
A Parallel Shuffled Complex Evolution Model
Calibrating Algorithm to Reduce Computational Time

Muttil, N. 1,*, S.Y. Liong 2, O. Nesterov 2

1 School of Architectural, Civil and Mechanical Engineering and Institute for Sustainability & Innovation,
Victoria University, P.O. Box 14428, Melbourne 8001, Vic., Australia

2 Tropical Marine Science Institute (TMSI), National University of Singapore, Singapore
* Formerly, Research Fellow at TMSI, National University of Singapore, Singapore

Email: nitin.muttil@vu.edu.au

Keywords: Model calibration, hydrologic models, parallel computing, message passing interface (MPI)

EXTENDED ABSTRACT

The Shuffled Complex Evolution (SCE-UA)
method has been widely applied for calibration of
rainfall-runoff models and has been shown to be
robust and efficient search algorithm. In spite of its
superiority, since many commonly used rainfall-
runoff models have large simulation times, the use
of model calibrating algorithms may become
impractical due to the high computational time
involved. This would necessitate the use of
superior parallel computing technologies in the
calibrating algorithms, with the aim of reducing
the computational times. This study aims to
parallelize the SCE-UA to accelerate the model
calibrating process.

In the field of evolutionary algorithms (EAs), the
use of parallel computing within the standard
Genetic Algorithm (GA) has been researched into
for the past two to three decades. There are three
main parallel paradigms in evolutionary
algorithms: the master-slave model, the diffusion
model and the multi-population (or island) model.
In this study, the master-slave model (see Figure 1)
is adopted, since it is the simplest potential
parallelization strategy, which can be easily
implemented on a cluster of PCs linked by a Local
Area Network (LAN). Moreover, in calibrating
rainfall-runoff models, since the model simulation
times are significantly greater than the
communication times (between master and slaves),
very good speedups are possible using master-
slave models.

Figure 1. The master-slave parallelization strategy

In the SCE-UA, since the population of points is
split into a number of complexes that evolve
independent of each other, it is a fully parallel
problem. Thus, in the proposed parallel version of
the SCE-UA, model evaluations for each complex
are executed in parallel on separate PCs, as
compared to the sequential evaluation of
complexes on a single PC in the original SCE-UA.
The parallel computing capability is based on
master-slave architecture, and the Message Passing
Interface (MPI) is used to establish the master-
slave interactions.

In this parallel SCE-UA, the master process is the
SCE-UA, which is a lightweight process, as its
computational cost is negligible in comparison to
the slave processes, which actually do the model
simulations. Therefore, the master process and the
first slave (also the first complex in SCE-UA) are
run on the same physical PC.

In this study, it is observed that the parallelization
of SCE-UA leads to ‘linear speedups’ in the model
calibrating process. This means that if a calibration
run requires 20 hours to complete 1000 model
simulations, then using 4 PCs in parallel would
take 5 hours to complete the same number of
model simulations. Moreover, parallelization of
SCE-UA using PCs that are linked by a LAN is an
easy and affordable alternative to achieve
significant reduction of the computational time,
without resorting to expensive high-end systems.
Such savings in computational time in turn
facilitates significantly more search of the
parameter space during the calibration process.

1940

1. INTRODUCTION

With the availability of high-performance
computer technology, many complex hydrologic
and hydrodynamic models are available, which are
characterized by a multitude of parameters. Due to
spatial and temporal variability, measurement
errors, etc., the values of many of these parameters
will not be exactly known, necessitating model
calibration using a historical record of input-output
data. The successful application of such models
depends on how well the model is calibrated.

Traditionally, systematic manual methods have
been used for the calibration of conceptual rainfall-
runoff models. However, in order to obtain reliable
results this type of calibration requires that the user
be an expert and it is usually a very long time-
consuming process. Because of this, there has been
a great deal of research into the development of
automatic methods for parameter estimation,
which utilize the speed and power of digital
computers. These methods may be divided into
two categories: local and global methods. Local
methods are susceptible to getting trapped in local
optima, since the shape of the response surface
(the objective function mapped out in the
parameter space) is known to be complex, with the
existence of many regions of attraction and
multiple local optima in each region. To deal with
this problem of multiple local minima, global
optimization methods have been applied
extensively. These methods are global in the sense
that they constitute a parallel search of the search
space (as opposed to a point by point search) by
using a population of potential solutions. Among
the global model calibrating algorithms, the
Genetic Algorithms (Wang, 1991) and Shuffled
Complex Evolution (SCE-UA, Duan et al., 1992)
have been popular.

In various studies, SCE-UA based algorithms have
been demonstrated to be robust and efficient in
calibrating rainfall-runoff models (Kuczera, 1997;
Franchini et al., 1998; Muttil and Liong, 2004). A
further consideration in assessing its performance
is that of the computational time required for the
calibrations. Application of global optimization
methods like the SCE-UA to high-dimensional
parameter estimation problems requires the
solution of a large number of model runs. The
computational burden of these model runs often
renders the use of such advanced global
optimization algorithms for calibrating parameters
in complex hydrologic models impractical. In such
a scenario, it may be imperative to resort to super-
or/and parallel computing.

In the field of water resources and hydrology,
parallel computing has been used only in the very
recent past. Cheng et al. (2005) used a parallel
genetic algorithm (PGA) for watershed model
calibration in order to speed up the calibration
procedure. In calibrating the Xinanjiang
conceptual rainfall-runoff model, they
demonstrated that the PGA was superior to the
serial GA with respect to overall optimization time
and also the stability of the solution. Vrugt et al.
(2006) present a parallel version of the Shuffled
Complex Evolution Metropolis (SCEM-UA)
global optimization algorithm for stochastic
estimation of parameters in environmental models.
Using three case studies, which include calibration
of the SAC-SMA conceptual rainfall-runoff
model, they also demonstrate that parallel
parameter estimation results in considerable time
savings when compared with traditional sequential
optimization runs. In yet another study, Tang et al.
(2007) demonstrate and compare the master-slave
and the multi-population parallelization strategies
(described later in Section 2) for the Epsilon-
Nondominated Sorted Genetic Algorithm-II (ε-
NSGAII) on a hydrologic model calibration test
case and also on a discrete, constrained
groundwater monitoring application. They
conclude that the master-slave approach is superior
to the multi-population approach on both these
water resources applications, especially
considering its simplicity and ease of
implementation.

This study aims to speed up the model calibration
process using the SCE-UA algorithm. Parallel
computing capability is implemented into the
SCE-UA by evaluating each complex in parallel
on separate personal computers (PCs). The parallel
computing capability is based on master-slave
architecture, and the Message Passing Interface
(MPI) is used to establish the master-slave
interactions. Traditionally, this speeding up would
require expensive and high-end systems. Recently,
due to the decreasing hardware cost and the
increasing computation power of workstations,
using a cluster of PCs has become an affordable
and attractive alternative to high-end systems.
Clusters of PCs have the following advantages:
they have a better price/performance ratio than
high-end systems; they may be upgraded more
frequently; they can employ different kinds of
machines; and, their aggregate power scales up
with the increase in the number of PCs (Cheng et
al., 2005). Moreover, a cluster of PCs may now be
easily linked by a Local Area Network (LAN) to
provide researchers with more powerful integrated
PC-LAN systems. In this study, it is observed that
the parallel evaluation of the complexes in the
SCE-UA on separate PCs is an easy and affordable

1941

alternative to achieve significant reduction of the
computational time, thus making it possible for an
exhaustive search of the parameter space. The next
section briefly describes the different ways in
which parallel computing has been used in the
field of evolutionary algorithms (EAs). This is
followed by the description of how parallel
computing is incorporated into the SCE-UA.
Finally, conclusions that can be drawn from this
study are presented.

2. PARALLEL COMPUTING IN
EVOLUTIONARY ALGORITHMS

During the past decade there has been considerable
progress in the development of distributed
computer systems using the power of multiple
processors to efficiently solve complex, high-
dimensional computational problems (Eklund,
2004). Parallel computing offers the possibility of
solving computationally challenging optimization
problems in less time than is possible using
ordinary serial computing (Goldberg et al., 1995).
In the field of evolutionary algorithms, the use of
parallel computing within the standard Genetic
Algorithm (GA) has been researched into for the
past two to three decades. Bethke (1976) made one
of the first investigations of parallel GA models.
He described a global population with a partial
exchange of individuals in successive generations.
His analysis showed that, implemented on parallel
hardware, near-linear speedup could be achieved.
One of the first real implementations of parallel
GA was made by Tanese (1989). She conducted
studies of different topologies and migration rates
on a distributed population model on a 64
processor N-CUBE system. In some experiments
she reported super-linear speedup compared to
sequential GA. Such parallel GAs (PGAs) has
been subsequently applied in many fields
(Abramson et al., 1993; Pereira and Lapa, 2003).

In this section, we briefly review the key
parallelization strategies in genetic algorithms.
PGAs may be categorized into three different basic
approaches: master–slave GAs, cellular GAs (fine-
grained) and multi-population GAs (island or
distributed) (Cantu-Paz, 1997; Pereira and Lapa,
2003; Cheng et al., 2005).

The master–slave GA, as shown in Figure 1, is the
parallel version of the simple GA. Consequently, it
does not alter nor restrict the genetic operations.
Only the fitness evaluation is distributed among
the available machines. Generation control,
selection and genetic operations are not paralleled.
The search-space exploration of this PGA
paradigm is conceptually identical to that of GAs.
It is important to note that, in order to realize any

computational speedup, computations of the
objective function should be fairly complex and
time consuming. Otherwise, the communication
time might overwhelm the computation time and
hence poor speedup results. Thus, this method
should only be used when the effort on fitness
evaluation is substantial.

Figure 2. The cellular GA parallelization strategy

In cellular GAs, each individual member of the
population is put into a processor (cell). The cells
are geographically arranged so that neighborhood
restrictions will be imposed in the crossover
operations, as shown in Figure 2. This paradigm
requires a number of processors and is usually
running on massive parallel computers with single
instruction multiple data stream (SIMD). The
platform is not easily available for ordinary users
and therefore this method is rarely used unless a
large-scale SIMD parallel computer is available.

Figure 3. The multi-population parallelization
strategy

The multi-population GA is an ‘island’ paradigm,
which is sometimes termed distributed or coarse-
grained approach. The paradigm is based on the
phenomenon of natural populations evolving in
relative isolation, such as those that might occur
within some ocean island chains with limited
migration. Communication backbones can connect
processors in logical or physical geometric
structures such as rings, meshes, triangles and
hypercubes. Each sub-population is located in a
processor (island) and evolved by a separate
process. In order to promote cooperation between

1942

processors, a new operator, called migration is
created. According to some predefined strategy,
individuals migrate from one processor to another.
As migration occurs, information about different
regions of the search space is exchanged between
processors, thus providing more diversity in the
search. The paradigm can therefore be
implemented on a PC-LAN with a relatively small
number of workstations. Figure 3 shows a typical
ring topology of this paradigm.

3. IMPLEMENTING PARALLELIZATION
IN SCE-UA

In this section, we present the implementation of
parallel computing capability into the original
serial SCE-UA. Of the three types of
parallelization approaches discussed in the
previous section, in this study, a master-slave
approach is adopted since it is the simplest
potential parallelization strategy, which can be
easily implemented on a cluster of PCs linked by a
LAN. Moreover, it should be noted that for many
hydrologic and hydraulic models, since the model
simulation times are significantly larger than the
communication times (between master and slaves),
very good speedups are possible using the master-
slave approach. The Message Passing Interface
(MPI) is used to establish the master-slave
interactions.

The authors would like to point out that in a
previous study, a parallel version of SCE-UA was
developed by Sharma et al. (2006), who also used
a master-slave approach. They had implemented
the parallel SCE-UA on a Idra and Deeppurple
cluster, running Red Hat Linux 7.2 and Tru64
UNIX operating systems, respectively with
Compaq Alpha architecture. These operating
systems and high end servers are not as popular as
the Windows based PCs, both in terms of ease of
use and cost. Thus, the current implementation of
parallel SCE-UA is much more affordable and can
be easily implemented on the PC-LAN system.
The following sub-sections describe the MPI
library used and details of the parallel SCE-UA.

3.1. The MPI Library

The Message-Passing Interface (MPI) is a
specification for the user interface to message-
passing libraries for parallel computers. MPI can
be used to write programs for efficient execution
on a wide variety of parallel machines, including
massively parallel supercomputers, shared-
memory multiprocessors and networks of
workstations. MPI allows the coordination of a
program running as multiple processes in a
distributed memory environment, yet is flexible

enough to also be used in a shared memory
system. MPI programs always work with
processes, although commonly people talk about
processors. When one tries to get maximum
performance, one process per processor is selected
as part of the mapping activity; this mapping
activity happens at runtime, through the agent that
starts the MPI program, normally called ‘mpirun’.
The standardization of the MPI library is one of its
most powerful features. What it means is the
parallel programmer can write code containing
MPI subroutine and function calls that will work
on *any* machine on which the MPI library is
installed without having to make changes in his
code. A complete detail of the MPI is provided in
Gropp et al. (1994) and Pacheco (1997).

The MPICH, an implementation of the full MPI-
1.2 specification, is used in this study. MPICH is a
freely available, portable implementation of MPI, a
standard for message-passing for distributed-
memory applications used in parallel computing.
MPICH is available for Microsoft Windows and
for most flavours of UNIX (including Linux and
Mac OS X). Moreover, MPICH is a developed
program library. More information including
tutorials can be found on the MPICH web site at:
http://www-unix.mcs.anl.gov/mpi/mpich1/.

3.2. The original SCE-UA

The shuffled complex evolution (SCE-UA)
algorithm was developed at the University of
Arizona (Duan et al. 1992, 1993) to deal with the
difficult problems encountered in the calibration of
conceptual rainfall-runoff models. It incorporates
the best features from several existing methods,
including competitive evolution, the combination
of random and deterministic strategies, the
concepts of controlled random search, and
complex shuffling.

In essence, the SCE-UA begins with an initial
population of points sampled randomly from the
feasible space. The population is partitioned into
one or more complexes, each containing a fixed
number of points. Each complex is allowed to
evolve based on a competitive evolution technique
that uses the simplex search method (Nelder and
Mead, 1965) to direct the search in the correct
direction. Periodically, the entire population is
shuffled and points are reassigned to new
complexes to enable information sharing. This
shuffling strategy reduces the chance of complexes
being trapped on flat regions and thus converging
prematurely. As the search progresses, the entire
population tends to converge toward the
neighbourhood of the global optimum, provided
the initial population size is sufficiently large. For

1943

a lucid explanation on the details of the algorithm,
the reader is referred to Duan et al. (1994).

The original SCE-UA is a serial algorithm in the
sense that the evaluation of the objective function
is done in a sequential manner on a single PC. The
next sub-section presents the proposed parallel
version of the SCE-UA.

3.3. The parallel SCE-UA

A feasible way of solving a problem as quickly as
possible is to partition the problem into smaller
independent pieces, so that all the pieces can be
solved simultaneously (or in parallel). In the field
of parallel computing, problems for which no
particular effort is needed to segment it into a very
large number of parallel tasks, and there is no
essential dependency (or communication) between
those parallel tasks are called ‘embarrassingly
parallel’ problems. In other words, each task can
be computed independently from every other task,
thus each task could be made to run on a separate
processor to achieve quicker results. In the SCE-
UA, since the population of points is partitioned
into a number of complexes and the complexes
evolve independent of each other, this problem
falls within the category of an embarrassingly
parallel one. Thus, it seems natural to assign the
model simulations within each complex to a slave
PC. Hence, the number of complexes and the
number of slave PCs used are the same.

The parallel SCE-UA is same as the original serial
algorithm, except that the complexes are evolved
in parallel on multiple slave PCs rather than on a
single PC. The slave PCs are controlled by the
master process (on the master PC) and information
is passed to and fro between the master process
and the slaves. The master process is the SCE-UA,
which is a lightweight process, as the
computational cost of SCE-UA is negligible in
comparison to the slave processes, which actually
do the computationally heavy model simulations.
Therefore, the master process and the first slave
(also the first complex in SCE-UA) are run on the
same physical processor. The evolved complexes
from multiple slave PCs are sent back to the
master PC, where the complexes are combined and
shuffled. If the stopping criteria are not met, the
population is again partitioned into complexes and
a new loop starts. The working of the parallel
SCE-UA is demonstrated in Figure 4.

The efficacy of a parallel processing application
can be judged using the concept of ‘speedup’, Sp,
defined in Eqn. (1) below:

 Sp = Ts / Tp (1)

Figure 4. Simplified working of the parallel SCE-
UA algorithm

Speedup compares the clock time required to solve
an application in serial (i.e. on one processor), Ts,
with the clock time required using multiple
processors, Tp. The proposed parallel SCE-UA is
observed to attain ‘linear speedups’, which means
that when P processors are used to solve an
application, the parallel computing time, Tp, will
equal (Ts / P), i.e. speedup is equal to the number
of processors used. For example, if a calibration
run requires 20 hours to complete 1000 model
simulations, then using 5 PCs in parallel would
take 4 hours to complete the same number of
model simulations.

4. CONCLUSION

This study proposes a parallel version of the SCE-
UA algorithm with the aim of reducing the
computational time for calibrating rainfall-runoff
models. In the SCE-UA, since the model
simulation in the partitioned complexes are
independent of each other, it seems natural to
assign the simulations within each complex to a
slave PC, making the master-slave parallelization
strategy an obvious choice. Moreover, the master-
slave strategy is found to be affordable and easy to

1944

implement on a low-cost PC-LAN system and thus
there is no need to resort to expensive high-end
systems. It is also observed that the parallelization
of SCE-UA leads to ‘linear speedups’ in the model
calibrating process, resulting in substantial
reduction in computational time for calibrating
rainfall-runoff models. This in turn facilitates
significantly more search of the parameter space
during the calibration process.

5. REFERENCES

Abramson, D., G. Mills and S. Perkins (1993),
Parallelization of a genetic algorithm for
the computation of efficient train schedules,
Proceedings of the 1993 Parallel
Computing and Transputers Conference,
139–149.

Bethke, A.D. (1976), Comparison of genetic
algorithms and gradient-based optimizers
on parallel processors: efficiency of use of
processing capacity, Technical Report No.
197, University of Michigan, Logic of
Computers Group, Ann Arbor, MI.

Cantu-Paz, E. (1997), A survey of parallel genetic
algorithms, Illinois Genetic Algorithms
Laboratory Report No. 97003, University of
Illinois at Urbana-Champaign, IL.

Cheng, C.T., X.Y. Wu and K.W. Chau (2005),
Multiple criteria rainfall-runoff model
calibration using a parallel genetic
algorithm in a cluster of computers,
Hydrological Sciences Journal, 50(6),
1069-1087.

Duan, Q., S. Sorooshian and V.K. Gupta (1992),
Effective and efficient global optimization
for conceptual rainfall-runoff models,
Water Resources Research, 28(4), 1015-
1031.

Duan, Q.A., V.K. Gupta and S. Sorooshian (1993),
Shuffled complex evolution approach for
effective and efficient global minimization,
Journal of Optimization Theory and
Applications, 76(3), 501-521.

Duan, Q.A., S. Sorooshian and V.K. Gupta (1994),
Optimal use of the SCE-UA global
optimization method for calibrating
watershed models, Journal of Hydrology,
158, 265-284.

Eklund, S. E. (2004), A massively parallel
architecture for distributed genetic

algorithms, Parallel Computing, 30, 647-
676.

Franchini, M., G. Galeati and S. Berra (1998),
Global optimisation techniques for the
calibration of conceptual rainfall-runoff
models, Journal of Hydrologic Science,
43(3), 443-458.

Goldberg, D.E., H. Kargupta, J. Horn, E. Cantu-
Paz (1995), Critical deme size for serial and
parallel genetic algorithms, Technical
Report 95002, GA Laboratory, University
of Illinois, Urbana-Campaign, IL.

Gropp, W., E. Lusk and A. Skjellum (1994), Using
MPI: Potable parallel Programming with
the Message-Passing Interface, MIT Press,
Cambridge, Mass.

Kuczera, G. (1997), Efficient subspace
probabilistic parameter optimization for
catchment models, Water Resources
Research, 33(1), 177-185.

Muttil, N. and S.Y. Liong (2004), A superior
exploration-exploitation balance in shuffled
complex evolution, Journal of Hydraulic
Engineering, ASCE, 130(12), 1202-1205.

Nelder, J. A., and R. Mead (1965), A simplex
method for function minimization, Journal
of Computing, 7, 308-313.

Pacheco, P.S. (1997), Parallel Programming with
MPI, Morgan Kaufmann Publishers, San
Francisco, CA.

Pereira, C. M. N. A. and C. M. F. Lapa (2003),
Coarse-grained parallel genetic algorithm
applied to a nuclear reactor core design
optimization problem, Annals of Nuclear
Energy, 30, 555–565.

Sharma, V., D. A. Swayne, D. Lam and W.
Schertzer (2006), Parallel shuffled complex
evolution algorithm for calibration of
hydrological models, Proceedings of the
20th International Symposium on High-
Performance Computing Symposium
(HPCS'06), 30-35.

Tanese, R. (1989), Distributed genetic algorithm,
Proceedings of the 3rd International
Conference on Genetic algorithms, 434–
439.

Tang, Y., P.M. Reed and J.B. Kollat (2007),
Parallelization strategies for rapid and

1945

robust evolutionary multiobjective
optimization in water resources
applications, Advances in Water Resources,
30, 335-353.

Vrugt, J. A., B. O. Nuallain, B. A. Robinson, W.
Bouten, S.C. Dekker and P. M. A. Sloot
(2006), Application of parallel computing
to stochastic parameter estimation in
environmental models, Computers &
Geosciences, 32 (8), 1139-1155.

Wang, Q. J. (1991), The genetic algorithm and its
application to calibrating conceptual
rainfall-runoff models, Water Resources
Research, 27 (9), 2467-2471.

1946

