR expressed in dB. Fur-
thermore, the asymptotic slope of the ML detector depends only on the number or

receiving antennas. The asymptotic slopes of the other detectors depends on the
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SNR in dB

Figure I11.2: BER of several decoding algorithms for uncoded MIMO transmission over
i.i.d. channel, rate of 8 bits/s/Hz (4-QAM on each transmitting antenna). Legend: plain,
dot-dashed and dotted lines denote respectively Mz =4, Mr =5 and Mgz = 6 cases,
whereas stars, squares, circles and crosses denote respectively ML,ZF, MMSE, Blast and

QR detection algorithms.

difference between the numbers of receiving and transmitting antennas, Mgr — M.

This point is further discussed in Section II1.2.

e The QR detector outperforms linear receivers at high SNR.

II1.1.2 Space-time coding

SISO systems use channel coding to lower the probability of error of received symbols.
Transmission errors occur when the channel is in deep fade or when the AWGN is large.
The correct transmitted symbol can be recovered if the symbol is transmitted again at
a later time. Retransmission, in essence, is channel coding. Channel coding can detect
errors or correct them, depending on the code design. In SISO systems, symbols are coded
in time. MIMO channels offer another degree of freedom since coding can occur across
the antennas. A code operating on MIMO systems combines bits in space and time, and

therefore is referred to as a Space-Time (ST) code.
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SISO error correction codes are usually binary codes followed by a mapping operation.
ST codes are usually not binary: words of ST codes are matrices of symbols (with the

rows representing transmit antennas and columns the transmission time).

Similarly to their SISO counterparts, ST block codes are finite in time, whereas ST
trellis codes are semi-infinite: transmission has a start but no end. In practice, ST trellis
codes are terminated at the end of the transmission. Therefore, ST trellis and block codes

mainly differ regarding implementation issues and theoretical analysis, but not in essence.

The transmission of a finite time ST code (length L;) is represented by the transmission

equation

Y =HX +N, (111.8)

where X and IN are matrices of size My x L; and Y is a matrix of size Mg x L;. A simple
example of ST block code is the Alamouti scheme, a ST code with My = 2 and L; = 2
[27]

, (II1.9)
—51 S
where sg and s; are the two symbols transmitted by the system. The Alamouti scheme
achieves a rate of 1 (1 symbol transmitted per channel usage), and offers a diversity of 2,
since every symbol is transmitted over both channels available. The concept of diversity

is further discussed in Section II1.2.

In coherent detection, the metric considered for the decoding of ST codes is similar
to (I11.2), i.e. P(X|H,Y ). However, direct application of a ML decoder is unlikely,
due to its extreme complexity. Most space-time codes are designed to obtain a simple
decoding algorithm, e.g. the main attraction of the Alamouti scheme remains its very

simple decoding process. Both symbols are estimated as

30 = hiyo+hiyn = (hiho + hah?)so + hing + hin}
0 oY + hith (Rgho + huhi)so + hgno + hany (I11.10)

§1 = hfy() — h()yi< = (hého + hlh’{)sl — ho’rf{ + hTTLO

Bit Error Rate (BER) simulation results of the Alamouti code are presented in Fig.
[11.3. The mapping is either 4-Quadrature Amplitude Modulation (QAM, 2 bits/s/Hz) or
16-QAM (4 bits/s/Hz).
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Figure I11.3: BER of Alamouti code over i.i.d. channel

I11.1.3 BER simulation of MIMO transmission techniques

Simulation results of MIMO transmission techniques are presented in Fig. III1.4. The
BER of transmission techniques is plotted for varying SNRs over the i.i.d. Rayleigh fading
channel. Parameters include data rate and number of antennas. Perfect channel estimation
is assumed.

Fig. TI1.4 illustrates the fact that it is difficult to compare MIMO transmission tech-
niques. The difficulty is due to the large number of parameters involved. The relative
performance of the transmission techniques depends heavily on the choice of those pa-
rameters and general results cannot be obtained. A better understanding can be gained
through the introduction of the theoretical concepts of multiplexing and diversity. These
concepts allow us to predict the effect of a parameter on the BER performance of MIMO

transmission systems.

II1.2 Multiplexing vs diversity

As presented in the previous section, popular MIMO transmission systems can be clas-

sified as coded or uncoded. This classification reveals a major difference in the way the
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Figure I11.4: BER of MIMO transmission techniques over i.i.d. channel

large capacity of MIMO channels is exploited, i.e. using multiple antennas to increase the
reliability of the transmission (decrease the probability of error) or to increase the data

rate (throughput).

Coded multiple antennas systems increase diversity to combat channel fading. Di-
versity consists in the transmission of a signal through different means to increase the
reliability of the transmission: if one copy of the signal is poorly received, it can be re-
covered by observing the other copies of the signal. It is well-known that if the fading is
independent across antenna pairs (i.i.d. channel assumption), a maximum diversity order
of Mg x My can be achieved, i.e. every symbol can be transmitted through Mg x My
independent SISO channels for every realisation of the MIMO channel [28]. The average
error probability of a system achieving a diversity order of d can be made to decay like
1/SNRd at high SNR, which corresponds to a linear variation of the BER with SNRgg, the
SNR expressed in dB. The slope of the linear variation is —d x SNRgp [28]. Most MIMO
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systems use reception diversity: each receive antenna obtains a different signal when the
receive antennas are uncorrelated. This result is clearly illustrated in Fig. II1.2 and Fig.
IT1.4: increasing the number of receiving antennas leads to a direct increase of the slope
of the BER curves. As illustrated by Fig. II1.2; not all detectors exploit the maximal
diversity available: while the MI. detector enjoys the maximum diversity available, other
detectors lose diversity order. ST-codes further increase the diversity by sending each
symbol on several transmit antennas. Therefore coded MIMO systems achieve a higher
diversity gain than uncoded systems, justifying the steeper slope of the Alamouti scheme’s
BER curves (when compared to those of uncoded systems).

Uncoded MIMO systems consider fading as beneficial: fading increases the number of
degrees of freedom available for communication since i.i.d. fading increases the probability
of a high rank channel matrix (well-conditioned matrix). Uncoded MIMO systems operate
at a higher rate than ST-codes since they transmit M symbols every time-slot. Therefore
ST-codes need to operate with higher order constellations to transmit at the same data
rate. This point is clearly demonstrated by Fig. II1.4: to achieve high spectral efficiency
(4 bits/s/Hz), the Alamouti scheme is using 16-QAM, whereas uncoded systems achieve
the same efficiency with 4-QAM. As a result, the linear portion of the performance curve
starts approximately at 6 dB of SNR for uncoded systems but at 9 dB of SNR for the
Alamouti scheme.

The Alamouti scheme and uncoded systems are two extremes: the Alamouti scheme
achieves maximum diversity with no multiplexing, whereas uncoded systems obtain max-
imum multiplexing at the expense of diversity. The choice of a diversity order and a
multiplexing level is a trade-off and an optimal trade-off curve can be derived, providing

the optimal diversity order achievable for each multiplexing level [28|.

II1.3 Capacity of correlated channels

Decoding algorithms of uncoded MIMO systems all assume that the channel matrix is well-
conditioned. If the matrix is not full rank, the correct reception of the M7 transmitted
symbols is not possible using a linear receiver. This is simply due to the fact that the
channel projects a vector space of dimension M7 into a vector space of dimension R(H ),
where R(H) is the rank of the channel matrix. Any information contained in the null

space of the channel matrix cannot be retrieved at the receiver by a linear receiver.
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The BER performance degradation (see Section I11.4) is not linked to the decoding
algorithms. It corresponds to the fact that correlated channels have a lower capacity than
their full rank counterparts. A large body of knowledge has been compiled in recent years

on the capacity of MIMO correlated channels.

e Several measurement campaigns have been conducted to determine the correlation
properties of real-life MIMO channels. The impact and extent of correlation on
indoor MIMO channels is discussed in [29, 30, 31, 32|. In [33] it is shown that
the MIMO capacity increases as the signal correlation decreases but the SNR has a

greater impact than correlation on the MIMO capacity, as shown in [34].

e Several theoretical correlation models have been proposed to simulate correlated
channels. Though the most widespread correlation model is arguably the one ring
model [35], other models include the exponential correlation matrix [36, 37| and the

virtual representation channel matrix [38, 39, 40].

e The effects of fading correlation have been studied for the Rayleigh non-i.i.d. channel
through simulation [41] and analysis [35, 42, 43, 44|. Further results investigated the
impact of correlation on the variations of the capacity [45]. An upper bound on

mean capacity is given in [46, 47, 48|.

The effects of correlation on MIMO channels and systems are difficult to analyse due
to the complexity of correlation models. Meaningful insight can be gained through the
study of a simplified model, such as the Ricean channel model. It is shown in the following
that a fully correlated channel has a negligible capacity compared with the capacity of an

i.i.d. channel when the number of antennas grows large.

I11.3.1 Ricean channel

The effect of correlation can be easily understood by studying the Ricean channel. In
the Ricean case, the flat-fading channel is composed of a Line Of Sight (LOS) component
and a Rayleigh component. The choice of the Ricean K g-factor (expressed in dB) varies
the Ricean channel from a Rayleigh channel (K;5 — —oo dB) to a pure LOS channel
(K4 — +oo dB).
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I11.3.1.1 Literature review

Simulation results of the capacity of the Ricean channel are presented in [49]. A geomet-
ric approach to interpret the capacity of Ricean channels is described [50]. Simulation
indicated that the capacity of the Ricean channel can be approximated by a Gaussian
random variable [16|. Finally, analytical results on the capacity of Ricean channel are now
emerging for finite numbers of antennas [51] or in the special case of the low power regime

[52].

I11.3.1.2 Ricean channel model

In Ricean fading the elements of H are non-zero mean complex Gaussians. Hence we can

express H in matrix notation as [53]

10Kd3/10 o 1 s

where the specular and scattered components of H are denoted by superscripts and K;p
is the Ricean K-factor expressed in dB. The entries of H* = (h; ;) are independent and
identically distributed (i.i.d.) complex Gaussian random variables with zero mean and
unit magnitude variance. It is assumed that H*” = 1, where 1 is an My X M7 matrix of
unit entries.

The correlation of the MIMO Ricean channel differs slightly from the widespread idea of
correlation because the entries of the channel matrix are not zero-mean Gaussian random
variable. The correlation between the entries of the channel matrix is solely due to the

non-zero mean of the subchannels.

I1I1.3.1.3 Pure LOS channel: K ;5 — +00

In general, a MIMO LOS channel has a capacity of
O(KdB = 400, MT, MR, P) = 10g2(1 + PMR) (11112)

Since the channel is not random, the capacity is fixed and the ergodic capacity and the
capacity are equal. It should be noted that the capacity does not depend on the number of
transmit antennas, and only increases logarithmically with the number of receive antennas.
In the special case My = Mg = 1, the channel reduces to a Single Input Single Output
(SISO) Additive White Gaussian Noise (AWGN) channel.
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I11.3.1.4 Pure Rayleigh channel: K;z — —0co, Mr=1or My =1

For the Rayleigh channel, |H; ;|? is a x3 variate (chi-squared variate with two degrees of
freedom) but normalized so that E[|H;;|?] = 1. For one transmit antenna, the channel

capacity is [15]
C(Kap — —o00, My = 1, Mg, P) = logy(1 + Px3y,), (IIL.13)

and using one receive antenna the channel capacity is [15]

C(Kap — —00, My, Mg = 1, P) = logy(1 + (P/Mr)x2y,)- (IIL.14)
Notice that
Ell + (P/M 2 = (1+P
1+ (P/Mz) Xou,) = (1+P) (IIL.15)
E[1+Px3y,) = (1+PMp),

and log,(+) is a convex function, that is Vr > 0, E[log,(r)] < log,(E]r]). Therefore
E[C(Kqp — —00, My, Mg =1, P)] < E[C(K4p — 400, My, Mp =1,P)]  (I11.16)
and
E[C(K4p — —o00, My =1, Mg, P)] < E[C(Kyg — +00, My =1, Mg, P)],  (II1.17)

Hence, for a Single Input Multiple Output (SIMO) or Multiple Input Single Output
(MISO) channel, the ergodic capacity is greater in a LOS case than in a Rayleigh case (see
Fig. 111.5).

IT1.3.2 Capacity bounds for the Ricean channel

For large numbers of antennas, it has been suggested in the literature that the capacity
of the Ricean channel tends to the capacity of its Rayleigh component [54| and that the
capacity can be upper bounded by the sum of the capacities of the Rayleigh and LOS
component matrices [55].

This section studies the limiting case where Mr — oo, My — oo and My /Mg = «a.
Lower and upper bounds are derived for the Ricean channel capacity. The normalized
Ricean ergodic capacity is defined as the ergodic capacity of the Ricean channel divided
by min(Mr, Mg). Since the Rayleigh capacity grows linearly with min(Myp, Mg) and the

LOS capacity only grows logarithmically, it is easily deduced that the normalized Ricean
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ergodic capacity approaches that of the underlying Rayleigh channel when the number of
antennas (M, Mg) grows large. Also, the Ricean ergodic capacity should be greater than
that of the underlying Rayleigh channel. Both results are demonstrated in this section.
In order to understand the asymptotic capacity behaviour for the Ricean channel it is

instructive to study the eigenvalues of H.

I11.3.2.1 Towards the capacity of the Ricean channel

While the capacities of LOS and Rayleigh channels are well understood, the capacity of the
Ricean channel is not straightforward to study since the capacity is not a linear operator.

To begin, note that

P
T 10K 0,

P P
1ogy | Iy, + ~— HH*| = log, |1, H*(H*)" + —F|, (1I1.18)
MT MT

where F'is the M x Mg hermitian matrix,

V10Kap/10 10Kas/10

= T 10Rap )T+ HPHT)) 4 e HP(HT)™ - (HL19)

From Appendix .1, F' is a matrix of maximum rank two, with one negative eigenvalue
and one positive eigenvalue. The positive eigenvalue tends to

10Kas/10

)\1(F) - 1 + 10Kap/10

MpMr. (111.20)

Though the positive eigenvalue of F' grows quadratically with the number of antennas,
F has a fixed number of eigenvalues (2) when the number of antennas increases. Therefore,
F has a negligible effect on the normalized capacity of the Ricean channel when the number
of antennas tends to oo, since it contributes approximately as %. This insight is

demonstrated in the following section.

I11.3.2.2 Asymptotic capacity of a Ricean channel

This section states the main contribution of this chapter: for a Ricean channel that is not
pure LOS (Kyp # +0o0), when the number of antennas grows large, the normalized capacity
of the Ricean channel tends to the normalized capacity of its scattering component, i.e.
when Mg, My — oo, My /Mg = «,

C(K4p = —00, My, Mg, mf))
HliIl(MT,MR)

C(Kap, Mr, Mg, P)
min(MT, MR)

1 — E (I11.21)
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I11.3.2.2.1 Lower bound Appendix .2 proves that VMg, My, P, K4p,

- 1
C(Kap, Mr, Mg, P)| S _O?’MT’MR’ trighar ) (111.22)
min(Mrp, MRg) min(Mr, Mg)
IT1.3.2.2.2 Higher bound Appendix 1.3 proves that as My, Mp — oo,
_ 1
C(Kap, My, My, P)] S % Mz Mr: fgezzrm ) +A,  (111.23)
min( My, M) min( My, Mg)

with A — 0 as My, Mp — oo.

I11.3.3 Results and discussion
I11.3.3.1 Mean and variance of capacity for the Ricean channel

Fig. TI1.5 plots the average normalized capacity with o = 1 for an increasing number of
antennas and different K-factors. As indicated in our analysis, for M; = 1, the mean
capacity of Ricean channels is higher than the mean capacity of Rayleigh channels. This
trend is inverted for My, Mr > 1. This result is in contrast with the outage capacity of
the Ricean channel which remains higher than the corresponding capacity of the Rayleigh
channel for small number of antenna (i.e. up to four antennas) when the targeted outage
probability is very small (i.e. 0.01) [49]. Such a result is not surprising since the capacity
of the Ricean channel is a random variable with a smaller variance than the capacity of

the Rayleigh channel [16].

For Ky = —1000, the capacity converges rapidly to a limit as M; — o0, as indicated
in [17]. For other values of Kyp, the capacity decreases with the number of antennas over
this range. For increasing Mr (as soon as My > 2), the capacity of the Ricean channel is

a decreasing function of K;g. The results shown in Fig. 1I1.5 are for My = Mp.

Fig. TI1.6 plots the variance of the total capacity for different K g values versus the
numbers of transmit and receive antennas when SNR= 20 dB and o« = 1. For the purposes
of comparison, the corresponding analytical results in [17] are also shown for the Rayleigh
channel. From these results it is clear that the Ricean channel conditions do not impact the

capacity variance beyond the corresponding Rayleigh values for large antenna conditions.
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Figure II1.5: Normalized mean capacity per antenna with Mr/Mpg = 1, Ricean fading

and SNR= 20dB

I11.3.3.2 Asymptotic mean and variance of the capacity for the Ricean chan-

nel

Fig. III.7 shows the behaviour of the normalized capacity of a Ricean channel as the
number of antennas grows large. For all values of K;g, the normalized capacity of the
Ricean channel tends to the normalized capacity of its scattering component (the lower
bound on the capacity). This lower bound is tighter when K,p is smaller, and for K 5 =
—1000 it is impossible to discern the simulation from the lower bound.

The upper bound converges slowly to the lower bound and is tight for large values
of K45. An explanation for the slowness of convergence can be found in (A.31) where
it is shown that A (see Section I11.3.2.2.2) tends to zero like log(Mg)/Myp, which itself
converges very slowly. Although the upper bound is only strictly valid for a large number
of antennas (see the assumptions in (A.32)), the simulations show excellent correlation for
values of My as low as 20, and for K p < 12.

The capacity bounds for values of a other than 1 are shown in Fig. I11.8. The tightness

of both bounds appears to remain unaffected by the value of a.

The results shown in Fig. II1.6 are further reinforced by Fig. I11.9. This shows the
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behaviour of the variance of the capacity of a Ricean channel as the number of antennas
grows large. For all values of Ky, the variance clearly tends to the corresponding vari-
ance of its scattering component, the variance is maximum for & = 1 and the maximum
decreases as the channel approaches LOS condition. We note from results not reported
here that this asymptotic behaviour of the capacity variance is only achieved for very large

number of antennas My, Mr(Mp = Mpg) = 100 or more.

I11.3.3.3 Capacity bounds

Fig. II11.8 shows the behaviour of the normalized capacity, for varying «, in the asymptotic
case of a large number of antennas (min(Mp, Mg) = 100). As in Fig. II1.7, the lower
bound is tight for small K;p5, whereas the upper bound is tight for large K g. Note
that the tightness of the bounds appears uniform across all o values, indicating that the
tightness depends on the ratio My /Mpg, and not on their actual values.

The results demonstrate that the upper and lower bounds provide a fast and reliable
way to bound the mean capacity of a Ricean channel for large min(My, Mg), without
extensive simulations. Furthermore, depending on the K-factor, it is straightforward to

deduce which of the bounds is the tightest.
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I11.3.4 Conclusion

The capacity of the Rayleigh and LOS channels have been studied extensively and are
well-known, both for a small number of antennas and in the asymptotic case of a large
number of antennas. For a Ricean channel, the capacity is more difficult to derive.

For a large number of antennas, the normalized mean capacity of a Ricean channel
tends to the normalized mean capacity of its Rayleigh component. Precisely, the capacity
of the Ricean channel is lower bounded by the capacity of its Rayleigh component and
upper bounded by a quantity that tends to the capacity of its Rayleigh component as the
number of antennas grows large.

The lower bound is valid for any number of antennas, and depending on the choice of
a constant min(Myp, Mg), the upper bound can be valid for any number of antennas, or
only for a large number of antennas (in which case the upper bound becomes tighter as
the number of antennas grows large). The lower bound is tighter when the K-factor is
smaller, whereas the upper bound is tighter with increasing K. The two bounds allow us

to estimate the capacity of a Ricean channel without extensive simulations.

A very similar behaviour is observed for the capacity variance that also tends to the cor-
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responding variance of the scattering component especially when the number of antennas

grows very large.

II1.4 MIMO systems in highly specular channel

As mentioned earlier, decoding algorithms of uncoded MIMO systems typically assume
that the channel matrix is well-conditioned. Any system with a MIMO multiplexing gain
cannot operate properly over a channel of rank one, since the vector space of the received
symbol is of dimension one. Furthermore, the capacity of highly specular MIMO channels
is usually lower than the capacity of i.i.d. MIMO channels. The influence of channel
correlation on the performance of MIMO systems is further evaluated in this Section
through BER simulation results.

Linear detection schemes presented in Section I11.1.1 all assume that the channel ma-
trix is full rank. The QR detection algorithm produces a division by zero when the channel
matrix is not full rank, whereas other detection schemes can be applied but cannot decode
correctly the transmitted signals, regardless of the SNR. It is reasonable to assume that

limited correlation leads to a loss of performance for all detection schemes. Fig. ITI1.10
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Figure I11.9: Asymptotic capacity variance, Ricean fading and SNR= 20dB

presents BER simulation results for several uncoded MIMO systems over the Ricean chan-
nel. For all systems, an increase of the K-factor directly leads to a loss of performance
which can be related to the loss of power of the i.i.d. component of the channel matrix.
Fig. II1.11 presents BER simulation results of the Alamouti scheme over the Ricean
channel. The performance of the Alamouti scheme does not degrade with channel corre-
lation since no spatial multiplexing is used. The two transmitted signals are coded to be
orthogonal in space and time, regardless of the rank of the channel. Therefore, increasing
the K-factor of the Ricean channel leads to a constant transmission environment. This
explains the lower BER at high SNR: at high SNR, errors only occur when the channel
is in deep fade, which is less likely for a highly specular Ricean channel than for an i.i.d.

channel.

I11.5 Influence of CSI at the transmitter

As discussed previously, correlated channels have generally a lower capacity than i.i.d.
channels. As a result, uncoded schemes suffer from a loss of performance when the channel
is highly specular. ST-codes do not suffer from the same loss of performance since they do

not take advantage of the multiplexing gain available in i.i.d. MIMO channels. However,
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Figure IT1.10: BER of several decoding algorithms for uncoded MIMO transmission over
Ricean channel, My = 4, M = 5, rate of 8 bits/s/Hz (4-QAM on each transmitting

antenna).

ST-codes do not use the multiplexing gain. As a consequence, high-order constellations
are required to transmit at a rate close to the channel capacity, especially if the number
of antennas grows large. For example, the Alamouti scheme using a 16-QQAM should be
compared with an uncoded scheme using a 4-QAM. However, if the number of transmitting
antennas is increased to three, a ST-code (without multiplexing gain) has to use a 64-QAM
to be compared with an uncoded scheme using a 4-QAM. For My = 4, an uncoded system
using a 4-QAM should be compared with a ST-code (without multiplexing gain) using
a 256-QQAM. This comparison highlights the difficulty in designing space-time codes to
achieve a non-negligible fraction of the capacity when the number of antennas grows large.

Systems with CSI at the transmitter are potentially able to

e achieve a non-negligible fraction of the capacity even when the number of antennas
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e operate robustly over correlated channels.

However, these are not the only benefits linked with providing the CSI at the transmit-
ter. Systems with CSI at the transmitter can benefit from the array gain at the transmitter.
Hence, they transmit over a channel with higher capacity. Fig. II1.12 presents simulation

results of the capacity of Ricean channels with and without CSI at the transmitter.

The normalized capacity gain due to CSI at the transmitter is constant when the
number of antennas grows large, which means that the capacity gain due to CSI at the
transmitter increases linearly with the number of antennas.

higher for highly specular channels than for the i.i.d. channel.

Systems with CSI at the transmitter transmit over a channel with higher capacity,
especially when the number of antennas grows large. Furthermore, providing the CSI at

the transmitter limits the performance loss due to highly specular channels.
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I11.6 Conclusion

MIMO transmission techniques without CSI at the transmitter can be classified as uncoded
or space-time coded. Their performances depend heavily on the trade-off chosen by system
designers between diversity and multiplexing gains. Systems with diversity gain are robust,
but are difficult to design for a large number of antennas. Specifically, a large constellation
is required to achieve a non-negligible fraction of the capacity of the channel. Systems
with multiplexing gain can achieve a non-negligible fraction of the capacity but suffer from
performance loss when the channel is highly specular. This is due to the fact that highly
specular channels have a lower capacity than i.i.d. channels. Specifically, the capacity
of Ricean channels tends to the capacity of their i.i.d. component when the number of
antennas grows large.

Finally, providing the CSI at the transmitter can simplify the system design when a

large number of antennas is used, while mitigating the effect of channel correlation.
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Chapter IV

Optimum structure: the SVD

The capacity of the MIMO channel is higher when CSI is available at the transmitter. A
practical coding system is required to turn the promises of high capacity into improved
performances. The new system has to take advantage of the knowledge of the channel
at the transmitter. Information theory suggests an architecture based on the SVD of
the channel matrix [56, 57]. This architecture decomposes the MIMO channel into SISO
transmission eigenmodes and allocates power to the eigenmodes following a waterfilling

algorithm.

Chapter IV introduces the SVD transmission architecture both theoretically and prac-

tically to demonstrate the relevance of this transmission technique.

The SVD structure corresponds to the optimal jointly designed linear precoder and
decoder following the criterion of maximum capacity. The same structure can be modified
to be optimal under other criteria by simply applying appropriate power allocation algo-
rithms, as detailed in Section 1V.2.1. The SVD structure is designed to be optimal over
the flat-fading channel. Section 1V.2.2 indicates that the SVD structure combined with

OFDM is also an optimal space-time modulation in terms of information rate.

Practical SVD structures are introduced in Section 1V.3, where coding is applied sep-
arately on each transmission eigenmode to reduce the complexity of the transmission
system. The notion of system capacity is introduced to free the analysis from assumptions

on coding.

The SVD transmission architecture combined with waterfilling is optimal, i.e. can
achieve the channel capacity with perfect coding (as proven in [12]), when perfect CSI is

available at both end of the link. Imperfect CSI can lead to noise enhancement, especially
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at low SNR. Usually, CSI is obtained through channel estimation. Channel estimation
requirements of the SVD structure are analysed in Section IV.4. Simulation results show
that the estimation noise should be smaller than the noise in the transmission to avoid a
loss of performance. These results have been partly published in [58].

The channel estimation is usually performed at the receiver. The receiver can feed
the explicit precoding matrix or the complete CSI back to the transmitter. When the
receiver feeds the complete CSI back to the transmitter, it is necessary to insure that the
transmitter and the receiver use the same SVD of the channel matrix, which is possible as
demonstrated in Section IV.4.2. These results are, to the knowledge of the author, new
and unpublished.

Transmission architectures based on SVD have been proposed and studied extensively
in the literature [59, 60, 61, 62|. Though SVD-based transmission devices have been

proposed for multiuser channels [63|, Section IV focuses on single user channels.

IV.1 Introduction to the SVD structure

Section 11.2.3.4 derived the capacity of the non-ergodic MIMO channel with CSI at the
transmitter. The capacity is reached when the transmitted signal is circularly symmetric

complex Gaussian with correlation ) chosen so that
Q=VQV (TV.1)
is diagonal (see (I1.52)), where V' is derived from the SVD of the channel matrix
H=USV", (IV.2)

where U and V are unitary and X is diagonal real such that 3,1 > 390 > ... > Xy,
where M = min(Mg, Mr). IV.1 is equivalent to

Q=VQV", (IV.3)

which is achieved by transmitting

r=Vi (IV.4)

where & has independent real and imaginary Gaussian entries and

Bl&}] = (Puy — 3;7)4,Vi € {1,..., Mr} (IV.5)

1
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Figure IV.1: SVD transmission architecture

where P, is chosen to satisfy Y, E[z?] = P. This transmission architecture is presented
in Fig. IV.1
Consider

y=Uvy. (IV.6)

The relationship between y and the transmitted symbols can be expressed as

y = Uy
= U*(Hx +n)
= U'HVz+U'n (IV.7)
= U'UXv'Ve+U'n
= ¥x+n
where

i =U*n. (IV.8)

Since m is assumed zero-mean Gaussian with i.i.d. real and imaginary entries and U™ is
unitary, n and n follow the same distribution.

Equation (IV.7) clearly indicates that the MIMO channel has been decomposed into
parallel SISO virtual channels over which the power allocation is conducted. These SISO
virtual channels are commonly referred to as transmission eigenmodes. The complete SVD

transmission architecture and its equivalent model are presented in Fig. IV.2.

IV.2 Optimality of the SVD

The SVD transmission structure is deduced from the analysis of the capacity achieving
correlation of the transmitted signals over the flat-fading channel. However, this structure
is optimal with other assumptions and other design criteria. The optimality of the SVD

architecture is discussed in this section, with the following results:
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e the SVD architecture is the optimal jointly designed precoder and decoder architec-

ture over the flat-fading channel under several design criteria (Section IV.2.1),
e the SVD architecture combined with OFDM is equivalent to the optimal spatio-
temporal coding over a general fading channel (Section 1V.2.2).

IV.2.1 Optimal linear precoder and decoder

Linear filters are relatively easy to implement and are well-studied. It is natural to try to
determine the optimal, jointly designed, linear precoding and decoding filters for a given
criterion.

The SVD architecture consists of a linear precoding filter (V') and a linear decod-
ing filter (U”). Furthermore, the SVD transmission architecture is potentially capacity
achieving, i.e. the system is able to transmit information at a rate as close as desired to
the capacity of the channel when the symbols on each transmission eigenmode follow a
Gaussian PDF, waterfilling power allocation is applied and perfect coding is achieved. It
is straightforward to deduce that the SVD architecture is the optimum linear precoder
and decoder architecture under the criterion of data rate.

Surprisingly, the SVD architecture is also optimum under a variety of criteria through
modification of the power allocation algorithm [64]. Some of the criteria for which the

SVD is optimum are detailed in the following.
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IV.2.1.1 Maximum information rate

As discussed previously, the SVD architecture combined with waterfilling power allocation

maximises the information rate [64].

IV.2.1.2 Relative SNR design

It is possible to achieve any set of relative SNRs on streams of data transmitted in parallel
(the number of streams cannot exceed the rank of the channel matrix) by assigning streams

to transmission eigenmodes and applying adequate power allocation [64].

IV.2.1.3 Equal error design

The system achieving equal error on each parallel stream can be considered as a special
case of the previous criterion: the equal error rate criterion is fulfilled when the SNR is

the same on each parallel substream [64].

IV.2.1.4 Minimum mean square error design

The system achieving the minimum mean square error in the estimation of the symbols
combines the SVD architecture with appropriate power allocation. The power allocation
algorithm corresponding to this criterion does not guarantee equal mean square error on

each eigenmode and might not transmit on the weaker eigenmodes |64].

IV.2.2 Optimal space-time structure

The SVD architecture is potentially capacity achieving over the flat-fading channel, which
corresponds to a subcarrier in an OFDM transmission (Section I1.3). However, it is unclear
whether the SVD-OFDM-MIMO architecture is optimal over a general fading channel.
The optimal spatio-temporal coding architecture over a fading channel can be derived as
follows.

Consider the SISO transmission of a block of L; symbols over a time-invariant fading

channel with impulse response h = [hg, hy, ..., h;], transmission equation (I1.8) becomes
y(T) = Y hax((k — )To)] + n(kTy). (IV.9)
i=0

where Ty is the sampling period and is discarded in the following. Though (IV.9) is
essentially the convolution of h and & = [2(0),z(1),...,x(L,)], it is possible to modify it
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into a matrix multiplication (since the transmitted block is finite in time) as follows:

he 0 ... 0
h1 ho . 0
y(0) z(0) n(0)
y() =| h h,y " ho x(:l) + n(l) . (IV.10)
0 h, ' '
y(Ly + 1) N x(Ly) n(Ly+ )
0 0 h,

This SISO model is naturally extended to MIMO transmission by defining

Y =[41(0), ., y1(Le +7),5200), .., yary (Le + 7)1,
x = [21(0),...,21(Ls), 22(0), ..., xar, (Le)]T, (IV.11)
n = [n1(0),...,n1(Ls +7),n200), ... ,nar, (Le + 7)1,

where (.)T is the transpose non-conjugate operation and

H171 HLMT
H = L (IV.12)

HMR,I . HMR7MT

where Vi < Mg, j < My, H;; is a matrix of the Toeplitz form as appears in (IV.10), with
entries the elements of the sampled channel impulse response from transmitting antenna j
to receiving antenna i. The transmission equation of the MIMO space-time transmission
can be expressed as:

y=Hx +n. (IV.13)

The capacity of a system following this transmission equation has been studied extensively
in Section I1.2. Obviously, the capacity of this space-time MIMO channel with CSI at
the transmitter can be found by decomposing the channel into space-time transmission
eigenmodes and applying waterfilling power allocation. The block diagram of the suggested
transmission architecture is represented in Fig. IV.3.

This architecture is quite complex since the SVD of a very large matrix has to be
computed. The space and time dimensions are coupled, resulting in complex processing at
both transmitter and receiver. This complexity has to be compared with that of the SVD-
OFDM-MIMO architecture. As illustrated in its simplified block diagram (Fig. 1V.4),

the time processing and the space processing of the signal are separate since the space
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Figure IV.3: SVD Space-Time MIMO transmission architecture

dimension is exploited through the SVD approach, whereas the time dimension is handled
through OFDM. This decoupling of the processing in space and time leads to a significant

reduction in complexity since

e the OFDM modulation requires little adaptive processing (only the power allocation

to the subcarriers) and can be efficiently implemented,

e computing L; SVDs of (Mg, Mr) matrices is much simpler than computing the SVD
of one (L; X Mg, (Ly+7) x Mry) since the complexity of the SVD operation is much

greater than linear.

Counter-intuitively, the reduction in complexity linked with choosing a SVD-OFDM-
MIMO architecture rather than a SVD-Space Time-MIMO architecture is not obtained
at the expense of performance. It is proved in [56|, [65] that in the limit L, — oo, the
capacity of both the SVD-OFDM-MIMO architecture and the SVD-Space Time-MIMO
architecture converge to the continuous frequency channel capacity. This result can be
easily understood by noting that the basis functions of OFDM are complex exponentials,
which are also (for infinite duration) the eigenfunctions of convolution. When the OFDM
symbols are much longer than the delay spread, SVD-OFDM-MIMO provides orthogonal
decomposition in space and time, and the decoupling arises naturally.

The benefits associated with the SVD-OFDM-MIMO architecture (low complexity and

equal performance) justifies that the remaining of this thesis is focused solely on this
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architecture. As a result, flat-fading is assumed for the remaining of the thesis.

IV.3 Practical SVD architecture

It has been shown that the SVD architecture enables the decomposition of the MIMO

channel into transmission eigenmodes, allowing the use of a separate SISO modulation on

each transmission eigenmode without capacity penalty. However, coding across the trans-

mission eigenmodes as well as joint demodulation and decoding of the received symbols

across the eigenmodes are still assumed. The complexity of such a system is usually not

acceptable. Therefore, a simplified SVD architecture uses the transmission eigenmodes as

parallel Gaussian channels, as shown in Fig. IV.5.
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IV.3.1 Performance loss of the practical architecture

The loss of performance due to the practical structure is detailed in the following. Assum-
ing a soft output demodulator, SISO demodulators can be applied without penalty, since
modulation is applied independently on the transmission eigenmodes. The practical struc-
ture suffers from a loss of performance through the application of separate SISO coding.
This is simply due to the fact that the capacity is only achieved in the asymptotic case of
infinite length coding. The capacity of the channel is equal to the sum of the capacities of
the eigenmodes. However, when separate coding is applied to each eigenmode, the length
of the codes applied is approximately min(Mry, Mg) times shorter than the length of a code
that would be applied across all min(Mr, Mg) eigenmodes. In practice, binary coding can
be applied (before modulation) to each eigenmode, or to all eigenmodes. Using coding over
all eigenmodes allows us to use longer binary codes for a given block size. It is well-known
that the performance of good codes (codes transmitting close to the capacity) is linked to
their length. For example, the performance of turbo-codes is closely related to the design
of interleavers, and the performance of interleavers increases with their length |66]. Coding
over all the eigenmodes leads to a faster convergence to the asymptotic channel capacity

limit as the interleaving length is increased.

IV.3.2 Notion of system capacity

The performance of the system depends heavily on the coding strategy, as does the robust-
ness of the system to various impairments (e.g. imperfect channel estimation). However,
the study of specific coding strategies is not the purpose of this thesis. Therefore, it is
necessary to free the analysis from various assumptions related to coding strategies.

The practical SVD architecture considers each transmission eigenmode as a separate
channel. It is possible to obtain the Signal to Interference and Noise Ratio (SINR) on each
transmission eigenmode. From the SINR, it is straightforward to deduce the capacity of
the eigenmode when no joint decoding is applied. The notion of capacity of a transmission
system is then easily defined as the sum of the capacities of the transmission eigenmodes.
The ’system capacity’ corresponds to an upper bound on the data rate achievable when
coding and decoding are applied separately on each transmission eigenmode.

The ’system capacity’ is generally not equal to the capacity of the channel, as demon-

strated by the following example: consider the SVD transmission systems where impair-
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ments forced the decoding matrix to be mistakenly taken as equal to the identity matrix
(Fig. IV.5 with U™ replaced with the identity matrix). The output of the decoding matrix
is exactly the signal on the receiving antennas. In most cases (with a probability equal
to one), the signal on each receiving antenna is the weighted sum of signals from each
transmission eigenmode plus Gaussian noise. Therefore, the SINR on the output of the
eigenmodes of this system is poor and the 'system capacity’ is low (always lower than the
capacity of the channel). This is in sharp contrast to the maximum information rate sup-
ported by this architecture when coding and decoding is applied across the eigenmodes:
the erroneous decoding matrix does not limit the maximum data rate achievable if a joint
detector were applied on the output of the decoding matrix (Fig. IV.2 with U* replaced
with the identity matrix), potentially allowing transmission at a rate equal to the capacity
of the channel.

In the remainder of the thesis the influence of various practical impairments on the 'sys-

tem capacity’ of SVD systems is analysed and compared with the corresponding channel

capacity.

IV.4 Channel estimation and SVD architecture

Both the transmitter and receiver of SVD systems require, at least, the partial knowledge
of the CSI: it is necessary for the transmitter to obtain V', the precoding matrix, and for
the receiver to obtain U", the decoding matrix.

Usually, communication systems obtain the CSI through pilot based channel estima-
tion, i.e. measurements of the channel response to the transmission of known symbols
(pilot symbols). The insertion of pilot symbols corresponds to a loss of transmission slots,
i.e. data rate, and a loss of transmission power. However, increasing the number of pi-
lot symbols can lead to more accurate channel estimation. Determining the appropriate
number of pilot symbols is a trade-off between the accuracy of the channel estimation and
the loss related to pilot symbol insertion. This trade-off has been studied in the literature
[67, 68].

Blind channel estimation [69, 70| can also be applied, where only the statistics of the
symbols is known and CSI can be recovered without any overhead (transmission of pilot
symbols).

Regardless of the specific channel estimation technique applied, the channel estimation
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requirements are discussed in the following.

IV.4.1 Channel estimation accuracy

Consider the system presented in Fig. IV.6. The channel matrix is estimated through
measurements. However, noise in the measurements leads to inaccurate CSI. The esti-
mated CSI is decomposed through the SVD and the precoding and decoding matrices are
modified accordingly.

: d-n,

X, xt oty y.
X, X ? y "y v,
X | Voxr ot g™ oy Uy
X, X, ’ 5”4 Y, V.

Figure IV.6: CSI estimation and SVD architecture.

The degradation of performance due to incorrect estimation of the CSI is analysed in

the following. The channel matrix H is incorrectly estimated as

- H+Nest

H = (IV.14)

r
where N4 is the channel estimation noise and the entries of IN_, are assumed i.i.d.

complex Gaussian and r is a normalization factor defined as

r= \/(E[IIEII%] + E[| Nool7))/ (Mg x Mr). (IV.15)

Normalization is required to maintain the equality between the total transmitted power
and the received SNR. The following SVD applies: H = UXV'. The transmission

equation becomes

A%

y = U (HVx+mn)
= U(rxHVa)-U N,V +U'n (IV.16)
= rX 2.’1’ - ﬁ*Nestvw + ﬁ*n

The received signal consists of the signal (r x 3), an interference term (Tj*NestV:L') and
finally the noise term (U*n) The analysis can be conducted by carefully examining the

different terms.
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e H is a complex i.i.d. Gaussian matrix as the sum of two Gaussian i.i.d. matrices.
Furthermore H is normalized to have entries with variance one. Therefore, X and

2 follow the same distribution.

e U N,V follows the same distribution as N, since U and V are unitary and N,

=~est EA

is an i.i.d. Gaussian matrix.
ok . . . . oK . .
e U n follows the same distribution as n since U n is unitary.

An approximation of the SINR is given by

(EMHINE] + BN ool ) Ell|2][ 7]
Nl Ell 2] E] + Mr x Efl|nlZ]

INR = V.1
SINR = — (IV.17)

When the interference is negligible compared to both the noise and the signal, the

SINR tends to the SNR of the system with no interference:

(ENHNE] | Ell]F]

SINR — X .
Mg x My~ E[||n|Z]/Mr

(IV.18)

On the contrary, when the noise is negligible compared to the interference the SINR

becomes
(E[|H|I%] + E[IN o ll7])
E[HﬂestH%‘]

Obviously, in this situation, the SINR does not depend on the SNR. Increasing the power

SINR = (1V.19)

of the signal does not improve the transmission.

Simulation results of the system capacity with varying estimation errors are presented
in Fig. 1V.7. Equal power and waterfilling power allocation differ only at low SNRs.
Define SNR as the signal (H) to estimation noise (IN.4) ratio. When SNR > SNR,
the system capacity equals the channel capacity: the imperfect channel estimation does
not reduce the performance of the system. On the contrary, when SNRe; < SNR, the
performance plateaus with increasing SNR and the performance of the system depends

only on the SNRgg;:.

IV.4.2 Uniqueness of the SVD

The architecture presented in Fig. IV.6 includes an estimation block and a SVD block. In
practical systems, channel estimation is performed through measurements of pilot symbols.
Therefore, the estimation block is usually located at the receiver. It is necessary to feedback

the CSI to the transmitter. Two solutions are available:
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e cither the receiver performs the SVD and feeds the precoding matrix and the matrix

of the singular values back to the transmitter,

e or the receiver feeds the CSI back to the transmitter.

In the second case, the SVD of the channel matrix is derived separately at the trans-
mitter and at the receiver. This solution relies implicitly on the uniqueness of the SVD
of the channel matrix: if the SVD is not unique, then the transmitter and receiver might
decompose the channel in two different ways, H = UrX7V 7} and H = UpXrVy. The
transmitter filters the transmitted signal by V1 and the receiver filters the received signals

by U%. The transmission equation becomes:
y=Uir(HVrx+n)=UrUrYrx + Upn. (IV.20)
In such a situation, the MIMO channel is no longer decomposed into parallel channels.

Theorem 6. The SVD of a matriz H € C"*M s unique, up to a multiplication of the

input and output eigenvectors by a complex number of norm 1, if the following assumptions

hold:
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e the singular values are sorted in descending order,

o the singular values are of multiplicity 1, i.e. Vi # j,3;, # %, ;.

IV.4.2.1 Proof of the uniqueness theorem

It has been shown that the set of singular values of a matrix is unique |[71]. Consider
H e CM*M guch that:
Vi# g, i # 2,5, (IV.21)

with singular values of multiplicity one and singular values indexes chosen so that
X1 >3 >335 Y. (IV.22)
Suppose H has two SVD decompositions, then:
U, V,X,W.,Z), H=UXV"=WXZ",

with U,V , W, Z unitary matrices.
Obviously V' # Z, otherwise if V.= Z and U # W . then 3 with U.; # W ;. This

is impossible for 3;; # 0 since

1 1

W., = HZ =
K i S

HV', =U., (1V.23)

Furthermore, 3;; = 0 is only possible for ¢ = M. If U.;, = W, for all « # M, then
U.y = cW.y where ¢ is a complex number of norm one since U and W' are unitary
matrices.

Then 3 with Vj <4, V. ;=Z.jand V.; # Z.;. Then |HV ||, = X;;. Furthermore,
J(cy, ..., car) € CM such that

V.= ickZ:7k (IV.24)
k=1

since the vectors of Z form a base of CV.

Since V is unitary, and Vj <4, V. ; = Z.;, it is straightforward to show that

9,

M
V:,i = Z Ck:Z:,k:' (IV25)
k=i
Then
IHV [l = [exl Sk (TV.26)
k=i
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Remember that

[HV,[l2 = 3, (IV.27)

and

M
Yol =1, (1V.28)
k=i

then |¢;| = 1 since Vi < j,%,,; > 3 ;.
This implies that V.; = Z.; up to a complex scalar multiplication and concludes the

proof.

IV.4.2.2 Application to practical systems

Under the previous assumptions, the SVDs of the matrix H are all of the form SVD(H) =
(UP, X, V®), where ® is a diagonal matrix with complex entries of norm 1. A simple
way to use the same SVD at both ends of the transmission chain is to choose ® according
to a given criterion, e.g. Matlab chooses ® such that the first row of elements in V' are

real numbers.

IV.4.2.3 Discussion of the assumptions

The assumptions of Theorem 6 are restrictive and do not always apply to practical systems.
However, the channel matrix can be manipulated to verify the assumptions with a high
probability.

The first assumption of Theorem 6 is that Mg = My. If Mg # My, both transmitter
and receiver restrict the CSI to the min(Mpg, M) transmission eigenmodes, suppressing the
requirement for the system to have the same number of antennas at both the transmitter
and receiver sides of the link.

Therefore, the transmission system can operate when the singular values are of mul-
tiplicity 1. On the contrary, the system cannot operate when several singular values are
equal to zero (highly correlated channel) or when two non-zero singular values are equal.

Matrices with several singular values equal to zero can be treated by removing the
eigenmodes associated with the zero singular values. This is justified by the fact that
eigenmodes with a gain equal to zero cannot transmit information (have a capacity of 0
bps/Hz), and therefore can be simply discarded.

Following the assumption that the channel matrix is i.i.d. Gaussian, the joint PDF of
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the singular values is |72]

_ oMt M 2
pdfy = mr g iamoy XP(—2=135,) %

()L, 352 ;) e M) =ML (352, — 352 )°.

(IV.29)

The last term in the expression implies the probability for two equal singular values is 0.
The probability becomes finite when the singular value are quantized (see Section V.3).
This occurrence is rare but practical systems need to handle such cases. Possible

solutions include
e considering that the event is so rare that the error bursts it creates can be tolerated,
e avoiding transmission on equal gain eigenmodes,

e transmitting additional pilots on the equal gain eigenmodes to provide the receiver

with information on which SVD the transmitter selected.

IV.4.2.4 Conclusion

Though the SVD of a complex matrix is never unique, the SVD can be applied to wireless
systems if its usage is restricted to the non-zero transmission eigenmodes. In such a case,
the transmitter and the receiver can insure implicitly that they use the same SVD at both
ends of the link.

The only difficulty arises with the case of a channel matrix where two eigenmodes have
the same gain. In such a case, it is not possible to agree implicitly on a single SVD at

both ends of the link but practical solutions exist to correct the effects of this problem.

IV.5 Conclusion

The optimal structure, in terms of information rate, for MIMO transmission over a flat
fading channel consists of a precoding matrix and a decoding matrix which decompose
the MIMO channel into parallel transmission eigenmodes. Power allocation has to be
applied on the transmission eigenmodes to obtain the optimal performance. The SVD
transmission system actually corresponds to the optimal solution under a wide range of
criteria, e.g. the SVD structure combined with OFDM is equivalent to the optimum space

time coding technique in the limit of large OFDM blocks.
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Practical SVD systems apply coding and decoding to each transmission eigenmode sep-
arately to reduce the complexity of the system. A loss of performance results. It is possible
to define the 'system capacity’ of such architectures and this definition allows analysis of
various system impairments without placing assumptions on the coding techniques.

The precoding and decoding matrices, as well as the power allocation, need to be
matched with the channel matrix. Errors in the estimation of the channel matrix induce a
loss of performance which is negligible if the channel estimation inaccuracy is much smaller
than the inaccuracy in the detection of the transmitted signal. Finally, practical systems
can decompose the channel matrix separately at the transmitter and receiver, which is
not straightforward since the SVD of a complex matrix is not unique. Problems, such as
equal singular values, have already been flagged and resolved in the case of a static channel
with perfect channel estimation. This problem is further discussed in Section V.3 under
more realistic assumptions. Other problems include getting the CSI to the transmitter

and handling the dynamics in the channel. These issues are discussed in the next chapter.
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Chapter V

SVD architecture in TDD environment

The MIMO channel has a large capacity, however low complexity solutions without CSI at
the transmitter do not take full advantage of that fact. The SVD architecture is optimal
to transmit over the MIMO channel but requires the CSI at both the transmitter and
the receiver. This might result in significant system overhead to transmit the CSI from
the receiver back to the transmitter when the channel is time-varying. In practice, this

overhead might be unacceptably large.

It is possible to suppress this overhead when the channel is reciprocal. In such a case
the transmitter and the receiver can estimate the channel separately. TDD channels are
practical examples of reciprocal channels. Chapter V introduces the SVD architecture
over a reciprocal channel. The impact of the errors due to channel estimation (time delay
and channel estimation noise) on the system capacity is analysed and practical solutions

are proposed.

TDD channels are reciprocal in essence, but mismatched transmitter and receiver
chains can remove the reciprocity of the channel. In such a case, hardware calibration
has to be applied to recover the reciprocity property of the channel. The effect of mis-
matched transmitter and receiver chains is studied in Section V.2. A calibration procedure
is proposed which completely corrects the effect of mismatched chains without requirement
for additional hardware. The calibration procedure relies on a handshake at the beginning
of the transmission, as well as the hypothesis that the impairments of the chains are static.
These results have been partly published in [73] and the calibration procedure has been

granted a provisional patent.

The channel estimation is usually conducted through measurement of pilot symbols.
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Therefore, the channel estimation is not perfect. The effect of incorrect channel esti-
mation on SVD-TDD systems is analysed in Section V.3 through the theory of matrix
perturbation. An event named ’singular value crossing’, which prevents the possibility of
robust transmission, is exhibited. The probability of occurrence of this event is studied
through matrix perturbation theory as well as system simulation. These results are, to
the knowledge of the author, new and unpublished.

The effects of imperfect channel estimation on system capacity are extensive, as ex-
plained in Section V.4. However, a new architecture, with limited added complexity,
obtains the benefit of the SVD architecture when CSI is precisely known at both ends of
the link while seamlessly shifting to a non-precoded system when the channel estimation
precision deteriorates at the transmitter. The new architecture transmits the pilot sym-
bols through the transmitting matrix, which allows the receiver to gain knowledge of both
the CSI and the transmitting matrix with a single set of pilot symbols. These results have
been partly published in [58], [74] and [75]

Though the proposed architecture is robust to imperfect channel estimation at the
transmitter, the system capacity is always higher when a better channel estimate can be
obtained. It is possible to improve the channel estimation through increasing the density of
pilot symbols. However, this results in additional overhead. Section V.5 proposes to reduce
the errors due to the time-variation of the channel and noisy estimate through filtering of
the CSI estimate in time. This proposed scheme consists simply in an extension to MIMO
channels of Pilot Symbol Assisted Modulation (PSAM) [76]. The filtering can be applied
to either the CSI or the precoding/decoding matrices, though superior performance is
usually obtained by filtering the CSI (see Section V.5). These results have been partly
accepted for publication in [77].

V.1 SVD architecture on reciprocal channels

Consider a MIMO reciprocal flat-fading channel. The channel from antenna ¢ of transceiver
A to antenna j of transceiver B is represented by the complex coefficient H,,. For a
reciprocal channel, the channel from antenna j of transceiver B to antenna ¢ of transceiver
Ais H;;. Therefore, if the MIMO channel from A to B is the matrix H, the channel from
B to A is HT.

Ideal SVD based systems have knowledge of the CSI at the transmitter and receiver
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simultaneously. SVD systems over reciprocal channels can obtain the CSI at both ends of
the link without explicit feedback of the CSI. Both transmitter and receiver estimate the

channel through measurement of pilot symbols (Fig. V.1), as detailed in the following.

Transceiver A Transceiver B
Channel
T
H y—v—r\
’—T‘ ...................... \Ml
ol I
‘ ‘ Pilots, PB
“Jsvp
V] - H -
Pilots, PA : %‘ﬁ
SswD| |

Figure V.1: SVD transmission over reciprocal channel

It is straightforward to obtain the CSI at the receiver. Pilot symbols PA; are trans-
mitted through the channel H prior to data transmission (Fig. V.1).

To obtain the CSI at the transmitter, the reciprocity properties of the channel are
used. If transceiver A wishes to send data to transceiver B, it requests B to send pilot
symbols PB; to obtain the CSI, H', and then transmits data through the V matrix that
has been derived from the CSI.

The necessity for pilot symbols can be suppressed if blind channel estimation is applied.

V.2 Hardware calibration procedure

V.2.1 Effect of hardware errors on channel reciprocity

For a TDD system, the wireless channel is reciprocal. However, the channel does not
include the transmitter and receiver chains. So far, it has been assumed that the ampli-
tude and phase shift of the transmitters’ analog electronic (between the digital to analog
converters and the antennas) is the same as that of the receivers’ electronics (between the
antennas and the analog to digital converters) for a given antenna. That is, the transmit-
ter and receiver Radio Frequency (RF) chains are perfect. When the transmitter chain
includes a phase or amplitude error that is not replicated in the receiver chain, the channel

is not reciprocal.
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The errors introduced by transmitter A, receiver A, transmitter B and receiver B are
represented respectively by the matrices ErT4, Er®4, ErTP ErfB. Each of these
matrices are diagonal, with complex elements on the diagonal, if it is assumed that there
is no leakage between the hardware chains. In this case, ErlT;lA is the error introduced by
the RF section of the transmitter connected to antenna 1 of transceiver A.

The overall channel from transceiver A to transceiver B is the matrix H4~% = ErfB x
H x Er™" whereas the the channel from transceiver B to transceiver A is the matrix
H54 = ErfA x H' x ErTB. Clearly, H* ™" is not always the transpose of H?~4. In
most cases, H* 7P and HP~* are uncorrelated.

Usually, transceiver B estimates the channel H“~ through reception of pilot symbols.
Transceiver B performs the SVD of HA7P and uses this results to transmit on the reverse
link, i.e.

over the channel HP~4, resulting in a loss of performance of the system. The overall

transmission relationship becomes:
y= (UB_KA)*(HB—}AVA_)Bm + n) (v1)

Simulation results of a My = Mpr = 4 SVD system are presented in the following to
assess the effect of hardware errors on the system capacity. The MIMO channel is assumed

to be i.i.d. Rayleigh distributed.

V.2.1.1 Amplitude error

To measure the sensitivity of the system to an amplitude error in the hardware chains,
the system was simulated over an i.i.d. Gaussian channel with Er?4, Erf4 ErTP and
Er™8 being diagonal matrices with real entries. The system capacity (defined in Section
IV.3.2) was obtained.

A system with ideal RF chains corresponds to the system with ErT4 = Epft4 =
Er"B = ErfP = . The amplitude error introduced by each hardware chain is considered
to be uniform and is measured by the ratio of the maximum amplitude error introduced,
with respect to the ideal amplitude, i.e. 1. Therefore, if the system suffers a 20% error,
the entries of the diagonal of ErT4, Erf4, ErTP Erf?P are random variables with an
amplitude uniformly distributed between 0.8 and 1.2. Results are presented in Fig. V.2.
Every transmission and reception chain has to be accurate in the limit of 4% (equivalent

to 28 dB) to limit the capacity loss to a maximum of 2 bits.
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Figure V.2: System capacity of a SVD based system with hardware amplitude errors

V.2.1.2 Phase error

To measure the sensitivity of the system to a phase error in the hardware chains, the
system was simulated with Er"?, Er®4 Er"P and Er™P being diagonal matrices with

complex entries with amplitude 1.

The phase error introduced by each hardware chain is considered to be uniform, and
is measured by the maximum phase error introduced. Therefore, if the system suffers a
20 degrees error, the entries of the diagonal of ErT’A, E'rR’A, ErTB ErfP are random
variables with an amplitude of 1 and a phase uniformly distributed between —20 and 20
degrees. System capacity (defined in Section IV.3.2) results are presented in Fig. V.3. The
plot shows that the system is particularly sensitive to hardware phase errors. Considering
the previous figure of 2 bits of loss of capacity, the phase error has to remain smaller
than 5 degrees. This requirement is particularly unrealistic. For example OFDM systems
experience flat fading channel on each tone. However the system is wideband, since OFDM
uses a number of subcarriers, at different center frequencies, to reach commercially viable
data rates. It would be difficult to design transmission and reception hardware chains with

so small phase tolerance over the entire bandwidth.
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Figure V.3: System capacity of a SVD based system with hardware phase errors
(Mp = Mg =4,SNR = 20dB, i.i.d. Rayleigh channel).

V.2.2 Calibration procedure

Considering the results aforementioned, it is unrealistic to rely on hardware design to

provide RF transmission chains with performance close to the requirements of a SVD

based MIMO system.

The most common solution presented in the literature to combat these effects in an-
tenna arrays, is to conduct a calibration procedure. Calibration usually consists of mea-
suring the distortion introduced on a test signal by the different RF chains taking part in
the antenna array. However, this type of procedure usually relies on using a test receiving
(transmitting) antenna, to measure (transmit) a signal emitted (received) by each of the
transmitting (receiving) antennas [78|. This approach is only viable in the case of a base
station, where only one end of the link is using an antenna array and where complexity can
be added to the base station in order to increase the performance of the system. However,
in the case of wireless modems and full MIMO systems (as opposed to Multiple Input
Single Output (MISO) systems, e.g. antenna arrays), this solution is difficult, for obvious

reasons of size and cost of the modems.
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It is nevertheless possible to perform some type of calibration on the system. As
in a standard calibration procedure, it is assumed that the hardware components have
fixed amplitude and phase response in time, or that these characteristics drift very slowly,
compared to an average transmission duration. Only sparse calibration runs are required
in time. Consider a scenario where transceiver A and transceiver B initiate a data transfer
by some kind of ’handshaking’. It is assumed that the wireless channel (including the RF
chains to transmit and receive the signals) can be perfectly measured through transmission
and reception of pilot signals. Also the channel is assumed fixed during the calibration

procedure. At the start of a transmission from transceiver A to transceiver B, a calibration
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Figure V.4: Calibration procedure.

procedure takes place, as presented in Fig. V.4. Assume transceiver A (transceiver B) has
M, (Mp) antennas. Transceiver A sends pilot symbols to transceiver B, enabling B to
measure H478 = Er®® x H x Er"". Transceiver B immediately replies to A, sending
pilot symbols to enable A to measure H?~4 = Erft4 x H' x ErT8. Transceiver B also
transmits back to A the CSI of the forward link H*~%. Likewise, A transmits back to B
the CSI of the return link HZ~4.

The knowledge of both H4~% and H”~4 is enough to deduce the correction matrices
that can make the links symmetrical. The aim of the calibration procedure is to produce
two matrices Cor® and Cor® such that H*~? = Cor? x (HP? ")t x Cor®. It is also
necessary that the reciprocity of the channel is maintained as the transmission channel

changes in time. For example, it is not possible to choose the correction matrices as
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Cor®? =TI and Cor® = (HP~")THA™5.
A possible choice to achieve correction is

A—B
Corfi = Z}B?A Vie (1,..,Ma) v.2)
Cor =0Vi#j

1]

and
A—B B— A
B H',1 H1,1 .
Cor;, = gi==x X gi=r Vi € (1,..,Mu)
1,i 11

Cor], =0Vi#j

(V.3)

V.2.3 Effects of the calibration

It is not possible to deduce from the two channels’ matrices the parameters ErT4, Erft4,

Er"B and Er™8. Therefore, it is not possible to correct explicitly the errors introduced
by the hardware chains.

The first row of H*™? consists of the first row of H, with every element being mul-
tiplied by the error introduced by the first receiver chain of B, and the element in each
column being multiplied by the error introduced by the corresponding transmitter chain of
A. In a similar manner, the first row of (H?~%)t consists of the first row of H with every
element being multiplied by the error introduced by the first transmitter chain of B, and
the element in each column being multiplied by the error introduced by the corresponding
receiver chain of A.

Therefore, it is easily observed that, in both cases, dividing the entries of each column

by the entry of the first column produce two effects:
e it cancels the influence of the errors introduced by transceiver B,

e it prevents us from measuring the errors introduced by each transmission (reception)
chain of A on its own, but contains information on the ratio of the error introduced
by a transmission (reception) chain, compared with the first transmission (reception)

chain.

The calibration process ensures that the ratio of errors to signal introduced by transmitter
7 and j of transceiver A is identical to the ratio introduced by receiver i and j of transceiver
A. The calibration does not correct the errors, it just ensures that they are symmetric on
the transmission and reception chains of a transceiver. Therefore, it is self evident that

using these fixed correction matrices, symmetry in the system remains, even when the
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wireless channel varies in time. It is nonetheless crucial that the channel remains static
during the calibration handshaking.

Finally, since the correction explicitly makes the transmission and reception chains
symmetric for a transceiver, transceiver A does not need to recalibrate its hardware chains

for a transmission to another completely different transceiver C.

V.2.4 Choice of calibration matrices

It is important to note that an infinite number of correction matrices that would correct
(HP=M1 into H*™P exists. Every matrix ¢ x Cor® and % x Cor®, where ¢ is any
non-zero complex number, provides the adequate correction.

There is no advantage in choosing the phase of the correction matrices. However,
there is a significant advantage in modifying the amplitude of the correction matrices: it
may be interesting to transfer some workload from the transmitter to the receiver chains.
This feature may be helpful to avoid saturation of either the transmitter or the receiver

amplifiers.

V.3 SVD-TDD system and singular values swapping

It is possible to obtain the CSI at both ends of the link when the channel is reciprocal as

presented in Section V.1. This relies on the following assumptions:

e pilot symbols provide perfect channel estimation,

e the channel is static.

Neither of these assumptions applies to practical systems. The complete system, in-
cluding errors in the channel estimation, over a TDD time varying channel is presented in
Fig. V.5.

Consider the transmission from transceiver A to transceiver B at the time slot (k4 1)t.
The precoding matrix is derived from the CSI available at transceiver A, i.e. the CSI
estimated from pilot symbols PB; at time slot kt. This precoding matrix is denoted as
V(kt). The decoding matrix, denoted U ((k + 1)t), corresponds to the CSI estimated
from the reception at time slot (k + 1)t of pilot symbols PA;. The complete transmission
equation becomes

Ak

y=U ((k+ Dt)(HV (kt)x +n), (V.4)
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Figure V.5: SVD transmission over a TDD channel with channel estimation error.

where the precoding and decoding matrices are neither matched with the channel matrix
nor with each other.

The impact of the estimation errors (errors due to noise in the estimation or errors
due to the time-varying nature of the channel) can be analysed according to matrix per-
turbation theory, assuming that the channel matrix H as been estimated incorrectly as

H=H+ N,.

V.3.1 Matrix perturbation theory, singular values

Several powerful results exist concerning the perturbation of singular values. The main
result is probably the following theorem, stating that the singular values of a matrix
are perfectly conditioned, i.e. no singular value can move more than the norm of the

perturbations.

Theorem 7. Mirsky Let H and H be matrices of the same dimensions with singular

values
?1,1 > z}2,2 > .2 ZA)M,Ma (V.5)
Y1200 2 Xy M-
Then for any unitary invariant norm ||.||, '
[diag(%i; — Zii)|lu < [[H — Hu. (V.6)

The proof of the theorem is given in [79]. Two immediate consequences are

' A unitary invariant norm ||. ||, is a norm such that for all matrix H (dimension M x N) and all unitary

matrices U (dimension M x M) and V' (dimension N x N), |UH]||,, = ||H|, and ||HV ||, = | H||4-
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Theorem 8. Weyl

1325 — Zidl < I Negllo, i=1,..., M, (V.7)
and

Theorem 9. Mirsky

\/Z@,i 502 <IN (V.9)

i
as shown in [79], where ||.||» is the matrix 2-norm? and ||.|| is the Frobenius norm?.

It is notable that:
e there is no restriction on the size of the error,
e the ordering of the singular values by magnitude provides a natural pairing between

the singular values of the channel matrix and the estimation of the channel matrix.

V.3.2 Matrix perturbation theory, singular vectors

The perturbation of singular vectors is difficult to analyse or bound, due to several reasons:
e arbitrarily small perturbations can completely change singular vectors,

e it is difficult to define a meaningful distance between vectors.

V.3.2.1 Example of catastrophic perturbation

Consider the matrix

1 0
H- , (V.9)
0 1+e€
with precoding matrix
1 0
V = . (V.10)
0 1
If H is estimated as
N 1 €
H = , (V.11)
e 1

2The matrix 2-norm is defined as the largest singular value of the matrix.
3The Frobenius norm of the matrix H is defined as the square root of the sum of the absolute squares

of its elements, i.e. [|[H|p =), Zj h?]
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then the corresponding precoding matrix is

vt b (V.12)
V2N 1) .

without assumptions on the size of the perturbation e. Therefore it is impossible to derive
perturbation bounds on singular vectors.

Consider such a catastrophic perturbation, the transmitter transmits the first data
stream on the first antenna and the second data stream on the second antenna, according
to (V.10). The receiver tries to receive the first stream by adding the symbol sent on
the first antenna and the symbol sent on the second antenna since the receiver believes
that both data streams where transmitted according to (V.12). Therefore, in the case of
catastrophic perturbation, the smallest channel estimation error results in a bit error rate
of 0.5. This example, combined with the results of Section IV.4, highlights the fact that
the primary problem is mismatch of U and V', rather than mismatch of the channel to U

and V when the latter are matched.

V.3.2.2 Subspaces perturbation theory

Several results on subspaces perturbation theory presented in [79] are mentioned in the
following.

To analyse the perturbation of singular subspaces, it is necessary to define a meaningful
distance between two vectors. The distance usually used in perturbation theory is mean-
ingless for singular vectors. E.g. consider V' a precoding matrix, estimated as V=-V.
Obviously the transmission eigenmodes have not been perturbed, whereas ||V — V|| is
large.

A meaningful distance between two singular subspaces is given by the canonical angles
between the two subspaces [79]. Bounds on the perturbation of singular subspaces can
be found but the accuracy of the bound depends on the inverse of the distance between
singular values. The bound is not applicable when two singular values are equal.

An expansion of the perturbations of the singular value of a matrix is also derived in
[79], however the expansion only applies to the subspaces with non-zero singular values
of multiplicity one. It is clear, with this result, that the transmitter and receiver cannot
unambiguously pair input and output singular subspaces simply on the basis of size or-
dering of measured singular values, and that significant mutual interference among such

subspaces may result.
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V.3.3 Probability of robust transmission

From the previous results, it is clear that the SVD transmission system cannot operate
properly when some of the channel matrix singular values are zero or of multiplicity higher
than one.

If some of the singular values are zero or multiplicity higher than one:
e the SVD of the channel matrix cannot be determined uniquely,
e the perturbation of the corresponding singular subspaces cannot be bounded.

Therefore, it is necessary to determine the probability for the channel matrix to have
singular values that are non-zero and of multiplicity one. In Section IV.4.2, it was men-
tioned that the probability of these events is one. This result is only true if it is assumed
that the CSI is known with infinite precision. However, in practical systems, the CSI is
only estimated through measurement of pilot symbols. Noise in the estimation, estima-
tion delay and limitations of the system (e.g. quantization noise) can limit the channel
estimation accuracy.

In such a case the singular values 3J;; are known up to a confidence interval. Two
singular values are always distinct when their respective confidence intervals are not joined.
Furthermore, a singular value whose confidence interval includes zero might not correspond
to an actual transmission eigenmode. Therefore an SVD transmission system needs to
determine the singular values of the channel matrix but also the confidence interval length,
i.e. how precisely these singular values are known.

Applying Theorem 8, it is possible to obtain a confidence interval:

1255 = )l < (1 Nestl2- (V.13)

~ A

Furthermore, applying Theorems 8 and 9, 3; and X; correspond to two non-equal

singular values if
1255 = ial = min(2 x | Nestl2: V2 X [ Nesi | ), (V.14)

where the second term is derived from Theorem 9 as explained in the following. From

Theorem 9

\/(f%,i — B2+ (B - 2,)? < \/Z(Ekk = 2pk)? < [ Nestllr (V.15)
k
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and for all dq, ds real positive numbers

Vdy +dy)? < V24 /d2 + 2. (V.16)

Therefore
[ = ] > B — il + 1255 — 2y (V.17)
if
20— 2550 > V2| Neg | - (V.18)

Obviously the length of the confidence intervals depends on the realization of the
estimation noise. One solution is to apply a probabilistic confidence interval: the interval
that guarantees to contain the perturbed singular value x% of the time. Another solution
is to use the average confidence interval.

Given a confidence interval, it is straightforward to deduce the probability for all
singular values to be non-zero and of multiplicity one, by just integrating pdfy over the
domain corresponding to non-overlapping confidence intervals. Results are shown in Fig.
V.6 where SNR¢qur refers to the ratio between the power of an element of the channel
matrix and the square of the size of the confidence interval. The case of distinct singular
values with all singular values being non-zero corresponds to the curve 'well-separated’.

It is possible to reduce the requirements on the system following Section 1V.4.2.3,
i.e. non-zero eigenmodes are required to be of multiplicity one and zero eigenmodes are
discarded for transmission. The curve labelled "Zero eigenmode’ corresponds to the proba-
bility for some eigenmodes to have a negligible gain while the other eigenmodes correspond
to singular values of multiplicity one. Finally, the curve labelled 'Correct SVD’ corresponds
to the probability for the SVD transmission system to be robust, i.e. non-zero eigenmodes
correspond to singular values with a multiplicity of one. The curves are worst case because
of the inequalities in (V.13) and (V.18).

Wireless channels face fading in time, i.e. are time varying. If two singular values are
equal to each other at one point in time, they are likely to separate later, due to channel
fading. As explained earlier, when two singular values of the channel are equal the system
is not robust since a small variation of the channel might result in a large variation of the
precoding and decoding matrices. Therefore, it is of interest to determine the probability
of occurrence of such an event which is referred to as ’singular value crossing’ in the
following. The probability of ’singular value crossing’ is investigated through computer

simulation in the next Section.
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Figure V.6: Probability of robust transmission vs amplitude of the estimation confidence
interval, My = Mg = 4, i.i.d. channel of complex Gaussian entries with mean 0 and

variance 1.

V.3.4 Singular value crossing

Consider a time-varying 4x4 MIMO channel treated as 16 independent SISO time-varying
Rayleigh channels. Each SISO channel follows the Jake’s time-varying channel model
[80, 81|, i.e. the autocorrelation of the time-varying channels is Jy(27wFy0t), where Fy
denotes the Doppler frequency, dt the time delay and Jy(.) is the zeroth-order Bessel
function of the first kind. In simulations involving F,;t, a value of F; 0t = 0.038 was
assumed. This represents a realistic value expected in the 802.11a and Hiperlan 2 standards
with a Doppler frequency of 38 Hz (corresponding to a terminal velocity of 2 m.s™! for a
carrier frequency of 5.725 GHz) and a typical time-duplex delay of 1 ms. The amplitudes
of the singular values of the time-varying MIMO channel are plotted versus time in Fig.
V.7. A ’singular value crossing’ is exhibited.

A ’singular value crossings’ corresponds to the event where 3;; — ;11,11 = 0. Deter-
mining the probability of this event is similar to the well known issue of determining the
zero-crossing rate of a random variable. Consider a real valued random variable z(kT5),

the zero crossing rate of z for k € [0, N] is defined as the number of indexes k such that
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Figure V.7: A clear singular value crossing between the second and third singular values

at time sample 3667.

x(kTs)z((k + 1)Ty) is negative. Zero-crossing rate theory is used in communications, e.g.
to determine the velocity of a mobile [82]. However, determining the level crossing rate of

singular values of a matrix with random entries is difficult, due to the following reasons:

e The singular values of a matrix are highly non-linear and non-monotonous functions
of the entries of the matrix. Singular values are determined, in practice, through

recursive algorithms, not analytical functions.

e The SVD of the matrix involves a sorting function to sort the singular values in
decreasing order. The sorting function implies that, strictly speaking, >, ; > ¥4 ;41

Vi, i.e. singular values are never crossing.

e Level crossing rate have been determined for Gaussian random variables and simple
functions of Gaussian random variables such as monotone transformation of random
processes [83] or mixtures and products of Gaussian processes [84]. However, to
the knowledge of the author, the level crossing rate of the result of such a complex
function as the SVD on Gaussian random variables has not been determined in the

literature.
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It is unclear whether the level crossing rate of the singular values of a matrix with Gaussian
entries can be determined analytically. Due to the lack of results in the literature, an
ad-hoc criterion is introduced in the following to estimate through simulations the level
crossing rate of singular values.

The criterion chosen to define ‘singular value crossings’ follows. 3J;; and ;. ;41 are

crossing each other at ¢, if:

o |Xii(te) — Bivrip1(te)] < 0.1,

821 i 821 i

Poii(t < t,) — Lotlisi g 5 ¢ )|,

(t>t.)] >| o

(t<t.) —

.’azzgiz+1(t<t) %(t>t)\>]m(z€<t) 82”(t>t)|

This criterion corresponds to the intuitive idea of observing two curves that cross each
other at one point: their value is the same at the crossing point and the gradient of both
curves remains approximately constant around the crossing point. The choice of the value
0.1 is empirical and was chosen by the author through a trial and error process on the
simulation results.

50 x 16384 time samples of a Mg = 4, My = 4 time-varying MIMO channel (16 i.i.d.
SISO channels, Jake’s fading, F;0t = 0.038) were simulated. 622 crossings were detected
between the first and second singular values, 921 crossings between the second and the
third and 1000 between the third and the fourth. This represents a total of 2543 crossings,
for 50 x 16384 time samples. At F; 0t = 0.038, there is less than 0.32% probability that a
‘singular value crossing’ occurs from one sample to the next. A ’singular value crossing’
is very unlikely under the given assumptions.

Moreover, the frequency of 'singular value crossings’ is independent of the sampling
rate for high sampling rate, i.e. for a sampling rate much higher than the ’singular value
crossing’ rate. The results above can be restated as: at a doppler frequency of Fy; = 0.038,
if the channel is sampled every second (T = 1), there will be on average a crossing
approximately every 322 samples (seconds). The frequency of the crossings is Fy,, =
1/322Hz. Therefore, an empirical general relationship can be deduced: Fj,./Fy; = 0.08.
This relationship is applicable for any My = 4, M = 4 i.i.d. Rayleigh fading channel
following Jake’s fading.

The results of the simulation also indicate that the first and second singular values

cross each other less often than the others. Due to bits (and possibly power) allocation,
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the channel corresponding to the first singular value is the most important: it is the sub-
channel carrying the most information. This sub-channel is less subject than the others

to ’singular value crossings’, offering a reliable, high SNR, channel for transmission.

V.3.5 Subspace swapping

It has been shown in Section V.3.4 that ’singular value crossings’ are rare, but do occur.
"Singular value crossings’ can affect the throughput of a SVD-based system. If the trans-
mitter measures the channel before the ’singular value crossing’, and the receiver after
the ’singular value crossing’, the result of the SVD performed on their respective channel
matrices might be very different, leading to a burst of errors in the transmission.

Therefore, it is of interest to determine the behaviour of the singular subspaces before
and after a ’singular value crossing’. Following the SVD of the channel matrix, the first
column of the V' matrix and the first column of the U matrix are respectively the input
subspace and output subspace corresponding to the first eigenvalue.

To determine the behaviour of the subspaces around a ’singular value crossing’ point,
the autocorrelation of the first input subspace (i.e. the autocorrelation of the the first
column of the V' matrix) is plotted, as well as the cross-correlation between the first and
second input subspaces (i.e. the cross-correlation between the first and second columns of
the V' matrix). Results (corresponding to the ’singular value crossing’ presented in Fig.
V.7) are presented in Fig. V.8 for the input subspace, and Fig. V.9 for the output subspace.

The autocorrelation stays high until the crossing point and then drops suddenly. On the
contrary the cross-correlation is very low, but increases suddenly after the crossing point.
This clearly indicates that the subspaces are linked with the singular value, and when the
first singular value becomes lower than the second, the corresponding columns of the V'
matrix swap position at the same time as the singular values swap position.

The swapping of the subspaces is simply due to the ordering function performed during
the SVD. If the transceiver measures the channel before the crossing and the receiver after
the crossing, the information sent on sub-channel 1 is received on sub-channel 2, and the
information sent on sub-channel 2 is received on sub-channel 1.

Supposing that it is possible to detect 'singular value crossings’, either the transmitter
or the receiver might be able to handle it by simply swapping the sub-channels at either the

transmitter or the receiver. This result is of great interest for the design of a wireless SVD-
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Figure V.8: Correlation of the input subspaces

based system: singular subspaces are related before and after a ’singular value crossing’.

'Singular subspace swapping’ can be used as a criterion to detect a ’'singular value
crossing’. It is possible to determine whether two singular values become close to each
other with or without crossing by checking the amplitude of the autocorrelation and cross
correlation of both the input and output subspaces. If both of them display a crossing at
a point where the singular values are close in amplitude, then a ’singular value crossing’ is
detected. This new criterion produces the following results: 50 x 16384 time samples were
simulated. 823 crossings were detected between the first and second singular values, 1149
crossings between the second and the third and 1065 between the third and the fourth.
This represents a total of 3037 crossings, for 50 x 16384 time samples and Fy,./F; = 0.1.
Obviously this criterion indicates a higher probability of singular value swapping. However
it corresponds better to the reality of a MIMO-SVD transmission system and therefore is

more representative of the expected behaviour of the system.

V.3.6 Correction of singular value crossing

A practical way to correct the effect of singular value crossing involves transmitting a

second set of pilots through the precoding matrix. Therefore the receiver can correct any
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mismatch between transmitting and decoding matrices. This method is, however, not

limited to the correction of 'singular value crossings’ as explained in the following Section.

V.4 SVD architecture modified for TDD environment

As presented in Section V.3, the precoding and decoding matrices can be completely
modified when the channel is perturbed. However, these catastrophic events, referred to
as ’'singular value crossings’ are rare.

Regardless of ’singular value crossings’, the precoding matrix of SVD-TDD systems is
generally not matched with the channel matrix (see (V.4)). This leads to a degradation
of the system capacity (defined in Section 1V.3.2) of SVD-TDD systems. A severe * drop
in capacity results.

The delay between channel measurement in one direction and transmission in the other
may vary due to time slot allocation in the TDD protocol. Furthermore, this delay may

not be identical for symbols inside a frame, depending on whether the symbols are at the

4For a SVD-MIMO system with 4 transmitting and 4 receiving antennas, over a flat fading i.i.d.
channel, at SNR=20dB, assuming Jake’s fading, the capacity drops from more than 21 bits/s/Hz for
perfect CSI to less than 8 bits/s/Hz for Fz0t > 0.1, see Section V.4.3.2
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start or the end of the frame. A conservative approach in assessing the performance of
the system, identifies ¢t with the worst case delay. In the following, the capacity of a
system with fixed Fydt is considered and then the capacity is analysed for varying Fjot.
It is considered in Section V.4 that pilot symbols provide perfect CSI, i.e. the channel

estimation noise is considered negligible.

V.4.1 Correction of the CSI impairment
V.4.1.1 Proposed Architecture

System capacity drops when the transmitter filters data through a V' (¢ — dt) matrix, which
corresponds to an outdated CSI. However, the receiver can mitigate the effect of this
impairment through processing of the received signals. The receiver can be provided with
information on the outdated V' matrix (V' (¢t — 6t)) if the transmitter sends an additional

set of pilot signals P A, through V' (¢t —dt), the channel and U (¢) (Fig. V.10). A correction
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Figure V.10: SVD transmission over a TDD channel with channel estimation error

recovery pilot symbols PA,.

matrix, B(t) can then be derived to partially compensate the effect of the outdated V(¢ —

dt) matrix.

y=BOUW)(HHV(t - dt)z +n) (V.19)

The requirement of two sets of pilots in the one direction (PA; to calculate U (¢) and PA,
to calculate B(t)) adds to the signaling overhead in the system. A new architecture is
proposed that does not use the set of pilot signals PA;. In the new architecture, one set
of pilot symbols (PA,) is sent from the transmitter through V(¢ — §t) and the channel
H (t), to the receiver (Fig. V.11). In this situation, the matrix H(t)V (¢t — 0t) is known
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at the receiver and linear processing can be applied:

y=C{t)(H{t)V(t—t)x +n) (V.20)
Phs PA,
X3 i,,> * D) rErn]l,\:*: v Yi
X L | LNz o 7
xs o V(=3 SH() , s 0 C(1)] ve
Xq | . ) ‘n, I Vi

Figure V.11: Correction of the CSI Impairment

where C(t) is the matrix of the linear correction. Since U (¢) is unitary, the performance
of equations (V.19) and (V.20) is identical for a given selection criteria of C(t) and B(t).
Therefore, from here on, we only consider the system that uses one set of pilots. Two
criteria for the selection of C(t) are considered: zero-forcing (ZF) and minimum mean

square error (MMSE). The ZF correction is applied by setting
C(t)=(H{t)V(t—dt))*. (V.21)

This method forces the interference to zero, but can lead to noise enhancement. It is
referred to in the remainder of the paper as a 'SVD-+ZF’ system.

The MMSE correction is applied by setting
C(t) = QUH )V (t = 6t))" (Ins, + (H(OV(t = 6)QH(D)V (t = 6t)") . (V.22)

It is referred to in the remainder of the paper as a 'SVD+MMSE’ system. It is assumed
that @ is a real diagonal matrix, i.e. the input symbols are independent and the entries
of @ represent the power allocated to the sub-channels. The receiver needs to have prior
knowledge of the power allocation applied by the transmitter to perform MMSE decoding.

From an implementation perspective the new architecture only requires the set of pilots
PA,. This applies to the reverse link (transceiver B to transceiver A), where (U (¢)*)' is
required for transmission because (U (t)*)' can be obtained from the SVD of H (t)V (t—6t),
measured by pilots PAy only. The fact that V(¢ — d§t) does not match the channel has no
effect on the calculated value of U (t), since any error in V(¢ — §t) only affects the input

subspaces (V is a unitary matrix).
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It should also be noted that the so-called 'SVD transmission’ system over a reciprocal
channel performs the eigenvalue decomposition of the channel, but does not need to per-
form a full SVD. Transceiver B requires knowledge of U (t) to receive data transmitted over
H(t), and (U (t)*)! to transmit data over (H (¢t + dt))T, but does not require knowledge of
V().

The new architecture solves some implementation issues of the SVD architecture while
keeping the desirable features of SVD architectures that have been outlined in Section

IV.2.1.

V.4.2 Comparison with reference systems

The system capacity (see Section IV.3.2) of the 'SVD-+ZF’ and 'SVD+MMSE’ systems

was compared with the following reference systems:

e The theoretical capacity of the channel (named "MIMO Capacity’), which provided

the upper bound of the systems capacities.

e A standard SVD-based system (named ’Standard SVD’) which provided a reference
for the capacity gains provided by both 'SVD+ZF’ and ’SVD-+MMSE’ systems.

e A MIMO system with no precoding which included filtering of the received symbols
(Fig. V.12).

V.4.2.1 Theoretical capacity

The theoretical capacity of the channel is independent of Fydt. It should be noted that
two different capacity formulas exist, depending on whether the CSI is available at the
transmitter or not. Systems implementing waterfilling were compared with the theoretical
capacity of the channel with CSI at the transmitter [12]. Systems with equal power
allocation were compared with the theoretical capacity of the channel without CSI at the

transmitter [15].

V.4.2.2 Standard SVD system

A standard SVD system refers to a system based on (V.4) (named ’Standard SVD’) which

included CSI impairment.
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V.4.2.3 MIMO systems without precoding

A MIMO system with no precoding and receiver filtering (Fig. V.12), can be represented

by the transmission equation:
y=D()(H(t)x+n). (V.23)

MIMO systems with no precoding have a low complexity: the SVD does not have to be

PA, PA,
X1 %’*}T b rﬁgl ) v Y1
X2 L,> ) KE 2 ,Cj‘ y2
W HO D)y,
X, Lo ® ) 4;”4 Ya

Figure V.12: Transmission system with no precoding

performed and the pilots PBj are not needed. The ZF linear receiver (system named 'ZF

Alone’, [85]) was simulated by setting
D(t) = (H(t))" (V.24)

This method forces the interference to zero, but can lead to noise enhancement. The

MMSE linear receiver (system named 'MMSE Alone’) was simulated by setting
D(t) = QH(t)" (In;, + H()QH()") " (V.25)

In both cases (ZF and MMSE), equal power allocation was used (Q = I), because the

CSI was not available at the transmitter. Their capacity is unaffected by F,it.

V.4.3 Simulation and results

To validate the proposed architecture described in Section V.4.1 a My = Mgz = 4 MIMO
system was simulated (16 i.i.d. SISO channels, Jake’s fading, F;0t = 0.038). The time
varying MIMO channels were simulated for independent variables SNR and Fjdt.

The simulated systems and their corresponding transmission equations are shown in
Table V.4.3. The ’system capacity’ of each system, for a given channel matrix H (¢),
is obtained from its transmission equation as explained in IV.3.2. The average ’system
capacity’ is obtained by repeating the process over a large number of realizations of the

channel and averaging the results.
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System Transmission Equation
'SVD-+MMSE’ (V.20)
'SVD-+ZF’ (V.20)
"‘Standard SVD’ (V.4)
"MMSE Alone’ (V.23)
"ZF Alone’ (V.23)

Table V.1: Simulated systems equation references

V.4.3.1 System capacity with equal power allocation for varying SNR

The system capacity (see Section 1V.3.2) of the systems against SNR with F;0t = 0.038

are shown in (Fig. V.13).
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30H > SVD+MMSE
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|
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Figure V.13: System capacity of equal power systems with delayed CSI (Fy0t = 0.038) at

the transmitter

All systems collapse at low SNRs. However, at high SNRs, the capacity of the MIMO

channel increases linearly with the SNR when expressed in dB, this has been demonstrated

in [15].

The systems employing linear processing at the receiver ('SVD+ZF’, 'SVD-+MMSE’,
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"ZF Alone’ and "MMSE Alone’) exhibit a linear increase in system capacity. However, the
'SVD+ZF’” and ’SVD-+MMSE’ systems display a system capacity several bits higher than
the "ZF Alone’ and '"MMSE Alone’ systems. The difference is approximately 5 bits/s/Hz
at high SNRs. The "MMSE Alone’ outperforms the 'ZF Alone’ at low SNRs, and equals
'"ZF Alone’ performance at high SNRs. This trend is identical when coupled with the SVD
('SVD+MMSE’ and 'SVD+ZF’ systems).

The ’Standard SVD’ system with the outdated V(¢ — §t) matrix does not benefit from
the MIMO effect, its system capacity reaches a ceiling at high SNRs. This is due to the
cross talk between the sub-channels, which dominate the SINR. The cross talk creates
an interference noise floor, that grows proportionally to the signal power increase. This

interference noise floor does not fall even if the receiver noise is lowered.

V.4.3.2 System capacity with equal power allocation

The system capacity (see Section IV.3.2) of the three systems against F;0t with SNR=10dB
is shown in Fig. V.14.
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Figure V.14: System capacity of equal power systems with delayed CSI at the
transmitter, average SNR—10dB

When Fyét is small, capacities for all systems implementing SVD converge towards

the theoretical capacity of the channel. This is to be expected, since the channel varies
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slowly and the transmitter can estimate CSI accurately, in this situation SVD systems
allow transmission at a rate equal to the theoretical capacity of the channel [12].

The '"MMSE Alone’ system is 2.5 bits below the theoretical capacity of the channel
whereas the 'SVD-+MMSE’ system approaches the theoretical bound. This demonstrates
the effectiveness of the SVD approach and the importance of the processing by the V
matrix at the transmitter. The "ZF Alone’ system suffers an additional 2.5 bits degradation
in system capacity, due to noise enhancement when the channel matrix is ill-conditioned.

The system capacity of the 'Standard SVD’ system deteriorates rapidly and its system
capacity at F 0t = 0.038 is nearly 2 bits below the theoretical capacity of the channel.
The 'SVD+ZF’ system reduces the effect of the CSI impairment at the transmitter, but
leads to noise enhancement, hence outperforming the 'Standard SVD’ system by less than
a bit at F;0t = 0.038. On the other hand, the 'SVD+MMSE’ system mitigates the effects
of CSI impairment without suffering from noise enhancement. This results in a system
capacity drop by only 0.3 bits at F 0t = 0.038.

When Fjét is large (fast fading), the estimate of the CSI at the transmitter is incorrect.
The 'SVD+ZF’ and 'SVD+MMSE’ systems compensate for this incorrect processing at
the transmitter, by achieving similar system capacity to the 'ZF Alone’ and the '"MMSE
Alone’ systems respectively. The precoding by a completely incorrect matrix does not
change the capacity of the channel, since the precoding matrix is unitary. The ’Standard
SVD’ system collapses due to the incorrect CSI at the transmitter, and has a system
capacity (1.3 bits/s/Hz) lower than the capacity of a SISO channel at SNR=10dB (3.4594
bits/s/Hz).

The system capacity of the three systems against F;0t with SNR-20dB is shown in
Fig. V.15. When Fj0t is small or large, the conclusions presented above are applicable,
excluding the fact that the capacities are higher, since SNR=20dB.

At high SNRs, the ZF solution becomes closer to the MMSE solution, since the noise
becomes negligible when compared with the interference.

The range of F;0ts over which precoding provides an improvement ranges from zero to

approximately 0.25. The range of improvement is therefore similar at high or low SN R.

V.4.3.3 System capacity of systems with waterfilling power allocation

The system capacity (see Section IV.3.2) of the three systems against Fydt with SNR=10dB

is shown in Fig. V.16.
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Figure V.15: System capacity of equal power systems with delayed CSI at the
transmitter, average SNR—20dB

As discussed in Section V.4.1, the receiver requires prior knowledge of the power al-
location applied by the transmitter to perform MMSE decoding. This is derived by the
transmitter using its best estimate of the channel ( H (¢ — dt)) and therefore is not the
optimal power allocation. It was assumed for the 'SVD-+MMSE’ system that the receiver
had access to this power allocation information.

When the receiver does not have access to this information it can estimate the applied
power allocation using the current CSI (H (¢)) and applying the waterfilling power alloca-
tion algorithm. A drop in system capacity will occur, since the power allocation applied
by the transmitter, will differ from that calculated by the receiver to derive the MMSE
filter. The new system, named ’SVD+MMSE-+I’, is compared with the 'SVD-+MMSE’
system in Fig. V.16.

At low Fydts (slow fading) the capacities of 'SVD+MMSE’ and 'SVD+MMSE+T" are
similar. As F,;0t increases the capacities diverge. However, the difference remains minimal,
particularly over the F,dt values the 'SVD+MMSE’ scheme is likely to be used. The
small system capacity variation indicates the high stability of the channel singular values
(corresponding to the eigenmodes’ gains) over time. This is in marked contrast to the V/

matrix which fluctuates rapidly as is evident by the sudden reduction in system capacity
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of the ’standard SVD’ curve.
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Figure V.16: System capacity of waterfilling systems with delayed CSI at the

transmitter, average SNR=10dB

The observations reported in Section V.4.3.2 at low Fydt are relevant to this section.
However the capacity of the channel is higher with waterfilling power allocation. At high
Fy6t, the ’SVD+ZF’ and ’'SVD-+MMSE’ systems not only suffer from CSI impairment but
also from incorrect power allocation. This is confirmed in Fig. V.16, where the 'SVD+ZF’
and 'SVD+MMSE’ system capacity curves drop below the 'ZF Alone’ and '"MMSE Alone’
system capacity boundaries. The 'SVD-+MMSE’ system is particularly sensitive to power
allocation errors, with performance dropping below the '"MMSE Alone’ line at Fyot = 0.15.
The crossover point for the 'SVD+ZF’ and "ZF Alone’ systems is at Fy0t = 0.22.

At Fy0t = 0.038, the capacities of both the 'SVD+ZF’ and 'SVD-+MMSE’ using wa-
terfilling are marginally better to the corresponding values with equal power allocation.
However, the system capacity of the 'Standard SVD’ system degrades faster with wa-
terfilling compared to equal power allocation, with system capacity half a bit lower (8.5
compared to 9 bits/s/Hz) at Fy0t = 0.038 at SNR—10dB.

In an ideal situation (low F,;0t, slow fading), the system capacity of waterfilling power
allocation systems is only marginally higher than the system capacity of their equiva-

lent equal power allocation systems. However, the simulation was based on i.i.d. MIMO
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channels. The i.i.d. channel corresponds to a high scattering environment (numerous mul-
tipaths), and the gain of the sub-channels seldom becomes small. Other MIMO channels
would produce different results. For example, in a line of sight (LOS) channel, a single
positive singular value for the LOS path and null singular values for the other eigenmodes
would result. Hence an equal power allocation system would only use a transmitting power
of MLT, whereas the waterfilling power allocation system would allocate all the available
power to the single non zero transmission eigenmode. Caution should be applied when

comparing equal power allocation systems with waterfilling power allocation systems.

V.4.4 Conclusion

MIMO systems based on SVD algorithms produce transmission rates close to theoretical
capacities, provided the transmitter has an accurate estimate of the CSI. When a TDD
system is considered, the CSI can be obtained by sending pilot symbols from the receiver
to the transmitter. However, frequent CSI updates are required at the transmitter, since
the performance of an SVD based system severely degrades when the CSI is incorrect.
The 'Standard SVD’ system was shown to be unsuitable for Fydts greater than 0.03 (a
system capacity loss of approximately 5 bits at SNR=20dB). The loss gets even larger at
higher SNRs because the performance plateaus rather than linearly increasing. There is
no benefit in implementing an SVD algorithm alone if the V' matrix is outdated.

A new architecture was proposed to counter the effects of incorrect CSI at the trans-
mitter. It uses the outdated V' matrix of the ’Standard SVD’ system in combination with
linear filtering at the receiver. Firstly, pilot tones were sent through the V (¢t — 6t) matrix
and channel prior to transmission and secondly, ZF or MMSE processing was implemented
at the receiver for good MIMO performance. Finally, the prefiltering matrix, (U (¢)*)', for
transmission in the reverse direction is obtained by taking the SVD (or eigen decomposi-
tion) of H(t)V (t — ot). This architecture was shown to mitigate the effects of incorrect
CSI at the transmitter, without increasing pilot overhead. Problems with respect to non-
uniqueness of the SVD, subspace swapping, and sub-channel cross talk are all suppressed
by linear filtering based on a channel that includes the outdated pre-coding matrix.

Results showed that the 'SVD+MMSE’ system always outperforms the ' MMSE Alone’
(no prefiltering) system with equal power allocation. Its performance is bounded by the

channel capacity at F 0t = 0 and approaches the '"MMSE Alone’ performance at large
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Fy6ts. In fact at a useable Fydt of 0.038 and SNR-—20dB the scheme has an operating
limit less than 1 bit below the channel capacity. This compares to a 5 bit loss for the
"MMSE Alone’ system and a 7 bit loss for the ’'SVD Alone’ system. In addition there
is no performance plateau with increasing SNR. Similar trends apply to the 'SVD+ZF’
system and this confirms that improved system capacity is possible by combining SVD
prefiltering and linear post processing.

When waterfilling power allocation is added the performance of the 'SVD+linear filter-
ing’ schemes is no longer lower bounded by the linear filtering alone limit at large F;dts.
Waterfilling should therefore not be used when power allocation is based on an overly
outdated channel. At low Fydts there is some system capacity improvement, but for for
i.i.d. channels this is small and again waterfilling would not be recommended.

In conclusion systems using both SVD transmission and linear processing at the receiver
outperform systems with no CSI at the transmitter by several bits at reasonable F ot
(<0.1), whether waterfilling is used or not. The addition of some precoding by the V'
matrix, regardless if it is erroneous (outdated), was shown to be the source of major

3

capacity gains.

V.5 CSI improvement through channel tracking

It is shown in Section V.4 that the SVD architecture can be modified to see its performance
degrade gracefully to the performance of an uncoded system as the coding matrix V'
becomes less accurate. It is assumed in Section V.4 that pilot symbols provide perfect
CSI, i.e. the channel estimation noise is negligible. In practice, the channel estimation
noise is usually not negligible and degrades the accuracy of the precoding and decoding
matrices.

The architecture presented in Section V.4 insures that a catastrophic perturbation of
the precoding matrix does not have a catastrophic result on the performance of the system.
However, the proposed architecture does not prevent errors in the decoding matrix to
significantly reduce the performance of the system.

Decoding matrices are obtained through applying the SVD on the CSI. However, the
SVD is a non-linear function and a slight error in the estimated CSI can result in a large
variation of the decoding matrix. Therefore channel estimation has to be more accurate

than in a standard MIMO system.
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In a slow fading channel, tracking of the CSI in time can improve the accuracy of
the channel estimation. Another solution consists of tracking the precoding and decoding
matrices. These two solutions are compared in the following when tracking is performed

using linear Finite Impulse Response (FIR) Wiener filters.

V.5.1 Tracking of the CSI

The estimation of Rayleigh fading channels through PSAM has been analysed in [76].
Estimation is achieved by linearly combining measured pilot symbols that have been time-

multiplexed with data.

This technique cannot be applied when the channel is quasi-static, i.e. the channel is
fixed for one frame and consecutive frames are subject to independent fading. In such
a case, the CSI estimated on previous frames cannot be used to improve the channel

estimation for the current frame.

In indoor wireless LAN systems, such as modems following the 802.11a standard, the
situation is likely to be a combination of both previous cases. The channel can be consid-

ered constant over one frame and correlated with channels at previous time slots.

V.5.1.1 Forward estimation

In a slow fading environment, the pilot symbols measured at previous time-slots can be
used to improve the accuracy of the CSI estimate. The channel estimate measured from

pilot symbols can be defined as:

P(t) = H(t) + Newu(t). (V.26)

Defining 6t as the time between two received frames, using an FIR Wiener filter (the
optimum linear FIR filter) leads to:

- H

H, ;(16t) = w7 x Py (I6t), (V.27)

opt
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where [ 4 1 is the length of the filter, and

P;;(0)
. P, (6t
Pw(l(St) - ,].( )
P, ;(l6t) (V.28)
wf;i‘j = (jolcp)*

R, = E[P,;(6t)P, (i5t)]
¢, = E[H,;(15t)P,(151)].

From this definition, the optimum filter is different for all Mz x My paths of the MIMO
channel. However, if all paths have the same statistics, the filters are identical, i.e.
opt = wgt'

\V/Z,] E[Hz,j(O)H;]((St)] = J0(27TFd(St> Then ObViOUSly (Rp>i,j = J0(27TFd(Z - j)(;t) +
E[nn*|6(i,j) and (c,); = Jo(2mE4(l — i)6t), where 6(i, j) is the Kronecker function.

It is assumed the channels time variation follows Jake’s model, i.e.

V.5.1.2 Forward-backward estimation

The previous channel estimation method only accounts for pilot symbols in the past.
Channel estimation using both past and future pilot symbols is likely to provide a better
channel estimation. In such a case, the system needs to buffer the received frame and
process it later (when the pilot symbols required for CSI estimation have been received).
Storing [ /2 frames is only possible when a large memory buffer is available at the receiver.

Furthermore, delay sensitive applications might forbid such a solution.

However, in most fading scenarios (such as the Jake’s fading assumed here), most of
the improvement in the channel estimation is due to the pilots immediately preceding and
following the desired frame. This is because the channel time correlation tends to decrease
with increasing delay. Therefore, waiting for the next pilot before processing the frame
might not only provide a significant improvement of the channel estimation but also keep

the hardware requirements reasonable and satisfy the delay constraints of the system.
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V.5.2 Tracking of the precoding and decoding matrices

Instead of tracking the channel, it is possible to track the precoding and decoding matrices.

With (U, X, V) = SVD(H), define the functions f“(.) and f¥(.) as

v (H)=U,,,
:J( ) 7 (V.29)
2](H) = Vi,j'

For each received frame (at transceiver A or transceiver B), pilot symbols are measured,
and the SVD of the resulting channel matrix is calculated.
The decoding matrices f“(P(t)) can be filtered in time to improve their accuracy.
Defining
fi;(P(0))
fis(P(16t)) = s , (V.30)
v (P(15t))

the elements of this vector are combined in the following way:

U, ;(16t) = wy,y’ x fi(P(ist)) (V.31)
where wgft’j is the FIR Wiener (optimum) filter.
Ui - *
wopt’ = (Rfl?fl].(P)Cui,j)
Ry py = E[fi;(P(16t))f7;(P(16))"] (V.32)

cu, = EIUL(00)f,(PUSH)
Similarly, the precoding matrices fY(P(t)) can be filtered in time. In the following,

there is no attempt to correct for subspace swapping before the interpolation. Additional

performance gain may be obtained by correcting for subspace swapping.

V.5.2.1 Correlation of the decoding matrix

Derivation of the Wiener filter presented in the previous section implies explicit knowledge
of the correlation in time of the elements of the decoding matrix. This correlation, unlike
the correlation of the elements of the channel matrix, is not well known.

Consider H(1) and H(2) = rH(1) + v/1 — 12N, where H(1) and N, are i.i.d.
complex Gaussian matrices with zero mean and unit variance. The mathematical deriva-
tion of the correlation between U (1) = f“(H(1)) and U(2) = f*“(H(2)), is still an open
problem, to the author’s knowledge. The expectancy of the correlation between the el-

ements of U(1) and the elements of U(2) is presented in Fig. V.17. As expected, the
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elements of a column of U have the same expected correlation when perturbed, since the
channel is i.i.d. and a permutation of the label of the antennas at the receiver permutes
the lines of U accordingly. All correlations have a maximum value of 0.25 since the ele-
ments of U are equally likely and the matrix is unitary. The correlation of the channel is
always higher in absolute value than the correlation of the singular vectors: as mentioned
in [58|, a small perturbation of the channel may result in a large change in the singular
vectors. The singular vectors corresponding to the largest singular value shows the highest

correlation.
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Figure V.17: Correlation of the decoding matrix:

E(f(H D) f*(rH(1) + V1 =7*Ny)")

V.5.2.2 Correlation of the precoding matrix

Fig.V.18 shows the correlation between elements of a column of V under similar as-
sumptions as in the previous section. The lower curves represent the correlation between
elements of the precoding matrix not on the main diagonal®. They have the same corre-

lation when perturbed, since the channel is i.i.d. and a permutation of the labels between

5The SVD in this sense is a modified version to standard literature where columns of the V matrix
are rotated such that the main diagonal are positive real values. Columns of U must be rotated by the

same amount. This does not affect generalisation.
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antennas at the transmitter permutes the columns of V' accordingly. The upper curves of
Fig.V.18 are the correlation between elements along the main diagonal. They have differ-
ent correlations since each correlation corresponds to a different singular value (sorted in
descending order). All correlations have a maximum value of 0.25 since the elements of V'

are equally likely and the matrix is unitary.
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Figure V.18: Correlation of the Precoding Matrix:

E[f*(H1))f*(rH(1) + V1 =72 Nie)']

V.5.2.3 General SVD correlation results

Two further theoretical results are required to obtain the coefficients of the filter of the

decoding matrix.

Consider H (1), H(2) two matrices. Vr >0, f*(rH(2)) = f*(H(2)). Therefore

E((f5HMW) (S (H(2)") = EX(f5;(H W) (i (rH(2))). (V.33)

0,3 i,J
The correlation between the decoding matrices of two channel matrices are not affected

when the power of the channel matrices is modified.
Consider Ny, a perturbation matrix, H(1) and H(2) are i.i.d. complex Gaussian

matrices with zero mean and same variance. Then

E(fi5(H1) + Nuwe) fi5(H(2))7) = E(fi5(H(1))fi5(H(2) + Npwe)"). (V.34)

i?j
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This is simply because Vey,c; € C, E(cicy) = E(coc})*” and E(f(H(1))f(H(2))*) is
real. Exchanging the labels ¢; and ¢, completes the proof.

The two previous results can be obtained in a similar manner for the precoding matrix.

V.5.3 Correlation of pilots

From the general results presented in Sections V.5.2.1 and V.5.2.3, the correlation between

pilot symbols at time 0 and at time dt can be derived for all ét.

Then,
E(f;(P(0)) f(P(61))")
= B(f(H(0) + S0 po (H(5t) + AL ) (v.35)

= E(fi5(H(0)) fi5(rH(0) + V1 = r2N¢),
where IN(0), N (t) and N, are complex i.i.d. Gaussian random matrices with zero mean
and unit variance,
o J0(27TFd5t)

p = 20T (V.36)
1 + SNl%{est

Combining (V.35) and the results in Fig. V.17, it is straightforward to obtain the
correlation between the elements of the decoding matrices derived from pilot symbols at
different time slots, for varying SNRs. Finally, the taps of the FIR Wiener filter for each
element of the precoding matrix are deduced from the correlation, as in Section V.5.1.

Similar results can be obtained for the precoding matrix. The prediction on the precod-
ing matrix results in a matrix that, due to some predictive error, is not necessarily unitary.
The precoding matrix is required to be unitary in a double pilot architecture (Section V.4).
The predicted matrix, V7™V (§t), can be projected onto an orthonormal basis. Based on
the correlation curves of Fig. V.18, the first column VﬁEdv((St) is normalized and then
made orthogonal to Vﬁedv(ét), the column with the next strongest correlation. The resul-
tant matrix VON((St) is the orthonormal basis matrix of the predicted precoding matrix,

VpredV(ét) )

V.5.4 Simulation results, decoding matrix

To validate the proposed filtering methods, a My = Mz = 4 MIMO system was simulated
(16 i.i.d. SISO channels, Jake’s fading). The time varying MIMO channels were simulated
using independent variables of SNR and Fydt. The influence of the filter length on the

system capacity was also investigated.
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Fig. V.19 presents the block diagrams of the various simulated systems. The precoding

matrix is assumed perfect.
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Figure V.19: The CSI at the receiver can be improved using previous and/or future pilot

symbols to improve the accuracy of the channel estimation.

V.5.4.1 System capacity for varying F;ot

The system capacity (defined in Section IV.3.2) of the systems against Fydt with an
SNR-20dB, is shown in Fig. (V.20).

The capacity of the MIMO channel (curve '"MIMO Capacity’) as well as the capacity
achieved by a using only the pilots of the current frame (curve 'Pilot System’) are given
as a reference. The capacity of the MIMO channel is not affected by Fydt. Neither is the
system capacity of the 'Pilot System’ under the block fading assumption.

Obviously the performance of these two systems is not affected by Fjot.

At all Fyot, filtering the CSI (curve ’Filtered Pilots (H)’) or filtering the decoding
matrix (curve 'Filtered Pilots (U)’) leads to a significant improvement of the capacity of
the system.

Filtering the H matrix rather than the U matrix with the same filtering technique
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Figure V.20: Performance of MIMO-PSAM systems, SNR—=20dB, Equal Power, filter
length of 31 taps

(e.g. curve 'Filtered Pilots (H)’ rather than curve 'Filtered Pilots (U)’) leads to a better
estimation of the decoding matrix for all F,dt. Filtering the decoding matrix directly is
effective at low Fyot but does not perform well at high Fj;0t. The correlation between
consecutive decoding matrices decreases rapidly with Fj0t.

For both methods (filtering the CSI or filtering the decoding matrix), a balanced filter
(curves 'Filtered Pilots’), which filters past and future channel estimates, provides the best
performance. However, a balanced filter requires a large memory buffer and introduces
large delay in the reception chain, as discussed in Section V.5.1. An unbalanced filter
buffering for only one time-slot (curves ’Predicted + 1’), can achieve a similar perfor-
mance with less stringent hardware requirement at high F;0t. This can be explained by
observation of the correlation curves of Fig. V.17. At high Fj,dt little correlation exists
beyond the first time-slot and hence minimal performance improvement is obtained by
waiting for further pilots. However, using only the information about past pilots (curves

"Predicted Pilots’) leads to a severe degradation in performance at all F;dt

V.5.4.2 System capacity for varying SNR
The capacity of the systems against SNR with a F;0t = 0.04 is shown in Fig. V.21.
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Figure V.21: Performance of MIMO-PSAM systems, F;T = 0.04, equal power allocation,
filter length of 31 taps

Filtering on H provides better performance than filtering on U, at all SNR.

At low SNR, the noise dominates the time variation of the channel and therefore the
filters mainly average out the noise. Therefore the performance of the filters do not depend
on their position.

On the contrary, at high SNR, the filters are disregarding the noise and focus on
predicting the variations of the channel. In such a case, a balanced filter performs better

than a filter with a delay of one or a predicting filter.

V.5.4.3 System capacity for varying filter length

The capacity of the systems against the length of the filter with SNR-20dB and Fjydt =
0.04, is shown in Fig. V.22.

For a filter of length 3, the balanced (curves 'Filtered pilots’) and unbalanced (curves
"Predicted + 17) filters are the same, which explains why they provide exactly the same
system capacity.

Filters of reasonable length (L = 3) achieve a large part of the system capacity gain
achievable through filtering. This is mainly due to the fact that the time-slots most

correlated with the time-slot of interest are its immediate neighbours. This is especially
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Figure V.22: Performance of MIMO-PSAM systems, SNR=20dB, F;6t = 0.04, equal

power allocation

crucial when filtering is performed on the decoding matrix. The correlation of the decoding
matrix is so weak that the decoding matrices more than two frames away provide little
information about the desired frame. Using them provides negligible system capacity

improvement.

V.5.4.4 Orthonormalization of the filtered decoding matrix

When filtering the decoding matrix directly, the filtering process alters the unicity of the
decoding matrix. It is possible to follow the filtering with a Gramm-Schmidt orthonormal-
ization, to retrieve the interesting unicity properties of the decoding matrix. Simulation

results are presented in Fig. (V.23).

At all F,T, for all three filters, the orthonormalization provides a slight improvement
of the performance. Orthonormalizing actually corresponds to further filtering, since it

is simply a projection of the estimation of the decoding matrix on the unitary matrices

ensemble.
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Figure V.23: Performance of PSAM systems, SNR=20dB, Equal Power

V.5.5 Simulation results, precoding matrix

The system capacity of SVD system with filtering of the CSI and filtering of the precoding
matrix at the transmitter is presented in this section through simulation results, with
identical parameters as in Section V.5.4. A perfect decoding matrix (U) is assumed. The

precoding matrix can only be estimated using past pilot symbols.

V.5.5.1 System capacity vs. F;it

The system capacity against Fyot is determined through simulations (Fig.V.24). As ex-
pected, the system capacity performance reduces for faster moving channels for all cases.
The curve labelled 'Prev V' corresponds to a system where no prediction is performed
and the precoding matrix V* is used. Significant performance improvement results when
l previous CSI estimates are linearly combined to estimate the CSI on the downlink as
H (Section V.5.1). The corresponding system capacity curve is labelled "Pred H’. The
performance improvement (when compared with a system using no prediction) offered
through prediction of the precoding matrix, is about half that of the gain offered from
prediction of the CSI. A further small performance increase can be achieved by projecting

the predicted precoding matrix onto an orthonormal basis, VOV, curve 'Pred V+ON’.

132



For a static channel channel, F;0t = 0, all prediction filters become averaging filters,
i.e. all taps are equal. It is seen that noise dominates when no prediction is performed.
System performance is almost ideal when averaging is performed on the CSI depending
on the length of the filter. Filtering the precoding matrix has a similar system capacity

as filtering the CSI on very slow fading channels.
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Figure V.24: System capacity vs. F;0t (SNR—20dB, L = 30 taps)

V.5.5.2 System capacity vs. SNR

Higher SNR means that the pilot measured CSI, P is more accurate. Therefore less
interference occurs as a result of incorrectly matched precoding and decoding matrices.
Higher system capacity is obtained for all systems as shown in Fig. V.25. It can be
seen that when no filtering is applied (curve 'Prev V'), an improvement in SNR increases
the system capacity but an error floor exists due to the channel fading. For a system
capacity of 10 bps/Hz, a gain of slightly more than 7dB can be achieved by filtering the
CSI (curve 'Pred H’). When prediction is performed on the precoding matrix (curve 'Pred
V’), a gain of about 5dB can be achieved. An additional gain of almost 1dB can be

achieved by projecting the predicted precoding matrix onto an orthonormal basis (curve

"Pred V+ON).
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Figure V.25: System capacity vs. SNR (Fyot = 0.040, L = 30 taps)

V.5.6 Conclusion

Most practical communication systems deduce the CSI through measurement of pilot
symbols multiplexed with the data. In a MIMO-SVD system, the channel needs to be
estimated accurately since the SVD is a non-linear function. Therefore, estimation of the
channel on a frame by frame basis might not provide sufficient accuracy in the estimation
of the channel. The channel correlation from frame to frame can be exploited to improve
the channel estimation without additional pilot overhead. This is achieved through FIR
linear Wiener filtering. Filtering can be applied on the CSI or directly on the precoding
and decoding matrices.

Properties of the correlation of the precoding and decoding matrices when the channel
is perturbed were presented, as well as a generic method to derive the optimal filter
corresponding to the precoding and decoding matrices.

Estimation and filtering of the precoding and decoding matrices were shown to be
possible through simulation results. However, the best performance was achieved when
estimation and filtering was performed on the CSI. At the receiver side, when delays are
tolerable and hardware complexity is not an issue, the best overall performance is obtained

with a balanced filter. For most practical scenarios it was shown that only a small number
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of taps is necessary to achieve most of the performance gain. Most importantly, it is not
necessary to wait for more than one additional pilot symbol before estimating the channel.

Filtering the precoding and decoding matrices should be limited to cases where the
Fy6t is small. In such a case, orthonormalization of the estimated precoding and decoding

matrices provides additional filtering and leads to performance improvement.

V.6 Conclusion

The SVD transmission architecture requires knowledge of the CSI at both the transmitter
and receiver. It is possible to provide the transmitter with the CSI without additional
signaling overhead when the channel is reciprocal. However, the CSI is usually obtained
through pilot symbols. Therefore the CSI is imperfect at both the transmitter and the
receiver.

The errors due to imperfect CSI can create a large loss of system capacity. Specifically,
when catastrophic events named ’singular value crossings’ occur, a small perturbation in
the channel(however small) can create a large perturbation of the precoding and decoding
matrices. In such a case, the transmission is no longer robust to noisy channel estimates.
The analysis of ’singular value crossings’ can be conducted through the theory of matrix
perturbation. However the time correlation of the channel prevents the direct application
of the theory to fading channels, to the knowledge of the author. Simulation results
indicate that ’singular value crossings’ create ’singular subspace swappings’ in Rayleigh
fading: two singular values vary in amplitude to the point were they are crossing each
other, but their corresponding subspaces are stable through the process. Results show
that the probability of ’singular value crossings’ is small and the effects of ’singular value
crossings’ can be corrected.

Incorrect CSI reduces the system capacity of SVD systems. When the precoding matrix
is in error, the capacity of the system can drop below the system capacity of uncoded
systems. In a TDD environment where the channel is affected by Doppler spread, the
SVD system was shown to be unsuitable for F;T's greater than 0.03 (a system capacity
loss of approximately 5 bits at SNR= 20dB). The loss gets even larger at higher SNRs
because the performance plateaus rather than linearly increases. There is no benefit
in implementing an SVD algorithm alone if the precoding matrix is outdated. A new

architecture is proposed which allows the system to benefit from the high system capacity
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of SVD systems when the channel estimation is correct and seamlessly transmit with
the performance of an uncoded system when the precoding matrix is in error. The new
architecture considers the precoding matrix as part of the channel for channel estimation
purposes. Therefore, errors in the precoding matrix can be corrected in the decoding
matrix using a simple zero-forcing or MMSE process. This new architecture does not
require additional pilots and improves the useable F;T from 0.03 to infinity: even at very
high F;T the performance of the system is better or equal to the performance of systems
without linear precoding.

Finally, the estimation of the channel on a frame by frame basis might not provide
sufficient accuracy in the estimation of the channel. The channel correlation from frame
to frame can be exploited to improve the channel estimation without additional pilot
overhead. This is achieved through FIR linear Wiener filtering. Filtering can be applied
on the CSI or directly on the decoding matrix. Properties of the correlation of the decoding
matrix when the channel is perturbed were demonstrated, as well as a generic method to
derive the optimal filter corresponding to the decoding matrix. Estimation and filtering
of the decoding matrix was shown to be possible through simulation results. The best
performance was achieved when estimation and filtering was performed on the CSI. When
delays are tolerable and hardware complexity is not an issue, the best overall performance
is obtained with a balanced filter. However for most practical scenarios it was shown that
only a small number of taps (i.e. 3) is necessary to achieve most of the performance gain.
Particularly, it is not necessary to wait for more than one additional pilot symbol before

estimating the channel.
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Chapter VI

Conclusion

VI.1 Summary

Wireless LANs are both user-friendly and cost-effective. These advantages explain the
current interest in Wireless LAN telecommunications equipment. Transmission techniques
based on transceivers with multiple element antennas enable higher spectrum efficiency
than is currently obtained using existing wireless LAN products. Therefore, it is of interest

to apply MIMO transmission techniques to the wireless LAN environment.

MIMO telecommunications theory indicates that the capacity of a wireless link in-
creases linearly with the number of antennas at both ends of the channel for constant
bandwidth and transmitted power (Chapter II) when the channel is uncorrelated. Fur-
thermore, a series expansion of the capacity of the ergodic channel with no CSI at the
transmitter indicates that symmetric antenna allocation (same number of antennas at the
transmitter and the receiver) maximizes the capacity of a MIMO channel with a given

total number of antennas.

The capacity of correlated MIMO channels is lower than that of uncorrelated channels.
Specifically, the capacity of Ricean channels tends to the capacity of their i.i.d. component
when the number of antennas grows large (Chapter III). Theoretical bounds of the nor-
malized capacity of the Ricean channel are proven in Chapter III. These bounds allow the
capacity of the Ricean channel to be estimated in the asymptotic limit of a large number

of antennas without recourse to simulation.

Practical transmission techniques are required to turn the promises of high capacity

into high performance transmission devices. Chapter III presents an overview of some
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well-known techniques to transmit over the MIMO channel and detect the transmitted
symbols. Robust systems use diversity to obtain reliable transmission. However, they
require large constellations to achieve a non-negligible fraction of the capacity of the chan-
nel. Systems with a large multiplexing gain are bandwidth efficient but only transmit well
on uncorrelated channels.

Therefore, transmission systems with no CSI at the transmitter are designed either
for the correlated channel or for the uncorrelated channel. Wireless LANs experience a
large variety of propagation environments and so suffer from performance loss when the
CSI is not available at the transmitter. CSI at the transmitter increases the capacity
of the MIMO channel and is especially beneficial when the channel is highly correlated
as demonstrated in Section I11.5. The capacity gain with CSI at the transmitter, grows
linearly with the number of antennas.

Information theory suggests a transmission architecture based on the SVD of the chan-
nel matrix to benefit from the CSI at the transmitter. The SVD architecture decomposes
the MIMO channel into SISO transmission eigenmodes and allocates power to the eigen-
modes following a waterfilling algorithm. This architecture is the optimal linear precoder
and decoder under a variety of criteria, as detailed in Section IV.2.1. Furthermore, the
SVD structure combined with OFDM is also an optimal space-time modulation in terms
of information rate (Section IV.2.2).

The complexity of the SVD structure can be reduced by considering each transmission
eigenmode as a separate channel, which leads to the notion of system capacity (Section
IV.3). However, this reduction of complexity is obtained through a reduction of the
robustness of the system to various impairments. E.g. the channel estimation noise should
be smaller than the noise in the transmission to avoid a loss of performance.

As explained earlier, SVD systems benefit from the availability of CSI at the transmit-
ter. The estimation of an accurate CSI at the transmitter is the key challenge faced by
SVD system designers. TDD channels enable the estimation of the CSI at the transmitter
without overhead data transmission from the receiver to the transmitter. This is due to
the fact that TDD channels are theoretically reciprocal. In practical TDD channels, a
loss of accuracy in the estimation of the CSI at the transmitter occurs, due to several

imperfections of the channel and the transmission system:

e The SVD of the channel matrix is not unique. Matched transmitting and decod-
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ing matrices are required. The transmitter and the receiver can implicitly choose

matched transmitting and decoding matrices as presented in Section 1V.4.2.

Mismatched transmitter and receiver RF chains cancel the reciprocity of the chan-
nel. A calibration procedure is presented in Section V.2 to cancel the effects of
mismatched transmitter and receiver RF chains. The calibration procedure relies on
a handshake at the beginning of the transmission, as well as the hypothesis that the

impairments of the chains are stationary.

The performance of practical channel estimation algorithms is limited and the CSI
is quantised in practical systems. The theory of matrix perturbation highlights
the effect of imperfect channel estimation on SVD systems (Section V.3). A small
perturbation of the CSI can result in a large performance loss when a 'singular value
crossing’ occurs, i.e. the channel matrix has two equal singular values. Simulation
results indicate that ’singular value crossings’ create ’singular subspace swappings’
in Rayleigh fading: two singular values vary in amplitude to the point were they
are crossing each other, but their corresponding subspaces are stable through the
process. Results show that the probability of ’singular value crossings’ is small and

the effects of ’singular value crossings’ can be corrected.

Practical channels are time-varying. In Section V.4, the SVD system is shown to
be unsuitable for F;T’s greater than 0.03 (a capacity loss of approximately 5 bits
at SNR= 20dB). The loss gets even larger at higher SNRs because the performance
plateaus rather than linearly increases. There is no benefit in implementing an SVD

algorithm alone if the precoding matrix is outdated.

It is possible to mitigate the effects of both imperfect channel estimation and channel

fading: FIR linear Wiener filters can exploit the channel correlation from frame to frame to

improve the channel estimation without additional pilot overhead, as presented in Section

V.5. The correlation of the CSI degrades rapidly in time for a Rayleigh fading channel.

Therefore, filters of reasonable length (3 taps) achieve near optimum performance. At the

receiver, the estimated CSI should include knowledge of the future pilot symbols when

allowed by the hardware, i.e. when large memory buffers are available and the application

is not time-delay sensitive. The CSI is usually more accurate at the receiver than at

the transmitter since the CSI of the current time slot (and possibly future time slots) is
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available. This is not the case for the transmitter, when the CSI for the current time slot
is not available and must be predicted from past estimates.

It is possible to mitigate the effects of imperfect CSI at the transmitter if the system
includes the precoding matrix in the channel estimation. This allows the receiver to
mitigate the effect of the incorrect precoding matrix. This new architecture, with limited
added complexity, obtains the benefit of the SVD architecture when CSI is precisely known
at both ends of the link while seamlessly shifting to a non-precoded system (such as
ZF or MMSE linear decoder) when the channel estimation precision deteriorates at the
transmitter. The SVD architecture adapts dynamically to the propagation environment

to obtain very high spectrum efficiency under varying channel conditions.

V1.2 Future work

The results presented in the previous Chapters create several research opportunities in the
following key areas: pilot symbol theory, error correction codes, wireless channel models

and complexity issues.

VI.2.1 Pilot symbols

Section V.5 introduces a proposal to improve the performance of pilot symbol assisted
systems. The proposed systems combines the noisy channel estimate at several points
in time to obtain an accurate estimate of the current channel. Practically, the solution
is implemented through filtering of the noisy channel estimate. It is implicitly assumed
that the time samples of the channel (the transmission slots) are evenly spaced in time.
This assumption is realistic for Time Division Multiple Access (TDMA) systems such as
Hiperlan 2. However, wireless LAN standards such as 802.11 (a, b and g) are Carrier
Sense Multiple Access - Collision Detection (CSMA-CD) systems where the assumption is
no longer realistic. The current proposal requires to derive the coefficients of the filter for
each set of time-intervals between the transmission time slots. Therefore, it is unrealistic
to expect the current proposal to be implemented as is. Further research is required to
adapt the proposal to CSMA-CD systems.

The proposed system takes advantage of the time-correlation properties of the time-

varying wireless channel. Further performance gains are expected through adequate con-
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sideration of the frequency and space correlation properties of the channel. Further re-
search is required to determine the most effective pilot allocation in time/space/frequency.
Finally, a novel algorithm is required to combine the estimates derived from each pilot
transmission (i.e. at a precise time slot, from a single transmitting antenna, on a given
subcarrier) into a global estimate (i.e. the channel estimate at every time slot, from each

transmitting antenna to each receiving antenna, on every subcarrier).

VI.2.2 Coding

The notion of ’system capacity’ (the sum of the capacity of each transmission eigenmode
for equal power systems) has been introduced to free the analysis from assumptions on
coding. However, the coding strategy is an important part of any practical transmission
system. To achieve the promises offered by system capacity results, further research needs

to be conducted in the following areas:

e Power and bit allocation. Several algorithms are required to allocate power to each
transmission eigenmode on each subcarrier. Rate adaptation (bit allocation to each
transmission eigenmode on each subcarrier) is likely to improve the performance of

the system.

e Level crossing rates. In practical systems, the capacity of each transmission eigen-
mode on each subchannel is time-varying. Practical systems require an estimate of
the speed of capacity variation to determine the required update frequency of the
bit and power allocation. Further research is required to determine the level crossing

rate of the eigenmode capacities.

e Practical coding schemes. It is necessary to choose or develop adequate coding

schemes for SVD-MIMO-OFDM modems over the time-varying channel.

VI.2.3 System level design

The results introduced in this thesis focus on the optimization of a single wireless link.
Further research is required to determine:
e the possibilities offered by Spatial Division Multiple Access. Multiple point to point

links can possibly transmit simultaneously at the same frequency when each point
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to point link has a transmission eigenmode with limited interference from the other

point to point links.

e the impact of multiple antenna modems on multiple access techniques. Current
OFDM systems allow multiple access to the transmission medium through TDMA
(Hiperlan 2) or CSMA-CD (802.11 a and g). Code Division Multiple Access (CDMA)
is also a multiple access technique candidate for OFDM systems. Multiple antenna
modems are likely to modify the respective performance of these multiple access tech-
niques. E.g., multiple antenna modems require a large overhead when pilot symbol
assisted channel estimation is implemented. Therefore, multiple access techniques

allowing longer frames are likely to perform better with multiple antenna modems.

VI1.2.4 Study of the wireless channel

The results presented in this thesis were derived under precise assumptions on the wireless
channel. Further research is required to improve the MIMO wireless channel models. The
time, frequency and space correlation of the channel is of particular interest. These prop-
erties of the channel can be obtained through extensive channel measurement campaigns

of typical propagation environments.

VI1.2.5 Implementation

The advances in the communications theory offer a wide range of possibilities to the
transmission system designer. As presented throughout this thesis, the introduction of
modems with multiple antennas allows an increase in the transmission data rate at the
expense of complexity (further processing). However, wireless transmission devices should

remain small in size and power efficient. Further research is required to:

e estimate and reduce the complexity of MIMO transmission algorithms,

e identify and solve the implementation issues linked with multiple antenna wireless

modems.
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Appendix A

Ricean channel capacity bounds

[.1 Study of the Eigenvalues of F

I.1.1 Ricean channel

The Ricean channel is defined as

H = oH” + bH*

o 10K/10 o 1
where a = ~/1+10—K/10 andb— ’/I—FIO—K/IO'

F is defined by

P P
_HH*:b2Hsc Hsc* —_F.
M ( S+ My
Therefore,

F = G,b(HSC(HSp)* —FHSP(HSC)*) +a2Hsp(Hsp)*.

(A1)

(A.2)

(A.3)

F' consists of two parts: a cross product term due to the specular and scattering channel

gains and a specular term. The former is itself a sum of two terms. The eigenvalues of

F provide useful insights to understanding the MIMO Ricean capacity. It is assumed

throughout this analysis that K # —ooc.

I.1.2 Singular Value Decompositions

The matrices H*?(H®*?)* and H*°(H®")* can be written,

HY(H™)* = My % (13t
and
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Mt

H*(H")" = (Z i ke )i=1. Mp,j=1..Mp- (A.5)
k=1

Both are rank one matrices and have the following singular value decompositions,

H*»(H™)* = (0;) My Mr(v;%) (A.6)

H**(H™)" = (u1)o(v1"). (A7)

The singular values are MzrM7 and o and the singular vectors are v; and uj. These are

defined below,

. 1
G = = (Wt (A.8)

The singular vector uy is given by u} = 21 /||x1||, where

Mr Mr Mr
x_i(z hl,kHZhQ,k)“'?ZhMRJC)T) (Ag)
k=1 k=1 k=1

Mg My
o= ,| Mg X Z | Zhi,k||27 (A.10)
i=1 k=1

and (.)T denotes the transpose.

[.1.3 Eigenvalues of F'

Using the singular value decompositions above, F' in (II1.19) can be written as F =
a’MpMqp(01)(01%) + abo ((v1)(ur™) + (u1)(v17)). Hence rank(F') < 2 since F is the sum of
two rank one matrices, a?Mr M7 (07)(01%) + abo(v1)(uy™) and abo(uy)(vi™). By construc-
tion, it follows that any eigenvector, E, of F', associated with the non-zero eigenvalue k

satisfies the following,

38,, 3, such that k = B0} + fai}

L (A.11)
Fk = kk,
Substituting for F and k and equating coefficients in (A.11) gives:
Brabo (uy*v1) + Baabo + Bra®> MMy + Boa® MMy (01" 07) = k3 (A12)

Brabo + Paabo (077 U1) = ks
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Defining o = v1"u3, and solving (A.12) for x gives,

K — azMRMTJ;aba(o+o*) 4

(A.13)

\/(a2rt+abo(o+0*))2+4(abo)2(1—00*)
5 .

which defines the two possibly non-zero eigenvalues of F'.

I[.1.4 Asymptotic eigenvalues of F'

Equation (A.10) indicates that ¢ > 0 and F(0?) = r? x t. Furthermore, ||o|| < 1, so for
Mp, My — oo, (a* MrMr+abo(o+0*))? > 4(abo)?*(1—o00*) and a* Mr My > ||abo(o+0*)||
with probability 1. Hence, one solution of (A.13) is positive and the other negative. Since,
all other eigenvalues are zero we have the ordered eigenvalues denoted by Ay, (F') < 0 =
Ap—1(F) = ... = M(F) < M\ (F). Taking the positive square root in (A.13) gives
M (F) ~ a*?MgrMr + abo(o + 0*) and in the limit

M (F)/(MgMyp) — a?. (A.14)

From equation (A.13), F is a matrix of maximum rank two, with one negative and one

positive eigenvalue. The positive eigenvalue, denoted A;(F'), behaves as below

Al(F)/(MTMR) — CL2. (A15)

Hence the positive eigenvalue of F' grows quadratically with the number of antennas
( when Mg = Mry). Despite this, F is expected to have a negligible effect in (I11.18) for
large numbers of antennas, since F' only has two eigenvalues whereas the scattering term
has min(MgMr) with a probability of one. The two eigenvalues of F' are shown in Fig.
A1 and Fig. A.2.

Now the following further observations can be made:

e The positive eigenvalue is several orders of magnitude larger than the magnitude of

the negative eigenvalue. Its growth with My, Mg (My = Mg) is quadratic.

e This disparity between the positive and negative eigenvalues increases even further

when the K value is such that the channel is effectively a LOS channel.

Results not reported here show that the eigenvalues of the sum of the cross product

terms in (I11.19)is a matched pair of positive and negative terms . The effect of the
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Figure A.1: Positive eigenvalue of F' versus antenna numbers for various K values

term H*P(H®")* in (II1.19) is to present a large increase to the positive eigenvalue that is
obvious in A.1.
Whilst the positive eigenvalue may seem quite large, its contribution to capacity is

relatively small due to the logarithmic operation.

[.2 Capacity Lower bound

We now derive the capacity lower bound.
Since HH™ is a non-central complex Wishart matrix we can use Bartlett’s decompo-
sition [86] to give
HH* = vL*L (A.16)

where L is upper triangular with diagonal elements denoted L1, Lo, ... L, which are inde-
pendent of all other elements. It is assumed that Mgz < My but the proof can easily be

adapted to Mp > My. The distribution of L} is non-central chi-squared, L} ~ x3,,.(9)
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Figure A.2: Negative eigenvalue of F' versus antenna numbers for various K values
with § = (a?/b®)trace(H*P(H®")*). For j > 1 the distributions are central chi-squared,
L? ~ XgMT_QjJFZ. Hence,

b2p I,

D=Ly + 5 HH'| = T |50 |
L
Using the Cauchy-Binet theorem gives

A7

7 o, (A17)

D:Z‘AvHA'y’*:Z‘Av’Qa (A.18)
gl gl

where A, is an Mg x Mp submatrix of [I,, f\j—gL*] and v is a subset of Mg columns
from (1,2,...,2Mpg).
Now the summation is split into two parts, over 7; where the determinants |A., | do

not involve L; and over v, where the determinants |A.,| do involve L;. Hence

D=>"1A+>|A,” (A.19)
71 72
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The only choice of columns which gives determinants involving L, are those where column

Mp + 1 is selected and column 1 is omitted. Hence the A, matrices are of the form

0 ... 0 gj—J;Ll 0 ... 0

A, = 0 . (A.20)

2

Y21 Y22

0

2
Hence |A’Yz|2 = ljj\/[_]TjL%|D72|2 where Dw - [D721D722] and

2

(A.21)
= X+ L%Y.
The exact same analysis holds for the Rayleigh case, except L? ~ X%MT-
To summarize,
DRicean — X+ 2 NY
XQMT( ) ( A.22)

DRayleigh =X+ XgMTY
where X,Y are positive random variables with XY independent of the x? variables.

Hence
BIC(E)] = Bllogy(X)] + Fllogs(1 + xuy (9Y/X) s,
E[C(bH™)] = Elogy(X)] + Eflogy(1 + X3, Y/ X))-
Now X3y, (0) is stochastically greater than x3,, . Hence E[f(x3),.(0))] > E[f(x3y,)] for
any increasing function f and E[C(H)| > E[C(bH*")] as required. A lower bound of the

capacity can now be written VMg, My, P, K,

(A.24)

C(K7 MTvMRap) > F C(K - _OoaMTaMRab2P)
min(MT, MR) - min(MT, MR)

[.3 Capacity Upper bound

The capacity upper bound is derived in this Section. Defining

b2P C\ *
A =Ty, + - H*“(H*)", (A.25)
My

the normalized capacity becomes

c 1 1 e
— = logy(|JA+ F|)=—1o N(A+ F)), A.26
N L 8 (] ) L gﬂﬂ ( ) (A.26)
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where F' = ML;F and \;(A + F) are the eigenvalues of the hermitian positive definite
matrix A 4+ F, ordered so that 0 < Ain (A + F) < L < MAF F) Combining Weyl’s

theorem [87| and results from Appendix 1.1 leads to

Aig(A+F) < Ay
Mip_1(A+F) < Appoa(A) + \o(F) =

2
+
&
=
!
> >
<
i
E

(A.27)

S
A
+
3
A
e
=
S
oy
!
2
2

Therefore,
i < g logs (M1 (A) A (A) (M (A) + M (F))

M A (A)+ A (F
= MLT logy (I T;21 Ai(A)) + MLT logz(%)-

1 M(A) + N (F)
A= E10g2 ( o (A) > : (A.29)

(A.28)

Now write

and, since \;(A) > 1 for any j,

A< MLT log, (M1 (A) + MiT)\I(F)). (A.30)

It is known that the eigenvalues of A are bounded as Mg, My — oo [72|. Therefore, IM
such that A\j(A) < M and when My — oo,

A < <oy (M + PMy(h (F)/(MgMy))) — 0, (A.31)

since A\ (F')/(MrMyz) — a?®. This concludes the demonstration. From [72], it is known

that

M(A) = 14+ *P(1 4 /min(Mp, Mg)/ max(Mp, Mg))?, (A.32)

as My, Mr — oo with Mp/Mpg = «. This provides the smallest value for M that can be
used and gives the bound that is used in the simulations.

Therefore the capacity upper bound as My, Mr — oo can be written,

C(K7 MTaMRaP) < E C<K = _ooaMTaMR7b2P)
min(MT,MR) - min(MT,MR)

] +A, (A.33)

where A — 0 as My, Mg — o0.
Hence, for Ricean channels that are not pure LOS (K # +00), the normalized ergodic
capacity tends to the normalized ergodic capacity of the scattering component. Hence,

[C(K,MT,MR,P)} Ny |:C(K = —OO,MT,MR,b2P):|

min(MT, MR) min(MT, MR) (A34)

149



150



Appendix B
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G. Lebrun, T. Ying, M. Faulkner, "MIMO transmission over a time-varying channel using

SVD," IEE FElectronics Letters, vol. 37, no. 32, pp. 1363-1364, Oct. 2001.
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Appendix C
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G. Lebrun, T. Ying and M. Faulkner, "MIMO transmission over a time-varying channel
using SVD," Proc. IEEE Global Telecommunications Conference, (Globecom ’02), Nov.
17-21, 2002 pp. 414-418.
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Appendix D
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2003

T. Ying, G. Lebrun and M. Faulkner, "An adaptive channel SVD tracking strategy in
time-varying TDD system," Proc. IEEE Vehicular Technology Conference 2003, (VTC
2003-Spring), Apr. 22-25, 2003 Vol. 1, pp. 769-773.
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Appendix E
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G. Lebrun, M. Faulkner, P. J. Smith and M. Shaafi, "MIMO Ricean channel capacity," in
Proc. IEEE International Conference on Communications (ICC 2004), 20-24 Jun. 2004,
pp- 2939-2943.
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2004, pp. 3025-3029.
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Mar. 2005.
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