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Abstract   

 

Individuals with hemiplegia have difficulty planning movements, which may stem 

from deficits in motor imagery ability. We explored motor imagery ability in three 

groups of 21 children, aged 8-12 years: children with hemiplegia; with Developmental 

Coordination Disorder (DCD); and a comparison group. They completed two tasks 

requiring laterality judgements of body parts - hand and whole-body rotation. 

Accuracy in both was reduced for the motor-impaired groups and response time was 

atypical for the whole-body task.  This suggests motor imagery deficits exist in 

children with hemiplegia and DCD, supporting previous findings that planning 

deficits in hemiplegia may result from deficits in motor imagery. 

 

 

Short title: Motor imagery in CP and DCD. 
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Spastic hemiplegia is a condition characterised by muscle spasticity on one 

side of the body that affects motor skill execution (Miller, 2005). It can occur as a 

congenital condition (considered a form of cerebral palsy), or later in life following a 

stroke or other medical condition affecting the central nervous system. The 

hemiplegia occurs on the opposite side of the body to the cerebral hemisphere that has 

suffered damage and severity can vary significantly between individuals – some may 

experience greater impairment to either their upper or lower limb, while others may 

experience significant impairment to both. Commonly, individuals with spastic 

hemiplegia experience difficulty with gait, balance and fine motor skills. Children are 

also likely to experience significant delays in achieving developmental milestones and 

have difficulty performing motor skills at an age-appropriate level. 

Children with Developmental Coordination Disorder (DCD) also experience 

difficulty acquiring and performing motor skills at an age-appropriate level.  DCD is 

thought to occur in 5-10% of children and presents as a marked impairment in motor 

skills that interferes significantly with activities of daily living and/or education 

(APA, 1994). Children with DCD are clumsy and have difficulties with writing, tying 

shoelaces, walking, running and jumping. DCD is not associated with any known 

neurological condition and its aetiology currently remains unexplained. However, a 

series of papers have provided evidence that suggests a deficit in the ability to utilise 

motor imagery effectively may underlie some of the motor impairment difficulties 

observed in children with this diagnosis (Deconinck, Spitaels, Fias, & Lenoir, 2009; 

Maruff, Wilson, Trebilcock, & Currie, 1999; Williams, Thomas, Maruff, Butson, & 

Wilson, 2006; Williams, Thomas, Maruff, & Wilson, 2008; Wilson et al., 2004; 

Wilson, Maruff, Ives, & Currie, 2001). Interestingly, a recent line of research has also 

begun examining whether motor imagery deficits may also be apparent in adolescents 
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with hemiplegia, with these deficits adding to their already obvious motor execution 

difficulties (Mutsaarts, Steenbergen, & Bekkering, 2007; Steenbergen, van 

Nimwegen, & Crajé, 2007). 

Motor imagery (MI) refers to the mental simulation of a motor act without any 

overt motor execution (Decety, 1996). It is thought to be a copy of a movement plan 

coming to consciousness because actual movement has been inhibited (Crammond, 

1997) and may be used to predict the outcome of a particular movement. The ability 

to predict the outcome of movements is considered to be a crucial part of movement 

planning  and also in the ability to accurately utilise internal models of motor control 

(Blakemore, Wolpert, & Frith, 2002; Flanagan, Vetter, Johansson, & Wolpert, 2003). 

Forward internal models use a copy of the motor command to predict the outcome of 

the command. This predicted state is compared to the actual state of the body as the 

motor command unfolds – external factors may produce differences in the actual 

outcome when compared to the predicted outcome and these differences can be 

provided as feedback to update the model, and command, the next time the movement 

is required (Wolpert, 1997). Hence, internal models provide stability to motor 

systems, by predicting the outcome of movements before slow, sensori-motor 

feedback becomes available and are important for smooth, accurate movement. A 

deficit in the ability to utilise such models may result in slow, poorly coordinated 

movements, such as those observed in both hemiplegia and DCD.  

MI is studied through a number of behavioural paradigms, which have been 

widely used in adult populations and more often, are now being employed in 

paediatric samples. Such paradigms include tasks that require individuals to both 

perform, and imagine performing, a given movement, as well as the mental rotation of 

body parts. Researchers note that in samples of typical adults, imagined movements 
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are constrained by the same physical and biomechanical limits as actual movements. 

For example, speed-accuracy trade-offs are observed in imagined movements as they 

are in physical ones and physically awkward movements take longer to imagine than 

physically simple movements (e.g. Parsons, 1994; Sirigu et al., 1996). It has also been 

demonstrated that some adult populations perform atypically on these tasks - for 

example, patients with posterior parietal lesions (Sirigu, Daprati, Pradat-Diehl, 

Franck, & Jeannerod, 1999; Sirigu et al., 1996), Parkinson’s Disease (Amick, 

Schendan, Ganis, & Cronin-Golomb, 2006) and apraxia (Tomasino, Rumiati, & 

Umiltá, 2003). 

Interestingly, while it has repeatedly been shown that typically developing 

children are constrained by the same speed-accuracy trade-offs and biomechanical 

constraints during MI tasks as adults (e.g. Caeyenberghs, van Roon, Swinnen, & 

Smits-Engelsman, 2009; Deconinck et al., 2009), this is not the case for children with 

DCD. The speed-accuracy trade-offs observed in the actual movements of children 

with DCD are not present when they imagine performing those same movements 

(Maruff et al., 1999; Wilson et al., 2001), and they are less accurate than their peers 

when performing imagined hand and whole-body rotations (Williams et al., 2006; 

Williams et al., 2008). This apparent MI deficit indicates that children with DCD have 

difficulty simulating movements internally which likely hampers their ability to 

predict the outcome of a selected movement plan, with movement planning and 

internal modelling ability thereby reduced. This is supported by findings that MI 

training can improve the motor skills of children with DCD (Wilson, Thomas, & 

Maruff, 2002).  

It was recently suggested that children with hemiplegia may similarly benefit 

from MI training (Steenbergen, Crajé, Nilsen, & Gordon, 2009). This stems from 
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research that has demonstrated that adolescents with hemiplegia do not plan complex 

movements in the same way as their typically developing peers, choosing to grasp 

objects in such a way that allowed postural comfort at the start of a movement but that 

do not allow end-state comfort (Mutsaarts, Steenbergen, & Bekkering, 2005, 2006; 

Steenbergen, Meulenbroek, & Rosenbaum, 2004). This lack of planning was argued 

to add to the motor execution problems inherent in hemiplegia, thereby worsening 

their motor skill impairment.   

Following the suggestion of Mutsaarts, et al. (2006) that a MI deficit could 

explain the reduced motor planning skills of adolescents with hemiplegia, two studies 

were conducted to examine MI ability in this population. The two studies both utilised 

variations of the hand rotation task, with participants required to make left/right 

decisions about hands presented on a computer screen at varying angular orientations 

(Mutsaarts et al., 2007; Steenbergen et al., 2007). These tasks have been shown to 

elicit use of MI as participants imagine their own hand in the position of the presented 

hand before making their judgement (de Lange, Hagoort, & Toni, 2005; de Lange, 

Helmich, & Toni, 2006; Kosslyn, Digirolamo, Thompson, & Alpert, 1998; Thayer & 

Johnson, 2006; Thayer, Johnson, Corballis, & Hamm, 2001). In the case of 

hemiplegia, results have been inconsistent. The initial study by Mutsaarts et al. 

(2007), presented participants with pictures of hands (either closed fist or holding a 

hammer), and found adolescents with left hemiplegia and controls showed a typical 

response time (RT) pattern. The right hemiplegia group showed no significant trade-

off in RT, indicating their responses were not obeying the biomechanical limitations 

of the imagined movements. There was no difference in total accuracy among the 

groups, (despite the two hemiplegia groups making twice as many errors as the 

controls), however, the left hemiplegia group made significantly more errors when 
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responding to left than to right hands. This laterality effect was not observed in the 

other groups. The authors concluded that the left hemiplegia group were utilising MI 

effectively, as they showed the typical RT trade-off and a laterality effect, which 

could be indicative of embodied knowledge about the impaired left body-side.  In 

contrast, it was argued the right hemiplegia group were unable to utilise MI and and 

were instead using an alternative technique, such as using viewpoint-independent cues 

to make their decision. Such cues might include the location of the thumb, for 

example. Thus, the authors argued that a MI deficit is present only in adolescents with 

right hemiplegia, supporting earlier findings that motor planning deficits may be 

restricted to those with right hemiplegia (Steenbergen et al., 2004). 

A follow-up study by Steenbergen et al. (2007) used a similar paradigm and 

reported no differences in the effect of angular orientation on RT or accuracy between 

left and right sided hemiplegic participants and healthy controls, though responses 

were generally slower for the hemiplegic groups. The authors argued that participants 

in the second study were not using MI and were perhaps instead using a visual 

imagery approach. In this context, visual imagery refers to treating the hands as 

objects, rather than body parts, and imagining them rotating from an external 

perspective, rather than imagining one’s own hand moving into the position of the 

stimulus. While the mental rotation of hands has been reported to activate the motor 

system, including the primary motor cortex, the premotor cortex and the posterior 

parietal lobe, the rotation of objects does not and instead activates the inferior and 

superior parietal lobes bilaterally (Kosslyn et al., 1998). Given that Steenbergen et al. 

specifically utilised an experimental set-up that facilitated the use of MI through 

postural congruence (de Lange et al., 2006), it is interesting that they argue that MI 

was not used. Why these adolescents would apparently utilise a non-motor strategy, if 
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indeed they did, in a task that has been designed to facilitate its use and at an age at 

which MI ability should have clearly emerged (Choudhury, 2007; Choudhury, 

Charman, Bird, & Blakemore, 2007) is unclear. An alternative argument may be that 

presenting the task with postural congruence made it easier to complete than the task 

in the previous study and that the hemiplegia groups did use MI and, while slower at 

performing the task, were able to achieve levels of accuracy equivalent to their peers.   

Before implementing MI training for children with hemiplegia, it is vital that 

we gain a better understanding of the MI ability of this population as the conflicting 

studies described above have been conducted with adolescents, whose MI ability may 

differ from younger children. Therefore, the aim of the current study was to explore 

the MI ability of children with hemiplegia, whilst comparing them to children with 

DCD and their typically developing peers. Children with DCD provide a good 

reference point for comparison given their documented deficits in MI ability 

(Deconinck et al., 2009; Williams et al., 2006; Williams et al., 2008; Wilson et al., 

2004; Wilson et al., 2001). They also demonstrate improved motor skills following 

MI training (Wilson et al., 2002). If children with hemiplegia display a similar pattern 

of impairment to those with DCD, this would support the proposition that motor 

planning deficits in hemiplegia are linked to deficits in action representations (or MI) 

(Mutsaarts et al., 2007) and that MI training may be of benefit.   

This study will further build on previous work by examining responses to hand 

stimuli presented in clockwise and counter-clockwise directions to determine whether 

MI is being employed. If participants engage in MI, responses to left hands in 

counter-clockwise directions should take longer than to those in clockwise directions 

due to the biomechanical constraints of movement – i.e. it is harder to imagine a left 

hand at 225  of rotation than at 135  (de Lange et al., 2006). Additionally, the study 
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includes a more complex measure of MI – a whole-body task requiring more difficult 

imagined transformations of the whole body around vertical and horizontal axes. Such 

transformations allow individuals to take on the perspective of other people (Zacks, 

Mires, Tversky, & Hazeltine, 2002), an important component of motor learning 

through modelling. Our previous studies have demonstrated that the complexity of 

this task also means we are less likely to find ceiling effects in terms of accuracy, 

providing more detailed information regarding possible MI deficits (Williams et al., 

2006; Williams et al., 2008). We expected the hemiplegia and DCD groups to show 

similar performance deficits in MI tasks, when compared to a typically developing 

comparison group. We further expected that these deficits would be more evident in 

the whole-body transformation task, which is more complex and less likely to produce 

ceiling effects in our comparison group. 

 

Method 

Participants 

 Twenty-one children (10 males) with mild spastic hemiplegia were recruited 

for this study with the assistance of the Victorian Cerebral Palsy Register, from a 

potential pool of 98 children who were aged 8-13 years, were independently mobile 

with a Gross Motor Function Score of I or II and were free of visual, hearing or 

intellectual impairment. The mean age was 10y 4m (SD = 1y 6m) and 11 children had 

right-sided hemiplegia. All of these children had an estimated IQ >70, with a mean of 

101.05 (SD = 11.1, range 84-122) using the Wechsler Abbreviated Scale of 

Intelligence (Wechsler, 1999) and were attending regular primary schools. 

 The DCD and comparison groups, described previously (Williams et al., 

2008), were recruited using a previously validated method (Wilson, Maruff, & 
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McKenzie, 1997). Primary school teachers were asked to identify children whose 

motor skills they believed to be below age-expected levels and which interfered with 

academic or everyday activities. Children were then assessed on the Movement ABC 

(Henderson & Sugden, 1992) and were considered to have DCD if they performed 

below the 5
th

 percentile and no documented neurological or physical pathology (e.g. 

cerebral palsy, muscular dystrophy) was reported by the school or parents. Teachers 

also identified children with typical motor ability to form the comparison group. 

These children were also assessed on the Movement ABC and were included if they 

performed above the 20
th

 percentile.  

 The 21 children in the DCD group (9 males) had a mean age of 9y 5m (SD = 

8m), while the 21 children (9 males) in the comparison group had a mean age of 9y 

5m (SD = 1y 4m). IQ estimates were not available for children in the DCD and 

comparison groups. 

 

Procedure 

Study methods were approved by the relevant institutional ethics committees.  

All children were assessed by Dr Williams or a trained research assistant who were 

aware of which children were in the hemiplegia group, but were unaware of whether a 

child was suspected of having DCD or not. Children with hemiplegia were assessed at 

the Royal Children’s Hospital, Melbourne, or at school. Children in the DCD and 

comparison groups were assessed at school.  Two mental rotation tasks eliciting MI 

were presented using E-Prime software (Psychology Software Tools, Pittsburgh, PA, 

USA). Stimuli were high resolution images of either hands (left-right) or a man facing 

the participant with his arm (left-right) outstretched (Figure 1), centred on a computer 

screen. Hand stimuli measured 9 cm by 8 cm and whole-body stimuli measured 9 cm 
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by 6 cm. Stimuli were presented in 45  increments between 0º and 360º, with the 

stimuli remaining on the screen for up to 10 s.  Responses were recorded to the 

nearest 1ms.   

Participants sat in front of the computer screen and were required to press two 

allocated keys (designated left and right) in response to the stimuli. Five practice trials 

were provided, followed by 40 test trials, each followed by a random delay of 

between 2 and 3 s. If participants did not respond to a stimulus within 10 s, the 

stimulus disappeared and the next trial began.   

For the hand task, participants were instructed to imagine their own hand in 

the position of the stimulus, using this as a guide to decide whether the hand was left 

or right. In the whole-body task, participants were asked to determine whether the 

stimulus man was holding out his left or right arm. They were instructed to imagine 

themselves in the position of the man to help them decide which arm was being held 

out. In both tasks, children were asked to respond as quickly and accurately as 

possible.  Presentation of tasks was counterbalanced across participants. 

 

 Data Analysis 

Data that had the same angle of rotation from 0º, regardless of direction, were 

combined (e.g. 45º and 315º were combined with both 45º from upright). This 

commonly used technique in mental rotation increases reliability of estimates by 

increasing the number of trials at each angle (see, for example, Harris et al., 2000; 

Roelofs, van Galen, Keijsers, & Hoogduin, 2002). This resulted in eight trials at each 

of 5 angles (0 , 45 , 90 , 135  and 180 ), with an equal number of left and right 

hands/arms, randomly presented at each angle for each participant. 
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For each participant, mean RTs were calculated for each angle, following 

which anticipatory responses were removed (<250ms). For the hand task, 0.2%, 0.8% 

and 1.1% of trials were removed for the comparison, DCD and hemiplegia groups 

respectively. For the whole body task, 1.7%, 4.1% and 5.1% of trials were removed 

for the comparison, DCD and hemiplegia groups respectively. Mean RT was then 

recalculated for each angle. Group RT data were submitted to a 5 (angle) x 3 (group) 

ANOVA with repeated measures on the first factor for both tasks, with multivariate 

tests conducted to protect against violations to the assumption of sphericity. 

Significant findings were followed up using pairwise comparisons of estimated 

marginal means with Bonferroni adjusted alpha levels.   

To determine whether RT was constrained by biomechanical limitations in the 

hand task, mean RTs for left and right hands separately in clockwise (CW) and 

counter-clockwise (CCW) directions were determined. For each participant, mean 

RTs for left and right hands were calculated at the following combinations of angles - 

45 , 90  and 135  (CW) and 225 , 270  and 315  (CCW). This data was then 

submitted to a 2 (laterality) x 2 (rotation direction) x 3 (group) ANOVA with repeated 

measures on the first two factors. Significant findings were followed up using 

pairwise comparisons of estimated marginal means with Bonferroni adjusted alpha 

levels. This analysis was not conducted with the whole-body task as a relationship 

between the laterality of the stimulus and the direction of rotation is not expected in 

whole-body rotations (see for example, Zacks, Ollinger, Sheridan, & Tversky, 2002). 

Consistent with Mutsaarts (Mutsaarts et al., 2007) and Steenbergen 

(Steenbergen et al., 2007), accuracy was averaged across angles for both tasks to 

create an overall accuracy figure. Mean accuracy for each task was then submitted to 
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a univariate ANOVA, with significant group effects followed by post-hoc testing 

using Tukey’s HSD. 

 

Results 

 A one-way ANOVA found a significant difference in mean age among the 

groups, F(2,60) = 4.30, p = .018. Post-hoc tests using Tukey’s HSD demonstrated that 

the hemiplegia group were significantly older than both the DCD (p = .036) and 

comparison (p = .036) groups. As a result, we added age as a covariate to our imagery 

analyses. 

Initial analysis was conducted to examine whether side of hemiplegia (left, 

right) had an effect on the tasks presented for the hemiplegia group. Repeated 

measures ANOVA on mean RT and accuracy for the hand and whole-body tasks 

revealed no significant interaction between side of hemiplegia and angle (p > .05). 

There was also no significant main effect for side of hemiplegia in all the conditions 

(p > .05).    

 

Hand task 

 Results showed that age covaried significantly with RT on the hand task, 

F(1,59) = 4.32, p = .042. After partialling out the variance associated with age, 

repeated measures ANOVA on mean RT did not reveal a significant interaction 

between group and angle (p > .05). There was a significant main effect for angle (see 

Figure 2), Wilks’ Λ = .82, F(4,56) = 2.99, p = .026, η² = .18, and a significant effect 

for group, F(2,59) = 3.24, p = .046, η² = .10. Further examination of the main effect 

for group revealed the hemiplegia group were significantly slower to respond than the 
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comparison group (p = .045). No other group comparisons were statistically 

significant. 

 Repeated measures ANOVA on mean RT to examine the interaction between 

stimulus laterality, rotation direction and group (see Figure 3) revealed only one 

significant interaction, between laterality and direction of rotation, Wilks’ Λ = .92, 

F(1,60) = 5.47, p = .023, η² = .08. Planned comparisons revealed that responses to 

hands presented in the CCW direction were slower when the stimulus was a left hand, 

compared to a right hand (p = .004). There was also a small trend towards faster 

responses in the CCW direction compared to the CW direction for right hands, though 

this failed to reach significance (p = .07).  

Age did not covary significantly with mean accuracy, F(1,59) = 3.15, p = .081, 

η² = .051, and so was removed from the analysis. Mean accuracy for each group was 

81.0% for the DCD group, 79.6% for the hemiplegia group and 95.7% for the the 

comparison group (see Figure 2). ANOVA revealed a significant effect for group, 

F(2,60) = 6.10, p = .004, η² = .17, with both the hemiplegia and the DCD groups 

significantly less accurate than the comparison group (p = .007 and .015 respectively). 

The hemiplegia and DCD groups did not differ. 

 

Whole-body task 

 Age did not covary significantly with mean RT on the whole-body task, 

F(1,56) = 0.12, p = .73, η² = .002, and so was removed from the analysis. There was a 

significant interaction between angle and group, Wilks’ Λ = .73, F(8,108) = 2.32, p = 

.024, η² = .15, (see Figure 4). The effect for angle was significant for the hemiplegia 

(Wilks’ Λ = .84, F(4, 54) = 7.75, p < .001, η² = .37) and DCD groups (Wilks’ Λ = 

.841, F(4, 54) = 2.55,  p = .050, η² = .159), but not for the comparison group (p = .89). 
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Simple main effects for group were only significant at 0º, F(2, 57) = 5.81, p = .005, η² 

= .169, where the hemiplegia (p = .026) and DCD (p = .009) groups were significantly 

faster to respond than the comparison group .  

 Age did not covary significantly with mean accuracy, F(1,56) = 3.77, p = .057, 

η² = .063, and so was removed from the analysis. Mean accuracy for each group was 

49.0% for the DCD group, 56.3% for the hemiplegia group and 85.0% for the the 

comparison group (see Figure 4). ANOVA revealed a significant effect for group, 

F(2,57) = 13.10, p < .001, η² = .32, with both the hemiplegia and the DCD groups 

significantly less accurate than the comparison group (p = .001 and < .001 

respectively). The hemiplegia and DCD groups did not differ. 

 

Discussion 

 This study aimed to explore the performance patterns of children with DCD 

and hemiplegia on two tasks eliciting the use of MI. Our hypotheses were generally 

supported, with no significant differences between these two groups of children with 

motor impairment, though both were significantly less accurate than a group of 

healthy peers. We discuss the findings for each task individually below. 

 

Hand task No differences were identified between children with left and 

right hemiplegia in performance (RT or accuracy) on the hand task, supporting the 

findings of Steenbergen et al. (2007). For subsequent analyses, we compared the 

hemiplegia group as a whole to the DCD and comparison groups. Also in keeping 

with Steenbergen and colleagues, the hemiplegia group in the current study was 

significantly slower than the comparison group in responding to the hand stimuli. The 
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DCD group did not differ significantly in RT from either the comparison or 

hemiplegia groups.   

 In contrast to previous studies conducted with young adults with hemiplegia, 

we identified significantly reduced accuracy in the hemiplegia group compared with 

the comparison group. Indeed, the hemiplegia and DCD groups displayed similar 

levels of accuracy (approximately 80%), with the DCD group also significantly less 

accurate than the comparison group. Hence, the DCD group performed similarly to 

the comparison group in regard to RT, but were impaired in their accuracy of left-

right judgements. The hemiplegia group was also less accurate than the comparison 

group, but were, in addition, significantly slower in their responses. These findings 

relating to accuracy in the hand task are particularly important, because inaccurate 

performance likely signifies greater deficits than slow, but accurate performances. 

 The hand task in this study was administered in a way that would be expected 

to facilitate the use of MI – we presented hand stimuli in the back view, creating 

postural congruency between the subject’s own hands and those displayed, which we 

would expect to increase the reliance on motor imagery (Sirigu & Duhamel, 2001) 

and we provided clear motor imagery instructions. Both the effect of angle on RT and 

the comparison of RTs and accuracy to left and right stimuli in CW and CCW 

directions support the use of MI in all three groups.  Figure 3 shows the mean RTs for 

each group were consistent with the biomechanical constraints of the task – i.e. RTs 

were slower to left hand stimuli presented in a CCW direction compared to a CW 

direction, with the opposite being true for right hand stimuli (with the exception of the 

DCD group, whose responses to right hand stimuli was not notably different in either 

direction). This was further supported statistically, with CCW responses significantly 

slower for left hands compared to right. We argue then that MI was employed by all 
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three groups when completing the hand task and that children with hemiplegia are 

significantly impaired in the ability to use MI, with responses that are significantly 

slower and less accurate than their typically developing peers. Children with DCD are 

similarly impaired in terms of accuracy, though they do not experience the same 

slowing of responses experienced by the children with hemiplegia.   

 

Whole-body task Before discussing the whole-body task, it is important to note 

that typical response patterns on this task differ from most mental rotation paradigms. 

This is because a change in one’s (egocentric) perspective is generally made, rather 

than a rotation of a body part to match a stimulus (Zacks, Gilliam, & Ojemann, 2003; 

Zacks, Mires et al., 2002; Zacks, Ollinger et al., 2002). This transformation is easier 

to make when the stimulus is presented at 180  of rotation as the participant no longer 

needs to perform an imagined transformation around the vertical axis of the body (i.e. 

imagine turning around to face in the opposite direction) - they need only to perform 

an imagined rotation around the horizontal axis (i.e. imagine kicking their legs up in 

the air). Thus, little trade-off for angle occurs in the whole-body task and indeed, 

accuracy can sometimes increase slightly with increases in angle (Zacks, Ollinger et 

al., 2002; Zacks, Rypma, Gabrieli, Tversky, & Glover, 1999). 

 Keeping in mind the different typical response pattern for this task, the results 

showed that the comparison group displayed typical response patterns, whereas RT 

for the DCD and hemiplegia groups was atypical. Both of the latter groups showed 

significant effects for angle, suggesting that they were actually attempting to rotate 

the stimulus to the upright position, rather than performing an egocentric 

transformation. Doing so would then require the individual to maintain a 

representation of this rotated stimulus in their mind while they performed an imagined 
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transformation of either themselves, or the stimulus, around the vertical axis of the 

body. The difficulty of doing so may have contributed to reduced accuracy. Of note 

RTs at 0  were quite low for the DCD and hemiplegia groups, indicating that the 

transformation around the vertical axis may have been too demanding, potentially 

resulting in either rushed responses or guessed answers, after performing the rotation 

to the upright. We have previously suggested that this might be the case for the 

children with DCD (Williams et al., 2008) and the suggestion is supported by the high 

error rate and increased number of anticipatory responses observed in both the DCD 

and hemiplegia groups for the whole body task – more than double the number 

observed in the comparison group and almost two thirds of which occurred when the 

stimulus was presented at lower angles (0-90 ). 

 As with the hand task, it is important to consider what techniques may have 

been implemented by each group to complete the task. Unfortunately, the laterality 

effect in CW and CCW directions present in the hand task is not present in the whole-

body task, making it difficult to determine the technique used. We believe that the 

comparison group was using MI, given that their pattern of response has been 

reported as unique to this task, and closely matches that previously observed in adult 

populations and under fMRI conditions (Zacks, Ollinger et al., 2002; Zacks et al., 

1999). In contrast, it appears that neither the hemiplegia or DCD group were fully 

complying with the MI instructions but were trying to rotate the stimulus to the 

upright position before responding. They may have been able to do so by treating the 

stimulus as an object, rather than viewing it as a body (i.e. using visual imagery) – 

such a technique has been reported previously when two whole-body stimuli are 

presented and a same/different decision, rather than one of laterality, was required 

(Zacks, Ollinger et al., 2002). While whole-body rotations result in significant 



Motor imagery in CP and DCD 

18 

activation at the parietal-temporal-occipital junction, treating whole-body stimuli as 

objects results in significant increases in right hemisphere activation. The use of a 

technique other than that instructed and generally elicited by the task suggests that a 

deficit in the ability to perform MI accurately may lead to the use of other strategies 

for performing the task, even if those strategies are unsuccessful. 

 

General Discussion Our results indicate that both the hemiplegia and DCD groups 

were impaired in their ability to perform both the hand and whole-body (imaging) 

tasks as accurately as their typically developing peers. This is in contrast to previous 

studies with young adults with hemiplegia, where no difference in accuracy from 

comparison groups have been observed (Mutsaarts et al., 2007; Steenbergen et al., 

2007). 

 There were few differences in performance between the DCD and hemiplegia 

groups, suggesting that MI ability may be similarly impaired in both groups. If this is 

the case, and the suggestion of Mutsaarts and colleagues that there is a link between 

deficits in MI ability and motor planning deficits (Mutsaarts et al., 2007) is correct, 

then this supports the likelihood of motor planning deficits in children with DCD, 

similar to that observed in hemiplegia. It remains unclear whether this impairment is 

one of the underlying causes of motor skill impairment in children with DCD.  

Instead, their motor skill impairment may prevent them from accurately forming 

internal models, which is then reflected in MI impairments. Future research needs to 

explore this issue as it will have a significant impact on approaches taken to 

intervention with these children. 

 A further point of interest was the lack of differences in performance between 

children with left and right hemiplegia. This finding is in contrast to studies which 
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have shown planning deficits are restricted to individuals with right-sided hemiplegia 

(i.e. left brain damage) (e.g. Steenbergen et al., 2004) and the study of Mutsaarts and 

colleagues (2007), which reported atypical RT patterns on a MI task in right-sided 

hemiplegia, but not left sided. There is support from previous studies for the 

suggestion that individuals with right-sided hemiplegia only would be impaired in 

their ability to utilise MI suggesting left hemisphere dominance in MI tasks (Kosslyn 

et al., 1998; Tomasino, Toraldo, & Rumiati, 2003). It is interesting then that we did 

not find any differences between children with left and right hemiplegia here. Our use 

of explicit MI instructions, not used in previous studies, may have decreased the 

likelihood of techniques other than MI being utilised, thereby highlighting MI deficits 

not previously observed in children with left-sided hemiplegia. Alternatively, the 

younger age of participants in our study may have been linked to the MI deficit 

observed generally in our hemiplegic group – as the children age, those with left-sided 

hemiplegia may show improvements in their imagery ability which are not 

experienced by those with right-sided hemiplegia due to the compromised 

development of the left side of the brain. Some of the discrepancies across studies 

might also be linked to variance in the location, extent and type of lesion underlying 

the hemiplegia, something that has not been considered in any of the studies to date. 

Further research with younger hemiplegic children, across a range of MI and planning 

tasks, is needed to clarify this issue further. It would also be useful to demonstrate that 

these MI deficits in hemiplegia are specific to motor imagery and are not linked to a 

general inability to perform mental rotation tasks. This could be done by examining 

their performance on a visual imagery task, such as the alphanumeric rotation task 

that we have previously utilised to demonstrate such specificity in children with DCD 

(Williams et al., 2006).  
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 As is the case for all studies attempting to measure internal cognitive 

processes, this study was limited by the fact that our tasks assess MI implicitly. Our 

results should be treated with some caution as without more direct evidence (e.g. 

neuroimaging), it is not possible to conclusively state that all children were utilising 

MI, though the significant laterality effects in the hand task indicate that MI was most 

likely used by all groups. This inference is based on comparison to typical response 

patterns observed in neuroimaging studies of the same or similar tasks (e.g. Kosslyn 

et al., 1998; Zacks et al., 2003). We were also limited in our comparison of left and 

right-sided hemiplegia, with insufficient data to compare the performance of each 

group on left and right-sided stimuli. Finally, although we were able to demonstrate 

that there was no significant intellectual impairment in our hemiplegia group, we did 

not have IQ estimates for our DCD or comparison groups. As such we cannot 

conclusively state that IQ did not have an impact on our findings.  

 In summary, this study found similar performance deficits in tasks that 

generally elicit the use of MI for children with mild spastic hemiplegia to those 

previously reported in children with DCD. We argue that these results support a 

reduced ability to utilise MI and lend support to the suggestion of an underlying motor 

planning deficit in both groups of children. It is unclear whether this deficit is the 

result of impaired neural networks or due to motor execution difficulties, but we do 

know that MI training can improve motor skill execution in children with DCD 

(Wilson et al., 2002). Given the similarities in performance between the hemiplegia 

and DCD groups here, MI training, which involves visual modelling, internal and 

external mental skill rehearsal and overt practice, may also benefit children with 

hemiplegia, as suggested by Steenbergen et al. (2009). Further investigation in both 
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groups is warranted and is likely to impact significantly on future intervention 

strategies. 
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Figure 1.  Task stimuli. (a) Hand stimulus (left hand, 135  of rotation); (b) Whole-

body stimulus (left arm out, 45 ). 

 

 

Figure 2.  Hand task – (a) mean response time (ms) by angle (degrees) and (b) total 

mean accuracy. 
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Figure 3.  Laterality effect.  Mean response time to left and right stimuli in clockwise 

(CW) and counter-clockwise (CCW) directions for each group. 

 

Figure 4.  Whole-body task – (a) mean response time (ms) by angle (degrees) and (b) 

total mean accuracy. 

 


