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Integrated Fault Estimation and Accommodation
Design for Discrete-Time Takagi-Sugeno Fuzzy

Systems with Actuator Faults
Bin Jiang, Senior Member, IEEE, Ke Zhang, and Peng Shi, Senior Member, IEEE

Abstract—This paper addresses the problem of integrated
robust fault estimation (FE) and accommodation for discrete-
time Takagi-Sugeno (T-S) fuzzy systems. First, a multiconstrained
reduced-order FE observer (RFEO) is proposed to achieve FE
for discrete-time T-S fuzzy models with actuator faults. Based
on the RFEO, a new fault estimator is constructed. Then,
using the information of on-line FE, a new approach for fault
accommodation based on fuzzy dynamic output feedback is
designed to compensate for the effect of faults by stabilizing
the closed-loop systems. Moreover, the RFEO and the dynamic
output feedback fault tolerant controller are designed separately,
such that their design parameters can be calculated readily.
Simulation results are presented to illustrate our contributions.

Index Terms—Fault estimation, fault accommodation, T-S
fuzzy models, discrete-time systems.

I. INTRODUCTION

The demand for increased productivity leads to more chal-
lenging operating conditions for many practical engineering
systems. Such conditions would increase the possibility of
system failures. Sensor, actuator or component failures may
drastically change the system behavior, resulting in degrada-
tion or even instability. In order to improve efficiency, the
reliability can be achieved by fault detection and isolation
(FDI) and fault tolerant control (FTC), so FDI and FTC have
been the subjects of intensive investigations over the past two
decades. Fruitful results can be found in several excellent
books [1]–[3], survey papers [4]–[6] and the references therein.

Since most practical systems are nonlinear in nature,
FDI/FTC applications to industrial and commercial processes
need nonlinear models to be specifically considered. Takagi-
Sugeno (T-S) fuzzy models are based on a set of if-then
rules which give a local linear representation of an underlying
nonlinear system and it is well-known that such models
can describe or approximate a class of nonlinear systems.
Therefore, they have attracted considerable attention and given
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rise to many important results in the past decades [7]–[19].
However, note that most address stability analysis and feed-
back stabilization, and very few address the issues of fault
estimation (FE) and accommodation.

For discrete-time systems, the topic on fault detection has
attracted considerable attention [20]–[24], but FDI is only
the first step in fault accommodation (FA). FE is utilized
to on-line determine the magnitude of the fault, but this is
not an easy task. Compared with fault detection, FE is more
challenging and has motivated few attention for discrete-time
systems. Furthermore, using the obtained fault information,
the FA module can be used to compensate for the effect
of the fault, so it is shown that the issue of FE is more
meaningful and challenging. Meanwhile, most continuous-
time control systems being implemented digitally, FE design
for discrete-time cases is more practical, but it has motivated
few attention. A learning approximation approach proposed
in [25], [26] assumed the occurred faults belonged to a
special structure and did not consider FE performance. The
problem of FE filter was dealt with in [24], [27], but the
filter design was only suitable for open-loop stable systems. In
practical situations, most of systems are open-loop unstable,
so such a constraint limits its application scopes. In [28], [29],
one FE method based on a special coordinate transformation
was studied, but the assumption that rank(CiBi) are of full-
column rank was required. Also, the on-line fault estimate
at time k needed the output vector at time k + 1. Due to
the introduction of an estimation delay, such a case could be
not suitable for practical situations. In [30], [31], the given
proportional integral observer could realize constant unknown
input estimation by constructing augmented systems, but the
estimation performance was not considered.

Based on the above works, our objective of this paper
is to analyze and develop a general framework of robust
FE and accommodation for discrete-time T-S fuzzy systems
with actuator faults. The main contributions of this paper are
summarized in three aspects.

–First, a multiconstrained fuzzy reduced-order FE observer
(RFEO) including an H∞ performance level and a regional
pole constraint is proposed, not only to guarantee the con-
vergence speed of FE, but also to attenuate the influence of
disturbances as much as possible.

–Second, compared with the FE methods in [28], [29], the
proposed RFEO design has a wider application range, and uses
the current output information to enhance FE performances.

–Third, using the on-line fault estimate, a discrete-time
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fuzzy dynamic output feedback fault tolerant controller
(DOFFTC) is designed to guarantee the system stability in
the presence of actuator faults.

In the whole design process, the RFEO and the DOFFTC
are designed separately and their performances are considered
simultaneously, which is convenient to calculate design pa-
rameters.

The rest of this paper is organized as follows. Section
2 presents the system description. In Section 3, a fuzzy
RFEO design including an H∞ performance index and a
regional pole constraint is proposed to estimate the fault vector.
Furthermore, in Section 4, based on the on-line fault estimate,
a new FA design is proposed to compensate for the effect of
faults. Simulation results of a discrete-time nonlinear truck-
trailer model are presented to illustrate the effectiveness of the
proposed method in Section 5, followed by some concluding
remarks in Section 6.

II. SYSTEM DESCRIPTION

The T-S fuzzy model is described by fuzzy IF-THEN rules,
whose collection represent the approximation of the nonlinear
system. The ith rule of the T-S fuzzy model is of the following
form.
Plant Rule i:
IF ϑ1(k) is πi1 and . . . and ϑs(k) is πis, THEN

x(k + 1) = Aix(k) + Bi

(
u(k) + f(k)

)
+ Diω(k), (1)

y(k) = Cix(k), (2)
zL(k) = CLix(k), (3)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the input,
y(k) ∈ Rp is the measurable output, zL(k) ∈ Rl is the
controlled output, f(k) ∈ Rm represents the additive actuator
fault, and ω(k) ∈ Rd is the disturbance which is assumed to
belong to l2[0,∞). The number of measurable output channels
is greater than or equal to the number of input ones, i.e.
p ≥ m. Ai, Bi, Ci, CLi and Di are constant real matrices of
appropriate dimensions. It is supposed that matrices Bi and
Ci are of full rank, i.e. rank(Bi) = m and rank(Ci) = p, and
the pairs (Ai, Bi) and (Ai, Ci) are respectively controllable
and observable. ϑj(k)(j = 1, . . . , s) are the premise variables,
πij(i = 1, . . . , q; j = 1, . . . , s) are the fuzzy sets that are
characterized by membership function, q is the number of IF-
THEN rules and s is the number of the premise variables.
The overall fuzzy model achieved by fuzzy blending of each
individual plant rule (local model) is given by

x(k + 1) =
q∑

i=1

hi

(
ϑ(k)

)[
Aix(k) + Bi

(
u(k) + f(k)

)
+

Diω(k)
]
, (4)

y(k) =
q∑

i=1

hi

(
ϑ(k)

)
Cix(k), (5)

zL(k) =
q∑

i=1

hi

(
ϑ(k)

)
CLix(k), (6)

where

ϑ(k) =
[
ϑ1(k), . . . , ϑs(k)

]
, hi(ϑ(k)) =

σi(ϑ(k))∑q
i=1 σi(ϑ(k))

,

σi(ϑ(k)) =
s∏

j=1

πij(ϑj(k))

and πij(·) is the grade of the membership function of πij . We
assume

σi(ϑ(k)) ≥ 0, i = 1, . . . , q,

q∑

i=1

σi(ϑ(k)) > 0 (7)

for any ϑ(k). Hence hi(k) satisfies

hi(ϑ(k)) ≥ 0, i = 1, . . . , q,

q∑

i=1

hi(ϑ(k)) = 1 (8)

for any ϑ(k).
For simplicity, we introduce the following notations:

hi = hi(ϑ(k)), A(h) =
q∑

i=1

hi(ϑ(k))Ai,

B(h) =
q∑

i=1

hi(ϑ(k))Bi, D(h) =
q∑

i=1

hi(ϑ(k))Di,

C(h) =
q∑

i=1

hi(ϑ(k))Ci, CL(h) =
q∑

i=1

hi(ϑ(k))CLi,

then the T-S fuzzy model (4)–(6) can be rewritten as

x(k + 1) = A(h)x(k) + B(h)
(
u(k) + f(k)

)
+ D(h)ω(k),

(9)
y(k) = C(h)x(k), (10)

zL(k) = CL(h)x(k). (11)

Assumption 1. For the measurable output matrices, C :=
C1 = C2 = · · · = Cq.
Remark 1. In many practical systems, since the measurable
output usually is a part of the states, which means that the
measurable output matrices would be common for each local
model. Assumption 1 is not very restrictive and widely used
in T-S fuzzy systems [15], [32].

Under Assumption 1, the T-S fuzzy model (9)–(11) can be
expressed as

x(k + 1) = A(h)x(k) + B(h)
(
u(k) + f(k)

)
+ D(h)ω(k),

(12)
y(k) = Cx(k), (13)

zL(k) = CL(h)x(k). (14)

Remark 2. In this paper, we only focus on a class of additive
actuator faults, for the sake of clarity. However, please note
that such kind of additive actuator faults considered in this
paper can be readily extended to general class of additive faults
[1], [33]. Meanwhile, the additive faults representation is more
general than the multiplicative ones, which can be modelled
as additive actuator ones [3].

Before ending this section, the following lemma, which will
be used to present our main results, is recalled.
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Lemma 1 [34]. The eigenvalues of a given matrix A ∈ Rn×n

belong to the closed circular region D(α, τ) with center α+j0
and radius τ if and only if there exists a symmetric positive
definite matrix P ∈ Rn×n such that the following condition
holds: [ −P P(A− αIn)

∗ −τ2P
]
≤ 0, (15)

where here and everywhere in the sequel, ∗ denotes the
symmetric elements in a symmetric matrix.

III. FAULT ESTIMATION DESIGN

A. State transformation

Note that since C is of full-row rank, there always exists

a matrix C⊥ ∈ R(n−p)×n such that
[

C⊥

C

]
∈ Rn×n is

nonsingular (indeed C⊥ can be chosen as an orthogonal
basis of the null-space of C). Then under the coordinate

transformation x(k) = Tz(k), where T =
[

C⊥

C

]−1

, the

dynamics (12) and (13) can be decomposed into the following
form:
[

z1(k + 1)
z2(k + 1)

]
=

q∑

i=1

hi

{[
A11i A12i

A21i A22i

] [
z1(k)
z2(k)

]
+

[
B1i

B2i

] (
u(k) + f(k)

)
+

[
D1i

D2i

]
ω(k)

}
,

(16)

y(k) =
[

0p×(n−p) Ip

] [
z1(k)
z2(k)

]
, (17)

where z1(k) ∈ Rn−p and z2(k) ∈ Rp are new state vectors,
and

z(k) =
[

z1(k)
z2(k)

]
, T−1AiT =

[
A11i A12i

A21i A22i

]
,

T−1Bi =
[

B1i

B2i

]
, T−1Di =

[
D1i

D2i

]
,

CT =
[

0p×(n−p) Ip

]
.

Let

A11(h) =
q∑

i=1

hiA11i, A12(h) =
q∑

i=1

hiA12i,

A21(h) =
q∑

i=1

hiA21i, A22(h) =
q∑

i=1

hiA22i,

B1(h) =
q∑

i=1

hiB1i, B2(h) =
q∑

i=1

hiB2i,

D1(h) =
q∑

i=1

hiD1i, D2(h) =
q∑

i=1

hiD2i,

then it follows that[
z1(k + 1)
z2(k + 1)

]
=

[
A11(h) A12(h)
A21(h) A22(h)

] [
z1(k)
z2(k)

]
+

[
B1(h)
B2(h)

] (
u(k) + f(k)

)
+

[
D1(h)
D2(h)

]
ω(k),

(18)

y(k) =
[

0p×(n−p) Ip

] [
z1(k)
z2(k)

]
, (19)

which can be rewritten as

z1(k + 1) = A11(h)z1(k) + A12(h)y(k) + B1(h)u(k)+
B1(h)f(k) + D1(h)ω(k), (20)

y(k + 1) = A21(h)z1(k) + A22(h)y(k) + B2(h)u(k)+
B2(h)f(k) + D2(h)ω(k). (21)

By introducing the virtual input and output vectors η(k) and
ρ(k)

η(k) = A12(h)y(k) + B1(h)u(k),
ρ(k) = y(k + 1)−A22(h)y(k)−B2(h)u(k),

one gets

z1(k + 1) = A11(h)z1(k) + η(k) + B1(h)f(k)+
D1(h)ω(k), (22)

ρ(k) = A21(h)z1(k) + B2(h)f(k) + D2(h)ω(k). (23)

B. RFEO design

For the dynamics (22) and (23), we construct the following
fuzzy RFEO:

ẑ1(k + 1) = A11(h)ẑ1(k) + η(k) + B1(h)f̂(k)−
G(h)

(
ρ̂(k)− ρ(k)

)
, (24)

ρ̂(k) = A21(h)ẑ1(k) + B2(h)f̂(k), (25)

f̂(k + 1) = f̂(k)− F (h)
(
ρ̂(k)− ρ(k)

)
, (26)

where ẑ1(k) ∈ Rn−p is the reduced-order observer state,
ρ̂(k) ∈ Rp is the reduced-order observer output, f̂(k) ∈ Rm

is an estimate of f(k), and G(h) ∈ R(n−p)×p, F (h) ∈ Rm×p

are reduced-order observer gain matrices to be designed,
G(h) =

∑q
i=1 hiGi, F (h) =

∑q
i=1 hiFi.

Let ez1(k) = ẑ1(k)− z1(k) and ef (k) = f̂(k)− f(k), then
the error dynamics is given by

ez1(k + 1) =
(
A11(h)−G(h)A21(h)

)
ez1(k)+(

B1(h)−G(h)B2(h)
)
ef (k)+(

G(h)D2(h)−D1(h)
)
ω(k), (27)

ef (k + 1) = f̂(k)− F (h)A21(h)ez1(k)− F (h)B2(h)ef (k)+
F (h)D2(h)ω(k)− f(k + 1)

= f̂(k)− f(k) + f(k)− F (h)A21(h)ez1(k)−
F (h)B2(h)ef (k) + F (h)D2(h)ω(k)− f(k + 1)

= ef (k)− F (h)A21(h)ez1(k)−
F (h)B2(h)ef (k) + F (h)D2(h)ω(k)−4f(k)

= −F (h)A21(h)ez1(k)+(
Im − F (h)B2(h)

)
ef (k) + F (h)D2(h)ω(k)−

4f(k), (28)

where 4f(k) = f(k + 1) − f(k) is the fault increment at
time k. Using (27) and (28), the following augmented system
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is obtained:[
ez1(k + 1)
ef (k + 1)

]
=

[
A11(h)−G(h)A21(h) B1(h)−G(h)B2(h)

−F (h)A21(h) Im − F (h)B2(h)

]
×

[
ez1(k)
ef (k)

]
+

[
G(h)D2(h)−D1(h) 0(n−p)×m

F (h)D2(h) −Im

] [
ω(k)
4f(k)

]
. (29)

Denote

ē(k) =
[

ez1(k)
ef (k)

]
, ν(k) =

[
ω(k)
4f(k)

]
,

Ā11(h) =
[

A11(h) B1(h)
0m×(n−p) Im

]
,

Ā21(h) =
[

A21(h) B2(h)
]
, Ḡ(h) =

[
G(h)
F (h)

]
,

D̄1(h) =
[

D1(h) 0(n−p)×m

0m×d Im

]
,

D̄2(h) =
[

D2(h) 0p×m

]
,

then the augmented system becomes

ē(k + 1) =
(
Ā11(h)− Ḡ(h)Ā21(h)

)
ē(k)+(

Ḡ(h)D̄2(h)− D̄1(h)
)
ν(k). (30)

Next, a RFEO design method under an H∞ performance
index and a regional pole constraint is proposed to achieve
robust FE.

Theorem 1. Let a prescribed H∞ performance level γ1 and a
circular region D(α1, τ1) be given. If there exists a symmetric
positive definite matrix P̄ ∈ R(n+m−p)×(n+m−p); matrices
Ȳi ∈ R(n+m−p)×p (i = 1, . . . , q); matrices with appropriate
dimensions Miii,Niii (i = 1, . . . , q); Mjii = MT

iij , Miji,
Njii = NT

iij , Niji (i, j = 1, . . . , q, i 6= j) and Mijg = MT
gji,

Migj = MT
jgi, Mjig = MT

gij , Nijg = NT
gji, Nigj = NT

jgi,
Njig = NT

gij (i = 1, . . . , q − 2, j = i + 1, . . . , q − 1, g =
j + 1, . . . , q) such that the following conditions hold:

Φii ≤Miii, i = 1, . . . , q, (31)

Φii + Φij + Φji ≤Miij +Miji +MT
iij ,

i, j = 1, . . . , q, i 6= j, (32)
Φij + Φji + Φig + Φgi + Φjg + Φgj ≤Mijg+

Migj +Mjig +MT
ijg +MT

igj +MT
jig,

i = 1, . . . , q − 2, j = i + 1, . . . , q − 1,

g = j + 1, . . . , q, (33)


M1i1 M1i2 · · · M1iq

M2i1 M2i2 · · · M2iq

...
...

. . .
...

Mqi1 Mqi2 · · · Mqiq


 ≤ 0, i = 1, . . . , q, (34)

Ψii ≤ Niii, i = 1, . . . , q, (35)

Ψii + Ψij + Ψji ≤ Niij + Niji + NT
iij ,

i, j = 1, . . . , q, i 6= j, (36)

Ψij + Ψji + Ψig + Ψgi + Ψjg + Ψgj ≤ Nijg+

Nigj + Njig + NT
ijg + NT

igj + NT
jig,

i = 1, . . . , q − 2, j = i + 1, . . . , q − 1,

g = j + 1, . . . , q, (37)


N1i1 N1i2 · · · N1iq

N2i1 N2i2 · · · N2iq

...
...

. . .
...

Nqi1 Nqi2 · · · Nqiq


 ≤ 0, i = 1, . . . , q, (38)

where

Φij =




−P̄ P̄ Ā11i − ȲjĀ21i ȲjD̄2i − P̄ D̄1i 0
∗ −P̄ 0 Īm

∗ ∗ −γ1I(d+m) 0
∗ ∗ ∗ −γ1Im


 ,

Ψij =
[ −P̄ P̄ Ā11i − ȲjĀ21i − α1P̄

∗ −τ2
1 P̄

]
,

Īm =
[

0(n−p)×m

Im

]
,

then the RFEO (24)–(26) results in the H∞ performance index
‖ef (k)‖2 ≤ γ1‖ν(k)‖2 and the eigenvalues of

(
Ā11(h) −

Ḡ(h)Ā21(h)
)

belong to D(α1, τ1), and the RFEO gain ma-
trices are given by Ḡi = P̄−1Ȳi.

Proof. We start with the proof of (31)–(34), and (35)–(38) will
be considered subsequently.

Constraints (31)–(34): Consider the following Lyapunov func-
tion:

V (k) = ēT(k)P̄ ē(k). (39)

Its difference 4V (k) = V (k + 1) − V (k) along the error
dynamics (30) is

4V (k) = V (k + 1)− V (k)

= ēT(k + 1)P̄ ē(k + 1)− ēT(k)P̄ ē(k)

= ēT(k)
(
Ā11(h)− Ḡ(h)Ā21(h)

)T
P̄×(

Ā11(h)− Ḡ(h)Ā21(h)
)
ē(k)+

2ēT(k)
(
Ā11(h)− Ḡ(h)Ā21(h)

)T
P̄×(

Ḡ(h)D̄2(h)− D̄1(h)
)
ν(k)+

νT(k)
(
Ḡ(h)D̄2(h)− D̄1(h)

)T
P̄×(

Ḡ(h)D̄2(h)− D̄1(h)
)
ν(k)− ēT(k)P̄ ē(k). (40)

Now, let us define

J1 =
N−1∑

k=0

[
1
γ1

eT
f (k)ef (k)− γ1ν

T(k)ν(k)
]

. (41)

Under zero initial condition, we get

J1 ≤
N−1∑

k=0

[
4V (k) +

1
γ1

eT
f (k)ef (k)− γ1ν

T(k)ν(k)
]

=
N−1∑

k=0

[
4V (k) +

1
γ1

ēT(k)ĪmĪT
mē(k)− γ1ν

T(k)ν(k)
]

.

(42)
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It follows from (40) and (42) that

4V (k) +
1
γ1

ēT(k)ĪmĪT
mē(k)− γ1ν

T(k)ν(k)

= ēT(k)
(
Ā11(h)− Ḡ(h)Ā21(h)

)T
P̄×(

Ā11(h)− Ḡ(h)Ā21(h)
)
ē(k)+

2ēT(k)
(
Ā11(h)− Ḡ(h)Ā21(h)

)T
P̄×(

Ḡ(h)D̄2(h)− D̄1(h)
)
ν(k)+

νT(k)
(
Ḡ(h)D̄2(h)− D̄1(h)

)T
P̄×(

Ḡ(h)D̄2(h)− D̄1(h)
)
ν(k)− ēT(k)P̄ ē(k)+

1
γ1

ēT(k)ĪmĪT
mē(k)− γ1ν

T(k)ν(k)

= ζT(k)Ω(h, h)ζ(k), (43)

where

ζ(k) =
[

ē(k)
ν(k)

]
, Ω(h, h) =




(
Ā11(h)− Ḡ(h)Ā21(h)

)T
P̄

(
Ā11(h)− Ḡ(h)Ā21(h)

)−
P̄ +

1
γ1

ĪmĪT
m

∗
(
Ā11(h)− Ḡ(h)Ā21(h)

)T
P̄

(
Ḡ(h)D̄2(h)− D̄1(h)

)
(
Ḡ(h)D̄2(h)− D̄1(h)

)T
P̄

(
Ḡ(h)D̄2(h)− D̄1(h)

)−
γ1I(d+m)


 .

Using the Schur complement, Ω(h, h) ≤ 0 is equivalent to



(
Ā11(h)− Ḡ(h)Ā21(h)

)T
P̄

(
Ā11(h)− Ḡ(h)Ā21(h)

)− P̄
∗
∗

(
Ā11(h)− Ḡ(h)Ā21(h)

)T
P̄

(
Ḡ(h)D̄2(h)− D̄1(h)

)
(
Ḡ(h)D̄2(h)− D̄1(h)

)T
P̄

(
Ḡ(h)D̄2(h)− D̄1(h)

)−
γ1I(d+m)

∗
Īm

0
−γ1Im


 ≤ 0. (44)

Using the Schur complement again, we obtain

Φ(h, h) : =




−P̄ P̄
(
Ā11(h)− Ḡ(h)Ā21(h)

)
∗ −P̄
∗ ∗
∗ ∗

P̄
(
Ḡ(h)D̄2(h)− D̄1(h)

)
0

0 Īm

−γ1I(d+m) 0
∗ −γ1Im


 ≤ 0, (45)

which can be rewritten as

Φ(h, h) =
q∑

i=1

q∑

j=1

hihjΦij =

(
q∑

i=1

hi

)
q∑

i=1

q∑

j=1

hihjΦij

=
q∑

i=1

h3
i Φii +

q∑

i=1

q∑
j=1
j 6=i

h2
i hj(Φii + Φij + Φji)+

q−2∑

i=1

q−1∑

j=i+1

q∑

g=j+1

hihjhg(Φij + Φji + Φig+

Φgi + Φjg + Φgj) (46)

If conditions (31)–(33) hold, one obtains

Φ(h, h) ≤
q∑

i=1

h3
iMiii +

q∑

i=1

q∑
j=1
j 6=i

h2
i hj(Miij +Miji +MT

iij)+

q−2∑

i=1

q−1∑

j=i+1

q∑

g=j+1

hihjhg(Mijg +Migj +Mjig+

MT
ijg +MT

igj +MT
jig)

= h1




h1I
h2I

...
hqI




T 


M111 M112 · · · M11q

M211 M212 · · · M21q

...
...

. . .
...

Mq11 Mq12 · · · Mq1q


×




h1I
h2I

...
hqI


 + h2




h1I
h2I

...
hqI




T

×




M121 M122 · · · M12q

M221 M222 · · · M22q

...
...

. . .
...

Mq21 Mq22 · · · Mq2q







h1I
h2I

...
hqI




+ · · ·+ hq




h1I
h2I

...
hqI




T

×




M1q1 M1q2 · · · M1qq

M2q1 M2q2 · · · M2qq

...
...

. . .
...

Mqq1 Mqq2 · · · Mqqq







h1I
h2I

...
hqI




=




h1I
h2I

...
hqI




T

×




q∑

i=1

hi




M1i1 M1i2 · · · M1iq

M2i1 M2i2 · · · M2iq

...
...

. . .
...

Mqi1 Mqi2 · · · Mqiq










h1I
h2I

...
hqI




(47)

It follows that the error dynamics (30) is robustly stable with
an H∞ performance index ‖ef (k)‖2 ≤ γ1‖ν(k)‖2 provided
(34) holds true.

Constraints (35)–(38): Not considering ν(k), and setting(
Ā11(h) − Ḡ(h)Ā21(h)

) → A and P̄ → P in Lemma 1,
one gets

Ψ(h, h) :=
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[ −P̄ P̄
(
Ā11(h)− Ḡ(h)Ā21(h)

)− α1P̄
∗ −τ2

1 P̄

]
≤ 0, (48)

which can be rewritten as

Ψ(h, h) =
q∑

i=1

q∑

j=1

hihjΨij . (49)

Then it follows from the proof of (31)–(34) that if (35)–(38)
hold, then the eigenvalues of

(
Ā11(h)− Ḡ(h)Ā21(h)

)
belong

to D(α1, τ1). 2

Remark 3. Note that the FE filter problem for discrete-time
systems proposed in [24], [27] was only suitable for open-loop
stable systems. While, achieving the estimation of actuator
faults by the system decomposition proposed in [28], [29],
would require the constraints rank(CiBi) are of full-column
rank, to be satisfied. From (30), a necessary condition for the
proposed fuzzy RFEO design is that the pairs (Ā11i, Ā21i) are
observable. Our approach allows to deal with systems that do
not satisfy these conditions, an example of which will be given
in Section 5.

Remark 4. In Theorem 1, the purpose of introducing the
regional pole constraint (35)–(38) is to guarantee system sta-
bility and control the FE transient performance. Note that other
pole placement constraints, such as α−stability, vertical strips,
sectors and the intersection thereof can also be considered
[35], [36].

Remark 5. Under the given regional pole constraint, the
minimum H∞ attenuation level of Theorem 1 can be obtained
by solving the following semidefinite programming problem
[37]:

minimize γ1 subject to (31)− (38).

This remark also applies to the other H∞ performance calcu-
lations in this paper.

Remark 6. From the RFEO design (24)–(26), the on-line fault
estimate is obtained via the following augmented system:
[

ẑ1(k + 1)
f̂(k + 1)

]
=

[
A11(h) B1(h)

0m×(n−p) Im

] [
ẑ1(k)
f̂(k)

]
−

[
G(h)
F (h)

] (
ρ̂(k)− ρ(k)

)
+

[
In−p

0m×(n−p)

]
η(k)

=
([

A11(h) B1(h)
0m×(n−p) Im

]
−

[
G(h)
F (h)

] [
A21(h) B2(h)

]) [
ẑ1(k)
f̂(k)

]
+

[
G(h)
F (h)

]
ρ(k) +

[
In−p

0m×(n−p)

]
η(k)

=
(
Ā11(h)− Ḡ(h)Ā21(h)

) [
ẑ1(k)
f̂(k)

]
+

Ḡ(h)ρ(k) + Īn−pη(k), (50)

where Īn−p =
[

In−p

0m×(n−p)

]
. Then substituting the vectors

η(k) and ρ(k) into (50), one obtains
[

ẑ1(k + 1)
f̂(k + 1)

]
=

(
Ā11(h)− Ḡ(h)Ā21(h)

) [
ẑ1(k)
f̂(k)

]
+

Ḡ(h)y(k + 1)+(
Īn−pA12(h)− Ḡ(h)A22(h)

)
y(k)+(

Īn−pB1(h)− Ḡ(h)B2(h)
)
u(k). (51)

In fact, the advantage of the fault estimator (51) lies in
using the current output information to achieve FE. To show
this point clear, we introduce a new variable χ(k + 1) =[

ẑ1(k + 1)
f̂(k + 1)

]
− Ḡ(h)y(k + 1), and one gets

χ(k) =
[

ẑ1(k)
f̂(k)

]
− Ḡ(h−)y(k),

where Ḡ(h−) is the value at time k− 1. Then it follows from
(51) that

χ(k + 1) =
(
Ā11(h)− Ḡ(h)Ā21(h)

)(
χ(k) + Ḡ(h−)y(k)

)

+
(
Īn−pA12(h)− Ḡ(h)A22(h)

)
y(k)+(

Īn−pB1(h)− Ḡ(h)B2(h)
)
u(k)

=
(
Ā11(h)− Ḡ(h)Ā21(h)

)
χ(k)+((

(Ā11(h)− Ḡ(h)Ā21(h)
)
Ḡ(h−)+

(
Īn−pA12(h)− Ḡ(h)A22(h)

))
y(k)+

(
Īn−pB1(h)− Ḡ(h)B2(h)

)
u(k). (52)

Further, it follows that
[

ẑ1(k)
f̂(k)

]
= χ(k) + Ḡ(h−)y(k), (53)

and finally, the on-line fault estimate is given by

f̂(k) = ĪT
m

[
ẑ1(k)
f̂(k)

]
, (54)

which readily shows that the fault estimator contains the
current output information, and allows to enhance the FE
performance.

If we use a single RFEO gain matrix to deal with all fuzzy
subsystems, i.e. Ḡ := Ḡ1 = Ḡ2 = · · · = Ḡq, then it results in
the following Corollary 1, which can be treated as a special
case of Theorem 1.

Corollary 1. Let a prescribed H∞ performance level γ1 and a
circular region D(α1, τ1) be given. If there exists a symmetric
positive definite matrix P̄ ∈ R(n+m−p)×(n+m−p) and a matrix
Ȳ ∈ R(n+m−p)×p such that the following conditions hold:

Λi ≤ 0, i = 1, . . . , q, (55)
∆i ≤ 0, i = 1, . . . , q, (56)

where

Λi =




−P̄ P̄ Ā11i − Ȳ Ā21i Ȳ D̄2i − P̄ D̄1i 0
∗ −P̄ 0 Īm

∗ ∗ −γ1I(d+m) 0
∗ ∗ ∗ −γ1Im


 ,
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∆i =
[ −P̄ P̄ Ā11i − Ȳ Ā21i − α1P̄

∗ −τ2
1 P̄

]
,

Īm =
[

0(n−p)×m

Im

]
,

then the RFEO (24)–(26) results in the H∞ performance index
‖ef (k)‖2 ≤ γ1‖ν(k)‖2 and the eigenvalues of

(
Ā11(h) −

ḠĀ21(h)
)

belong to D(α1, τ1), and the RFEO gain matrix
is given by Ḡ = P̄−1Ȳ .

Therefore, using Corollary 1, (52) becomes

χ(k + 1) =
(
Ā11(h)− ḠĀ21(h)

)(
χ(k) + Ḡy(k)

)
+(

Īn−pA12(h)− ḠA22(h)
)
y(k)+(

Īn−pB1(h)− ḠB2(h)
)
u(k)

=
(
Ā11(h)− ḠĀ21(h)

)
χ(k)+((

(Ā11(h)− ḠĀ21(h)
)
Ḡ+

(
Īn−pA12(h)− ḠA22(h)

))
y(k)+

(
Īn−pB1(h)− ḠB2(h)

)
u(k). (57)

Finally, the on-line fault estimate is given by

f̂(k) = ĪT
m

[
ẑ1(k)
f̂(k)

]
= ĪT

m

(
χ(k) + Ḡy(k)

)
. (58)

IV. FAULT ACCOMMODATION DESIGN

On the basis of the obtained on-line FE information, we
design a fault tolerant controller to guarantee stability in the
presence of faults. Since the state x(k) is unmeasurable, we
use the fuzzy dynamical output feedback controller scheme
[15], [38] to construct the fuzzy DOFFTC for T-S fuzzy
models as

ξ(k + 1) = AK(h, h)ξ(k) + BK(h)y(k), (59)

u(k) = CK(h)ξ(k) + DKy(k)− f̂(k), (60)

where ξ(k) ∈ Rn is the state, AK(h, h) ∈ Rn×n, BK(h) ∈
Rn×p, CK(h) ∈ Rm×n and DK ∈ Rm×p are the designed
DOFFTC matrices, and

AK(h, h) =
q∑

i=1

q∑

j=1

hihjAKij , BK(h) =
q∑

i=1

hiBKi,

CK(h) =
q∑

i=1

hiCKi.

Substituting (13) into (59) and (60), one obtains

ξ(k + 1) = AK(h, h)ξ(k) + BK(h)Cx(k), (61)

u(k) = CK(h)ξ(k) + DKCx(k)− f̂(k). (62)

Then substituting u(k) into (12), we further obtain

x(k + 1) = A(h)x(k) + B(h)CK(h)ξ(k)+

B(h)DKCx(k)−B(h)f̂(k)+
B(h)f(k) + D(h)ω(k)

= A(h)x(k) + B(h)CK(h)ξ(k)+
B(h)DKCx(k)−B(h)ef (k) + D(h)ω(k)

=
(
A(h) + B(h)DKC

)
x(k) + B(h)CK(h)ξ(k)

+ D(h)ω(k)−B(h)ef (k). (63)

It follows that

x̃(k + 1) = Ã(h, h)x̃(k) + D̃(h)µ(k), (64)

zL(k) = C̃L(h)x̃(k), (65)

where

x̃(k) =
[

x(k)
ξ(k)

]
, µ(k) =

[
ω(k)
ef (k)

]
,

Ã(h, h) =
[

A(h) + B(h)DKC B(h)CK(h)
BK(h)C AK(h, h)

]
,

D̃(h) =
[

D(h) −B(h)
0n×d 0n×m

]
, C̃L(h) =

[
CL(h) 0l×n

]
.

Theorem 2 gives a FA design based on dynamic output
feedback control, in which FA performances are specified by
an H∞ performance index and a regional pole constraint.

Theorem 2. Let a prescribed H∞ performance level γ2

and a circular region D(α2, τ2) be given. If there exist
two symmetric positive definite matrices X, Y ∈ Rn×n;
matrices Âij ∈ Rn×n, B̂i ∈ Rn×p, Ĉi ∈ Rm×n, D̂ ∈
Rm×p (i, j = 1, . . . , q); matrices with appropriate dimensions
Uiii,Viii (i = 1, . . . , q); Ujii = UT

iij , Uiji, Vjii = VT
iij , Viji

(i, j = 1, . . . , q, i 6= j) and Uijg = UT
gji, Uigj = UT

jgi,
Ujig = UT

gij , Vijg = VT
gji, Vigj = VT

jgi, Vjig = VT
gij

(i = 1, . . . , q − 2, j = i + 1, . . . , q − 1, g = j + 1, . . . , q)
such that the following conditions hold:

Ξii ≤ Uiii, i = 1, . . . , q, (66)

Ξii + Ξij + Ξji ≤ Uiij + Uiji + UT
iij ,

i, j = 1, . . . , q, i 6= j, (67)
Ξij + Ξji + Ξig + Ξgi + Ξjg + Ξgj ≤ Uijg+

Uigj + Ujig + UT
ijg + UT

igj + UT
jig,

i = 1, . . . , q − 2, j = i + 1, . . . , q − 1,

g = j + 1, . . . , q, (68)


U1i1 U1i2 · · · U1iq

U2i1 U2i2 · · · U2iq

...
...

. . .
...

Uqi1 Uqi2 · · · Uqiq


 ≤ 0, i = 1, . . . , q, (69)

Πii ≤ Viii, i = 1, . . . , q, (70)

Πii + Πij + Πji ≤ Viij + Viji + VT
iij ,

i, j = 1, . . . , q, i 6= j, (71)
Πij + Πji + Πig + Πgi + Πjg + Πgj ≤ Vijg+

Vigj + Vjig + VT
ijg + VT

igj + VT
jig,

i = 1, . . . , q − 2, j = i + 1, . . . , q − 1,

g = j + 1, . . . , q, (72)


V1i1 V1i2 · · · V1iq

V2i1 V2i2 · · · V2iq

...
...

. . .
...

Vqi1 Vqi2 · · · Vqiq


 ≤ 0, i = 1, . . . , q, (73)
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where

Ξij =




−X −In AiX + BiĈj Ai + BiD̂C

∗ −Y Âij Y Ai + B̂jC
∗ ∗ −X −In

∗ ∗ ∗ −Y
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

,

Di −Bi 0
Y Di −Y Bi 0

0 0 XCT
Li

0 0 CT
Li

−γ2Id 0 0
∗ −γ2Im 0
∗ ∗ −γ2Il




,

Πij =




−X −In AiX + BiĈj − α2X

∗ −Y Âij − α2In

∗ ∗ −τ2
2 X

∗ ∗ ∗
Ai + BiD̂C − α2In

Y Ai + B̂jC − α2Y
−τ2

2 In

−τ2
2 Y


 ,

then the system dynamics (64) and (65) satisfy the H∞ per-
formance index ‖zL(k)‖2 ≤ γ2‖µ(k)‖2 and the eigenvalues
of Ã(h, h) belong to D(α2, τ2), and the parameter matrices
of the DOFFTC are given by
DK = D̂,
CKi = (Ĉi −DKCX)M−T,
BKi = N−1(B̂i − Y BiDK),
AKij = N−1

(
Âij − Y (Ai + BiDKC)X

)
M−T−

BKjCXM−T −N−1Y BiCKj ,
where M, N ∈ Rn×n satisfy MNT = In −XY .

Proof. We start with the proof of (66)–(69), and (70)–(73) will
be considered subsequently.

Constraints (66)–(69): Consider the following Lyapunov func-
tion

V (k) = x̃T(k)P̃ x̃(k). (74)

Its difference 4V (k) = V (k + 1) − V (k) along the error
dynamics (64) is

4V (k) = x̃T(k + 1)P̃ x̃(k + 1)− x̃T(k)P̃ x̃(k)

= x̃T(k)ÃT(h, h)P̃ Ã(h, h)x̃(k)+

2x̃T(k)ÃT(h, h)P̃ D̃(h)µ(k)+

µT(k)D̃T(h)P̃ D̃(h)µ(k)− x̃T(k)P̃ x̃(k). (75)

Let us introduce

J2 =
N−1∑

k=0

[
1
γ2

zT
L(k)zL(k)− γ2µ

T(k)µ(k)
]

. (76)

It can be shown that

J2 ≤
N−1∑

k=0

[
4V (k) +

1
γ2

zT
L(k)zL(k)− γ2µ

T(k)µ(k)
]

.

(77)

Substituting (75) into (77), one obtains

4V (k) +
1
γ2

zT
L(k)zL(k)− γ2µ

T(k)µ(k)

= x̃T(k)ÃT(h, h)P̃ Ã(h, h)x̃(k)+

2x̃T(k)ÃT(h, h)P̃ D̃(h)µ(k) + µT(k)D̃T(h)P̃ D̃(h)µ(k)−
x̃T(k)P̃ x̃(k) +

1
γ2

zT
L(k)zL(k)− γ2µ

T(k)µ(k)

= x̃T(k)ÃT(h, h)P̃ Ã(h, h)x̃(k)+

2x̃T(k)ÃT(h, h)P̃ D̃(h)µ(k) + µT(k)D̃T(h)P̃ D̃(h)µ(k)−
x̃T(k)P̃ x̃(k) +

1
γ2

x̃T(k)C̃T
L (h)C̃L(h)x̃(k)− γ2µ

T(k)µ(k)

= ςT(k)Θ(h, h)ς(k), (78)

where

ς(k) =
[

x̃(k)
µ(k)

]
,

Θ(h, h) =


 ÃT(h, h)P̃ Ã(h, h)− P̃ +

1
γ2

C̃T
L (h)C̃L(h)

∗
ÃT(h, h)P̃ D̃(h)

D̃T(h)P̃ D̃(h)− γ2I(d+m)

]
.

Using the Schur complement, Θ(h, h) ≤ 0 is equivalent to



−P̃ P̃ Ã(h, h) P̃ D̃(h) 0
∗ −P̃ 0 C̃T

L (h)
∗ ∗ −γ2I(d+m) 0
∗ ∗ ∗ −γ2Il


 ≤ 0. (79)

Then we express the symmetric positive definite matrix P̃
and its inverse matrix P̃−1 as

P̃ =
[

Y N
NT W

]
, P̃−1 =

[
X M

MT Z

]
.

Due to P̃ P̃−1 = I2n, one gets P̃

[
X

MT

]
=

[
In

0n

]
and

P̃

[
X In

MT 0n

]
=

[
In Y
0n NT

]
.

Denote

F1 =
[

X In

MT 0n

]
, F2 =

[
In Y
0n NT

]
.

then it follows that P̃F1 = F2. Pre- and post-multiplying by
diag(FT

1 , FT
1 , I(d+m), Il) and its transpose in (79), one gets

FT
1 P̃F1 =

[
X In

In Y

]
,
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FT
1 P̃ Ã(h, h)F1 =


A(h)X + B(h)

(
DKCX + CK(h)MT

)

Y
(
A(h) + B(h)DKC

)
X + NBK(h)CX+

Y B(h)CK(h)MT + NAK(h, h)MT

A(h) + B(h)DKC

Y A(h) +
(
Y B(h)DK + NBK(h)

)
C

]
,

FT
1 P̃ D̃(h) =

[
D(h) −B(h)

Y D(h) −Y B(h)

]
,

FT
1 C̃T

L (h) =
[

XCT
L (h)

CT
L (h)

]
.

Denote

Â(h, h) = Y
(
A(h) + B(h)DKC

)
X + NBK(h)CX+

Y B(h)CK(h)MT + NAK(h, h)MT,

B̂(h) = Y B(h)DK + NBK(h),

Ĉ(h) = DKCX + CK(h)MT,

D̂ = DK .

then (79) can be expressed as

Ξ(h, h) :=




−X −In A(h)X + B(h)Ĉ(h)
∗ −Y Â(h, h)
∗ ∗ −X
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

A(h) + B(h)D̂C D(h) −B(h) 0
Y A(h) + B̂(h)C Y D(h) −Y B(h) 0

−In 0 0 XCT
L (h)

−Y 0 0 CT
L (h)

∗ −γ2Id 0 0
∗ ∗ −γ2Im 0
∗ ∗ ∗ −γ2Il




≤ 0,

(80)

Therefore, Ξ(h, h) ≤ 0 can be rewritten as

Ξ(h, h) =
q∑

i=1

q∑

j=1

hihjΞij . (81)

Then it follows from the proof of Theorem 1 that if (66)–(69)
hold, the system dynamics (64) and (65) are robustly stable
with an H∞ performance index ‖zL(k)‖2 ≤ γ2‖µ(k)‖2.

Constraints (70)–(73): Not considering µ(k), and setting
Ã(h, h) → A and P̃ → P in Lemma 1, one gets

[ −P̃ P̃ Ã(h, h)− α2P̃

∗ −τ2
2 P̃

]
≤ 0, (82)

Pre- and post-multiplying by diag(FT
1 , FT

1 ) and its transpose
in (82), and then using the definitions Â(h, h), B̂(h), Ĉ(h)

and D̂, one gets

Π(h, h) :=




−X −In A(h)X + B(h)Ĉ(h)− α2X

∗ −Y Â(h, h)− α2In

∗ ∗ −τ2
2 X

∗ ∗ ∗
A(h) + B(h)DKC − α2In

Y A(h) + B̂(h)C − α2Y
−τ2

2 In

−τ2
2 Y


 ≤ 0,

(83)

which can be rewritten as

Π(h, h) =
q∑

i=1

q∑

j=1

hihjΠij . (84)

Then it follows from the proof of Theorem 1 that if (70)–(73)
hold, then the eigenvalues of Ã(h, h) belong to D(α2, τ2). 2

Remark 7. From Sections 3 and 4, we can see that the
RFEO and the DOFFTC are designed separately and their
performances are considered simultaneously, which can avoid
design difficulties caused by the coupling between them and
is convenient to calculate their respective design parameters.
Remark 8. In order to reduce conservatism caused by con-
ventional T-S fuzzy design methods, in this paper, we have
adopted relaxed quadratic stabilization results obtained in [39].
Moreover, for possible improved results, i.e. a more general
case in terms of necessary and sufficient conditions when
a design parameter n tends to infinity, please refer to [40].
However, the multiconstrained design, i.e. an H∞ performance
index and a regional pole constraint, is considered in both the
RFEO and the DOFFTC, so the conditions of Theorems 1 and
2 are still sufficient even using the method in [40].
Remark 9. In this paper, only discrete-time T-S fuzzy sys-
tems are considered, please note that the proposed FE and
accommodation design method can be readily extended to
continuous-time T-S fuzzy ones. For the implementation pro-
cedure, interested readers can refer to this work and [7], [8],
[16].

V. SIMULATION RESULTS

System description. In this section, a discrete-time nonlinear
truck-trailer model borrowed from [41], [42] is considered to
illustrate the effectiveness of the proposed method.

x1(k + 1) =
(

1− vt

L

)
x1(k) +

vt

l
u(k)

x2(k + 1) =
vt

L
x1(k) + x2(k)

x3(k + 1) = x3(k) + vt sin(θ(k))
y1(k) = x2(k), y2(k) = x3(k)
zL(k) = 0.05x3(k)

where x1(k) is the angle difference between truck and trailer
(rad), x2(k) is the angle of trailer (rad) and x3(k) is the vertical
position of rear of trailer (m) and u(k) is the steering angle
(rad). l is the length of truck, L is the length of trailer, t is
sampling time and v is the constant speed of backing up. In all
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simulations, l = 2.8m, L = 5.5m, t = 2s and v = −1.0m/s.
θ(k) = (vt/2L)x1(k)+x2(k). Since x1(k) is unavailable, we
use x̂1(k) as a substitute for x1(k). The nonlinear system can
be modeled as a two-rule fuzzy model.
Rule 1: IF θ(k) ia about 0, THEN

x(k + 1) = A1x(k) + B1u(k),
y(k) = C1x(k),

zL(k) = CL1x(k)

Rule 2: IF θ(k) ia about ±π, THEN

x(k + 1) = A2x(k) + B2u(k),
y(k) = C2x(k),

zL(k) = CL2x(k)

where

A1 =




1− vt

L
0 0

vt

L
1 0

(vt)2

2L
vt 1




, B1 =




vt

l
0
0


 ,

A2 =




1− vt

L
0 0

vt

L
1 0

0.01(vt)2

2Lπ

0.01vt

π
1




, B2 =




vt

l
0
0


 ,

C1 =
[

0 1 0
0 0 1

]
, C2 =

[
0 1 0
0 0 1

]
,

CL1 =
[

0 0 0.05
]
, CL2 =

[
0 0 0.05

]
.

The membership functions are

h1 =
σ1

σ1 + σ2
, h2 =

σ2

σ1 + σ2

where

σ1 = e−5θ2
k , σ2 = max{e−5(θk−π)2 , e−5(θk+π)2}.

Membership functions for Rules 1 and 2 are shown in Figure
1.

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
Rule 1 Rule 2 Rule 2 

Fig. 1. Membership functions of the two-rule model.

Note that we assume only the last two states to be mea-
sured, rather than all states [41], [42], to achieve the actuator
faults estimation, thus setting a more restrictive problem. It is
assumed that the disturbance distribution matrices are chosen
as D1 = D2 =

[
0.1 0.1 0.1

]T
. It is easy to verify that

the pairs (Ai, Bi) are controllable and the pairs (Ai, Ci) are
observable. Note that it can be verified that rank(CiBi) = 0,
the FE design in [28], [29] can not be used for this system to
achieve FE. Meanwhile, from system matrices Ai, it is shown
that the system is open-loop unstable, so the FE filter design
in [24], [27] is also not suitable for such system.

Fault estimation design. From the system description, it is
shown that C1 = C2, so the state transformation matrix can

be chosen as T =
[

1 0 0
C

]−1

= I3. It follows that the

fuzzy RFEO augmented matrices can be constructed as

Ā111 =
[

A111 B11

0 I

]
=

[
1.3636 −0.7143

0 1.0000

]
,

Ā112 =
[

A112 B12

0 I

]
=

[
1.3636 −0.7143

0 1.0000

]
,

Ā211 =
[

A211 B21

]
=

[ −0.3636 0
0.3636 0

]
,

Ā212 =
[

A212 B22

]
=

[ −0.3636 0
0.0012 0

]
,

D̄11 =
[

D11 0
0 I

]
=

[
0.1000 0

0 1.0000

]
,

D̄12 =
[

D12 0
0 I

]
=

[
0.1000 0

0 1.0000

]
,

D̄21 =
[

D21 02×1

]
=

[
0.1000 0
0.1000 0

]
,

D̄22 =
[

D22 02×1

]
=

[
0.1000 0
0.1000 0

]
.

It is seen that the pairs (Ā111, Ā211) and (Ā112, Ā212) are
observable. Solving the conditions in Theorem 1 with the
regional pole constraint D(0.5, 0.45) allows to take into ac-
count both the estimation convergence speed and the level of
disturbance attenuation, then one obtains the optimal value
γ1 = 2.4020 with

P̄ =
[

1.9346 1.5622
1.5622 1.8103

]
, Ḡ1 =

[ −0.8687 3.7256
0.7032 −1.4018

]
,

Ḡ2 =
[ −4.5824 3.7256

2.1005 −1.4018

]
.

Fault accommodation design. We set the circle region as
D(0, 0.999) to obtain a smaller H∞ performance index as
much as possible. By solving the conditions in Theorem 2,
one obtains the minimum attenuation value γ2 = 2.0282 with

X =




27.8504 7.0691 0.0132
7.0691 2.6140 1.2150
0.0132 1.2150 2.9169


 ,

Y =




2.8289 8.8895 −0.5989
8.8895 43.6326 −2.6413
−0.5989 −2.6413 2.6398


 ,
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M =



−0.9554 0.1769 0.2365
−0.2888 −0.3920 −0.8734
−0.0618 −0.9028 0.4256


 ,

N =




147.1842 0 0
583.8634 10.3713 0
−35.8151 6.2819 −0.0566


 ,

AK11 =




−2.8619 0.0409 0.0001
2.4592 −0.7117 −0.0045

−156.8730 −24.7808 −0.1452


 ,

AK12 =



−2.9847 −0.0340 0.0005
4.6122 0.2621 −0.0369

131.9765 98.6897 2.4439


 ,

AK21 =




−2.8506 0.0360 −0.0005
3.7602 −0.3604 0.0351

−176.8456 −110.8960 −2.5693


 ,

AK22 =



−2.9716 −0.0410 −0.0002
6.2141 0.4634 0.0015

114.9717 8.7115 0.0451


 ,

BK1 =




−0.3601 0.0509
0.5596 −0.3863
−18.8758 −0.9996


 ,

BK2 =



−0.3550 0.0510
0.8055 −0.3698
14.2606 −0.6685


 ,

CK1 =
[ −222.5433 2.7100 0.0110

]
,

CK2 =
[ −231.8686 −2.9150 −0.0127

]
,

DK =
[ −22.2548 3.4606

]
.

Note that, in order to avoid the singular solution, the following
additional constraint has been added when solving the condi-
tions of Theorem 2,

∥∥∥∥
[

Â(h, h) B̂(h)
Ĉ(h) D̂

]∥∥∥∥ ≤ δ,

where δ = 70, which can be written as

Υii ≥ 0, i = 1, . . . , q,

Υij + Υji ≥ 0, 1 ≤ i < j ≤ q,

where

Υij =




δIn 0 Âij B̂i

∗ δIm Ĉi D̂
∗ ∗ δIn 0
∗ ∗ ∗ δIp


 .

To solve the above problems we used CVX, a package for
specifying and solving convex programs [43], [44].

Simulation results. For simulation, an actuator fault f(k) is
created as

f(k) =





0
0s ≤ t < 200s
(0 ≤ k < 100)

2(1− e−0.05(t−200))
200s ≤ t ≤ 1000s
(100 ≤ k ≤ 500)

.

Under initial value
[

0 0 5
]T

, simulation results are dis-
played as follows. In the following simulation results, we
apply the proposed design method to the original nonlinear
system, instead of T-S fuzzy models, whose purpose is to
verify the robustness of the proposed method with respect to
modeling errors. Simulation results for the system controlled
output responses are shown in Figure 2 (a 10s detection delay
is considered). Figures 3–5 show simulation results of state
responses. Figure 6 illustrates FE simulation result.

0 200 400 600 800
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

z(
k)

Fig. 2. Controlled output responses of zL(k) (without FA:
dotted line; under FA: solid line).

0 200 400 600 800
−15

−10

−5

0

5

10

Time (s)

x 1(k
)

Fig. 3. State responses of x1(k) (without FA: dotted line; under
FA: solid line).

From the above simulation results, we can see that, despite
the fact that rank(CiBi) = m is not satisfied and the open-
loop system is unstable, the proposed design still achieves
the performance under actuator faults, and the stability perfor-
mance of the closed-loop system is guaranteed by the fuzzy
DOFFTC. Since the property of the presented example, the
effect of the fault on the third state x3(k) is more obvious
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0 200 400 600 800
−1

0

1
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3

4

5

Time (s)

x 2(k
)

Fig. 4. State responses of x2(k) (without FA: dotted line; under
FA: solid line).

0 200 400 600 800
−6

−4

−2

0

2

4

6

Time (s)

x 3(k
)

Fig. 5. State responses of x3(k) (without FA: dotted line; under
FA: solid line).

than the others. Note that the proposed fuzzy RFEO design
can achieve asymptotical estimation for constant faults.

VI. CONCLUSIONS

In this paper, a design framework for integrated robust FE
and FA is developed for a class of discrete-time nonlinear
systems described by a T-S fuzzy model. The framework
includes a reduced-order FE observer and a dynamic output
feedback fault tolerant controller to guarantee given stability
requirements. Simulation results of a discrete-time nonlinear
truck-trailer model are used to show the effectiveness of the
obtained results. The issue of T-S fuzzy systems subject to
unmeasurable premise variables [9], [45] and the extension of
the proposed design to general nonlinear systems [46], [47] are
interesting and practical, which will be studied in our future
work.

0 200 400 600 800
0

0.5

1

1.5

2

2.5

Time (s)

f(
k)

 a
nd

 e
st

im
at

e 
of

 f(
k)

Fig. 6. Fault f(k) (dotted line) and its estimate f̂(k) (solid
line).
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in the theory of FDI,” in Proceedings of IFAC Safeprocess, Budapest,
Hungary, 2000, pp. 16–27.

[5] M. Kinnaert, “Fault diagnosis based on analytical models for linear and
nonlinear systems – A tutorial,” in Proceedings of IFAC Safeprocess,
Washington, USA, 2003, pp. 37–50.

[6] M. Staroswiecki, “On fault handling in control systems,” International
Journal of Control, Automation, and Systems, vol. 6, no. 3, pp. 296–305,
2008.

[7] X. J. Ma, Z. Q. Sun, and Y. Y. He, “Analysis and design of fuzzy controller
and fuzzy observer,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 1,
pp. 41–51, 1998.

[8] Y. Y. Cao and P. M. Frank, “Stability analysis and synthesis of nonlinear
time-delay systems via linear Takagi-Sugeno fuzzy models,” Fuzzy Sets
and Systems, vol. 124, no. 2, pp. 213–229, 2001.

[9] S. K. Nguang and P. Shi, “H∞ fuzzy output feedback control design
for nonlinear systems: An LMI approach,” IEEE Transactions on Fuzzy
Systems, vol. 11, no. 3, pp. 331–340, 2003.

[10] G. Feng, “A survey on analysis and design of model-based fuzzy control
systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 5, pp. 676–
697, 2006.

[11] S. K. Nguang, P. Shi, and S. X. Ding, “Fault detection for uncertain
fuzzy systems: An LMI approach,” IEEE Transactions on Fuzzy Systems,
vol. 15, no. 6, pp. 1251–1262, 2007.

[12] H. Gao and T. Chen, “Stabilization of nonlinear systems under variable
sampling: A fuzzy control approach,” IEEE Transactions on Fuzzy
Systems, vol. 15, no. 5, pp. 972–983, 2007.

[13] Q. Kang, W. Wang, and Y. Liu, “Robust adaptive fuzzy control for a class
of nonlinear interconnected systems,” International Journal of Innovative
Computing, Information and Control, vol. 5, no. 2, pp. 323–336, 2009.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

[14] Y. Yi and L. Guo, “Constrained PI tracking control for the output
PDFs based on T-S fuzzy model,” International Journal of Innovative
Computing, Information and Control, vol. 5, no. 2, pp. 349–358, 2009.

[15] J. Dong and G.-H. Yang, “Static output feedback H∞ control of a class
of nonlinear discrete-time systems,” Fuzzy Sets and Systems, vol. 160,
no. 19, pp. 2844–2859, 2009.

[16] Y. Zhao, H. Gao, J. Lam, and B. Du, “Stability and stabilization
of delayed T-S fuzzy systems: A delay partitioning approach,” IEEE
Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 750–762, 2009.

[17] B. Jiang, Z. Mao, and P. Shi, “H∞-filter design for a class of networked
control systems via T-S fuzzy-model approach,” IEEE Transactions on
Fuzzy Systems, vol. 18, no. 1, pp. 201–208, 2010.

[18] X. Huang, K. Cao, X. Ban, and X.-Z. Gao, “Some further results on the
stability analysis of a type of T-S fuzzy control systems in the frequency
domain,” ICIC Express Letters, vol. 4, no. 3(A), pp. 659–666, 2010.

[19] H. Wu and M. Bai, “Stochastic stability analysis and synthesis for
nonlinear fault tolerant control systems based on the T-S fuzzy model,”
International Journal of Innovative Computing, Information and Control,
vol. 6, no. 9, pp. 3989–4000, 2010.

[20] H. Wang and J. Lam, “Robust fault detection for uncertain discrete-time
systems,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 2,
pp. 291–301, 2002.

[21] B. Jiang, M. Staroswiecki, and V. Cocquempot, “H∞ fault detection
filter design for linear discrete-time systems with multiple time delays,”
International Journal of Systems Science, vol. 34, no. 5, pp. 365–373,
2003.

[22] P. Zhang, S. X. Ding, G. Z. Wang, and D. H. Zhou, “Fault detection of
linear discrete-time periodic systems,” IEEE Transactions on Automatic
Control, vol. 50, no. 2, pp. 239–244, 2005.

[23] M. Zhong, H. Ye, S. X. Ding, and G. Wang, “Observer-based fast
rate fault detection for a class of multirate sampled-data systems,” IEEE
Transactions on Automatic Control, vol. 52, no. 3, pp. 520–525, 2007.

[24] Y. Zhao, J. Lam, and H. Gao, “Fault detection for fuzzy systems with
intermittent measurements,” IEEE Transactions on Fuzzy Systems, vol. 17,
no. 2, pp. 398–410, 2009.

[25] R. M.G. Ferrari, T. Parisini, and M. M. Polycarpou, “A fault detection
and isolation scheme for nonlinear uncertain discrete-time sytems,” in
Proceedings of the 46th IEEE Conference on Decision and Control, New
Orleans, 2007, pp. 1009–1014.

[26] ——, “A robust fault detection and isolation scheme for a class of
uncertain input-output discrete-time nonlinear systems,” in Proceedings
of 2008 American Control Conference, Seattle, 2008, pp. 2804–2809.

[27] H. Wang and G.-H. Yang, “Fault estimations for uncertain linear
discrete-time systems in low frequency domain,” in Proceedings of 2007
American Control Conference, New York, 2007, pp. 1124–1129.

[28] M. Saif, “Robust discrete time observer with application to fault diagno-
sis,” IEE Proceedings Control Theory and Applications, vol. 145, no. 3,
pp. 353–357, 1998.

[29] B. Jiang and F. N. Chowdhury, “Fault estimation and accommodation
for linear MIMO discrete-time systems,” IEEE Transactions on Control
Systems Technology, vol. 13, no. 3, pp. 493–499, 2005.

[30] J. L. Chang, “Applying discrete-time proportional integral observers
for state and disturbance estimations,” IEEE Transactions on Automatic
Control, vol. 51, no. 5, pp. 814–818, 2006.

[31] Z. Gao, T. Breikin, and H. Wang, “Discrete-time proportional and
integral observer and observer-based controller for systems with both
unknown input and output disturbances,” Optimal Control Applications
and Methods, vol. 29, no. 3, pp. 171–189, 2008.

[32] H. H. Choi, “LMI-based nonlinear fuzzy observer-controller design
for uncertain MIMO nonlinear systems,” IEEE Transactions on Fuzzy
Systems, vol. 15, no. 5, pp. 956–971, 2007.

[33] R. J. Patton, J. Chen, and C. J. Lopez-Toribio, “Fuzzy observers for
nonlinear dynamic systems fault diagnosis,” in Proceedings of the 37th
IEEE Conference on Decision and Control, Tampa, 1998, pp. 84–89.

[34] G. Garcia and J. Bernussou, “Pole assignment for uncertain systems
in a specified disk by state feedback,” IEEE Transactions on Automatic
Control, vol. 40, no. 1, pp. 184–190, 1995.

[35] M. Chilali and P. Gahinet, “H∞ design with pole placement constraints:
An LMI approach,” IEEE Transactions on Automatic Control, vol. 41,
no. 3, pp. 358–367, 1996.

[36] M. Chilali, P. Gahinet, and P. Apkarian, “Robust pole placement in LMI
regions,” IEEE Transactions on Automatic Control, vol. 44, no. 12, pp.
2257–2270, 1999.

[37] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia: SIAM Studies
in Applied Mathematics (vol. 15), 1994.

[38] J. Li, H. O. Wang, D. Niemann, and K. Tanaka, “Dynamic parallel
distributed compensation for Takagi-Sugeno fuzzy systems: An LMI
approach,” Information Sciences, vol. 123, no. 3-4, pp. 201–221, 2000.

[39] C.-H. Fang, Y.-S. Liu, S.-W. Kau, L. Hong, and C.-H. Lee, “A new LMI-
based approach to relaxed quadratic stabilization of T-S fuzzy control
systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 3, pp. 386–
397, 2006.

[40] A. Sala and C. Ariño, “Asymptotically necessary and sufficient con-
ditions for stability and performance in fuzzy control: Applications of
Polya’s theorem,” Fuzzy Sets and Systems, vol. 158, no. 24, pp. 2671–
2686, 2007.

[41] K. Tanaka and M. Sano, “A robust stabilization problem of fuzzy control
systems and its application to backing up control of a truck-trailer,” IEEE
Transactions on Fuzzy Systems, vol. 2, no. 2, pp. 119–134, 1994.

[42] G. Feng and J. Ma, “Quadratic stabilization of uncertain discrete-time
fuzzy dynamic systems,” IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, vol. 48, no. 11, pp. 1337–1344,
2001.

[43] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.21,” http://cvxr.com/cvx, July 2010.

[44] ——, “Graph implementations for nonsmooth convex programs,” Re-
cent Advances in Learning and Control (a tribute to M. Vidyasagar),
vol. V. Blondel, S. Boyd, and H. Kimura, editors, pages 95–110,
Lecture Notes in Control and Information Sciences, Springer, 2008.
http://stanford.edu/∼boyd/graph dcp.html.

[45] D. Ichalal, B. Marx, J. Ragot, and D. Maquin, “State estimation
of Takagi-Sugeno systems with unmeasurable premise variables,” IET
Control Theory and Applications, vol. 4, no. 5, pp. 897–908, 2010.

[46] Z. Gao, B. Jiang, P. Shi, and Y. Xu, “Fault accommodation for near space
vehicle attitude dynamics via T-S fuzzy models,” International Journal
of Innovative Computing, Information and Control, vol. 6, no. 11, pp.
4843–4856, 2010.

[47] Z. Gao, B. Jiang, R. Qi, Y. Xu, and Y. Cheng, “Fuzzy observer design
for near space vehicle with application to sensor fault estimation,” ICIC
Express Letters, vol. 4, no. 1, pp. 177–182, 2010.

Bin Jiang was born in Jiangxi, China, in 1966.
He obtained his Ph.D. degree in Automatic Control
from Northeastern University, Shenyang, China, in
1995. He had since been a postdoctoral fellow or a
research fellow in Singapore, France and the USA.
Now he is a Professor and Vice Dean of the College
of Automation Engineering in Nanjing University
of Aeronautics and Astronautics, China. He cur-
rently serves as Associate Editor or Editorial Board
Member for several international journals, such as
IEEE Trans. on Control Systems Technology; Int. J.

of System Science; Int. J. of Control, Automation and Systems; Int. J. of
Innovative Computing, Information and Control. He is a senior member of
IEEE, and a member of the IFAC Technical Committee on Fault Detection,
Supervision, and Safety of Technical Processes. His research interests include
fault diagnosis and fault-tolerant control and their applications.

Ke Zhang was born in Hebei province, China, in
1981. He received the B.Sc. degree in Automation
from Hebei University of Science and Technology,
Shijiazhuang, China, the M.Sc. degree in Control
Theory and Engineering from Nanjing University
of Aeronautics and Astronautics, Nanjing, China, in
2004 and 2007, respectively. From October 2009 to
March 2010, he was a visiting student with Systèmes
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