

Diffusion of linalool and methylchavicol from polyethylene-based antimicrobial packaging films

This is the Accepted version of the following publication

Suppakul, Panuwat, Sonneveld, Kees, Miltz, Joseph and Bigger, Stephen W (2011) Diffusion of linalool and methylchavicol from polyethylene-based antimicrobial packaging films. LWT - Food Science and Technology, 44 (9). pp. 1888-1893. ISSN 0023-6438

The publisher's official version can be found at http://www.sciencedirect.com/science/article/pii/S0023643811001113 Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/7666/

1 Table 1: Effect of temperature on the migration of linalool and methylchavicol from

3						
4		Temperature	Thickness ^[1]	Diffusion Coeff. ^[2]	Rate Constant ^[3]	Hill Coeff. ^[4]
5		T/°C	$L \times 10^6 \! / m$	$D \times 10^{12} / m^2 \; s^{\text{1}}$	k/s^{-1}	n
6	Agent					
7	linalool	4	47.0	0.42 ^a	250.7 ^c	1.92
8		10	47.3	0.68^{b}	167.2 ^b	1.87
9		25	48.4	2.46 ^c	44.5 ^a	1.93
10	methylchavicol	4	48.0	0.35 ^a	346.0 [°]	1.72 ^b
11		10	48.7	0.44 ^b	296.7 ^b	1.35 ^a
12		25	47.5	1.10 ^c	99.1 ^a	1.67 ^b

2 LDPE-based films into isooctane

13 ^[1] For each AM agent, thickness values are non-significantly different (p > 0.05).

14 ^[2] For each AM agent, D values with different letters are significantly different ($p \le 0.01$).

15 ^[3] Rate constant obtained by nonlinear regression. For each AM agent, *k* values with different letters are 16 significantly different ($p \le 0.01$).

17 ^[4] For each AM agent, *n* values with different letters are significantly different ($p \le 0.05$).

18

19

20