
Active fault-tolerant control for switched systems with
time delay

This is the Published version of the following publication

Du, Dongsheng, Jiang, Bin and Shi, Peng (2011) Active fault-tolerant control 
for switched systems with time delay. International Journal of Adaptive Control 
and Signal Processing, 25 (5). pp. 466-480. ISSN 0890-6327  

The publisher’s official version can be found at 
http://dx.doi.org/ 10.1002/acs.1224
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/7209/ 



Active fault-tolerant control for switched systems with

time delay

Dongsheng Dua,b, Bin Jianga†, and Peng Shic,d

Abstract. This paper focuses on the problem of active fault-tolerant control for switched systems
with time delay. By utilizing the fault diagnosis observer, an adaptive fault estimate algorithm is
proposed, which can estimate the fault signal fast and exactly. Meanwhile, a delay-dependent criteria
is obtained with the purpose of reducing the conservatism of the adaptive observer design. Based on
the fault estimation information, an observer-based fault-tolerant controller is designed to guarantee
the stability of the closed-loop system. In terms of linear matrix inequality, sufficient conditions are
derived for the existence of the adaptive observer and fault-tolerant controller. Finally, A numerical
example is included to illustrate the efficiency of the proposed approach.

Keywords: Fault-tolerant control; LMI; switched system; time delay.

1 Introduction

In order to increase the safety and reliability of dynamic systems, the issues of fault diagnosis (FD)

and fault tolerant control (FTC) have become an attractive topic and been paid much attention in

recent years. Many researchers have devoted themselves to these issues, and fruitful results can be

found in several excellent papers [1]-[12] and books [13, 14]. As for FTC, which includes two main

approaches: passive FTC and active FTC. In passive FTC systems, a single controller with fixed

structure/parameters is used to deal with all possible failure scenarios which are assumed to be known

a priori. Consequently, the passive controller is usually conservative. Furthermore, if a failure out of

those consideration in the design occurs, the stability and performance of the closed-loop system might

not be guaranteed. Such potential limitations of passive FTC approaches provide a strong motivation

for the development of methods and strategies for active FTC (AFTC) systems.

In contrast with passive FTC systems, AFTC techniques rely on a real-time fault detection and isola-

tion (FDI) scheme and a controller reconfiguration mechanism. Such techniques allow a flexibility to
a†Corresponding author. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, Jiangsu, P.R. China (Email: binjiang@nuaa.edu.cn).
bSchool of Science, Huaihai Institute of Technology, 59 Cangwu Road, Lianyungang 222005, Jiangsu, P.R. China.
cDepartment of Computing and Mathematical Sciences, University of Glamorgan, Pontypridd, CF37 1DL, UK.
dSchool of Engineering and Science, Victoria University, Melbourne 8001 Vic, Australia, and School of Mathematics

and Statistics, University of South Australia, Mawson Lakes, 5095, Australia.

1



select different controllers according to different component failures, and therefore better performance

of the closed-loop system can be expected. If an AFTC is designed properly, it will be able to deal

with unforeseen faults and maintain the system stability and acceptable level of performance in the

presence of fault. Some preliminary results on AFTC can be found in [15]-[17] and references therein.

Compared with the fruitful FTC results for various dynamic systems, relatively few efforts were made

to investigate FTC issue for switched systems. [18] and [20] considered the passive FTC issue for

discrete-time switched systems. In [19], passive FTC for switched nonlinear systems in lower triangular

was studied. Switched system belongs to hybrid system, which consists of several subsystems and a

switching signal that specifies which subsystem will be activated along the system trajectory at each

instant of time. Many real-world process and systems can be modeled as switched systems, including

chemical processes, computer controlled systems, switched circuits, and so on. During the past three

decades, fruitful theoretic results have been reported for switched systems, for examples [21]-[25] and

references therein. On the other hand, time delays are the inherent features of many physical process

and the big sources of instability and poor performances. Meanwhile, switched systems with time

delay have strong engineering background, such as in network control systems [29] and power systems

[30]. More recently, many theoretical studies were conducted for switched systems with time delays

[31]-[33].

Up to date, to the best of the authors’ knowledge, the AFTC for switched systems with time delay

has not been addressed yet. Research is still under way into the development of an effective solutions

for this issue, which motivates us to study this interesting and challenging issue. In this work, this

issue will be solved. The contributions of this work can be summarized as the following two aspects.

1:) An adaptive estimate law is developed for the time-delay switched system. By constructing

a switched Lyapunov function, a novel adaptive fault estimation algorithm is developed for

the switched system with time delay. Moreover, the obtained result is delay-dependent, which

makes further efforts to degrade the conservativeness. On the other hand, many fault estimate

algorithms are confined to estimate constant fault. The advantage of such proposed estimation

algorithm can not only estimate the fault fast and exactly, but also is adaptive to estimate two

type of fault: constant fault case and time-varying fault case.

2:) To review the development of AFTC for switched systems, only the AFTC for nonlinear switched

system were investigated in [12, 34]. Until now, the AFTC for switched system with time delay

is not considered yet. This paper investigates this issue and efficient results are given.

2



The paper is organized as follows. Section 2 gives the model description. Section 3 presents the fault

detection and fault estimation. The observer-based fault tolerant controller is designed in section 4. A

numerical example is illustrated in Section 5 to show the usefulness and applicability of the proposed

approaches, and the paper is concluded in Section 6.

2 Model Description

The switched system S is described as follows :
{

ẋ(t) = Aσ(t)x(t) + Ahσ(t)x(t− h) + Bσ(t)u(t) + Bσ(t)f(t)
y(t) = Cσ(t)x(t)

(1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the output vector, u(t) ∈ Rp is the control input,

f(t) ∈ Rl is the actuator fault, the time delay h is a known scalar and satisfies 0 < h < h̄. σ(t) :

[0,+∞) −→ ψ = {1, · · · , N} is the switching signal, N > 1 is the number of subsystems. At an

arbitrary continuous time t, σ(t), denoted by σ for simplicity, is dependent on t or x(t), or both, or

other switching rules. As in [36], we assume that the sequence of subsystems in switching signal σ(t)

is unknown a priori, but its instantaneous value is available in real time. Aσ(t), Ahσ(t), Bσ(k), and

Cσ(t) are constant matrices with appropriate dimensions for all σ(t) ∈ ψ. When the i-subsystem is

activated, we denote the matrices associated with σ(t) = i by Aσ(t) = Ai, Ahσ(t) = Ahi, Bσ(k) = Bi,

and Cσ(t) = Ci. For the purpose of this work, the following assumptions are given:

Assumption 1 The matrix Bi is full column rank, i.e. rank(Bi) = p.

Assumption 2 The pair (Ai, Bi) is controllable and (Ai, Ci) is observable.

The failure f(t) = ν(t− t0)f0(t) can be thought of as an additional signal, and the function ν(t− t0)

is given by

ν(t− t0) =
{

0, t ≤ t0
1, t > t0

(2)

where t0 is the time of fault occurring. That is, f(t) is zero prior to the failure time t ≤ t0 and is f0(t)

after the failure occurs t > t0. It is assumed that the derivation f0(t) with respect to time is norm

bounded, i.e. ‖f0(t)‖ ≤ f1, ‖ḟ0(t)‖ ≤ f2, where 0 ≤ f1 < ∞, 0 ≤ f2 < ∞.

Before ending this section, the following lemmas are listed for later use.
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Lemma 1 ([26]) Given matrices W, X and Y of appropriate dimensions and with W symmetrical,

then

W + XF (t)Y + YT F T (t)X T < 0

holds for all F (t) satisfying F T (t)F (t) ≤ I if and only if for some ε > 0,

W + εXX T + ε−1YTY < 0

Lemma 2 ([27]) For any real vectors a, b and matrix G > 0 of compatible dimensions, the following

inequality holds:

aT b + bT a ≤ aT Ga + bT G−1b, a, b ∈ Rn

3 Fault Detection and Fault Estimation

AFTC procedure includes three steps: fault detection, fault diagnosis and controller reconfiguration

(or fault compensation). Fault detection is to decide whether or not a fault has occurred, and then

fault diagnosis is to estimate the fault, at last controller reconfiguration compensates the effect of fault

and keeps the closed-loop system stable in fault status. To express clearly, the AFTC architecture for

switched system is described in Figure 1.

Figure 1. Active fault-tolerant control figure for switched system

3.1 Fault detection

Prior to the design of an adaptive diagnostic observer, the following assumption is made.

Assumption 3 There exist positive definite matrices Pi and Qi, i, j ∈ ψ, such that
[

Pi(Ai − LdiCi) + (Ai − LdiCi)T Pi + Qi PiAhi

∗ −Qj

]
< 0 (3)

4



Under the condition (3), the fault detection observer can be designed as follows:
{

ẋm(t) = Aσ(t)xm(t) + Ahσ(t)xm(t− h) + Bσ(t)u(t) + Ldσ(t)(y(t)− ym(t))
ym(t) = Cσ(t)xm(t)

(4)

where xm(t) ∈ Rn is the state vector of the observer, ym(t) ∈ Rm is the output vector of the observer.

Define

em(t) = x(t)− xm(t); rd(t) = y(t)− ym(t) (5)

Then the observation error and output error equations are given by
{

ėm(t) = (Aσ(t) − Ldσ(t)Cσ(t))em(t) + Ahσ(t)em(t− h) + Bσ(t)f(t)
rd(t) = Cσ(t)em(t)

(6)

If no fault occurs, then from (6), one obtains that limt→∞ rd(t) = 0. However, if there is a fault f(t)

and limt→∞ f(t) 6= 0, then limt→∞ rd(t) 6= 0. Therefore the fault detection can be readily carried out

as
{

limt→∞ rd(t) = 0, no fault occurs
limt→∞ rd(t) 6= 0, fault has occurred

(7)

and the observer given by (4) is referred to as a fault detection observer for the switched system (1).

Remark 1 Since the system (6) is a stable system, therefore we can successfully detect whether a

fault occurs according to the logistic rule (7). For more details, one can refer to [2].

3.2 Observer-based fault estimation

To diagnose the actuator fault after the alarm (7) has been generated, the following fault diagnosis

observer is designed:
{ ˙̂x(t) = Aσ(t)x̂(t) + Ahσ(t)x̂(t− h) + Bσ(t)u(t) + Bσ(t)f̂(t) + Lσ(t)(y(t)− ŷ(t))

ŷ(t) = Cσ(t)x̂(t)
(8)

where x̂(t) ∈ Rn is the state vector of the observer, ŷ(t) ∈ Rm is the output vector of the observer,

f̂(t) is an estimate of f(t), Lσ(t) is the observer gain.

Denote

e(t) = x̂(t)− x(t); r(t) = ŷ(t)− y(t); f̃(t) = f̂(t)− f(t); (9)

then the error dynamics is described by
{

ė(t) = Aσ(t)e(t) + Ahσ(t)e(t− h) + Bσ(t)f̃(t)
r(t) = Cσ(t)e(t)

(10)
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where Aσ(t) = Aσ(t) − Lσ(t)Cσ(t). As a result, the purpose of fault estimation is to find a diagnostic

algorithm for f̂(t) such that

lim
t→∞ e(t) = 0; lim

t→∞ f̂(t) = f(t) (11)

In the sequel, a convergent adaptive diagnostic algorithm to estimate the fault f(t) is given, which is

obtained from the residual r(t).

Theorem 1 If there exist positive definite matrices Pi, Qi, Xi, G, matrices Fi, Yi, Zi, Wi, and a

scalar η > 0, for all i, j, k ∈ ψ, such that the following conditions hold
[

Pi I
I Xi

]
≥ 0, PiXi = I (12)




(1, 1) (1, 2) (1, 3) −h̄Yi (1, 5) 0 CT
i W T

i

∗ (2, 2) (2, 3) −h̄Zi h̄AT
hiPi 0 0

∗ ∗ (3, 3) 0 h̄BT
i Pi FiCi 0

∗ ∗ ∗ −h̄Pj 0 0 0
∗ ∗ ∗ ∗ −h̄Pi 0 0
∗ ∗ ∗ ∗ ∗ −ηI 0
∗ ∗ ∗ ∗ ∗ ∗ −ηI




< 0 (13)

where

(1, 1) = PiAi + AT
i Pi −WiCi − CT

i W T
i + Yi + Y T

i + Qi;

(1, 2) = PiAhi − Yi + ZT
i ;

(1, 3) = PiBi − CT
i F T

i −AT
i CT

i F T
i ;

(1, 5) = h̄AT
i Pi − h̄CT

i W T
i ;

(2, 2) = −Qk − Zi − ZT
i ;

(2, 3) = −AT
hiC

T
i F T

i ;

(3, 3) = −2FiCiBi + G;

then the following diagnosis algorithm

˙̂
f(t) = −ΓFi(ṙ(t) + r(t)) (14)

can realize

lim
t→∞ e(t) = 0; lim

t→∞ f̂(t) = f(t)

where Wi = PiLi, ∗ denotes the symmetric elements in a symmetric matrix, and Γ = ΓT > 0 is a

given weighting matrix.
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Proof. Suppose the conditions in (12) and (13) hold. Construct the following switched Lyapunov

function:

V = V1 + V2 + V3 + V4 (15)

where




V1 = eT (t)Pσ(t)e(t)

V2 =
∫ 0
−h

∫ t
t+l ė

T (s)Pσ(s)ė(s)dsdl

V3 =
∫ t
t−h eT (s)Qσ(s)e(s)ds

V4 = f̃T (t)Γ−1f̃(t)

(16)

Then, by the Newton-Leibniz formula,

e(t− h) = e(t)−
∫ t

t−h
ė(s)ds (17)

we have

V̇1 = 2eT (t)Pσ(t)(Aσ(t)e(t) + Ahσ(t)e(t− h) + Bσ(t)f̃(t))

= 2eT (t)Pσ(t)(Aσ(t) + Ahσ(t))e(t)− 2eT (t)Pσ(t)Ahσ(t)

∫ t

t−h
ė(s)ds + 2eT (t)Pσ(t)Bσ(t)f̃(t)

= 2eT (t)Pσ(t)(Aσ(t) + Ahσ(t))e(t) + 2eT (t)(Yσ(t) − Pσ(t)Ahσ(t))
∫ t

t−h
ė(s)ds

+2eT (t− h)Zσ(t)

∫ t

t−h
ė(s)ds + 2eT (t)Pσ(t)Bσ(t)f̃(t)

−
[
2eT (t)Yσ(t)

∫ t

t−h
ė(s)ds + 2eT (t− h)Zσ(t)

∫ t

t−h
ė(s)ds

]

=
1
h

∫ h

t−h

[
2eT (t)(Pσ(t)Aσ(t) + Yσ(t))e(t) + 2eT (t)(Pσ(t)Ahσ(t) − Yσ(t) + ZT

σ(t))e(t− h)

−2eT (t− h)Zσ(t)e(t− h)− 2eT (t)hYσ(t)ė(s)

−2eT (t− h)hZσ(t)ė(s) + 2eT (t)Pσ(t)Bσ(t)f̃(t)
]
ds (18)

V̇2 =
∫ 0

−h

[
ėT (t)Pσ(t)ė(t)− ėT (t + l)Pσ(t+l)ė(t + l)

]
dl

=
∫ t

t−h

[
ėT (t)Pσ(t)ė(t)− ėT (s)Pσ(s)ė(s)

]
ds

=
∫ t

t−h

[
(Aσ(t)e(t) + Ahσ(t)e(t− h) + Bσ(t)f̃(t))T Pσ(t)(Aσ(t)e(t)

+Ahσ(t)e(t− h) + Bσ(t)f̃(t))− ėT (s)Pσ(s)ė(s)
]
ds
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=
1
h

∫ t

t−h

[
eT (t)hA

T
σ(t)Pσ(t)Aσ(t)e(t) + 2eT (t)hA

T
σ(t)Pσ(t)Ahσ(t)e(t− h)

+2eT (t)hA
T
σ(t)Pσ(t)Bσ(t)f̃(t) + eT (t− h)hAT

hσ(t)Pσ(t)Ahσ(t)e(t− h)

+2eT (t− h)hAT
hσ(t)Pσ(t)Bσ(t)f̃(t) + f̃T (t)hBT

σ(t)Pσ(t)Bσ(t)f̃(t)

−ėT (s)hPσ(s)ė(s)
]
ds (19)

V̇3 = eT (t)Qσ(t)e(t)− eT (t− h)Qσ(t−h)e(t− h)

=
1
h

∫ h

t−h

[
eT (t)Qσ(t)e(t)− eT (t− h)Qσ(t−h)e(t− h)

]
ds (20)

V̇4 = 2f̃T (t)Γ−1 ˙̃
f(t)

= −2f̃T (t)Fσ(t)ṙ(t)− 2f̃T (t)Fσ(t)r(t)− 2f̃T (t)Γ−1ḟ(t)

= −2f̃T (t)Fσ(t)Cσ(t)Aσ(t)e(t)− 2f̃T (t)Fσ(t)Cσ(t)Ahσ(t)e(t− h)

−2f̃T (t)Fσ(t)Cσ(t)Bσ(t)f̃(t)− 2f̃T (t)Fσ(t)Cσ(t)e(t)− 2f̃T (t)Γ−1ḟ(t) (21)

By Lemma 2, one can get that

−2f̃T (t)Γ−1ḟ(t) ≤ f̃T (t)Gf̃(t) + ḟT (t)Γ−1G−1Γ−1ḟ(t)

≤ f̃T (t)Gf̃(t) + f2
2 λmax(Γ−1G−1Γ−1) (22)

By (22), (21) is transformed into

V̇4 ≤ −2f̃T (t)Fσ(t)Cσ(t)Aσ(t)e(t)− 2f̃T (t)Fσ(t)Cσ(t)Ahσ(t)e(t− h)

−2f̃T (t)Fσ(t)Cσ(t)Bσ(t)f̃(t)− 2f̃T (t)Fσ(t)Cσ(t)e(t) + f̃T (t)Gf̃(t)

+f2
2 λmax(Γ−1G−1Γ−1)

=
1
h

∫ t

t−h

[
−2f̃T (t)Fσ(t)Cσ(t)Aσ(t)e(t)− 2f̃T (t)Fσ(t)Cσ(t)Ahσ(t)e(t− h)

−2f̃T (t)Fσ(t)Cσ(t)Bσ(t)f̃(t)− 2f̃T (t)Fσ(t)Cσ(t)e(t) + f̃T (t)Gf̃(t)
]
ds

+f2
2 λmax(Γ−1G−1Γ−1) (23)

Utilizing (18)-(20), (23), and for the particular case σ(t) = i, σ(s) = j, and σ(t− h) = k, one can get

V̇ ≤ 1
h

∫ t

t−h
ξT (t)Ξijkξ(t)ds + β (24)
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where

ξ(t) =
[

eT (t) eT (t− h) f̃T (t) ėT (s)
]T

,

β = f2
2 λmax(Γ−1G−1Γ−1),

Ξijk =




Ξijk11 Ξijk12 Ξijk13 Ξijk14

∗ Ξijk22 Ξijk23 Ξijk24

∗ ∗ Ξijk33 0
∗ ∗ ∗ Ξijk44




Ξijk11 = PiAi + A
T
i Pi + Yi + Y T

i + hA
T
i PiAi + Qi;

Ξijk12 = PiAhi − Yi + ZT
i + hA

T
i PiAhi;

Ξijk13 = PiBi + hA
T
i PiBi −A

T
i CT

i F T
i − CT

i F T
i ;

Ξijk14 = −hYi;

Ξijk22 = −Qk − Zi − ZT
i + hAT

hiPiAhi;

Ξijk23 = hAT
hiPiBi −AT

hiC
T
i F T

i ;

Ξijk24 = −hZi;

Ξijk33 = hBT
i PiBi − 2FiCiBi + G;

Ξijk44 = −hPj

Set Wi = PiLi and use Schur complement lemma, one can get that matrix Ξijk is equivalent to the

following formula

Ξijk +




0
0

FiCi

0
0




P−1
i

[
0 0 WiCi 0 0

]
+




CT
i W T

i

0
0
0
0




P−1
i

[
0 0 CT

i F T
i 0 0

]

Ξijk =




(1, 1) (1, 2) (1, 3) −hYi hAT
i Pi − hCT

i W T
i

∗ (2, 2) (2, 3) −hZi hAT
hiPi

∗ ∗ (3, 3) 0 hBT
i Pi

∗ ∗ ∗ −hPj 0
∗ ∗ ∗ ∗ −hPi








(25)

Now, applying Schur complement equivalence to (13) gives



(1, 1) (1, 2) (1, 3) 0 CT
i W T

i

∗ (2, 2) (2, 3) 0 0
∗ ∗ (3, 3) FiCi 0
∗ ∗ ∗ −ηI 0
∗ ∗ ∗ ∗ −ηI




9



+h̄




−Yi A
T
i Pi

−Zi AT
hiPi

0 BT
i Pi

0 0
0 0




[ −P−1
j 0

0 −P−1
i

] [ −Y T
i −ZT

i 0 0 0
PiAi PiAhi PiBi 0 0

]
< 0 (26)

for all 0 < h ≤ h̄, we have



(1, 1) (1, 2) (1, 3) 0 CT
i W T

i

∗ (2, 2) (2, 3) 0 0
∗ ∗ (3, 3) FiCi 0
∗ ∗ ∗ −ηI 0
∗ ∗ ∗ ∗ −ηI




+h




−Yi A
T
i Pi

−Zi AT
hiPi

0 BT
i Pi

0 0
0 0




[
P−1

j 0
0 P−1

i

] [ −Y T
i −ZT

i 0 0 0
PiAi PiAhi PiBi 0 0

]
≤




(1, 1) (1, 2) (1, 3) 0 CT
i W T

i

∗ (2, 2) (2, 3) 0 0
∗ ∗ (3, 3) 0 0
∗ ∗ ∗ −ηI 0
∗ ∗ ∗ ∗ −ηI




+h̄




−Yi A
T
i Pi

−Zi AT
hiPi

0 BT
i Pi

0 0
0 0




[
P−1

j 0
0 P−1

i

] [ −Y T
i −ZT

i 0 0 0
PiAi PiAhi PiBi 0 0

]
< 0 (27)

Set η = min{ε, ε−1} and use Lemma 1, if the matrix Pi satisfies P−1P−1 ≤ I, one can see that (27)

implies (25) < 0, which means V̇ (t) < −α‖ϑ(t)‖2 + β, where α = λmin(Ξijk). It follows that V̇ (t) < 0

for α‖ϑ(t)‖2 > β, which means that e(t) and f̃(t) converges to a small set according to Lyapunov

theory. Therefore, estimation errors of the fault and the state are uniformly bounded. Then the proof

is concluded.

Remark 2 From the adaptive fault estimation algorithm, one can get that it contains the derivative

of r(t) and ṙ(t). It is feasible when ṙ(t) can be obtained. But if the signal ṙ(t) can not be easily

obtained from certain systems, we should resort to other alternative methods. In order to deal with

this problem, ṙf (t) is introduced to be a substitute for ṙ(t) [9]. The relationship is defined as follows:

ṙf (t) = −1
ε
(rf (t)− r(t)) (28)
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From (28), one can get that under zero initial condition, using Laplace transform yields

ṙf (t) =
1

εs + 1
ṙ(t) (29)

Therefore, it it easy to show that the substitute ṙf (t) can approximate to ṙ(t) with any desired accuracy

as ε → 0. Meanwhile, when s → 0, that is t →∞, ṙf (t) asymptotically converges to ṙ(t).

Remark 3 By utilizing the novel switched Lyapunov function formation in (15), the derivational

result in Theorem 1 is delay-dependent. If we employ the following Lyapunov function formation: V =

eT (t)Pσ(t)e(t) +
∫ t
t−h eT (s)Qσ(s)e(s)ds + f̃T (t)Γ−1f̃(t), the obtained result will be delay-independent.

Comparing the two cases, one can see that the result in Theorem 1 is less conservativeness.

Remark 4 In the proving process, we set ˙̃
f(t) = ˙̂

f(t)− ḟ(t). If the fault is a constant, which means

that ḟ(t) = 0. Under this case, the fault estimate algorithm will be changed into ˙̂
f(t) = −ΓFiṙ(t),

which is only adaptive to estimate constant faults. From the above discussion, one can get that the

estimate algorithm in (14) is not only adaptive to estimate constant faults, but also adaptive to estimate

time-varying faults.

Remark 5 It can be seen that the condition (12) is not a strict LMI formation due to the equation

PiXi = I, which can not be solved directly by Matlab linear matrix inequality Control Toolbox. However,

we can solve this nonconvex feasibility problem by formulating it into a special sequential optimization

problem subject to LMI constraints. In the following, a specific algorithm is given by utilizing the result

in [28].

Now using a cone complementarity approach [28], we present the following algorithm to solve the

problem formulated in Theorem 1. min tr(
∑N

i=1(PiXi)) subject to (12) and (13). According to [28], if

the solution of the above minimization problem is 2n, that is, min tr(PiXi) = 2n, then the conditions

in Theorem 2 are solvable. We can modify Algorithm 1 in [28] to solve the above problem formulated

in Theorem 1.

Algorithm 1:

Step 1: Find a feasible set {P (0)
i , X

(0)
i , Q

(0)
i , F

(0)
i , Y

(0)
i , Z

(0)
i ,W

(0)
i , G(0), η(0), } satisfying (12) and (13).

Set k = 0.

Step 2: Solve the following LMI problem

min tr

(
N∑

i=1

(
PiX

(k)
i + P

(k)
i Xi

))
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subject to (12) and (13).

Step 3: Substitute the obtained matrix variables {Pi, Xi, Qi, Fi, Yi, Zi,Wi, G, η} into (12) and (13). If

the condition (12) is satisfied with

|tr(
N∑

i=1

PiXi)− (N + 1)n| < δ

for some sufficient small scalar δ > 0, then output the feasible solution {Pi, Xi, Qi, Fi, Yi, Zi,Wi, G, η},
EXIT.

Step 4: If k > N where N is the maximum number of iterations allowed, EXIT.

Step 5: Set k = k + 1, {P (k)
i , X

(k)
i , Q

(k)
i , F

(k)
i , Y

(k)
i , Z

(k)
i ,W

(k)
i , G(k), η(k)} = {Pi, Xi, Qi, Fi, Yi, Zi,

Wi, G, η}, and go to Step 2.

4 Fault Accommodation

Since the state x(t) is unavailable, the estimation value x̂(t) is substituted for x(t). Therefore, the

observer-based normal controller is given

ur(t) = −Kσ(t)x̂(t) + d(t) (30)

where Kσ(t) is the feedback gain matrix and d(t) is the reference input.

Once a fault occurs, based on the accurate and rapid estimation of the fault , the following observer-

based fault-tolerant controller is activated to compensate for the fault

u(t) = ur(t)− f̂(t) (31)

Assuming d(t) = 0 and substituting (31) into (1), one obtains
{

ẋ(t) = (Aσ(t) −Bσ(t)Kσ(t))x(t) + Ahσ(t)x(t− h) + ρ(t)
y(t) = Cσ(t)x(t)

(32)

where ρ(t) = −Bσ(t)Kσ(t)e(t)−Bσ(t)f̃(t).

From the result of Theorem 1, one can get that e(t) → 0 and f̃(t) → 0 when t →∞. The signal ρ(t)

can be treated as a disturbance of the system (32). So, if only the feedback gain Ki can ensure that

the following system is asymptotically stable.
{

ẋ(t) = (Aσ(t) −Bσ(t)Kσ(t))x(t) + Ahσ(t)x(t− h)
y(t) = Cσ(t)x(t)

(33)

12



Theorem 2 The system (33) is asymptotically stable for any time delay h satisfying 0 ≤ h ≤ h̄ if

there exist positive definite matrices Pi, Qi, matrix Yi, for all i, j, k ∈ ψ, such that



AiXi + XiA
T
i −BiYi − Y T

i BT
i AhiRj Xi

∗ −Rj 0
∗ ∗ −Ri


 < 0 (34)

where Yi = KiXi.

Proof. Let the Lyapunov function be

V5 = xT (t)Pσ(t)x(t) +
∫ t

t−h
xT (s)Qσ(s)x(s)ds (35)

Then the derivative of V5 along the trajectories of the system in (33) is

V̇5 = 2xT (t)Pσ(t)(Aσ(t) −Bσ(t)Kσ(t))x(t) + 2xT (t)Pσ(t)Ahσ(t)x(t− h)

+xT (t)Qσ(t)x(t)− xT (t− h)Qσ(t−h)x(t− h) (36)

Under the particular case σ(t) = i and σ(t − h) = j, and let Pi = X−1
i , Qi = R−1

i , one can get that

the LMI in (34) means that V̇5 < 0. Therefore, the system (33) is asymptotically stable according to

standard Lyapunov stability theory.

Remark 6 This paper considers the active fault-tolerant case for switched systems with constant delay.

Combined the existing time-varying delays results for switched system, the result obtained in this wok

may be extended to time-varying case, this issue will be one of our future study work.

5 An illustrative example

Consider the switched system S consisting of two subsystems described by

A1 =
[ −0.54 1.02

0.17 −0.31

]
, A2 =

[ −0.01 0.1
0.01 0.04

]
, Ah1 =

[
0.18 0.36
−0.06 −0.12

]
, Ah2 =

[
0.11 0.18
−0.03 −0.04

]
,

B1 =
[

0.1
0.2

]
, B2 =

[
0.2
0.4

]
, C1 =

[
0.1 0.2

]
, C2 =

[
0.2 0.3

]
, h̄ = 6.

By utilizing Algorithm 1 to solve the conditions in Theory 1, we can get a set of solutions as follows:

P1 =
[

0.0139 0.0460
0.0460 0.1538

]
, P2 =

[
0.0018 0.0015
0.0015 0.0030

]
, X1 = 103 ×

[
8.0608 −2.4113
−2.4113 0.7278

]
,

X2 =
[

929.2677 −465.9440
−465.9440 562.6869

]
, Q1 = 10−3 ×

[ −0.0259 −0.0660
−0.0660 −0.1293

]
,
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Q2 = 10−4 ×
[

0.6589 0.7236
0.7236 0.7870

]
, Y1 = 10−3 ×

[ −0.0926 −0.1936
−0.1936 −0.4894

]
,

Y2 = 10−3 ×
[ −0.1237 −0.2492
−0.2488 −0.5011

]
, W1 =

[
0.0064
0.0271

]
, W2 =

[
0.0028
0.0029

]
,

Z1 = 10−3 ×
[

0.0926 0.1936
0.1936 0.4894

]
, Z2 = 10−3 ×

[
0.1251 0.2506
0.2505 0.5036

]
,

F1 = 0.0830, F2 = 0.0239, G = 8.9436, η = 0.0721.

Taking the learning law Γ = 200 and the sampling period T = 0.01, the time delay is chosen as h = 3,

and the control input u(t) is a unit step function. In this example, two cases of faults are considered.

When the fault is a constant described as

f1(t) =





0, 0 ≤ t ≤ 5
0.2(t− 5), 5 < t ≤ 15
2, 15 < t ≤ 30

In this case, the simulation result is shown in Figure 2. When the fault is a time-varying function

described as

f2(t) =
{

0, 0 ≤ t ≤ 5
0.3 sin 2t + 0.5, 5 < t < 30

The simulation result is shown in Figure 3. From the above simulation results, we can conclude that

whether the fault is a constant or a time-varying function, the estimate algorithm proposed here can

estimate them quickly and exactly.

By solving the LMI in Theorem 2, one obtains

X1 =
[

177.1841 −136.2999
−136.2999 99.7892

]
, X2 =

[
80.4373 −69.2977
−69.2977 57.5229

]
,

R1 =
[

564.7326 −274.1576
−274.1576 301.1453

]
, R2 = 103 ×

[
1.5693 −1.1476
−1.1476 1.0134

]
,

K1 =
[ −338.6052 −446.6806

]
, K2 =

[ −452.3254 −530.7370
]
.

Take the learning law Γ = 2000 and the sampling period T = 0.01, the time delay is assumed as h = 3,

and the initial condition is selected as x(0) =
[

0.3 −0.2
]T . If there is no fault, the state response

of the closed-loop system is given in Figure 4. If a fault occurs and is supposed as follows:

f3(t) =
{

0, 0 ≤ t ≤ 20
6, 20 < t ≤ 100

the state response of the closed-loop system is given in Figure 5. It can be seen from the figure that

the closed-loop system is asymptotically stable.
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6 Conclusion

In this paper, the problem of active fault tolerant control against actuators failure in switched system

with time delay has been addressed. Firstly, an adaptive fault estimation algorithm is proposed, which

can exactly and fast estimate the fault. Based on the fault estimation information, observer-based

state feedback fault tolerant controller is designed such that the closed-loop system is asymptotically

stable. An example is given to illustrate the effectiveness of the proposed method.
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Figure 2. Fault f1(t) (solid line) and its estimate f̂1(t) (dotted line)
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Figure 3. Fault f2(t) (solid line) and its estimate f̂2(t) (dotted line)
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Figure 4. Time response of the state viable x1(t) and x2(t) with no fault
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Figure 5. Time response of the state viable x1(t) and x2(t) with fault f3(t)
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