

The design of hydrocoolers using
MATLAB®

An addendum to Thorpe, G. R. (2007) Postharvest
Biology and Technology, 42, pp 280-289

Graham Thorpe
Institute of Sustainability and Innovation

PO Box 14428, Victoria University
Melbourne 8001

May 2008

PREFATORY NOTES

Very little research has been published on the design of hydrocoolers used
to cool fruits and vegetables. Thorpe (2007) recently employed correlations
used primarily for the design of packed bed chemical process equipment to
analyse the design and operation of hydrocoolers. It is recognised that the
approach adopted by Thorpe (2007) is by no means exclusive of others,
and there is no doubt that his approach will be either refined or jettisoned in
favour of more sophisticated approaches. Furthermore, as the speed and
memory capacities of computers increase we can be certain that the heat,
mass and momentum transport processes that occur in hydrocoolers will be
quantified in much more detail. The ability to consider increasing detail is
one of the underlying features of contemporary engineering science.
However, there is no doubt that correlations will remain an indispensable
weapon in the design engineer’s armoury for the foreseeable future.

In this brief work I present the MATLAB® scripts used to obtain the results
reported by Thorpe (2007). The work is motivated by a desire to:

1. Provide readers with an insight how to translate the equations
presented in the paper into MATLAB®. This is essentially a didactic
aim.

2. Save readers’ time if they wish to implement the analysis.
3. Provide a springboard for people to carry out further research on

hydrocoolers.
4. Enable the work to be scrutinised for its accuracy.
5. Provide space for an agonistic discourse on the design and

operation of hydrocoolers.

This work is not a user-manual for the MATLAB® scripts which are best
regarded as works in progress.

This work was prompted by a grant received by the Smart Water Fund of
Victoria to investigate the design of water-efficient hydrocoolers.

GR Thorpe
Institute of Sustainability and Innovation
Victoria University

 i

CONTENTS

Prefatory notes i

Contents ii

1. The computational scheme 1

2. The thermal continuity equation 1

3. User-defined variables 3

4. Postscriptal note 3

5. Reference 4

6. Bibliography 4

Appendix I VU_Hydrocooler.m 5

Appendix II Thermal_diffusivity_idealf.m 11

Appendix III Dynamic_hold_up.m 12

Appendix IV Wetting_efficiencyf.m 14

Appendix V Total_hold_upf.m 17

Appendix VI Heat_transfer_coefficientf.m 18

 ii

1. THE COMPUTATIONAL SCHEME

The idea of this brief work is to associate the equations presented in
Thorpe (2007) with the MATLAB® script and function m-files used to obtain
the results. This is achieved by referencing the equations in the paper from
the m-files.

The relevant papers cited in Thorpe (2007) are referenced in the m-files
and listed in the bibliography of this report. The components of the
program are listed in Table I. The computational scheme is controlled by
VU_Hydrocooler.m which invokes a number of function m-files that
calculate the thermal diffusivity of the bed of produce, the dynamic and total
hold-up of water in the bed, the degree of wetting of the produce and the
heat transfer coefficient between the produce and the cooling water.
Because the computer program evolved as a research task it does not have
a well structured procedure for inputting variables such as the temperature
and flow rate of the cooling water and so on. However, the process
becomes quite obvious after the user has gained a little familiarisation with
the comprehensively annotated scripts.

Table I. Components of the MATLAB® program used to estimate the
performance of hydrocoolers.

m-file Tasks
VU_Hydrocooler.m Sets up the physical configuration, i.e. the

height of the hydrocooler, the flow rate and
temperature of the cooling water and the
duration of operation. Data on the produce
such as its size and initial temperature are
also supplied by the user.

Thermal_diffusivity_idealf,m A function that estimates the thermal
diffusivity of a bed of produce irrigated with
water.

Dynamic_hold_upf.m Calculates the dynamic hold-up of water as it
flows through a bed of produce.

Wetting_efficiencyf.m Estimates the fraction of the surface of the
produce that is wetted with water.

Total_hold_upf.m This function calculates the total hold-up of
water in the bed of produce.

Heat_transfer_coefficientf.m Estimates the heat transfer coefficient
between the produce and the water.

2. THE THERMAL CONTINUITY EQUATION

Equation 30 in Thorpe (2007) is solved by a well known and simple explicit
method that is not outlined in the paper, yet it is used in VU_Hydrocooler.m.
This lacuna is remedied by first considering equation 30, namely

(wsww2
w

2

w
w

www
w

www TTAfh
x
TD

x
Tuc

t
Tc −+

∂

∂
=

∂
∂

+
∂
∂ ρερ) (1)

 1

where the symbols are ascribed meanings given to them by Thorpe (2007).
It will be convenient to divide equation 1 by the coefficient of the first term
on the left hand side to obtain

(wsw
www

w
2
w

2

www

ww

www

wwww TT
c

Afh
x
T

c
D

x
T

c
uc

t
T

−+
∂

∂
=

∂
∂

+
∂
∂

ερερερ
ρ) (2)

The water flows axially along the bed, hence to calculate the temperature of
the water at discrete times and locations we define the following finite
difference approximations:

t
TT

t
T p

jw
1p

jwjw

Δ
,,, −

≈
∂

∂ +

 (3a)

x

TT

x
T p

1jw
p

jwjw

Δ
−−

≈
∂

∂ ,,, (3b)

2

p
1jw

p
jw

p
1jw

2
jw

x

TT2T

x
T

Δ
−+ −+

≈
∂

∂ ,,,, (3c)

In the finite difference approximations, equations 3a to 3c, the subscript j
refers to the jth node in the axial direction along the bed where j = 1 refers
to the location of the water inlet. In the MATLAB® scripts the total number
of nodes in the direction of the water flow is nx. The superscript p refers to
the pth time step.

In the MATLAB® VU_hydrocooler.m file we have defined the variable
premult thus

 premult=dt/(Dynamic_hold_up*rhow*cpw*dx) (4)

which is the equivalent of

xc
tpremult

www Δρε
Δ

= (5)

When we substitute the finite difference approximations presented in
equations 3a, 3b, and 3c in equation 2 we obtain

()p
jw

p
jsw

www

w

2

p
1jw

p
jw

p
1jw

www

w
p

1jw
p

jw

www

www
p

jw
1p

jw

TT
c

Afh
x

TT2T
c

D
x
TT

c
uc

t
TT

,,

,,,,,,,

−+

−+
=

−
+

− −+−
+

ερ

ΔερΔερ
ρ

Δ

 (6)

 2

In the MATLAB® script we have made use of the fact that the mass flow
rate of water per unit area of bed, , can be expressed as wf

www uf ρ= (7)

The updated temperatures of the water, , after each time step are
found by inserting equation 5 into equation 6 and rearranging the result to
obtain

1p
jwT +

,

()

()
()j

sw
p

jwfw

p
1jw

p
jw

p
1jww

p
1jw

p
jwww

p
jw

1p
jw

TTxpremultfAh

TT2TD
x

premult

TTpremultcfTT

−×××−

−++

−××−=

−+

−
+

,

,,,

,,,,

Δ
Δ

 (8)

There are slight differences between equation 8 and its transliteration into
the MATLAB® script. These arise because the area, , in equation 8 is
defined as the surface area of the produce per unit volume of irrigated bed,
whereas in the script it refers to the area per volume of bed between the
finite difference nodes, j. The degree of wetting does not appear in the
MATLAB

fA

® script because it has been subsumed in the heat transfer
coefficient, htc.

3. USER-DEFINED VARIABLES

It has already been noted that VU_Hydrocooler is essentially a research
tool, and as such it has many of the idiosyncrasies of a work in progress.
An aim of the MATLAB® program is to allow a range of design and
operating conditions of hydrocoolers to be explored. The would-be user of
the program can change any variable at will, but it seems to me that the
most obvious ones users will initially want to change are:

 de Diameter of the produce, m
 lx Length of bed of produce, m
 fw Mass flow rate of water per unit

cross-sectional area of the bed, kg/(m2s)
tinitial Initial temperature of the produce, °C
twater(1) Temperature of water used to cool the

produce, °C

4. POSTSCRIPTAL NOTE

The reader is now in a position to explore the work published by Thorpe
(2007) and use it, criticise it, extend it or develop some quite different
approach.

 3

If the reader needs any assistance please do not hesitate to contact the
author.

5. REFERENCE

Thorpe, G. R., 2007, Towards a semi-continuum approach to the design of
hydrocoolers for horticultural produce. Postharvest Biology and
Technology. Volume 42, pp 280-289.

6. BIBLIOGRAPHY

de Castro, L. R., Vignault, C. and Cortez, L. A. B. (2005) Effect of container
openings and air flow rate on energy required for forced air cooling of
horticultural produce. Canadian Biosystems Engineering, 47, pp3.3-3.9

Larachi, F., Alix, C., Grandjean, B. P. A. and Bernis, A. (2003) Nu/Sh
correlation for particle-liquid heat and mass transfer coefficients in trickle
beds based on Péclet similarity. Chem. Eng. Res. Dev. (Trans IChemE
part A), 81, pp 689-694.

Larachi, F., Belfares, L. and Grandjean, B. P. A. (2001) Prediction of liquid-
solid wetting efficiency in trickle flow reactors. Int. Comm. Heat and Mass
Transfer, 28, pp 595-603.

Larachi, F., Belfares, L., Iluta, I. and Grandjean, B. P. A. (2004) Liquid
hold-up correlations for trickle beds without gas flow. Chem. Engng and
Processing, 43, pp 85-90.

Saez, A. E. and Carbonell, R. G. (1986) Hydrodynamic Parameters for
Gas-Liquid Cocurrent Flow in Packed Beds, AIChE Journal, 31, pp 52-62.

 4

Appendix I VU_Hydrocooler.m

% To explore the performance of a hydrocooler in which there
% is a finite rate of heat transfer between the cooling water
% and the produce, and there is heat transfer by thermal
% conduction within the produce.
%
% The equation numbers in this MATLAB script and its
% associated functions refer to those in Thorpe, G. R. (2007),
% Towards a semi-continuum approach to the design of
% hydrocoolers for horticultural produce.
% Postharvest Biology and Technology. Volume 42, pp 280-289.

% Graham Thorpe
% Institute of Sustainability and Innovation
% Victoria University, Melbourne, Australia
% Revised May 2008

clear all

%%%% Physical properties of the produce %%%%

% k Thermal conductivity, W/(m C)
% rho Density, kg/m^3
% cp Specific heat, J/(kg C)
% alpha Thermal, diffusivity, m^2/s
% de Equivalent diameter of the produce, m
% radius Equivalent radius of the produce, m
% phi Sphericity of the produce defined implicitly
% by equation 27
% eps Volumetric fraction voids between the pieces
% of produce in the hydrocooler
% epsolid Volumetric fraction of voids between the
% pieces of produce in the hydrocooler

 k=.6;
 rho=1000 ;
 cp=4000;
 alpha=k/(rho*cp);
 de=0.025; Set by user %
 radius=de/2;
 phi=1;
 eps=0.4;
 epssolid=1-eps;

%%%%%%%% Physical properties of water %%%%%%%

% rhow Density, kg/m3
% cpw Specific heat, J/(kg C)
% kwater Thermal conductivity, W/(m C)
% sigma Surface tension of water, N/m
% viscw Viscosity of water, Pa s

 rhow=1000;
 cpw=4180;
 kwater=0.6;
 sigma=0.072;

 5

 viscw=0.001

%%%%%%%% Physical properties of air %%%%%%%

% rhoa Density, kg/m3
% kair Thermal conductivity, W/(m C)
% visca Viscosity of air, Pa s

 visca=18e-6;
 rhoa=1.2;
 kair=0.025;

%%%% Physical characteristics of the hydrocooler %%%%

 lx = 0.5; % Length of the bed of produce, m.
 % Set by user.
 dc=1.0; % A length scale that represents the
 % diameter of the bed of produce, m
 fw=16 % Mass flow rate of water per unit
 % cross-sectional area of the bed of
 % produce, kg/(s.m^2). Set by user.
 uDarcian=fw/rhow % Superficial velocity of water
 % through the bed of produce, m/s
%%%% Calculated charactersitics of the bed of produce %%%%

 Dispersion_tensor=Thermal_diffusivity_idealf(de,kair,k,kwater,...
 viscw,rhow,cpw,uDarcian,epssolid)
 Dynamic_hold_up=Dynamic_hold_upf(viscw,eps,phi,de,sigma,rhow,...
 uDarcian)
 Eta_wetting = Wetting_efficiencyf(viscw,rhow,eps,phi,de,dc,...
 sigma,uDarcian)
 Total_hold_up = Total_hold_upf(viscw,rhow,eps,phi,de,uDarcian,...
 Eta_wetting)
 htc=Heat_transfer_coefficientf(viscw,visca,rhow,rhoa,sigma,cpw,...
 kwater,eps,de,uDarcian)

% Set time of operation, minutes
 Time_of_operation = 1.6;
 dt=0.04; % Integration time step, s.
% Number of times steps over which the calculations are executed
 nsteps=Time_of_operation*60/dt;

%%%%% Numerical parameters %%%%%%%

 nr=21; % Number of finite difference nodes in
 % the individua pieces of produce

 nx=11; % Number of finite difference nodes
 % in the bed of produce
 dx=lx/(nx-1); % Distance between equidistant nodes
 Atotal=1.8*dx/radius;% Total area of spherical produce in
 % each finite volume
 % This is equivalent to equation 27.

%%%%%%% Set up finite difference coefficients %%%%%%

 nu=0.9 % Ratio of the radii of successive nodes,
 % equation 32.

 6

 r(1)=0; % Radius of the central node, i.e. zero.
 dr(1)=1 % An arbitrary radiual distance of the
 % first node. This will be corrected to
 % account for its true value. See below.
% Equation 53:
 for i=2:nr-1
 dr(i)=dr(i-1)*nu; % Set up distances between the nodes
 end
% Calculate the relative positions of the radii of the nodes given
% dr(1)=1
 for i=2:nr
 r(i)=r(i-1)+dr(i-1);
 end
% Correct values of dr(i) and r(i) to account for the fact that
% r(1) must be chosen so that r(nr)=radius

 for i=1:nr-1
 dr(i)=dr(i)*radius/r(nr);
 end

 for i=1:nr
 r(i)=r(i)*radius/r(nr);
 end

%%%%%% Coefficients for the first differentials %%%%%

% A slight variation of equations 34a, 34b and 34c
 for i=2:nr-1
 c1(i)=-dr(i)/(dr(i-1)*(dr(i)+dr(i-1)));
 c2(i)=-(dr(i-1)-dr(i))/(dr(i)*dr(i-1));
 c3(i)=dr(i-1)/(dr(i)*(dr(i)+dr(i-1)));
 end

%%%%%% Coefficients for the second differentials %%%%%

% Equations 36a, 36b and 36c
 for i=2:nr-1
 c11(i)=2/(dr(i-1)*(dr(i)+dr(i-1)));
 c12(i)=-2/(dr(i)*dr(i-1));
 c13(i)=2/(dr(i)*(dr(i)+dr(i-1)));
 end

%%%%%% Coefficients for zero temperature %%%%%%
%%%%%% gradient in the centre of the produce %%%%%%
%%%%%% equations 38a and 38b %%%%%%

 denom=2*dr(1)*dr(2)+dr(2)^2;
 cc1 = (dr(1)+dr(2))^2/denom;
 cc2 = -dr(1)^2/denom;

%%%%%% Coefficients for temperature gradient %%%%%%
%%%%%% at the edge of the produce given by %%%%%%
%%%%%% equations 40a, 40b and 40c %%%%%%

 denom1=dr(nr-1)*dr(nr-2)*(dr(nr-1)+dr(nr-2));
 cen=(2*dr(nr-1)*dr(nr-2)+dr(nr-2)^2)/denom1;
 cenm1=-(dr(nr-1)+dr(nr-2))^2/denom1;
 cenm2=dr(nr-1)^2/denom1;

 7

%%%%%%% Set up initial conditions %%%%%%%
% Initial temperature of the produce, deg C:
 tinitial=25.0
 for j=1:nx
 for i=1:nr
 t(i,j)=tinitial;
 tnew(i,j)=t(i,j);
 twater(j)=0.0;
 twaternew(j)=0.0;
 end
 tparti(j)=0;
 tmean(j)=0;

end
% Temperature of water entering the hydrocooler
 twater(1)=2.5; % Set by the user
% twaternew refers to the temperature of the water
% at the end of a time step. It is the updated
% value of twater.
 twaternew(1)=2.5;
 time=0;

% ttrack(1,j) refers to the mean temperatures
% of the produce at each node within the hydrocooler.
% The values of ttrack are updated and stored after
% each time step.
 for j=1:nx
 ttrack(1,j)=tinitial;
 end

 timecount(1)=0; % timecount stores elapsed times, minutes.
 % It is updated every time step.

% Marching through time begins here

for jjj=2:nsteps;

% Demonstrate that the script is working
 jinterval=100;
 jint=fix(jjj/jinterval);
 if jjj==jint*jinterval
 fprintf('Working %i\n',jjj)
 end
% End of demonstration

% Increment the current time by dt
 time=time+dt;

% Marching through the length of the hydrocooler begins here

for j=1:nx
% Calculate the surface temperature of the produce
% using equation 42.

 t(nr,j)=(htc*twater(j)-k*cenm1*t(nr-1,j)...
 -k*cenm2*t(nr-2,j))/(k*cen+htc);
 tnew(nr,j)=t(nr,j);

 8

% premult is defined by equations 5 and 6 in this Addendum
 if j>1
 premult=dt/(Dynamic_hold_up*rhow*cpw*dx);
% The updated temperatures of the water, twaternew(j), are
% calculated from equation 6 of the Addendum.
 % Arising from Advection term in equation 30
 twaternew(j)=twater(j)+fw*cpw*(twater(j-1)...
 -twater(j))*premult;

 % Surface heat transfer to the produce
 twaternew(j)=twaternew(j)-htc*Atotal*premult...
 *(twater(j)-t(nr,j));

 % Arising from dispersion term in equation 30
 if j<nx
 twaternew(j)=twaternew(j)+premult/dx*...
 Dispersion_tensor*(twater(j-1)...
 -2*twater(j)+twater(j+1));
 else
 twaternew(j)=twaternew(j)+premult/dx*...
 Dispersion_tensor*(twater(j-1)-twater(j));
 end

 end

% Computing the temperature distribution in the produce begins here

 for i=2:nr-1
 % Account for the heating effects of respiration using
 % the expression presented in de Castro, L. R., Vignault,
 % C. and Cortez, L. A. B. (2005) Effect of container openings
 % and air flow rate on energy required for forced air cooling
 % of horticultural produce. Canadian Biosystems Engineering,
 % 47, pp 3.3-3.9

 Heat_source=rho*0.087*exp(0.1197*t(i,j)); % W/(m^3 of produce)

% Finite difference forms of first and second spatial derivatives
% of temperature in the produce, equations 33 and 35.
 dtdr=c1(i)*t(i-1,j)+c2(i)*t(i,j)+c3(i)*t(i+1,j);
 d2tdr2=c11(i)*t(i-1,j)+c12(i)*t(i,j)+c13(i)*t(i+1,j);
% An explicit expression for the temperature of the produce
% which is given using a distretyised form of equation 3.
 tnew(i,j)=t(i,j)+alpha*dt*(2*dtdr/r(i)+...
 d2tdr2)+Heat_source*dt/(rho*cp);
 end

% Calculate the temperature at the centre of the produce using
% equation 37.
 tnew(1,j)=cc1*t(2,j)+cc2*t(3,j);

 % Update temperatures at the end of the time step
for i=1:nr
 t(i,j)=tnew(i,j);
end % Marching through conduction in the produce ends here

% Calculate the mass weighted average temperature using equation 43

 9

 tparti(j)=0; % Used to sum mass weighted average temperature
 for i=2:nr
 tparti(j)=tparti(j)+(t(i,j)+t(i-1,j))*(r(i)^3-r(i-1)^3)/2;
 end

% tmean is calculated from equation 43 solved numnerically
% by equation 44.
 tmean(j)=tparti(j)/radius^3;

% the following variables enable one to record the values
% of the mean and centre temperatures as one marches through
% time
 ttrack(jjj,j)=tmean(j);
 tcentre(jjj,j)=tnew(1,j);
% Elapsed time of operation in minutes
 timecount(jjj)=timecount(jjj-1)+dt/60;

end % End of marching along the hydrocooler

% Set the values of the water temperatures at the
% start of the next time step to those at the
% end of the time step just completed.
for j=1:nx
 twater(j)=twaternew(j);
end

end % End of the marching through time loop

for j=1:nx
 hold on
 plot(timecount,ttrack(:,j),'b')
 title('Temperatures of produce at different bed depths')
 xlabel('Elapsed time, minutes')
 ylabel('Mean temperature of produce, ^oC')

 hold on
end

 10

Appendix II Thermal_diffusivity_idealf.m

function Thermal_diffusivity=Thermal_diffusivity_idealf(de,tca,tcs,...
 tcw,viscw,rhow,cpw,uDarcian,epssolid)

% To make an order of magnitude estimate of the axial
% component of the thermal dispersion tensor in an idealised
% spatially periodic porous medium using the analysis proposed
% by Saez, A. E., Carbonell, R. G. and Levec, J. (1986) The
% hydrodynamics of trickling flow in packed beds, Part I:
% Conduit models. AIChEJ, 31, pp 52-62.

% The equation numbers in this function refer to those in
% Thorpe G.R. (2007), Towards a semi-continuum approach to
% the design of hydrocoolers for horticultural produce.
% Postharvest Biology and Technology. Volume 42, pp 280-289.

% Graham Thorpe
% Institute of Sustainability and Innovation
% Victoria University
% Melbourne
% Revised May 2008

% qcell Volume flow rate of water per metre
% width of a unit cell, m^3/s
% deltas Thickness of solid layer, m
%
% uAverage Average velocity of water film, Volume flow
% rate per meter width divided by thickness
% of the water film, m/s
% alphaw Thermal diffusivity, equation 13
% eps Volume fraction of solid phase
% s Volume fraction of the liquid film
% Pe Peclet number, equation 12

qcell = uDarcian*de;
deltal=(qcell*3*viscw/(rhow*9.81))^0.33333; % Equation 17
liquidholdup=deltal/de; % Equation 18
deltas=de*epssolid;
deltag=de-(deltal+deltas); % From equation 15
uAverage=qcell/deltal;
alphaw=tcw/(rhow*cpw);
eps=(deltal+deltag)/de;
s=deltal/de;
Pe=uAverage*6*s*deltal/alphaw;

% Calculation of variables equations 20, 21, 22 (a1 is used
% for beta1 and so on)
a1=-3*eps*s/20 - 14*tcw*eps*(1-s)/(15*tca);
a2=-9*eps*s/10 - 7*tcw*eps*(1-s)/(30*tcs);
a3=-9*eps^2*s^2 - 4*tcw*eps*s*(1-eps)/tcs-4*tcw*eps^2*s*(1-s)/tca...
 -4*tcw^2*(1-eps)*eps*(1-s)/(tcs*tca);

% Estimation of thermal dispersivity, equation 11
Thermal_diffusivity = Pe^2*eps*s/24*(37/180+5*eps*s/12+(a1-a2)/a3);

 11

Appendix III Dynamic_hold_up.m

function Dynamic_hold_up = Dynamic_hold_upf(viscw,eps,phi,...
 de,sigma,rhow,uDarcian)

% To calculate the dynamic hold-up of water in
% a bed of horticultural produce that is being
% cooled in a hydrocooler. The correlation is
% obtained from Larachi, F., Belfares, L., Iluta, I.
% and Grandjean, B. P. A. (2004) Liquid hold-up
% correlations for trickle beds without gas flow.
% Chem. Engng and Processing, 43, pp 85-90.

% Graham Thorpe
% Institute of Sustainability and Innovation
% Victoria University
% Melbourne
%
% Revised May 2008

g=9.81;

%%%%%%%%% Dimensionless groups %%%%%%%%%

 Re = rhow*uDarcian*de/(viscw*(1-eps));
 Fr = uDarcian^2/(g*de);
 We = rhow*uDarcian^2*de/sigma;
 Eo = rhow*g*de^2*phi^2*eps^2/(sigma*(1-eps)^2);

%%%%%%%%% Normalised inputs %%%%%%%%%%%

 Omega(1) = log10(Fr/(7.14e-8))/5.9829;
 Omega(2) = log10(Re/0.174)/4.171768 ;
 Omega(3) = log10(We/4.2e-8)/7.1308;
 Omega(4) = log10(Eo/0.06)/3.82732;
 Omega(5) = 1;

%%%% Neural network connectivity weights %%%%

 omega1(1,1)= 13.3463;
 omega1(1,2)= 10.5363;
 omega1(1,3)= -12.5596;
 omega1(1,4)= 4.63111;
 omega1(1,5)= 23.2651;
 omega1(1,6)= 3.75811;
 omega1(1,7)= 13.818;
 omega1(1,8)= -7.64755;

 omega1(2,1)= -65.2407;
 omega1(2,2)= 9.9268;
 omega1(2,3)= 20.2003;
 omega1(2,4)= -1.55236 ;
 omega1(2,5)= -86.6907;
 omega1(2,6)= -1.55038;
 omega1(2,7)= -19.1719;
 omega1(2,8)= 8.29131;

 12

 omega1(3,1)= 38.9399;
 omega1(3,2)= -26.6538;
 omega1(3,3)= -2.06595;
 omega1(3,4)= 0.25875;
 omega1(3,5)= 46.0733;
 omega1(3,6)= 2.2269;
 omega1(3,7)= -2.46715;
 omega1(3,8)= -13.5451;

 omega1(4,1)= 64.6021;
 omega1(4,2)= -51.9727;
 omega1(4,3)= -14.279;
 omega1(4,4)= -0.905499;
 omega1(4,5)= 69.0901;
 omega1(4,6)= -1.19279;
 omega1(4,7)= -3.4826;
 omega1(4,8)= -16.3938;

 omega1(5,1)= -15.8737;
 omega1(5,2)= 59.445;
 omega1(5,3)= -26.6731;
 omega1(5,4)= 2.31463;
 omega1(5,5)= -18.3042;
 omega1(5,6)= -5.45437;
 omega1(5,7)= -5.70309;
 omega1(5,8)= -18.2135;

 omega2(1)= 5.44266;
 omega2(2)= 10.9984;
 omega2(3)= -15.5088;
 omega2(4)= 19.3656;
 omega2(5)= -4.57547;
 omega2(6)= 15.4822;
 omega2(7)= 48.7554;
 omega2(8)= -8.70918;
 omega2(9)= -30.9751;

%%%%%% Normalised output %%%%%%

 for j=1:8
 sum1 = 0
 for i=1:5
 sum1 = sum1+omega1(i,j)*Omega(i);
 end
 Gamma(j) = 1/(1+exp(-sum1));
 end
 Gamma(9) = 1;

 sum2=0
 for j=1:9
 sum2 = sum2 + omega2(j)*Gamma(j);
 end

 Psi= 1/(1 + exp(-sum2));

%%%%% Calculate the dynamic hold-up in a hydrocooler %%%%%%%

 Dynamic_hold_up = 4.5e-3*10^(1.9497*Psi);

 13

Appendix IV Wetting_efficiencyf.m

function Eta_wetting = Wetting_efficiencyf(viscw,rhow,eps,phi,dv,...
 dc,sigma,uDarcian)

% To calculate the wetting efficiency in
% a bed of horticultural produce that is being
% cooled in a hydrocooler. The correlation is taken
% from Larachi, F., Belfares, L. and Grandjean, B. P. A. (2001)
% Prediction of liquid-solid wetting efficiency in trickle flow
% reactors. Int. Comm. Heat and Mass Transfer, 28, pp 595-603.

% Graham Thorpe
% Victoria University
% Institute of Sustainability and Innovation
% Melbourne, Australia

% Revised May 2008

g=9.81;

dh = dv*(16*eps^3/(9*pi*(1-eps)^2))^(1/3);
as = 6*(1-eps)/(phi*dv)+4.0/dc;

%%% Let the gas velocity be much lower than that of the liquid %%%

uGasDarcian=uDarcian/30;

%%%%%%%%% Dimensionless groups %%%%%%%%%

 Refg = rhow*(uDarcian + uGasDarcian)*dv/(viscw*(1-eps))
 Fr = uDarcian^2/(g*dv)
 St = uDarcian*viscw/(rhow*g*dv^2)
 Ga = dv^3*g*rhow^2*eps^3/((1-eps)^3*viscw^2)
 Sb = as*dh/(1-eps)

%%%%%%%%% Normalised inputs %%%%%%%%%%%

% Equations 7a:

 Omega(1) = (log10(Refg)-0.271842)/3.950878;
 Omega(2) = (log10(St)+5.84164)/3.57484;
 Omega(3) = (log10(Fr)+6.5986)/5.52955;
 Omega(4) = (log10(Ga)-2.43297)/3.58464;
 Omega(5) = (log10(Sb)-0.369216)/0.332352;

% Equation 7b:
 Omega(6) = 1;

%%%% Neural network connectivity weights %%%%

 14

 omega1(1,1)= 4.19968;
 omega1(1,2)= -0.259888;
 omega1(1,3)= -0.481944;
 omega1(1,4)= 11.4991;
 omega1(1,5)= -2.02498;
 omega1(1,6)= 3.10936;
 omega1(1,7)= -2.13749;

 omega1(2,1)= -10.0386;
 omega1(2,2)= -5.88365;
 omega1(2,3)= -0.393829;
 omega1(2,4)= 7.51315;
 omega1(2,5)= -12.4709;
 omega1(2,6)= -3.0791;
 omega1(2,7)= 3.12087;

 omega1(3,1)= 9.61655;
 omega1(3,2)= 10.5134 ;
 omega1(3,3)= -6.64832;
 omega1(3,4)= -8.71024;
 omega1(3,5)= 10.9642;
 omega1(3,6)= 6.14818;
 omega1(3,7)= -1.32697;

 omega1(4,1)= 0.87737;
 omega1(4,2)= -3.9468;
 omega1(4,3)= -6.38033;
 omega1(4,4)= -8.66964;
 omega1(4,5)= 2.62594;
 omega1(4,6)=-15.556;
 omega1(4,7)= 8.72525;

 omega1(5,1)= -4.44327;
 omega1(5,2)= 3.68511;
 omega1(5,3)= -0.238838;
 omega1(5,4)= 11.9850;
 omega1(5,5)= 6.96582;
 omega1(5,6)=-24.3462;
 omega1(5,7)= -6.71659;

 omega1(6,1)= -5.38237;
 omega1(6,2)= -1.25289 ;
 omega1(6,3)=-12.8234;
 omega1(6,4)= -0.087999;
 omega1(6,5)= -4.02972 ;
 omega1(6,6)= 17.7918;
 omega1(6,7)= -3.91923;

 omega2(1) = 8.18548;
 omega2(2) = 5.34465;
 omega2(3) = -2.80463;
 omega2(4) = -6.65745;
 omega2(5) = 4.78822;
 omega2(6) = 5.02297;
 omega2(7) = -10.459;
 omega2(8) = -1.03008;

 15

%%%%%% Normalised output %%%%%%

% Equation 8a:
 for j=1:7
 sum1 = 0;
 for i=1:6
 sum1 = sum1+omega1(i,j)*Omega(i);
 end
 H(j) = 1/(1+exp(-sum1));
 end

% Equation 8b:
 H(8) = 1;

% Equation 9:
 sum2=0;
 for j=1:8
 sum2 = sum2 + omega2(j)*H(j);
 end

 S = 1/(1 + exp(-sum2))

%%%% Calculate the wetting efficiency in a hydrocooler %%%%

% Equation 10:
Eta_wetting = 0.83*S+0.17

 16

Appendix V Total_hold_upf.m

function Total_hold_up = Total_hold_upf(viscw,rhow,eps,...
 phi,dv,uDarcian,etawet)

% To calculate the total hold-up of water in
% a bed of horticultural produce that is being
% cooled in a hydrocooler

% The correletion for total hold-up is taken from
% Larachi, F., Belfares, L., Iluta, I.
% and Grandjean, B. P. A. (2004) Liquid hold-up
% correlations for trickle beds without gas flow.
% Chem. Engng and Processing, 43, pp 85-90.

% The equation number refers to the work of Thorpe, GR
% 2007, Towards a semi-continuum approach to the design
% of hydrocoolers for horticultural produce. Postharvest
% Biology and Technology. Volume 42, pp 280-289.

% Graham Thorpe
% Institute of Sustainability and Innovation
% Victoria University
% Melbourne, Australia
%
% Revised March 2008

g=9.81;
% Coefficients in Ergun's equation:
E1=150;
E2=1.75;

Re=rhow*uDarcian*dv/(viscw*(1-eps)); % Reynolds numbe r
Ga=dv^3*g*rhow^2*eps^3/((1-eps)^3*viscw^2); % Galileo number

term1=E1*etawet^2*Re/(phi^2*Ga);
term2=E2*etawet*Re^2/(phi*Ga);
% Equation 6
Total_hold_up=eps*(term1+term2)^(1/3);

 17

Appendix VI Heat_transfer_coefficientf.m

function htc=Heat_transfer_coefficientf(viscw,visca,rhow,rhoa,...
 sigma,cpw,kwater,eps,dv,uDarcian)

% To calculate heat and mass transfer coefficients in
% beds of horticultural produce that are being
% cooled in a hydrocooler. The heat transfer coefficent
% is calculated from Larachi, F., Alix, C., Grandjean, B. P. A.
% and Bernis, A. (2003) Nu/Sh correlation for particle-liquid
% heat and mass transfer coefficients in trickle beds based
% on Péclet similarity. Chem. Eng. Res. Dev.
% (Trans IChemE part A), 81, pp 689-694.
% Note that errata to some the published coefficients
% have kindly been supplied by the authors.

% The equation number refers to that in Thorpe GR
% 2007, Towards a semi-continuum approach to the design
% of hydrocoolers for horticultural produce. Postharvest
% Biology and Technology. Volume 42, pp 280-289.

% Graham Thorpe
% Victoria University
% Institute of Sustainability and Innovation
% Melbourne, Australia
%
% Modified May 2008

 Mass_diffusivity = 1.0e-5 % For completeness only
 Thermal_diffusivity=kwater/(rhow*cpw)

%%%%% Physical properties of the bed of produce %%%%%

 phi=1 % Sphericity of horticultural produce
 dv=0.025
 dc=dv*20 % Diameter of container of the produce
 ag=6/dv % Area of sphere per unit volume of solid
 ap=ag*(1-eps)% Ares of pieces of produce per unit volume of bed

%%%%% Fluid flow rates %%%%%%%%%

 uGasDarcian =uDarcian/30

 g=9.81

%%%%%%%%% Dimensionless groups %%%%%%%%%

 Re_l_by_g = (rhow*uDarcian*visca)/(rhoa*uGasDarcian*viscw)
 Re_hybrid = (rhow*dv*uGasDarcian)/viscw
 St = uDarcian*viscw/(rhow*g*dv^2)
 Ca = viscw*uDarcian/sigma
 Sb = (1+4/(dc*ap))*(eps/phi)*(384/pi)^(1/3)/(1-eps)^(2/3)
 Pe_mass = dv*uDarcian/Mass_diffusivity
 Pe_heat = dv*uDarcian/Thermal_diffusivity

 18

%%%%%%%%% Examine the limits of the dimensionless groups %%%%%%

 if Re_l_by_g <= 3.43e-3 | Re_l_by_g >= 572
 fprintf(1,'Liquid-gas Reynolds numbers ratio is out of
limits.\n')
 fprintf(1,'Re_l_by_g = %5.3g\n\n',Re_l_by_g)
 end

 if Re_hybrid <= 2 | Re_hybrid >= 1.56e4
 fprintf(1,'Hybrid Reynolds number is out of limits.\n')
 fprintf(1,'Re_hybrid = %5.3g\n\n',Re_hybrid)
 end

 if St <= 3.75e-7 | St >= 5.41e-3
 fprintf(1,'Liquid Stokes number is out of limits.\n')
 fprintf(1,'St = %5.3g\n\n',St)
 end

 if Ca <= 3.8e-6 | Ca >= 6.19e-3
 fprintf(1,'Capillary number ratio is out of limits.\n')
 fprintf(1,'Ca = %5.3g\n\n',Ca)
 end

 if Sb <= 1.35 | Sb >= 9.27
 fprintf(1,'Bed correction factor is out of limits.\n')
 fprintf(1,'Sb = %5.3g\n\n',Sb)
 end

 if Pe_mass <= 27.7 | Pe_mass >= 5.28e5
 fprintf(1,'Mass Peclet number is out of limits.\n')
 fprintf(1,'Pe_mass = %5.3g\n\n',Pe_mass)
 end

 if Pe_heat <= 27.7 | Pe_heat >= 5.28e5
 fprintf(1,'Heat Peclet number is out of limits.\n')
 fprintf(1,'Pe_heat = %5.3g\n\n',Pe_heat)
 end

%%%%%%%%% Normalised inputs %%%%%%%%%%%

 U(1) = log(Re_l_by_g/(3.43e-3))/(5.22*log(10));
 U(2) = log(Re_hybrid/2)/(3.89*log(10));
 U(3) = log(St/3.75e-7)/(4.16*log(10));
 U(4) = log(Ca/3.8e-6)/(3.21*log(10));
 U(5) = log(Sb/1.35)/(0.837*log(10));
% Included here for completeness:
 U(6) = log(Pe_mass/27.7)/(4.28*log(10));
 U(6) = log(Pe_heat/27.7)/(4.28*log(10));
 U(7) = 1;

%%%% Neural network connectivity weights %%%%

 omega1(1,1)= 7.24694;
 omega1(1,2)= 12.3823;
 omega1(1,3)= -22.6901;
 omega1(1,4)= 2.13869;
 omega1(1,5)= -14.6415;
 omega1(1,6)= 7.43942;

 19

 omega1(2,1)= 8.51099;
 omega1(2,2)= 32.6348;
 omega1(2,3)= -21.6824;
 omega1(2,4)= 2.03463;
 omega1(2,5)= -7.84882;
 omega1(2,6)= 2.58508;

 omega1(3,1)= -45.4274;
 omega1(3,2)= 0.558753;
 omega1(3,3)= 24.4283 ;
 omega1(3,4)= 1.07939;
 omega1(3,5)= -39.3043;
 omega1(3,6)= -32.1894;

 omega1(4,1)= 15.5508;
 omega1(4,2)= 32.9063;
 omega1(4,3)= 4.87814;
 omega1(4,4)= -1.63867;
 omega1(4,5)= -5.3102;
 omega1(4,6)= 18.7931;

 omega1(5,1)= -50.7208;
 omega1(5,2)= -19.9724;
 omega1(5,3)= -40.9165;
 omega1(5,4)= 0.27428 ;
 omega1(5,5)= -31.9197;
 omega1(5,6)= -67.3021;

 omega1(6,1)= 29.8193;
 omega1(6,2)= -5.26075;
 omega1(6,3)= -12.0626;
 omega1(6,4)= 1.54517;
 omega1(6,5)= 68.7597;
 omega1(6,6)= 32.1737;

 omega1(7,1)= -12.931;
 omega1(7,2)= -40.5313;
 omega1(7,3)= 0.384958;
 omega1(7,4)= -2.76777;
 omega1(7,5)= -17.3021;
 omega1(7,6)= -10.9662;

 omega2(1)= -6.69033;
 omega2(2)= 0.767127;
 omega2(3)= -6.94293;
 omega2(4)= 4.90085;
 omega2(5)= 6.4788;
 omega2(6)= 0.591789;
 omega2(7)= -2.19871;

%%%% Discriminate between Nusselt and Sherwood number %%%%

for ijk = 1:2

 if ijk == 1
 U(6) = log(Pe_mass/27.7)/(4.28*log(10));

 20

 else
 U(6) = log(Pe_heat/27.7)/(4.28*log(10));
 end

%%%%%% Normalised output %%%%%%

 for j=1:6
 sum1 = 0;
 for i=1:7
 sum1 = sum1+omega1(i,j)*U(i);
 end
 H(j) = 1/(1+exp(-sum1));
 end
 H(7) = 1.0;

 sum2=0;

 for j=1:7
 sum2 = sum2 + omega2(j)*H(j);
 end

 S = 1/(1 + exp(-sum2));

%%%%% Calculate the mass transfer in a hydrocooler %%%%%

 if ijk == 1
 Sh=0.43495*10^(3.4849*S);
 kls_eta = Mass_diffusivity * Sh/dv;

%%%%% Calculate the Nusselt number in a hydrocooler %%%%%

% Equation 24
 else
 Nu=0.43495*10^(3.4849*S);
 htc = kwater * Nu/dv;
 end

end

 21

