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ABSTRACT 

Background. The Angiotensin Converting Enzyme (ACE) gene may influence the 

risk of heart disease and the response to various forms of exercise training may be at 

least partly dependent on the ACE genotype. We aimed to determine the effect of 

ACE genotype on the response to moderate intensity circuit resistance training in 

chronic heart failure (CHF) patients 

Methods. The relationship between ACE genotype and the response to 11 weeks of 

resistance exercise training was determined in 37 CHF patients (New York Heart 

Association Functional Class = 2.3 ± 0.5; left ventricular ejection fraction 28 ± 7%; 

age 64 ± 12 years; 32:5 male:female) who were randomized to either resistance 

exercise (n=19) or inactive control group (n=18). Outcome measures included VO2 

peak, peak power output and muscle strength and endurance. ACE genotype was 

determined using standard methods. 

Results. At baseline, patients who were homozygous for the I allele had higher 

peak2OV  (p = 0.02) and peak power (p = 0.003) compared to patients who were 

homozygous for the D allele. Patients with the D allele, who were randomized to 

resistance training, compared to non-exercising controls, had greater peak power 

increases (ID p < 0.001; DD p < 0.001) when compared with patients homozygous for 

the I allele, who did not improve. No significant genotype-dependent changes were 

observed in peak2OV , muscle strength, muscle endurance or lactate threshold.  

Conclusion. ACE genotype may have a role in exercise tolerance in CHF and could 

also influence the effectiveness of resistance training in this condition. 

 

Key Words: heart failure, genes, exercise
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INTRODUCTION 

Of an evolving class of enzymes involving the renin-angiotensin system, the 

most studied is the first angiotensin converting enzyme (ACE), which catalyzes the 

production of angiotensin II and renders bradykinin inactive. A polymorphism in 

intron 16 of the ACE gene is characterized by the presence (insertion - I) or absence 

(deletion - D) of a 287-bp sequence, with the highest serum ACE activity in 

individuals carrying the DD genotype (1).  

 

ACE DD genotype has been related to an increased incidence of myocardial 

infarction (2), and early onset of coronary heart disease (3), independent of 

conventional risk factors. Increased risk of secondary events following myocardial 

infarction (4), and heart failure severity (5) have been linked to the D allele.  

 

The major symptoms of chronic heart failure (CHF) are exertional fatigue and 

breathlessness (6), with poor exercise capacity being a strong and independent 

prognostic indicator of morbidity in CHF (7). Aerobic exercise training improves 

VO2 peak and exercise tolerance (8) in these patients, while similar changes coupled 

with increases in muscular strength have been observed with resistance training (9).  

 

The possibility that ACE genotype may have an important role in physical 

performance has been inferred in both observational and intervention studies. Cross-

sectional studies have reported the ACE I allele to be associated with enhanced 

endurance exercise performance in endurance athletes (10, 11) and congestive heart 

failure patients (12). However, other studies have found no relationship (13) , or a 

lower endurance performance in individuals with the I allele (14). Few studies have 
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investigated the effect of ACE genotype on the response to exercise training over time. 

These have been conducted in healthy volunteers and have suggested that aerobic 

training may result in greater improvements in moderate intensity aerobic tolerance in 

those with the I allele (15). In healthy young males with the D allele, 6-9 weeks of 

resistance training resulted in greater strength increases (16, 17). To date only two 

studies have investigated the effect of ACE genotype on the response to exercise 

training in patients with cardiovascular disease with discordant findings (18, 19). 

DeFoor and colleagues (18) reported that three months of aerobic training resulted in 

greater benefits to peak oxygen uptake in coronary artery disease (CAD) patients who 

were homozygous for the I allele. In contrast, a similar study found no ACE genotype-

dependent response to a 12 week cardiac rehabilitation program in patients following 

an acute myocardial infarction (19). However, the effect of ACE genotype on the 

response to exercise in CHF patients has never been examined. 

 

Given the possible mechanisms by which ACE gene I/D polymorphism might 

influence the severity of CHF, exercise tolerance and potential consequent outcomes in 

CHF patients, we examined the effect of ACE genotype on the response to moderate 

intensity circuit resistance training in CHF patients. 

 

MATERIALS AND METHODS 

Participants.  

After written informed consent, 37 patients (32 men, 5 women) with stable 

CHF were enrolled in the study and underwent baseline testing.  Descriptive 

characteristics of the participants are presented in Table 1. Using randomly generated 
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numbers with allocation being held by a third party, patients were randomised to 

either 11 weeks of moderate intensity resistance training exercise (n = 19; 16 male; 3 

female) or a non-training control group (n = 18; 16 male; 2 female). 

 

Inclusion and Exclusion Criteria 

Patients were included if they were at least 18 years of age with stable left 

ventricular systolic heart failure characterised by typical clinical features, a left 

ventricular ejection fraction (LVEF) < 40% (by gated blood pool scan) and New York 

Heart Association functional class II or III. To ensure clinical stability prior to 

commencement in the study, all patients were required to have been on stable (> 2 

weeks) pharmacological therapy prior to study entry, and not to have had any 

coronary event or revascularisation procedure within the previous six months. 

 

Patients were excluded if cardiovascular limitations were deemed to be 

associated with a high risk of complications from exercise testing or training. These 

included current angina; cardiac arrest, symptomatic or sustained ventricular 

tachycardia within the previous six months; exercise-induced ventricular tachycardia 

or systolic blood pressure drop of > 20mmHg; or musculoskeletal or respiratory 

problems or other co-morbidity that would affect the ability to take part in an exercise 

training program or that were considered to be the limiting factor for exercise.  

 

Written informed consent was obtained from all patients prior to their entry 

into this study that was approved by the Human Research Ethics Committees of 

Austin Health and Victoria University and complied with the Declaration of Helsinki. 

 



 6 

Exercise Testing 

Peak total body oxygen consumption ( 2OV peak) was determined during a 

symptom-limited graded exercise test on an electronically braked bicycle ergometer 

(Ergomed, Siemens, Erlangen, Germany), commencing at 10 W and increasing by 10 

W.min
-1

 to volitional fatigue or a level of 17 on the 6-20 point Borg scale of perceived 

exertion (20). Expired volume and expired oxygen and carbon dioxide concentrations 

were analysed and used to compute 2OV , carbon dioxide production (VCO2), and 

respiratory exchange ratio (RER = VCO2/ 2OV ) as previously described (9).  

Arterialised blood samples were obtained during the incremental exercise test from a 

dorsal hand vein via a 20-guage indwelling catheter. Oxygen saturation in the blood 

samples was consistently in excess of 95%, confirming arterialisation. Details of the 

exercise testing protocols and measurements have been reported previously (9). 

Plasma lactate levels were determined and lactate threshold calculated using a log-log 

transformation plot of plasma lactate concentration versus power output as previously 

described (21, 22).  

 

Unilateral (right leg) skeletal muscle strength and endurance for knee 

extension were assessed using an isokinetic dynamometer (MERAC, Universal, Cedar 

Rapids, Iowa), with microprocessor, as described previously (9). Briefly, strength was 

measured as the peak angular torque (Nm) generated during 3 maximal continuous 

repetitions at an angular velocity of 60
o
.sec

-1
. After 3 minutes of recovery, endurance 

was determined as the total angular work (joules) performed during the middle 16 of 

20 consecutive maximal repetitions at an angular velocity of 180
o
.sec

-1
. 
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Resistance Training 

Training (3 sessions per week) was undertaken in the hospital gymnasium 

using a multi-station hydraulic resistance training system (HydraGym, Belton, USA), 

arm (Repco, Melbourne, Australia) and leg cycling (Repco, Melbourne, Australia) 

ergometers, and a set of stairs as previously described (9). Briefly, the graduated 

resistance training program used the following exercises, alternating between upper 

and lower body: leg cycling (0.5 - 2 min), elbow extension / flexion (30 s), stair 

climbing (0.5 - 2 min), arm cycling (0.5 - 2 min), knee extension / flexion (30 s), 

shoulder press / pull (30 s). Recovery intervals between exercises were determined as 

the period required to return heart rate to within 10 beats of the pre-exercise (rest) 

recording. For safety reasons workload intensities were reduced if the heart rate 

response to a station was within 5 b.min
-1

 of peak heart rate. Participants began by 

performing a single set of each exercise at the lowest resistance on the hydraulic 

resistance training system while technique was trained and the safety of the patient 

was established. Exercise progressions were introduced by increasing resistance and 

the number of sets for a given exercise as has been described previously (9). 

Adherence was monitored as attendance. Adverse events were documented and 

patients were reviewed by their primary care physician before being permitted to 

continue in the study. Cardiac rate and rhythm were continuously monitored and 

recorded during exercise on a four channel (patient) telemetry system (prototype 

designed by Victoria University bioengineers, Melbourne, Australia). Patients 

randomized to the control group were requested not to alter their normal activities of 

daily living or physical activity during the 11 week experimental period. Descriptive 

characteristics of the training and control groups of patients are presented in Table 1.  

Blood Sampling 
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Blood samples for ACE genotype analysis were collected from the antecubital 

vein using a direct needle puncture technique. The blood was collected in heparin 

coated tubes and stored on ice for transport to the laboratory where the DNA 

extraction technique was performed. DNA was extracted from the white blood cells 

by the standard salting-out methods (23). Briefly, each genotype was identified by 

polymerase chain reaction amplification of a sequence from intron 16 of the ACE 

gene (24). Subsequently alleles (490 bp: I and 190 bp: D) were differentiated on an 

agarose gel by ethidium bromide staining (24). All genotyping was performed by an 

experienced researcher who was blinded to subject data. The study was double blind 

with respect to the participants’ genotype. 

 

Statistical Analysis 

A 
2
 test was used to determine whether the observed genotype frequency was 

in Hardy Weinberg equilibrium [expected frequency of alleles: (p² + 2pq + q² = 1), 

where p is the more common allele and q is the less common allele]. One way 

analysis of variance (ANOVA) via general linear modelling was used to test for 

baseline associations between 2OV peak, peak power output, lactate threshold and 

quadriceps muscle strength and endurance. Repeated measures ANOVA (treatment x 

genotype) was performed to test for baseline differences in exercise tolerance between 

treatment groups. In order to account for differences in the dependent variables over 

the intervention period, the change in 2OV peak, peak power output, lactate threshold 

and quadriceps muscle strength and endurance following each treatment was 

calculated for each subject. The mean change in those values was calculated for each 

exercise treatment in each genotype, and compared using repeated measures ANOVA 

with treatment/genotype interactions, adjusted for initial values. All analysis was 
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performed using Stata 9.2 (Statistical Data Analysis, StataCorp, College Station, 

Texas USA). Where significant interactions were identified for any of the measures, 

post hoc analyses were conducted using Holms test to locate the means that were 

significantly different. Data are expressed as means ± SD. A p value of less than 0.05 

was considered significant. P values of less than 0.10 were considered to constitute a 

trend. 

 

RESULTS 

Participant Characteristics 

Baseline characteristics of the participants are presented in Table 1. A 
2
 

analysis indicated the genotype frequencies of the CHF patients were in Hardy-

Weinberg equilibrium (p = 0.42). When separated according to genotype the three 

groups did not vary significantly in age, height, weight or body mass index (BMI). 

LVEF was different in patients randomized to the control group (p = 0.035) but not 

the training group. When separated according to the treatment group into which they 

had been randomised, there were no significant differences in any descriptive 

characteristic (Table 1). 

 

Baseline Results 

There was a strong correlation between peak power attained during the 

symptom-limited graded exercise test (PP; W) and peak aerobic power ( 2OV peak; 

ml.kg.
-1

min
-1

) in the participants at baseline (r = 0.854; p < 0.0001). There was a 

significant association between baseline PP and ACE genotype (Table 2) with higher 

PP in II than DD (p = 0.003) patients and a trend towards higher PP in II than ID (p = 

0.07) patients. Associated with this, there was also a higher baseline 2OV peak in II 
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than DD patients (p = 0.02), with only a trend towards higher 2OV peak in II than ID 

genotype patients (p = 0.09). There were no differences in either PP (p = 0.28) or 

2OV peak (p = 0.44) in ID compared to DD genotype patients. No differences between 

the genotypes were observed in peak RER or the workloads at which lactate threshold 

occurred (Table 2). There was no relationship between ACE genotype and either 

quadriceps muscle strength or endurance in the CHF patients at baseline. Post hoc 

testing revealed no differences between groups randomised to either exercise or the 

control protocol in any measure of exercise tolerance.  

 

Response to Training 

The resistance training protocol resulted in significant improvements in 2OV  

peak and in muscle strength and endurance when the effect of training was examined 

regardless of genotype (9). However, significant differences were noted between 

genotypes in the response to 11 weeks of resistance training and the control 

intervention. After accounting for differences between the genotypes at baseline, 

resistance training was observed to result in significantly greater increases in PP in 

patients with the D allele (ID and DD), compared to those who were homozygous for 

the I allele (Table 3). Resistance training also resulted in significantly greater 

increases in peak RER in heterozygotes (ID) compared to either homozygote (II and 

DD) group (Table3). No effect of genotype was observed for changes in 2OV  peak, 

lactate threshold or muscular strength or endurance. In those randomised to the 

resistance training protocol there were significantly greater PP increases in patients 

with the D allele who were randomised to resistance training compared to those 

randomised to the non-training control group (ID p = 0.007; DD p = 0.001). In 
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contrast, patients in the resistance training group with the II genotype actually had a 

reduction in PP over the intervention, compared to the control group (p = 0.023; Table 

3). No statistically significant genotype-dependent responses to either resistance 

training or the control protocol were observed in peak RER, quadriceps strength or 

endurance, or the power output at which lactate threshold occurred (Table 3). Due to a 

phenotypic distribution consistent with a dominant effect of the D allele, the data for 

all variables was reanalysed after accounting for baseline differences on the basis of 

the presence (ID and DD) or absence (II) of the D allele. In this analysis the changes 

observed in PP remained significant (p<0.001), however there was no significant 

effect for  2OV  peak (p=0.146), peak RER (p=0.316), lactate threshold (p=0.585) or 

muscular strength (p=0.649) or endurance (p=0.215). 

 

DISCUSSION 

Major Findings 

The main findings of the present study were that heart failure patients with the 

D allele have significantly lower peak power, measured on a graded exercise test, and 

that this can be reversed by a programme of resistance training. Moderate intensity 

resistance training resulted in greater improvements in PP in patients with the ID and 

DD genotypes compared to those with the II genotype, after controlling for the 

baseline PP level, indicating that the resistance training intervention preferentially 

improved physical function in patients with the D allele. While peak RER was 

significantly increased following training in the heterozygote group compared to both 

homozygote groups there was no trend for RER to change in response to training 

across the genotypes. However despite the changes that were observed in PP 

following the training intervention, no significant genotype dependent response to the 
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training intervention was seen in any of the other measured indicators of 

cardiovascular ( 2OV peak and lactate threshold) or muscle (strength and endurance) 

function.  

 

Effect of training on physical function 

The genotype dependent changes in PP in response to the resistance training 

intervention that we observed in heart failure patients is in keeping with those of 

previous studies of healthy volunteers, which indicate that individuals with the D 

allele may be better suited to resistance or power type exercise than those 

homozygous for the I allele (16, 17). It might be tempting to suggest that the changes 

in peak RER were responsible for the changes in PP. However while peak RER was 

significantly increased following training in the heterozygote ID group compared to 

both homozygote (II & DD) groups there was no trend for RER to change in response 

to training across the genotypes and thus this does not provide a feasible rationale for 

the changes in PP. When baseline values were taken into account there were no 

genotype dependent differences in the response of 2OV peak,  lactate threshold, or 

muscle strength or endurance to this resistance training protocol. Despite the lack of 

significant changes in these variables, the mean results indicate that there was a 

tendency for those with the D allele to demonstrate greater relative improvements in 

2OV  peak and quadriceps muscle endurance than patients with the I allele (Table 3) 

which provides a potential explanation for the increases observed in PP in patients 

with the D allele following the training intervention. Several potential mechanisms 

may assist in explaining these results.  
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One mechanism of potential relevance in CHF is the role of hormonal 

activation in increasing peripheral resistance, resulting in worsening ventricular 

function and further hormonal activation.  Patients with the D allele may be subject to 

a higher degree of hormonally-induced increases in peripheral resistance due to 

elevated levels of ACE. This might explain the lower baseline 2OV peak and PP that 

was observed in patients with the D allele. Exercise training, which can reduce the 

neurohormonal upregulation in CHF patients (25), could thus be of greater benefit in 

patients with the D allele.  

 

Changes in the regulation of bradykinin may also have a role in the genotype-

dependent changes in PP. D allele incidence has been linked to a higher rate of 

bradykinin degradation (26) while chronic exercise training has been observed to 

result in increases in sensitivity to bradykinin in the brachial arteries of swine in vitro 

(27).  If this phenomenon were to occur in human vasculature in response to exercise 

training, it may partially account for the difference in PP noted in patients with the D 

allele compared to those homozygous for the I allele. The expected functional result 

of an elevation in circulating bradykinin after training would be increased skeletal 

muscle perfusion during exercise, and hence a delayed onset of lactic acidosis and 

fatigue. CHF patients display elevated peak lactates during exercise following a 

resistance training intervention compared to baseline results (21). This result in itself 

may be indicative of increased muscle blood flow, allowing a greater flux of lactate 

from the cells into the bloodstream for full removal. However, while the mean power 

output at which lactate threshold occurred changed by more in the training group than 

the control group in the current study, the changes were not significant, nor were they 

genotype-dependent (Table 3). 
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A possible mechanism for greater improvements in muscle strength in those 

with the D allele involves the potential role of angiotensin II.  Angiotensin II is a 

mediator of the hypertrophic response to mechanical loading in rodent muscle (28, 

29) . The potential synergistic actions of angiotensin II in combination with 

mechanical loading provides a mechanism by which the previously observed (16, 17) 

greater increases in strength following resistance training in subjects with the D allele 

may have occurred.  

 

Study Limitations. 

A limitation of the current study and possible reason for the lack of genotype-

dependent changes in strength or 2OV peak is that all patients were taking ACE 

inhibitors (ACEi) or Angiotensin II receptor blockade (ARB) medications or both, 

these being equally spread between the randomised groups and between ACE 

genotypes for each group (Table 1). Recently McNamara and colleagues (30) have 

reported that heart failure patients who are homozygous for the D allele appear to 

benefit more from high doses of ACEi than those from either the II or ID genotypes. 

Any such dose related issues in the current study would likely have further reduced 

circulating angiotensin II potentially attenuating muscle hypertrophy and limiting 

ACE genotype initiated vasodilatation during exercise. Consequently it is possible 

that the medications taken by patients in the current study and the doses of these 

medications were responsible for the lack of genotype-dependent changes in muscle 

strength and 2OV peak in response to training.  Nevertheless the genotype dependent 

changes in peak power with training indicate a potential role for genotype dependent 

exercise prescription. 
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Another potential limitation is that only five females participated in the current 

study (3 in the training group and 2 in the control group) therefore the relevance of the 

findings of the current study to females needs to be investigated further. Finally, 

whilst the genotype-dependent difference in PP in response to the exercise training 

needs to be interpreted with caution due to the small number of participants, the 

relationships that have been identified support the need for further investigation. 

 

CONCLUSION 

This study investigated the effect of ACE genotype on the response to 

moderate intensity resistance training in a group of CHF patients. The main finding 

was that patients with the D allele displayed greater improvements in peak power as a 

result of the training. This suggests a possible physiological role for the renin-

angiotensin system in the training of CHF patients. If similar results are observed in 

future studies, determination of ACE genotype might allow CHF patients to be 

prescribed forms of exercise that more specifically rectify their particular functional 

limitation. 
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Table 1. Descriptive statistics of subjects who underwent 11-weeks of resistance 

training (A) or continued normal daily activities (B) according to ACE genotype 

(Mean  SD). 

 ACE Genotype 

 
II ID DD 

A    

N 4 (21.1%) 10 (52.6%) 5 (26.3%) 

Gender (M,F) 4,0 8,2 4,1 

Age (yr) 66  10 64  13 63  4 

Height (m) 1.75  0.06 1.70  0.09 1.68  0.09 

Weight (kg) 75.4  15.6 86.0  15.8 74.2  6.3 

BMI (kg.m
-2

) 24.7  5.4 29.8  5.4 26.4  3.8 

NYHA Functional 

Class 2/3 

2/2 7/3 4/1 

Etiology 

(Ischemic/Dilated 

Cardiomyopathy) 

4/0 6/4 2/3 

LVEF (%) 30  8 28  9 27  7 

ACEi 3 9 4 

ARB 2 1 1 

β-Blockers 0 6 2 

B    

N 4 (22.2%) 8 (44.4%) 6 (33.3%) 

Gender (M,F) 4,0 8,0 4,2 
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Age (yr) 70  6 61  8 67  12 

Height (m) 1.71 0.08 1.72  0.08 1.70  0.05 

Weight (kg) 75.8  7.8 82.4  7.6 86.2  21.6 

BMI (kg.m
-2

) 26.1  3.2 27.8  2.5 29.8  7.8 

NYHA Functional 

Class 2/3 

3/1 5/3 6/0 

Etiology 

(Ischemic/Dilated 

Cardiomyopathy) 

2/2 7/1 5/1 

LVEF (%) 27  8 24  6 33  7* 

ACEi 4 8 4 

ARB 0 0 4 

β-Blockers 2 3 2 

* P<0.05 compared to ID. BMI = Body mass index; NYHA = New York Heart 

Association; LVEF = Left ventricular ejection fraction; ACEi = Angiotensin 

Converting Enzyme Inhibitors; ARB = Angiotensin Receptor Blockaders.  
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Table 2. The effects of ACE genotype on indices of physical performance in all 

participants at baseline (Mean  SD) 

Performance Results ACE Genotype 

 II (n = 8) ID (n = 18) DD (n = 11) 

Peak Power (W) 84  14 69  28 60  20
*
 

2OV peak (ml.kg
-1

.min
-1

) 19.4  4.3 16.2  5.5 14.9  3.4
* 

Peak RER 1.25  0.15 1.12  0.13 1.16  0.16 

Lactate Threshold (W) 30.8  6.6 30.7  9.9 26.9 + 7.2 

Quadriceps Strength (Nm) 107  33 113  34 114  33 

Quadriceps Endurance (J) 955  400 1150  442 1167  426 

RER denotes Respiratory Exchange Ratio (VCO2/VO2); 
*
P < 0.05 compared to II. 
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Table 3. Comparison of mean change in parameters of exercise capacity and muscle 

strength following 11 weeks of resistance training (Exercise) or continued normal 

activity (Control) 

 

 Exercise Control Comparison
1
 

Genotype Mean ± SD Mean ± SD Difference 95% CI P-value
2
 

 Peak Power (W) 

II -14 ± 4* 2 ± 8 16 (3.9 to 27.9)  

ID 18 ± 8* - 5 ± 22 - 23 (-43.1 to -3.8) <0.001 

DD 18 ± 5* - 1 ± 14 - 19 (-35.4 to -3.2) <0.001 

 
2OV peak (ml/kg/min) 

II -1.0 ± 1.3 -2.4 ± 1.3 -1.4 (-3.30 to 0.62)  

ID 1.3 ± 2.3 -2.1 ± 2.9 -3.4 (-6.55 to -0.24) 0.202 

DD 1.6 ± 0.7 -1.9 ± 3.2 -3.5 (-6.43 to -0.49) 0.322 

 Peak RER 

II -0.05 ± 0.08 0.12 ± 0.16 0.17 (0.02 to 0.32)  

ID 0.11 ± 0.13 0.05 ± 0.15 -0.07 (-0.25 to 0.12) 0.027 

DD -0.02 ± 0.13 0.05 ± 0.15 0.08 (-0.15 to 0.31) 0.426 

 Lactate Threshold (W) 

II 8.0 ± 1.8 2.0 ± 0.8 -6.0 (-17.9 to 6.0)  

ID 12.4 ± 10.1 3.9 ± 6.2 -8.5 (-23.8 to 6.7) 0.736 

DD 10.3 ± 3.7 -0.5 ± 2.2 -10.8 (-25.3 to 3.7) 1.000 

 Quadriceps Strength (Nm) 
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II 12 ± 12 - 1 ± 7 -13 (-29.2 to 3.3)  

ID 5 ± 16 3 ± 18 - 2 (-23.2 to 18.9) 0.630 

DD 20 ± 19 - 2 ± 13 - 22 (-47.4 to 3.4) 0.485 

 Quadriceps Endurance (J) 

II 68 ± 195 58 ± 205 - 10 (-275 to 255)  

ID 113 ± 175 - 52 ± 212 - 165 (-476 to 146) 0.330 

DD 159 ± 323 - 94 ± 143 - 253 (-621 to 115) 0.393 

1 Estimated by repeated measures ANOVA, adjusted for initial exercise performance parameter 

values 

2 P-values corrected for multiple comparisons by the Holm method 

RER denotes Respiratory Exchange Ratio (VCO2/VO2); * p < 0.05 for exercise training compared to 

control 

 

 

 

 

 

 

 


