
Performance Analysis of Network Topologies in Agent-based Open
Connectivity Architecture for DSS

Hao Lan Zhang, Clement H.C. Leung and Gitesh K. Raikundalia
School of Computer Science and Mathematics

Victoria University
PO Box 14428, Melbourne City MC 8001 Australia

haolan@sci.vu.edu.au, Clement.Leung@vu.edu.au, Gitesh.Raikundalia@vu.edu.au

Abstract
Performance analysis of agent network topologies
helps multi-agent system developers to understand the
impact of topology on system efficiency and
effectiveness. Appropriate topology analysis enables
the adoption of suitable frameworks for the specific
multi-agent systems. In this paper, we propose a novel
hybrid topology for distributed multi-agent systems,
and compare the performance of this topology with
two other common agent network topologies within
the new multi-agent framework, Agent-based Open
Connectivity for DSS (AOCD). Three major aspects
are studied for estimating topology performance,
which include (i) transmission time for a set of requests;
(ii) waiting time for processing requests; and (iii)
memory consumption for storing agent information.

1 Introduction
 Application of Distributed Artificial Intelligence
(DAI) theories and concepts to multi-agent systems
has become common and efficient. The main reason
for multi-agent systems inheriting DAI technologies is
that multi-agent systems originally evolved from early
DAI systems, which are based on distributed networks.
Other forces have also been at work in driving
multi-agent systems to become a major sub-discipline
of DAI. For instance, many agent researchers come
from a DAI background and they bring DAI
technologies to multi-agent systems [1].
 Some research works have been carried out to
analyse the performance of network topologies in the
DAI and network areas [2] [3] [4]. However,
performance analysis of agent network topologies has
been inadequate in the multi-agent systems area as it is
an emerging discipline. In this paper, we carry out
performance analysis of three major agent topologies:
(i) centralised, (ii) decentralised, and (iii) hybrid
topology (mesh + centralised) based on the AOCD
architecture. The performance analysis presented in
this paper provides a concrete and innovative
methodology to analyse agent network topologies,
especially within the AOCD framework. The analysis
enables system designers to compare the merit of
different agent topologies, and select the most
appropriate topology for their specific
multi-agent-based systems.

 The paper is organized as follows. The next section
introduces related work that has been done in agent
network topology and decentralised DSS areas.
Section 3 describes the concept of AOCD, and in
Section 4 we conduct a performance analysis of three
common agent network topologies based on the
AOCD architecture. Section 5 presents a summary of
the overall performance results. In the final section we
conclude our research work and consider future issues
that need to be addressed.

2 Related Work
 Gachet and Haettenschwiler [5] proposed a
decentralised approach to Decision Support Systems
(DSS). This approach overcomes the disadvantages of
traditional DSSs and offers flexible, extendible, and
mobile features to DSS. However, the major
disadvantage in the Gachet and Haettenschwiler’s
framework is the lack of manageability, which is
caused by removing central control [6]. Concurrent
control and synchronicity problems are the main
difficulties that hold back decentralised systems’
manageability. In recent years, the hybrid topology
began to be used in distributed systems like those
described in Groove [7], KaZaa [8], and Morpheus [9].
The successful performance of these systems inspires
the use of the hybrid topology in distributed DSS, and
as a result the AOCD architecture is proposed. The
concept of AOCD architecture design has been
introduced in our previous work [10]. The AOCD
architecture makes use of a unique component, the
Matrix, to enhance the central control capability.
AOCD design eliminates concurrent control and
synchronicity problems that plague many decentralised
systems.
 Minar [2] introduces three basic network topologies:
centralised, decentralised and hybrid topologies. In
Minar’s hybrid topology, there are three major forms:
(i) centralised + centralised, (ii) centralised + ring, and
(iii) centralised + decentralised (partial connection).
The hybrid topology in AOCD design is different from
Minar’s methods and adopts centralised + mesh
topology (fully connected). Centralised + mesh
topology is an efficient but costly solution.
Nevertheless, existing technologies are able to reduce
costs by using message passing or SuperNode [11]
mechanisms.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

 The analysis of network topologies has been carried
out in many disciplines. For instance, (i) cost
calculation methodologies for wide area network
design [3] has been used for network design
estimation; (ii) performance analysis of distributed
systems has been carried out by Spinellis and
Androutsellis-Theotokis [12] and Helsinger et al. [13];
(iii) analysis of network topologies impact on
dependability offers an evaluation method for
estimating the effect of topology on dependability
[14]; (iv) The description of the seven evaluation
properties for analysing distributed systems topologies
in Minar [2]. However, the current topology analysis
based on multi-agent systems is inadequate.

3 Agent-based Open Connectivity for
Decision support systems (AOCD)

 AOCD architecture is supported by a set of
methodologies to ensure its efficiency and
effectiveness. Using the AOCD architecture, as Figure
1 shows, an external agent can be plugged into an
existing DSS as a component without disturbing the
existing system structure.

Figure 1. A conceptual view of AOCD architecture
 In this architecture, a DSS is divided into a set of
subsystems and each subsystem will be represented by
at least one agent. A central control panel, called the
Matrix, consists of four layers. The Matrix is deployed
to connect the different agents. The Matrix in an
AOCD framework is standardized and independent of
the environment. In other words, an AOCD system
may vary according to the different business processes
used by different organizations; however the Matrices
used in these different systems are standardized.

4 Performance Analysis of Three Common
Agent Network Topologies

 The agent framework in AOCD architecture is a
hybrid topology combining centralised and
decentralised topologies. Three common network
topologies are suggested for the agent framework [5]:
centralised topology, decentralised topology and
hybrid topology. The hybrid topology is likely to be the
most efficient framework for agent communication in
the AOCD architecture. In the AOCD architecture, the
Matrix plays the role of centralised coordinator and the
communications between agents are decentralised. The

following analysis quantifies the performance of
implementing each topology in AOCD. Our analysis
adopts the following notations:

i : the position of a request set in a queue,
J: total number of agents in an AOCD system,
M: the number of requests that the Matrix can handle
at any one time,
N: the total number of n requests that are sent by a
number of agents in a short period of time,
R: the average size of a record in the agent
information list,
T: the average transmission time between two nodes,
TR: the total transmission time for N requests,
W: the total waiting time for all the agents.

 The precondition of this analysis is that all the sampling
requests are sent synchronously. In addition, we assume
that a waiting queue is deployed to store the agents that
have not been processed and will be processed in the
future. It excludes the waiting time while two agents are
connecting and serving.
 We present the following calculations for the three
different agent network topologies.

4.1 Centralised Topology
 In the centralised topology, as Figure 2 shows, an
agent sends requests to the Matrix. The Matrix delivers
the requests to the corresponding agents and returns the
results to the requesting agent.

Figure 2. Centralised transmission framework

4.1.1 The transmission time for a set of
requests in a short period of time

 All the communications between agents are through
the Matrix. The total transmission time for N requests
is bounded:
 ⎡ ⎤ ⎡ ⎤ TNTMNTRTMN 22/2/2 ×+×≤≤× (1)
 The reason for ⎡ ⎤ TMNTR 2/2 ×≥ is as follows. In
the best case, the Matrix receives N requests from
requesting agents then delivers them to the
corresponding agents; and ideally the corresponding
agents send back the results to the Matrix
synchronously. In other words, there are 2N requests
sent to the Matrix, which includes N requests from the
requesting agents and N requests from the
corresponding agents. All the results are sent to the
Matrix synchronously. Therefore, 2N requests are
broken into⎡ ⎤MN /2 sets. One set of requests contains 1
to M requests and the Matrix can handle one set each
time. It takes 2T to process one set of requests, which
include the requests from the requesting agent costing
1T and the results from corresponding agents costing
1T. The transmission in the centralised topology is a

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

two-way transmission including: sending (or receiving)
requests (or results) to (or from) the Matrix and
receiving (or sending) results (or requests) from (or to)
the Matrix.
 The reason for ⎡ ⎤ TNTMNTR 22/ ×+×≤ is as
follows. The transmission time for delivering the
requests from the requesting agents to the Matrix is
⎡ ⎤ TMN 2/ × , which happens synchronously. In the
worst case, the results return to the Matrix one-by-one
and each request costing 2T of transmission time. The
transmission time for delivering the results is TN 2× .
Therefore, the total transmission time for the requests
is ⎡ ⎤ TMN 2/ × plus TN 2× .

4.1.2 Total waiting time for completing a set
of requests

 In many cases, the agents are sending requests
synchronously. Therefore, a waiting queue is deployed
for storing the later-coming requests.
 For each requests set, the waiting time in a queue is:
⎡ ⎤() TMi 21/ ×− . As mentioned before, each requests set

contains 1 to M requests. Our calculation sums up each
individual request set as these requests sets may occur
in different places; therefore we need to evaluate the
total time for each of the requests set.

Figure 3. Waiting time in a queue
 The total waiting time for all request sets in the
queue is: ⎡ ⎤

∑
=

MN

i
iT

/2

1

2 , (2)

 where 0, >> MMN . The reason for N > M is that if
the queue is not empty then this implies that there must
have been more than M requests sent to the Matrix.
Otherwise, the waiting queue will be empty which
means that there is no waiting time during transmission
processes.

In (2), we find the average transmission time for a
set of successful requests in the same period is
increased when the total number of requests is
increased. The unsuccessful transmission time will not
be included in this model because the Matrix
eliminates most of the conflict requests between
agents.

4.1.3 Memory consumption for storing
agent information

 In the AOCD framework, the memory allocated to
store agent information by using the centralised
topology is: JR × . The reason for this outcome is that
in the centralised topology all of the agent information
is stored in a central component. The other nodes
(agents) will not keep the agent information.

Therefore, the memory allocated to store the agent
information is the size of each information record,
which is R, multiplied by the agent number, which is J.

4.2 Decentralised Topology
 Unlike other decentralised topologies, such as
Minar’s [2] decentralised topology, which is a partially
connected topology, the decentralised topology
discussed in this paper is a fully connected topology.
As Figure 4 shows, the decentralised topology
provides direct communication between agents.

Figure 4. Decentralised transmission framework

 This method eliminates the transmission time
between agents and the Matrix. However, the
coordination and cooperation approaches are more
complicated in the decentralised topology than other
topologies as agents are communicating directly and
individually.

4.2.1 Transmission time for a set of requests
in short period

 In a decentralised framework, no matter how many
requests are occurring concurrently, the total
transmission time for N requests is bounded by:
 TNTTRT ×+≤≤2 , (3)
where, 2T is the best case when the communication
between agents happens synchronously. In other words,
the requesting agents send the requests, which costs T
and ideally send back the results to the requesting
agent, which also costs T.

TNT ×+ is the worst case in which the requesting
agents send requests in time T but the results from the
corresponding agents are received asynchronously.
Only one result transmitted over the network each
time. In the decentralised framework, the probabilities
for successful requests are decreased dramatically
when synchronous requests are increased in number.

4.2.2 Total waiting time for completing a set
of requests

 Compared with the centralised topology, the
communications over the decentralised network are
more likely to be disorderly. Central waiting queue for
the decentralised topology is not feasible because there
is no central control. Therefore, the requests in the
decentralised topology will be calculated individually.
Concurrent control methodologies are required, and all
the requests will send detection signals repeatedly until
the corresponding agent is available. In spite of

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

deadlock and other concurrent control failures, the
waiting time for all requests is bounded by:

 ()∑
=

−≤≤
N

i

iNW
1

220 , (4)

where, if an agent has made X requests, then this agent
will be counted as X number of agents. The best-case
situation is when all the requests are accepted and
processed without delay. In other words, all the
requesting agents find their corresponding agents are
all available. Therefore, the waiting time in the best
case is 0.
 The worst-case situation is: every time there are only
two agents communicating, all the other agents are
waiting. In other words, there is only one request
processed each time. In the calculation, there are 2N
agents, which means that each request takes two agents
for communication. Table 1 shows a demonstration of
the worst case when 4 requests need to be processed.
Table 1. Total waiting time for 4 requests (worst case)

 As we can calculate from (4), four requests require
a waiting time of 12 T.

4.2.3 Memory consumption for storing
agent information

Information sharing technology has been used in
many current distributed systems such as Gnutella and
BearShare [8] [14]. Each node in such a decentralised
framework carries a subset of the overall information
of the system for searching and other purposes.
Information sharing technology reduces redundancy in
a decentralised system. Unfortunately, redundancy
cannot be eliminated completely in decentralised
systems because decentralised systems, particularly
p2p networks, apply a high degree of redundancy to
secure availability and fault tolerance [15]. In the case
of implementing a decentralised topology in AOCD
framework, the memory allocated to store agent
information is: JRJ ××℘)(, where,)(J℘ is the
average number of agent information records carried
by each agent. The reason for the above calculation is
that in the decentralised topology, each agent carries a
certain number of records of agent information, which
is)(J℘ . The records of agent information carried by
each agent are a subset of the overall records in the
system. In other words, the total record number of
agent information in the overall system without
redundancy is J. These records are distributed to each
agent redundantly and each agent is allocated)(J℘
records on average. Therefore, the total memory
allocated to store the agent information is the product
of the above factors.

4.3 Hybrid Topology
 Here, we introduce a novel hybrid framework that is
different from the hybrid topologies introduced by
Minar [2]. The proposed hybrid framework provides a
structure combining centralised and decentralised
topologies. As shown in Figure 5, all the agents are
connected to a central Matrix and each of them keeps
connections with all the others agents. This hybrid
topology is a centralised + mesh topology, in which
agents are fully connected with each other. This
topology reduces the workload of the Matrix and
enhances manageability by using the Matrix as a
central control component.

Figure 5. Hybrid transmission framework

4.3.1 Transmission time for a set of requests
in short period

 In the hybrid framework, communication involves
the agents and the Matrix. The total transmission time
for N requests is:
 ⎡ ⎤ ⎡ ⎤ TNTMNTRTTMN ×+×≤≤+× 2/2/ (5)
The reason for the bound ⎡ ⎤ TTMN +× 2/ is that in the
best case, there are ⎡ ⎤MN / sets of requests. Each
request set requires a transmission time of 2T. T is
incurred by the requesting agents sending requests to
Matrix and another T is consumed by the Matrix
delivering the requests to the corresponding agents. In
the best case, all the requesting agents receive the
results from the corresponding agents at the same time,
which incur a time of T. Therefore, the total time in the
best case includes the time for sending requests that
is ⎡ ⎤ TMN 2/ × and the time for receiving results costing
T. The reason for ⎡ ⎤ TNTMN ×+× 2/ is that the time for
sending requests is ⎡ ⎤ TMN 2/ × because all the requests
are sent synchronously as mentioned in the
assumptions (Session 4). In the worst case, there is
only one result transmitted over the network each time
and there are N results to transmit for completing the
whole transmission process. Therefore, the total time
for transmission in the worst-ca situation is the sum of
the time for sending the requests, which is ⎡ ⎤ TMN 2/ × ,
and the time for receiving the results, which is TN × .

4.3.2 Total waiting time for completing a set
of requests

Similar to the other two topologies, the waiting time in
the hybrid topology includes (i) the waiting time for
sending requests, and (ii) the waiting time for receiving

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

results. Here, we have the total waiting time for
completing a set of requests in the hybrid topology.
 ()

⎡ ⎤⎡ ⎤

∑ ∑ ∑
= = =

−+≤≤
MN

i

MN

i

N

i

iNTiTWiT
/

1

/

1 1

22 (6)

The reason for ⎡ ⎤

∑
=

≥
MN

i
iTW

/

1
2 is that N requests are

delivered to the Matrix, which incur ⎡ ⎤

∑
=

MN

i
iT

/

1
2 time. In the

best case, the corresponding agents send back the
results to the requesting agent without delay, which
means that the waiting time is 0. Therefore, the total
time in the best case is: ⎡ ⎤

∑
=

MN

i
iT

/

1
2 + 0.

The reason for ⎡ ⎤
()∑∑

==

−+≤
N

i

MN

i

iNTiTW
1

/

1

2 is that the time

required for delivering requests to the corresponding
agents is still the same as the best case. However, in the
worst case, each time there is only one result delivered
to the requesting agent and each request incurs a
waiting time of T.

4.3.3 Memory consumption for storing
agent information

 In the AOCD architecture, the memory allocated to
store the agent information in the hybrid topology is
same as in the centralised topology, namely, JR × .
 The reason for this result is that in the hybrid
topology all of the agent information is stored in a
central component. The other nodes (agents) will not
keep the agent information. Therefore, the memory
allocated to store the agent information is the size of
each information record, which is R, multiplied by the
number of total agents, which is J.

5 Conclusion and Future Work
 The performance analysis of agent network
topologies presented in this paper is based on the
AOCD architecture. The significance of this research
is: (i) it establishes a model for analysing agent
network topologies and (ii) it provides a concrete
methodology for meaningful performance analysis. In
addition, this paper emphasizes the importance of
agent network topology analysis in multi-agent
systems, which will help the practical development of
multi-agent systems.
 We also find that the hybrid topology presents a
superior performance in AOCD frameworks compared
to the other two topologies. In general, the hybrid
topology provides (i) stability in requests transmission,
(ii) low memory consumption, and (iii) relatively low
waiting time. Centralised topology is also shown to be
superior in this analysis. However, some researches [2]
[11] show that the disadvantages of centralised
topology such as lack of fault-tolerant and inefficient
extensibility, limit its efficiency in distributed systems.
 In future work, following issues can be considered:

Finding an efficient mechanism to improve the
cost-efficiency of centralised + mesh topology.
Finding an efficient solution that could prevent the
possible bottleneck problems, which might occur
in the AOCD Matrix component.
Analysing the feasibility of applying a
Super-Node methodology in AOCD architecture,
which could enhance the hybrid topology’s
fault-tolerance capability.

6 References
1. R. A. Flores-Mendez, “Towards a Standardization of

Multi-Agent System Frameworks”, Crossroads, 1999,
Vol. 5, Issue 4, 18-24. AMC Press, New York, USA.

2. N. Minar, “Distributed system topologies: Part 1 and 2”,
2002. Retrieved on July 19, 2005 from
http://www.openp2p.com/lpt/a/1461

3. T. C. Piliouras, “Network Design: Management and
Technical Perspective” (2nd ed.), 141-196. Published by
CRC Press LLC, Printed in U.S.A. 2005.

4. S. J. Habib, “Simulated Analysis of Server Placement
on Network Topology Designs”, Proceedings of The 3rd

ACS/IEEE International Conference on Computer
Systems and Applications, Cairo, Egypt, 2005, p. 80-87.

5. A. Gachet, & P. Haettenschwiler, “A Decentralised
Approach to Distributed Decision Support Systems”,
Journal of Decision Systems, 12 (2), 2003, p.141-158.

6. D. Kroenke, & R. Hatch, “Management Information
Systems”, Published by McGraw-Hill, Watsonville,
CA, USA. 1994.

7. J. Edwards, “Peer-to-Peer Programming on Groove”,
Published by Addison Wesley Professional Press, 2002.

8. OECD. “Information technology outlook 2004: Peer to
peer networks in OECD countries”, OECD Information
Technology Outlook2004, Chapter 5. 2004.

9. K. Truelove & A. Chasin, “Morpheus Out of the
Underworld”, 2001, Retrieved August 10, 2005, from
http://www.openp2p.com/pub/a/p2p/2001/07/02/morpheus.html

10. H. L. Zhang, C. H. C. Leung, & G. K. Raikundalia,
“AOCD: A Multi-agent Based Open Architecture for
Decision Support Systems”, Proceedings of
International Conference on Computational
Intelligence for Modelling, Control & Automation –
CIMCA 2005, Vienna, Austria, November 2005.

11. Fiorano Software Inc. “Super-Peer Architectures for
Distributed Computing”, Whitepapers, 2003. Retrieved
08/2005, http://www.fiorano.com/whitepapers/superpeer.pdf

12. S. Androutsellis-Theotokis, & D. Spinellis, “A Survey
of Peer-to-Peer Content Distribution Technologies”,
ACM Computing Surveys (CSUR), Vol. 36, 335-371.
ACM Press New York, U.S.A, 2004.

13. A. Helsinger, R. Lazarus, W. Wright, & J. Zinky,
“Tools and Techniques for Performance Measurement
of Large Distributed Multiagent Systems”, Proceedings
of AAMAS’03 Conference, Australia. pp. 843-850.

14. P. Karwaczynski, & J. Kwiatkowski, “Analysis of
Overlay Network Impact on Dependability”,
Proceedings of the 38th Hawaii International
Conference on System Sciences. Hawaii, 2005.

15. M. Parameswaran, A. Susarla, & A. B. Whinston, “P2P
Networking: An Information-Sharing Alternative”,
IEEE Computer, 2001, Vol. 34, Issue 7. 31-38.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

